1
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Exploring Gut Microbiota Imbalance in Irritable Bowel Syndrome: Potential Therapeutic Effects of Probiotics and Their Metabolites. Nutrients 2024; 17:155. [PMID: 39796588 PMCID: PMC11723002 DOI: 10.3390/nu17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis. Therefore, the use of probiotics and probiotic-derived metabolites may be helpful in balancing the gut microbiota and alleviating irritable bowel syndrome symptoms. This review aimed to report and consolidate recent progress in understanding the role of gut dysbiosis in the pathophysiology of IBS, as well as the current studies that have focused on the use of probiotics and their metabolites, providing a foundation for their potential beneficial effects as a complementary and alternative therapeutic strategy for this condition due to the current absence of effective and safe treatments.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andrea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Julio Gálvez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
2
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Teige ES, Hillestad EMR, Steinsvik EK, Brønstad I, Lundervold A, Lundervold AJ, Valeur J, Hausken T, Berentsen B, Lied GA. Fecal bacteria and short-chain fatty acids in irritable bowel syndrome: Relations to subtype. Neurogastroenterol Motil 2024; 36:e14854. [PMID: 38946176 DOI: 10.1111/nmo.14854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/16/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND The relationship between gut microbiota and irritable bowel syndrome (IBS) subtype is unclear. We aimed to explore whether differences in fecal bacteria composition and short-chain fatty acid (SCFA) levels were associated with subtypes and symptoms of IBS. METHODS All participants delivered fecal samples and self-reports on IBS Symptom Severity Score (IBS-SSS), Bristol Stool Scale (BSS), and Gastrointestinal Symptom Rating Scale (GSRS). Fecal bacteria composition was assessed by the GA-map® Dysbiosis Test based on 16S rRNA sequences of bacterial species/groups. SCFAs were analyzed by vacuum distillation followed by gas chromatography. KEY RESULTS Sixty patients with IBS were included (mean age 38 years, 46 [77%] females): Twenty-one patients were classified as IBS-D (diarrhea), 31 IBS-M (mixed diarrhea and constipation), and eight IBS-C (constipation). Forty-two healthy controls (HCs) (mean age 35 years, 27 [64%] females) were included. Patients had a significantly higher relative frequency of dysbiosis, lower levels of Actinobacteria, and higher levels of Bacilli than HCs. Eight bacterial markers were significantly different across IBS subgroups and HCs, and 13 bacterial markers were weakly correlated with IBS symptoms. Clostridia and Veillonella spp. had a weak negative correlation with constipation scores (GSRS) and a weak positive correlation with loose stools (BSS). Diarrhea scores (GSRS) and looser stool (BSS) were weakly correlated with levels of total SCFAs, acetic and butyric acid. Levels of total SCFAs and acetic acid were weakly correlated with symptom severity (IBS-SSS). CONCLUSIONS & INFERENCES Patients with IBS had a different fecal bacteria composition compared to HCs, and alterations of SCFAs may contribute to the subtype.
Collapse
Affiliation(s)
- Erica Sande Teige
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Eline Margrete Randulff Hillestad
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Kjelsvik Steinsvik
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingeborg Brønstad
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Arvid Lundervold
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Astri J Lundervold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trygve Hausken
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Birgitte Berentsen
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Gülen Arslan Lied
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- National Centre for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Vakili O, Adibi Sedeh P, Pourfarzam M. Metabolic biomarkers in irritable bowel syndrome diagnosis. Clin Chim Acta 2024; 560:119753. [PMID: 38821336 DOI: 10.1016/j.cca.2024.119753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal (GI) disorder characterized by altered bowel habits and abdominal discomfort during defecation. It significantly impacts life quality and work productivity for those affected. Global data suggests a slightly higher prevalence in females than in males. Today, unambiguous diagnosis of IBS remains challenging due to the absence of a specific biochemical, histopathological, or radiological test. Current diagnosis relies heavily on thorough symptom evaluation. Efforts by the Rome committees have established standardized diagnostic criteria (Rome I-IV), improving consistency and clinical applicability. Recent studies in this framework, seem to have successfully employed metabolomics techniques to identify distinct metabolite profiles in breath and stool samples of IBS patients, differentiating them from healthy controls and those with other functional GI disorders, such as inflammatory bowel disease (IBD). Building on this success, researchers are investigating the presence of similar metabolites in easily accessible biofluids such as urine, potentially offering a less invasive diagnostic approach. Accordingly, this review focuses on key metabolites specifically detected in IBS patients' biological specimens, with a focus on urinary metabolites, using various methods, particularly mass spectrometry (MS)-based techniques, including gas chromatography-MS (GC-MS), liquid chromatography-tandem MS (LC-MS/MS), and capillary electrophoresis-MS (CE-MS) metabolomics assays. These findings may make provision for a new set of non-invasive biomarkers for IBS diagnosis and management.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Peyman Adibi Sedeh
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Ju X, Jiang Z, Ma J, Yang D. Changes in Fecal Short-Chain Fatty Acids in IBS Patients and Effects of Different Interventions: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:1727. [PMID: 38892659 PMCID: PMC11174707 DOI: 10.3390/nu16111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
CONTEXT Short-chain fatty acids (SCFAs) have been reported to be associated with the pathogenesis of irritable bowel syndrome (IBS), but the results are conflicting. OBJECTIVE Here, a systematic review of case-control studies detecting fecal SCFAs in IBS patients compared with healthy controls (HCs) and self-controlled studies or randomized controlled trials (RCTs) investigating fecal SCFA alterations after interventions were identified from several databases. DATA SOURCES A systematic search of databases (PubMed, Web of Science, and Embase) identified 21 studies published before 24 February 2023. Data extractions: Three independent reviewers completed the relevant data extraction. DATA ANALYSIS It was found that the fecal propionate concentration in IBS patients was significantly higher than that in HCs, while the acetate proportion was significantly lower. Low-FODMAP diets significantly reduced the fecal propionate concentration in the IBS patients while fecal microbiota transplantation and probiotic administration did not significantly change the fecal propionate concentration or acetate proportion. CONCLUSIONS The results suggested that the fecal propionate concentration and acetate proportion could be used as biomarkers for IBS diagnosis. A low-FODMAP diet intervention could potentially serve as a treatment for IBS while FMT and probiotic administration need more robust trials.
Collapse
Affiliation(s)
| | | | | | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.J.); (Z.J.); (J.M.)
| |
Collapse
|
6
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
7
|
Cheng N, Wang X, Zhou Y, Zhao X, Chen M, Zhao H, Cao W. Schisandra chinensis Bee Pollen Ameliorates Colitis in Mice by Modulating Gut Microbiota and Regulating Treg/Th17 Balance. Foods 2024; 13:585. [PMID: 38397562 PMCID: PMC10887782 DOI: 10.3390/foods13040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Colitis is a chronic disease associated with alterations in the composition of gut microbiota. Schisandra chinensis bee pollen extract (SCPE) has been proved to be rich in phenolic compounds and effective in modulating gut microbiota, but its effect on colitis and the underlying mechanism remains unclear. This study investigates the relationship between colitis amelioration and the gut microbiota regulation of SCPE via fecal microbial transplantation (FMT). The results showed that administration of 20.4 g/kg BW of SCPE could primely ameliorate colitis induced by dextran sulfate sodium (DSS) in mice, showing as more integration of colon tissue structure and the colonic epithelial barrier, as well as lower oxidative stress and inflammation levels compared with colitis mice. Moreover, SCPE supplement restored the balance of T regulatory (Treg) cells and T helper 17 (Th17) cells. Gut microbiota analysis showed SCPE treatment could reshape the gut microbiota balance and improve the abundance of gut microbiota, especially the beneficial bacteria (Akkermansia and Lactobacillus) related to the production of short-chain fatty acids and the regulation of immunity. Most importantly, the protection of 20.4 g/kg BW of SCPE on colitis can be perfectly transmitted by fecal microbiota. Therefore, the gut microbiota-SCFAS-Treg/Th17 axis can be the main mechanism for SCPE to ameliorate colitis. This study suggests that SCPE can be a new promising functional food for prevention and treatment of colitis by reshaping gut microbiota and regulating gut immunity.
Collapse
Affiliation(s)
- Ni Cheng
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (N.C.); (X.W.); (H.Z.)
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
| | - Xiaochao Wang
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (N.C.); (X.W.); (H.Z.)
| | - Yaoyao Zhou
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (N.C.); (X.W.); (H.Z.)
| | - Xuanxuan Zhao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (N.C.); (X.W.); (H.Z.)
| | - Minghao Chen
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (N.C.); (X.W.); (H.Z.)
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (N.C.); (X.W.); (H.Z.)
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (N.C.); (X.W.); (H.Z.)
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
| |
Collapse
|
8
|
Weng CY, Suarez C, Cheang SE, Couture G, Goodson ML, Barboza M, Kalanetra KM, Masarweh CF, Mills DA, Raybould HE, Lebrilla CB. Quantifying Gut Microbial Short-Chain Fatty Acids and Their Isotopomers in Mechanistic Studies Using a Rapid, Readily Expandable LC-MS Platform. Anal Chem 2024; 96:2415-2424. [PMID: 38288711 PMCID: PMC10867797 DOI: 10.1021/acs.analchem.3c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Short-chain fatty acids (SCFAs) comprise the largest group of gut microbial fermentation products. While absorption of most nutrients occurs in the small intestine, indigestible dietary components, such as fiber, reach the colon and are processed by the gut microbiome to produce a wide array of metabolites that influence host physiology. Numerous studies have implicated SCFAs as key modulators of host health, such as in regulating irritable bowel syndrome (IBS). However, robust methods are still required for their detection and quantitation to meet the demands of biological studies probing the complex interplay of the gut-host-health paradigm. In this study, a sensitive, rapid-throughput, and readily expandible UHPLC-QqQ-MS platform using 2-PA derivatization was developed for the quantitation of gut-microbially derived SCFAs, related metabolites, and isotopically labeled homologues. The utility of this platform was then demonstrated by investigating the production of SCFAs in cecal contents from mice feeding studies, human fecal bioreactors, and fecal/bacterial fermentations of isotopically labeled dietary carbohydrates. Overall, the workflow proposed in this study serves as an invaluable tool for the rapidly expanding gut-microbiome and precision nutrition research field.
Collapse
Affiliation(s)
- Cheng-Yu
Charlie Weng
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Christopher Suarez
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Shawn Ehlers Cheang
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Garret Couture
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Michael L. Goodson
- School
of Veterinary Medicine, University of California
Davis, Davis, California 95616, United States
| | - Mariana Barboza
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
- School
of Veterinary Medicine, University of California
Davis, Davis, California 95616, United States
| | - Karen M. Kalanetra
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - Chad F. Masarweh
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - David A. Mills
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - Helen E. Raybould
- School
of Veterinary Medicine, University of California
Davis, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
9
|
Korovljev D, Todorovic N, Ranisavljev M, Andjelic B, Kladar N, Stajer V, Ostojic SM. Hydrogen-rich water upregulates fecal propionic acid levels in overweight adults. Nutrition 2023; 116:112200. [PMID: 37734117 DOI: 10.1016/j.nut.2023.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Darinka Korovljev
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Nikola Todorovic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Marijana Ranisavljev
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Bogdan Andjelic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia; Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Nebojsa Kladar
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Valdemar Stajer
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia; Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway; Faculty of Health Sciences, University of Pécs, Pécs, Hungary.
| |
Collapse
|
10
|
Gargari G, Mantegazza G, Taverniti V, Gardana C, Valenza A, Rossignoli F, Barbaro MR, Marasco G, Cremon C, Barbara G, Guglielmetti S. Fecal short-chain fatty acids in non-constipated irritable bowel syndrome: a potential clinically relevant stratification factor based on catabotyping analysis. Gut Microbes 2023; 15:2274128. [PMID: 37910479 PMCID: PMC10773536 DOI: 10.1080/19490976.2023.2274128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023] Open
Abstract
The gut microbiota is believed to be a critical factor in the pathogenesis of IBS, and its metabolic byproducts, such as short-chain fatty acids (SCFAs), are known to influence gut function and host health. Despite this, the precise role of SCFAs in IBS remains a topic of debate. In this study, we examined the bacterial community structure by 16S rRNA gene profiling and SCFA levels by UPLC-MS/MS in fecal samples from healthy controls (HC; n = 100) and non-constipated patients (IBS-D and IBS-M; NC-IBS; n = 240) enrolled in 19 hospitals in Italy. Our findings suggest a significant difference between the fecal microbiomes of NC-IBS patients and HC subjects, with HC exhibiting higher intra-sample biodiversity. Furthermore, we were able to classify non-constipated patients into two distinct subgroups based on their fecal SCFA levels (fecal catabotype "high" and "low"), each characterized by unique taxonomic bacterial signatures. Our results suggest that the fecal catabotype with higher SCFA levels may represent a distinct clinical phenotype of IBS that could have implications for its diagnosis and treatment. This study provides a new perspective on the intricate relationship between the gut microbiome and bowel symptoms in IBS, underscoring the importance of personalized strategies for its management.
Collapse
Affiliation(s)
- Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Claudio Gardana
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Alice Valenza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Federico Rossignoli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Maria Raffaella Barbaro
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cesare Cremon
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Barbara
- Dipartimento di Scienze Mediche e Chirurgiche, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
11
|
Nikolaki MD, Kasti AN, Katsas K, Petsis K, Lambrinou S, Patsalidou V, Stamatopoulou S, Karlatira K, Kapolos J, Papadimitriou K, Triantafyllou K. The Low-FODMAP Diet, IBS, and BCFAs: Exploring the Positive, Negative, and Less Desirable Aspects-A Literature Review. Microorganisms 2023; 11:2387. [PMID: 37894045 PMCID: PMC10609264 DOI: 10.3390/microorganisms11102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The literature about the association of branched short-chain fatty acids (BCFAs) and irritable bowel syndrome (IBS) is limited. BCFAs, the bacterial products of the catabolism of branched-chain amino acids, are proposed as markers for colonic protein fermentation. IBS is a gastrointestinal disorder characterized by low-grade inflammation and intestinal dysbiosis. The low-FODMAP diet (LFD) has increasingly been applied as first-line therapy for managing IBS symptoms, although it decreases the production of short-chain fatty acids (SCFA), well known for their anti-inflammatory action. In parallel, high protein consumption increases BCFAs. Protein fermentation alters the colonic microbiome through nitrogenous metabolites production, known for their detrimental effects on the intestinal barrier promoting inflammation. Purpose: This review aims to explore the role of BCFAs on gut inflammation in patients with IBS and the impact of LFD in BCFAs production. Methods: A literature search was carried out using a combination of terms in scientific databases. Results: The included studies have contradictory findings about how BCFAs affect the intestinal health of IBS patients. Conclusions: Although evidence suggests that BCFAs may play a protective role in gut inflammation, other metabolites of protein fermentation are associated with gut inflammation. Further research is needed in order to clarify how diet protein composition and, consequently, the BCFAs are implicated in IBS pathogenesis or in symptoms management with LFD+.
Collapse
Affiliation(s)
- Maroulla D. Nikolaki
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
- Department of Nutrition and Dietetics Sciences, Hellenic Mediterranean University, 72300 Crete, Greece
| | - Arezina N. Kasti
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - Konstantinos Katsas
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
- Institute of Preventive Medicine Environmental and Occupational Health Prolepsis, 15125 Athens, Greece
| | - Konstantinos Petsis
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - Sophia Lambrinou
- Department of Clinical Nutrition & Dietetics, General Hospital of Karpathos “Aghios Ioannis o Karpathios”, 85700 Karpathos, Greece;
| | - Vasiliki Patsalidou
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - Sophia Stamatopoulou
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - Katerina Karlatira
- Department of Nutrition and Dietetics, ATTIKON University General Hospital, 12462 Athens, Greece; (M.D.N.); (A.N.K.); (K.K.); (K.P.); (V.P.); (S.S.); (K.K.)
| | - John Kapolos
- Department of Food Science and Technology, University of Peloponnese, 24100 Kalamata, Greece;
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Internal Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, ATTIKON University General Hospital, 12462 Athens, Greece
| |
Collapse
|
12
|
Kovaleva A, Poluektova E, Maslennikov R, Zolnikova O, Shifrin O, Kudryavtseva A, Krasnov G, Fedorova M, Karchevskaya A, Ivashkin V. Structure and Metabolic Activity of the Gut Microbiota in Diarrhea-Predominant Irritable Bowel Syndrome Combined with Functional Dyspepsia. GASTROINTESTINAL DISORDERS 2023; 5:296-309. [DOI: 10.3390/gidisord5030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/26/2024] Open
Abstract
Gut dysbiosis presents in many digestive diseases. The aim of this study is to investigate the composition of the gut microbiota and its metabolic activity in patients with diarrhea-predominant irritable bowel syndrome combined with functional dyspepsia (I + D). This study included 60 patients with I + D and 20 healthy controls. Gut microbiota composition was studied using 16S rRNA gene sequencing. The short-chain fatty acids (SCFAs) spectrum was determined via gas–liquid chromatography. Patients with I + D had an increase in the abundance of Holdemanella, Erysipelotrichaceae, Erysipelotrichales, Prevotellaceae, Agathobacter, Slackia, Lactococcus, Pseudomonadaceae, Stenotrophomonas, Xanthomonadaceae, Rhizobiaceae, Erysipelatoclostridiaceae, Lachnospiraceae, and other taxa in addition to a decrease in the abundance of Frisingicoccus, Ralstonia, Burkholderiaceae, Hungatella, Eisenbergiella, Parabacteroides, Peptostreptococcaceae, Merdibacter, Bilophila, Rikenellaceae, Tannerellaceae, Bacteroidaceae, and Flavonifractor in comparison to controls. Patients with I + D showed significantly higher total SCFA content in feces; increased absolute content of acetic acid, propionic acid, butyric acid, and isoacids; and a significant negative shift in the anaerobic index. The relative levels of the main SCFAs and isoacids in the patient group did not differ significantly from those in the control group. The fecal acetate and isoacid levels correlated with the severity of diarrhea. The fecal butyrate level correlated with the severity of flatulence.
Collapse
Affiliation(s)
- Aleksandra Kovaleva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119991, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119991, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow 119991, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119991, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow 119991, Russia
- Consultative and Diagnostic Center No. 2 of the Moscow Health Department, Moscow 107564, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119991, Russia
| | - Oleg Shifrin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119991, Russia
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria Fedorova
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119991, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119991, Russia
| |
Collapse
|
13
|
Chalova P, Tazky A, Skultety L, Minichova L, Chovanec M, Ciernikova S, Mikus P, Piestansky J. Determination of short-chain fatty acids as putative biomarkers of cancer diseases by modern analytical strategies and tools: a review. Front Oncol 2023; 13:1110235. [PMID: 37441422 PMCID: PMC10334191 DOI: 10.3389/fonc.2023.1110235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of non-digestible carbohydrates in the gastrointestinal tract. They can be seen as the major flow of carbon from the diet, through the microbiome to the host. SCFAs have been reported as important molecules responsible for the regulation of intestinal homeostasis. Moreover, these molecules have a significant impact on the immune system and are able to affect inflammation, cardiovascular diseases, diabetes type II, or oncological diseases. For this purpose, SCFAs could be used as putative biomarkers of various diseases, including cancer. A potential diagnostic value may be offered by analyzing SCFAs with the use of advanced analytical approaches such as gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) coupled with mass spectrometry (MS). The presented review summarizes the importance of analyzing SCFAs from clinical and analytical perspective. Current advances in the analysis of SCFAs focused on sample pretreatment, separation strategy, and detection methods are highlighted. Additionally, it also shows potential areas for the development of future diagnostic tools in oncology and other varieties of diseases based on targeted metabolite profiling.
Collapse
Affiliation(s)
- Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
| | - Anton Tazky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Ludovit Skultety
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Lenka Minichova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Sona Ciernikova
- Biomedical Research Center of the Slovak Academy of Sciences, Cancer Research Institute, Bratislava, Slovakia
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
14
|
Mao B, Xiang Q, Tang X, Zhang Q, Liu X, Zhao J, Cui S, Zhang H. Lactobacillus reuteri CCFM1175 and Lactobacillus paracasei CCFM1176 Could Prevent Capsaicin-Induced Ileal and Colonic Injuries. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10106-1. [PMID: 37314694 DOI: 10.1007/s12602-023-10106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Capsaicin (CAP) is usually reported to have many biological activities. However, a large intake of CAP may cause heartburn, gastrointestinal pain, and diarrhea. In this study, mice were gavaged with nine lactic acid bacteria (LAB) strains for two weeks, in which the mice were treated with CAP at the second week and lasted for one week. We tried to identify potential probiotics that could prevent CAP-induced intestinal injury and investigate the mechanisms. The modulation of transient receptor potential vanilloid 1 (TRPV1), levels of short-chain fatty acids (SCFAs), and the composition of gut microbiota were analyzed. The results showed that Lactobacillus reuteri CCFM1175 and Lactobacillus paracasei CCFM1176 effectively attenuated CAP-induced injuries to the ileum and colon, including relieving the damage to colonic crypt structures, increasing the number of goblet cells, decreasing levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), increasing levels of anti-inflammatory factors (IL-10), and reducing levels of substance P (SP) and calcitonin gene-related peptide (CGRP) in serum and colon tissue. Further analysis showed that L. reuteri CCFM1175 increased the relative abundance of Ruminococcaceae UCG_014 and Akkermansia. L. paracasei CCFM1176 downregulated the expression of TRPV1 in the ileal and colonic tissues and promoted the relative abundance of Ruminococcaceae UCG_014 and Lachnospiraceae UCG_006. These results indicate that L. reuteri CCFM1175 and L. paracasei CCFM1176 could prevent CAP-induced intestinal injury and be used as probiotics to improve the gastrointestinal health.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qunran Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Bayrer JR, Castro J, Venkataraman A, Touhara KK, Rossen ND, Morrie RD, Maddern J, Hendry A, Braverman KN, Garcia-Caraballo S, Schober G, Brizuela M, Castro Navarro FM, Bueno-Silva C, Ingraham HA, Brierley SM, Julius D. Gut enterochromaffin cells drive visceral pain and anxiety. Nature 2023; 616:137-142. [PMID: 36949192 PMCID: PMC10827380 DOI: 10.1038/s41586-023-05829-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Gastrointestinal (GI) discomfort is a hallmark of most gut disorders and represents an important component of chronic visceral pain1. For the growing population afflicted by irritable bowel syndrome, GI hypersensitivity and pain persist long after tissue injury has resolved2. Irritable bowel syndrome also exhibits a strong sex bias, afflicting women three times more than men1. Here, we focus on enterochromaffin (EC) cells, which are rare excitable, serotonergic neuroendocrine cells in the gut epithelium3-5. EC cells detect and transduce noxious stimuli to nearby mucosal nerve endings3,6 but involvement of this signalling pathway in visceral pain and attendant sex differences has not been assessed. By enhancing or suppressing EC cell function in vivo, we show that these cells are sufficient to elicit hypersensitivity to gut distension and necessary for the sensitizing actions of isovalerate, a bacterial short-chain fatty acid associated with GI inflammation7,8. Remarkably, prolonged EC cell activation produced persistent visceral hypersensitivity, even in the absence of an instigating inflammatory episode. Furthermore, perturbing EC cell activity promoted anxiety-like behaviours which normalized after blockade of serotonergic signalling. Sex differences were noted across a range of paradigms, indicating that the EC cell-mucosal afferent circuit is tonically engaged in females. Our findings validate a critical role for EC cell-mucosal afferent signalling in acute and persistent GI pain, in addition to highlighting genetic models for studying visceral hypersensitivity and the sex bias of gut pain.
Collapse
Affiliation(s)
- James R Bayrer
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Joel Castro
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Archana Venkataraman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kouki K Touhara
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Nathan D Rossen
- Department of Physiology, University of California, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | - Ryan D Morrie
- Department of Physiology, University of California, San Francisco, CA, USA
- Maze Therapeutics, San Francisco, CA, USA
| | - Jessica Maddern
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Aenea Hendry
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Kristina N Braverman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Jansen, Johnson & Johnson, San Diego, CA, USA
| | - Sonia Garcia-Caraballo
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Gudrun Schober
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | - Mariana Brizuela
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia
| | | | - Carla Bueno-Silva
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Holly A Ingraham
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Stuart M Brierley
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia.
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, Australia.
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
16
|
Wüthrich C, Fan Z, Vergères G, Wahl F, Zenobi R, Giannoukos S. Analysis of volatile short-chain fatty acids in the gas phase using secondary electrospray ionization coupled to mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:553-561. [PMID: 36606412 DOI: 10.1039/d2ay01778d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Quantification of metabolites present within exhaled breath is a major challenge for on-line breath analysis. It is also important for gauging the analytical performance, accuracy, reproducibility, reliability, and stability of the measuring technology. Short-chain fatty acids (SCFAs) are of high interest for nutrition and health. Their quantification enables a deep mechanistic understanding of a wide range of biological processes and metabolic pathways, while their high volatility makes them an attractive target for breath analysis. This article reports, for the first time, the development and testing of a modular, dynamic vapor generator for the qualitative and quantitative analysis of volatile SCFAs in the gaseous phase using a secondary electrospray ionization (SESI) source coupled to a high-resolution mass spectrometer. Representative compounds tested included acetic acid, propionic acid, butyric acid, pentanoic acid and hexanoic acid. Gas-phase experiments were performed both in dry and humid (95% relative humidity) conditions from ppt to low ppb concentrations. The results obtained exhibited excellent linearity within the examined concentration range, low limits of detection and quantification down to the lower ppt area. Mixture effects were also investigated and are presented.
Collapse
Affiliation(s)
- Cedric Wüthrich
- Department of Chemistry and Applied Biosciences, ETHZ, Zurich, Switzerland.
| | - Zhiyuan Fan
- Department of Chemistry and Applied Biosciences, ETHZ, Zurich, Switzerland.
| | - Guy Vergères
- Food Microbial Systems Research Division, Agroscope, Bern, Switzerland
| | - Fabian Wahl
- Food Microbial Systems Research Division, Agroscope, Bern, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETHZ, Zurich, Switzerland.
| | | |
Collapse
|
17
|
MAFLD and Celiac Disease in Children. Int J Mol Sci 2023; 24:ijms24021764. [PMID: 36675276 PMCID: PMC9866925 DOI: 10.3390/ijms24021764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated systemic disorder elicited by the ingestion of gluten whose clinical presentation ranges from the asymptomatic form to clinical patterns characterized by multiple systemic involvement. Although CD is a disease more frequently diagnosed in patients with symptoms of malabsorption such as diarrhea, steatorrhea, weight loss, or failure to thrive, the raised rate of overweight and obesity among general pediatric and adult populations has increased the possibility to diagnose celiac disease in obese patients as well. Consequently, it is not difficult to also find obesity-related disorders in patients with CD, including "metabolic associated fatty liver disease" (MAFLD). The exact mechanisms linking these two conditions are not yet known. The going assumption is that a gluten-free diet (GFD) plays a pivotal role in determining an altered metabolic profile because of the elevated content of sugars, proteins, saturated fats, and complex carbohydrates, and the higher glycemic index of gluten-free products than gluten-contained foods, predisposing individuals to the development of insulin resistance. However, recent evidence supports the hypothesis that alterations in one of the components of the so-called "gut-liver axis" might contribute to the increased afflux of toxic substances to the liver triggering the liver fat accumulation and to the subsequent hepatocellular damage. The aim of this paper was to describe the actual knowledge about the factors implicated in the pathogenesis of hepatic steatosis in pediatric patients with CD. The presented review allows us to conclude that the serological evaluations for CD with anti-transglutaminase antibodies, should be a part of the general workup in the asymptomatic patients with "non-alcoholic fatty liver disease" (NAFLD) when metabolic risk factors are not evident, and in the patients with steatohepatitis when other causes of liver disease are excluded.
Collapse
|
18
|
Hiseni P, Snipen L, Wilson RC, Furu K, Hegge FT, Rudi K. Prediction of high fecal propionate-to-butyrate ratios using 16S rRNA-based detection of bacterial groups with liquid array diagnostics. Biotechniques 2023; 74:9-21. [PMID: 36601888 DOI: 10.2144/btn-2022-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Butyrate and propionate represent two of three main short-chain fatty acids produced by the intestinal microbiota. In healthy populations, their levels are reportedly equimolar, whereas a deviation in their ratio has been observed in various diseased cohorts. Monitoring such a ratio represents a valuable metric; however, it remains a challenge to adopt short-chain fatty acid detection techniques in clinical settings because of the volatile nature of these acids. Here we aimed to estimate short-chain fatty acid information indirectly through a novel, simple quantitative PCR-compatible assay (liquid array diagnostics) targeting a limited number of microbiome 16S markers. Utilizing 15 liquid array diagnostics probes to target microbiome markers selected by a model that combines partial least squares and linear discriminant analysis, the classes (normal vs high propionate-to-butyrate ratio) separated at a threshold of 2.6 with a prediction accuracy of 96%.
Collapse
Affiliation(s)
- Pranvera Hiseni
- Genetic Analysis AS, Kabelgata 8, Oslo, 0580, Norway.,Department of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, PO Box 5003, Aas, 1432, Norway
| | - Lars Snipen
- Department of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, PO Box 5003, Aas, 1432, Norway
| | - Robert C Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, PO Box 400 Vestad, Elverum, 2418, Norway
| | - Kari Furu
- Genetic Analysis AS, Kabelgata 8, Oslo, 0580, Norway
| | | | - Knut Rudi
- Department of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, PO Box 5003, Aas, 1432, Norway.,Department of Biotechnology, Inland Norway University of Applied Sciences, PO Box 400 Vestad, Elverum, 2418, Norway
| |
Collapse
|
19
|
Zhou Y, Zhang F, Mao L, Feng T, Wang K, Xu M, Lv B, Wang X. Bifico relieves irritable bowel syndrome by regulating gut microbiota dysbiosis and inflammatory cytokines. Eur J Nutr 2023; 62:139-155. [PMID: 35918555 PMCID: PMC9899748 DOI: 10.1007/s00394-022-02958-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Gut microbiota dysbiosis, a core pathophysiology of irritable bowel syndrome (IBS), is closely related to immunological and metabolic functions. Gut microbiota-based therapeutics have been recently explored in several studies. Bifico is a probiotic cocktail widely used in gastrointestinal disorders which relate to the imbalance of gut microbiota. However, the efficacy and potential mechanisms of Bifico treatment in IBS remains incompletely understood. METHODS Adopting a wrap restraint stress (WRS) -induced IBS mice model. Protective effect of Bifico in IBS mice was examined through abdominal withdrawal reflex (AWR) scores. 16S rDNA, 1H nuclear magnetic resonance (1H-NMR) and western blot assays were performed to analyze alterations of gut microbiota, microbiome metabolites and inflammatory cytokines, respectively. RESULTS Bifico could decrease intestinal visceral hypersensitivity. Although gut microbiota diversity did not increase, composition of gut microbiota was changed after treatment of Bifico, which were characterized by an increase of Proteobacteria phylum and Actinobacteria phylum, Muribaculum genus, Bifidobacterium genus and a decrease of Parabacteroides genus, Sutterella genus and Lactobacillus genus. Moreover, Bifico elevated the concentration of short-chain fatty acids (SCFAs) and reduced protein levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). From further Spearman's correlation analysis, Bifidobacterium genus were positively correlated with SCFAs including propionate, butyrate, valerate and negatively correlated with IL-6 and TNF-α. CONCLUSION Bifico could alleviate symptoms of IBS mice through regulation of the gut microbiota, elevating production of SCFAs and reducing the colonic inflammatory response.
Collapse
Affiliation(s)
- Yanlin Zhou
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,grid.268505.c0000 0000 8744 8924The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Fan Zhang
- grid.268505.c0000 0000 8744 8924The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China ,grid.417400.60000 0004 1799 0055Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China
| | - Liqi Mao
- grid.411440.40000 0001 0238 8414Department of Gastroenterology, The First People’s Hospital of Huzhou, The First Affiliated Hospital of Huzhou Teachers College, Huzhou, 313000 Zhejiang China
| | - Tongfei Feng
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Kaijie Wang
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Maosheng Xu
- grid.417400.60000 0004 1799 0055Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China
| | - Bin Lv
- grid.417400.60000 0004 1799 0055Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003 Zhejiang China ,Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hubin Campus, Hangzhou, 310006 China
| |
Collapse
|
20
|
The Short-term Efficacy of Bifidobacterium Quadruple Viable Tablet in Patients with Diarrhea-Predominant Irritable Bowel Syndrome: Potentially Mediated by Metabolism rather than Diversity Regulation. Am J Gastroenterol 2022:00000434-990000000-00614. [PMID: 36717369 DOI: 10.14309/ajg.0000000000002147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The therapeutic effect of probiotics for irritable bowel syndrome (IBS) was controversial. This study aims to evaluate the short-term efficacy of Bifidobacterium quadruple viable tablet in patients with diarrhea-predominant irritable bowel syndrome (IBS-D) and explore factors associated with response to probiotics. METHODS A randomized, double-blind, placebo-controlled, multicenter trial was performed in 15 hospitals. 290 patients who fulfilled the eligibility criteria were assigned to the probiotics or placebo group randomly with a ratio of 1:1 for a 4-week treatment and a 2-week follow-up. The primary outcome was the response rate. It was regarded as the proportion of patients with composite responses of improvement in both abdominal pain and diarrhea simultaneously. RESULTS After 4-week continuous administration, the response rate of the probiotics and the placebo were 67.59% and 36.55% respectively (p<0.001). In the probiotics, those with higher abdominal pain scores (2.674 [1.139, 6.279]) were more likely to respond but responders in placebo had lower Hamilton Depression Scale (HAMD) score (0.162 [0.060, 0.439]), lower Hamilton Anxiety Scale (HAMA) score (0.335 [0.148, 0.755]) and higher degree of bloating (2.718 [1.217, 6.074]). Although the diversity of the microbiota was not significantly changed by probiotics, the abundance of bacteria producing short chain fatty acids (SCFAs) including Butyricimonas (p=0.048), Pseudobutyrivibrio (p=0.005), Barnesiella (p=0.020) and Sutterella (p=0.020), and the concentration of SCFAs including butyric acid (p=0.010), valeric acid (p=0.019) and caproic acid (p=0.046) in feces increased. CONCLUSIONS Bifidobacterium quadruple viable tablet had a significant short-term efficacy for the treatment of IBS-D, and were more effective in patients with higher abdominal pain scores. This kind of probiotics could improve the abundance of several bacteria producing SCFAs as well as the concentration of fecal SCFAs compared to placebos.
Collapse
|
21
|
Jiang W, Wu J, Zhu S, Xin L, Yu C, Shen Z. The Role of Short Chain Fatty Acids in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:540-548. [PMID: 36250361 PMCID: PMC9577580 DOI: 10.5056/jnm22093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is characterized by abdominal pain and disordered bowel habits. The etiology of IBS is multifactorial, including abnormal gut-brain interactions, visceral hypersensitivity, altered colon motility, and psychological factors. Recent studies have shown that the intestinal microbiota and its metabolites short chain fatty acids (SCFAs) may be involved in the pathogenesis of IBS. SCFAs play an important role in the pathophysiology of IBS. We discuss the underlying mechanisms of action of SCFAs in intestinal inflammation and immunity, intestinal barrier integrity, motility, and the microbiota-gut-brain axis. Limited to previous studies, further studies are required to investigate the mechanisms of action of SCFAs in IBS and provide more precise therapeutic strategies for IBS.
Collapse
Affiliation(s)
- Wenxi Jiang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Wu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shefeng Zhu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linying Xin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Moles L, Delgado S, Gorostidi-Aicua M, Sepúlveda L, Alberro A, Iparraguirre L, Suárez JA, Romarate L, Arruti M, Muñoz-Culla M, Castillo-Triviño T, Otaegui D. Microbial dysbiosis and lack of SCFA production in a Spanish cohort of patients with multiple sclerosis. Front Immunol 2022; 13:960761. [PMID: 36325343 PMCID: PMC9620961 DOI: 10.3389/fimmu.2022.960761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic, demyelinating, and immune-mediated disease of the central nervous system caused by a combination of genetic, epigenetic, and environmental factors. The incidence of MS has increased in the past several decades, suggesting changes in the environmental risk factors. Much effort has been made in the description of the gut microbiota in MS; however, little is known about the dysbiosis on its function. The microbiota produces thousands of biologically active substances among which are notable the short-chain fatty acid (SCFA) excretion. Objectives Analyze the interaction between microbiota, SCFAs, diet, and MS. Methods 16S, nutritional questionnaires, and SCFAS quantification have been recovered from MS patients and controls. Results Our results revealed an increment in the phylum Proteobacteria, especially the family Enterobacteriaceae, a lack in total SCFA excretion, and an altered profile of SCFAs in a Spanish cohort of MS patients. These alterations are more evident in patients with higher disability. Conclusions The abundance of Proteobacteria and acetate and the low excretion of total SCFAs, especially butyrate, are common characteristics of MS patients, and besides, both are associated with a worse prognosis of the disease.
Collapse
Affiliation(s)
- Laura Moles
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
| | - Susana Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias–Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Miriam Gorostidi-Aicua
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
| | - Lucía Sepúlveda
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
- Spanish Network on Multiple Sclerosis, Hospital Universitario Ramón y Cajal, Servicio de Inmunología, Madrid, Spain
| | - Ainhoa Alberro
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
| | - Leire Iparraguirre
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
| | - Jose Alberto Suárez
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
| | - Leire Romarate
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
| | - Maialen Arruti
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
- Neurology Department, Donostia University Hospital, Osakidetza Basque Health Service, San Sebastián, Spain
| | - Maider Muñoz-Culla
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
- Spanish Network on Multiple Sclerosis, Hospital Universitario Ramón y Cajal, Servicio de Inmunología, Madrid, Spain
| | - Tamara Castillo-Triviño
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
- Spanish Network on Multiple Sclerosis, Hospital Universitario Ramón y Cajal, Servicio de Inmunología, Madrid, Spain
- Neurology Department, Donostia University Hospital, Osakidetza Basque Health Service, San Sebastián, Spain
| | - David Otaegui
- Biodonostia Health Research Institute, Group of Multiple Sclerosis, San Sebastián, Spain
- Spanish Network on Multiple Sclerosis, Hospital Universitario Ramón y Cajal, Servicio de Inmunología, Madrid, Spain
- *Correspondence: David Otaegui,
| | | |
Collapse
|
23
|
Valdivia-Garcia MA, Chappell KE, Camuzeaux S, Olmo-García L, van der Sluis VH, Radhakrishnan ST, Stephens H, Bouri S, de Campos Braz LM, Williams HT, Lewis MR, Frost G, Li JV. Improved quantitation of short-chain carboxylic acids in human biofluids using 3-nitrophenylhydrazine derivatization and liquid chromatography with tandem mass spectrometry (LC-MS/MS). J Pharm Biomed Anal 2022; 221:115060. [PMID: 36166933 DOI: 10.1016/j.jpba.2022.115060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
Short-chain carboxylic acids (SCCAs) produced by gut microbial fermentation may reflect gastrointestinal health. Their concentrations in serum and urine are indicative of specific metabolic pathway activity; therefore, accurate quantitation of SCCAs in different biofluids is desirable. However, it is often challenging to quantitate SCCAs since matrix effects, induced by the presence of a vast variety of other compounds other than SCCAs in complex biofluids, can suppress or enhance signals. Materials used for sample preparation may introduce further analytical challenges. This study reports for the first time a LC-MS/MS-based method to quantitate ten SCCAs (lactate, acetate, 2-hydroxybutyrate, propionate, isobutyrate, butyrate, 2-methylbutyrate, isovalerate, valerate and hexanoate) and evaluates the matrix effects in five human biofluids: serum, urine, stool, and contents from the duodenum and intestinal stoma bags. The optimized method, using 3-Nitrophenylhydrazone as a derivatization agent and a Charge Surface Hybrid reverse phase column, showed clear separation for all SCCAs at a concentration range of 0.1-100 µM, in a 10.5 min run without carry-over effects. The validation of the method showed a good linearity (R2 > 0.99), repeatability (CV ≤ 15%) assessed by intra- and inter-day monitoring. The lowest limit of detection (LLOD) was 25 nM and lowest limit of quantitation (LLOQ) was 50 nM for nine SCCA except acetate at 0.5 and 1 µM, respectively. Quantitative accuracy in all biofluids for most compounds was < ±15%. In summary, this methodology has the advantages over other techniques for its simple and fast sample preparation and a high level of selectivity, repeatability and robustness for SCCA quantification. It also reduced interferences from the matrix or sample containers, making it ideal for use in high-throughput analyses of biofluid samples from large-scale studies.
Collapse
Affiliation(s)
- Maria A Valdivia-Garcia
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Katie E Chappell
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Stephane Camuzeaux
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Lucía Olmo-García
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Verena Horneffer van der Sluis
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Shiva T Radhakrishnan
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, United Kingdom; Section of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hannah Stephens
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Sonia Bouri
- Inflammatory Bowel Disease Unit, St Mark's Hospital, London HA1 3UJ, United Kingdom
| | - Lucia M de Campos Braz
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Horace T Williams
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London W2 1NY, United Kingdom; Section of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Matthew R Lewis
- The National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Gary Frost
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Jia V Li
- Section of Nutrition Research, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
24
|
Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12071742. [PMID: 35885645 PMCID: PMC9315466 DOI: 10.3390/diagnostics12071742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.
Collapse
|
25
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
26
|
Li K, Zeng Z, Liu J, Pei L, Wang Y, Li A, Kulyar MFEA, Shahzad M, Mehmood K, Li J, Qi D. Effects of Short-Chain Fatty Acid Modulation on Potentially Diarrhea-Causing Pathogens in Yaks Through Metagenomic Sequencing. Front Cell Infect Microbiol 2022; 12:805481. [PMID: 35402298 PMCID: PMC8983862 DOI: 10.3389/fcimb.2022.805481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Short-chain fatty acids (SCFA) are principal nutrient substrates of intestinal epithelial cells that regulate the epithelial barrier in yaks. Until now, metagenomics sequencing has not been reported in diarrheal yaks. Scarce information is available regarding the levels of fecal SCFA and diarrhea in yaks. So, our study aims to identify the potential pathogens that cause the emerging diarrhea and explore the potential relationship of short-chain fatty acids in this issue. We estimated diarrhea rate in yaks after collecting an equal number of fecal samples from affected animals. Metagenomics sequencing and quantitative analysis of SCFA were performed, which revealed 15%–25% and 5%–10% prevalence of diarrhea in yak’s calves and adults, respectively. Violin box plot also showed a higher degree of dispersion in gene abundance distribution of diarrheal yaks, as compared to normal yaks. We found 366,163 significant differential abundance genes in diarrheal yaks, with 141,305 upregulated and 224,858 downregulated genes compared with normal yaks via DESeq analysis. Metagenomics binning analysis indicated the higher significance of bin 33 (Bacteroidales) (p < 0.05) in diarrheal animals, while bin 10 (p < 0.0001), bin 30 (Clostridiales) (p < 0.05), bin 51 (Lactobacillales) (p < 0.05), bin 8 (Lachnospiraceae) (p < 0.05), and bin 47 (Bacteria) (p < 0.05) were significantly higher in normal yaks. At different levels, a significant difference in phylum (n = 4), class (n = 8), oder (n = 8), family (n = 16), genus (n = 17), and species (n = 30) was noticed, respectively. Compared with healthy yaks, acetic acid (p < 0.01), propionic acid (p < 0.01), butyric acid (p < 0.01), isobutyric acid (p < 0.01), isovaleric acid (p < 0.05), and caproic acid (p < 0.01) were all observed significantly at a lower rate in diarrheal yaks. In conclusion, besides the increased Staphylococcus aureus, Babesia ovata, Anaplasma phagocytophilum, Bacteroides fluxus, viruses, Klebsiella pneumonia, and inflammation-related bacteria, the decrease of SCFA caused by the imbalance of intestinal microbiota was potentially observed in diarrheal yaks.
Collapse
Affiliation(s)
- Kun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Kun Li, ; Jiakui Li, ; Desheng Qi,
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Juanjuan Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lulu Pei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Kun Li, ; Jiakui Li, ; Desheng Qi,
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Kun Li, ; Jiakui Li, ; Desheng Qi,
| |
Collapse
|
27
|
Zhu JH, Mao Q, Wang SY, Liu H, Zhou SS, Zhang W, Kong M, Zhu H, Li SL. Optimization and validation of direct gas chromatography-mass spectrometry method for simultaneous quantification of ten short-chain fatty acids in rat feces. J Chromatogr A 2022; 1669:462958. [PMID: 35303574 DOI: 10.1016/j.chroma.2022.462958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Short-chain fatty acids (SCFAs) play key roles in maintaining health and treating disease. Quantification of important fecal SCFAs is necessary to facilitate the clarification of their biological roles. However, the existing quantifying methods mainly depend on complicated precolumn derivatization, and/or are unable to determine formic acid, a SCFA commonly associated with toxicity. In this study, a direct gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of ten SCFAs including formic acid in rat feces was developed. The approach was optimized in terms of chromatographic and spectrometric conditions as well as sample preparation. DB-FFAP capillary column with temperature programming was used to get baseline separation and symmetrical peak shape of SCFAs without precolumn derivatization in a relatively short running time (8 min). Multiple reaction monitoring (MRM) scan mode was employed to enhance the sensitivity and selectivity of SCFAs. Acidification with 50% HCl and immediate extraction with diethyl ether were utilized to achieve sample preparation of ten SCFAs from feces. Furthermore, the developed method was validated with wide linear range, high sensitivity and precision, low matrix effect and acceptable accuracy. The established method was successfully applied to compare the contents of fecal SCFAs between normal and immunosuppressed animal models.
Collapse
Affiliation(s)
- Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Wei Zhang
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
28
|
Calderon G, Patel C, Camilleri M, James-Stevenson T, Bohm M, Siwiec R, Rogers N, Wo J, Lockett C, Gupta A, Xu H, Shin A. Associations of Habitual Dietary Intake With Fecal Short-Chain Fatty Acids and Bowel Functions in Irritable Bowel Syndrome. J Clin Gastroenterol 2022; 56:234-242. [PMID: 33780215 PMCID: PMC8435047 DOI: 10.1097/mcg.0000000000001521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/29/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND GOALS Diet may contribute to symptoms of irritable bowel syndrome (IBS) and luminal production of putative IBS biomarkers including short-chain fatty acids (SCFAs). Study aims were to to assess relationships of habitual fiber or starch intake with fecal SCFAs in patients with IBS and healthy volunteers (HVs). STUDY In 18 HVs and 30 patients with IBS (13 constipation-predominant [IBS-C] and 17 diarrhea-predominant [IBS-D]), habitual diet using a food frequency questionnaire; bowel functions using a validated bowel diary; and fecal SCFAs by HPLC-mass spectrometry were assessed. Associations of fiber and starch with SCFAs were analyzed using Spearman (rs) and Pearson (R) correlations. Relationships between other dietary endpoints, SCFAs, and bowel functions were explored. RESULTS Habitual fiber or starch intakes were not significantly correlated with SCFAs or bowel functions in all participants or HVs nor with SCFAs in IBS. Starch was negatively correlated (R=-0.53; P=0.04) with complete evacuation in IBS-D. Fiber (rs=0.65; P=0.02) and starch (rs=0.56; P=0.05) were correlated with ease of passage in IBS-C. Stool form, frequency, and ease of passage were positively correlated with total SCFAs (all P<0.05), acetate (all P<0.01), propionate (all P<0.05), and butyrate (form P=0.01; ease of passage P=0.05) among all participants, but not in IBS. Complete evacuation was negatively correlated with propionate (R=-0.34; P=0.04) in all participants. Total (P=0.04) and individual SCFAs (all P<0.05) were positively correlated with stool form in HVs. CONCLUSIONS Habitual fiber and starch intake does not influence fecal SCFAs but may influence bowel functions in IBS. Fecal SCFAs correlate with bowel functions among all participants including HVs.
Collapse
Affiliation(s)
- Gerardo Calderon
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Chirag Patel
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Toyia James-Stevenson
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Matthew Bohm
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Robert Siwiec
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Nicholas Rogers
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - John Wo
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Carolyn Lockett
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Anita Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| | - Huiping Xu
- Department of Biostatistics; Indiana University School of Medicine, Indianapolis, IN
| | - Andrea Shin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
| |
Collapse
|
29
|
Li XY, Tan ZJ. Modern biological connotation of diarrhea with kidney-Yang deficiency syndrome. Shijie Huaren Xiaohua Zazhi 2022; 30:119-127. [DOI: 10.11569/wcjd.v30.i3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kidney-Yang deficiency syndrome, a common traditional Chinese medicine syndrome of diarrhea, has a complex pathogenesis. This paper explores the mechanisms of the development of diarrhea with kidney-Yang deficiency syndrome from three aspects: Gut flora, signaling pathway, and molecules related to the "kidney-gut axis", and tries to identify biomarkers for diarrhea with kidney-Yang deficiency syndrome. It is of great significance to reveal the modern biological connotation of diarrhea with kidney-Yang deficiency syndrome, which can promote the subsequent clinical targeted therapy.
Collapse
Affiliation(s)
- Xiao-Ya Li
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhou-Jin Tan
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
30
|
Fecal Microbiota Signatures Are Not Consistently Related to Symptom Severity in Irritable Bowel Syndrome. Dig Dis Sci 2022; 67:5137-5148. [PMID: 35624331 PMCID: PMC9587953 DOI: 10.1007/s10620-022-07543-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is the most prevalent functional bowel disorder, but its pathophysiology is still unknown. Although a microbial signature associated with IBS severity has been suggested, its association with IBS severity still remains largely unknown. AIMS This study aims to assess longitudinal dynamics of fecal microbiota and short-chain fatty acids (SCFAs) in different IBS severity groups and study the association with stool pattern, diet, depression, anxiety, and quality of life (QoL). METHODS A longitudinal study was performed, including n = 91 IBS patients and n = 28 matched controls. All participants collected fecal samples for microbiota composition and SCFA analysis and completed validated questionnaires regarding IBS severity, stool pattern, depression, anxiety, and IBS-QoL at two timepoints with four weeks in-between. Diet was assessed at the first timepoint. RESULTS Over time, 36% of IBS patients changed in severity group, and 53% changed in predominant stool pattern. The largest proportion of microbiota variation was explained by the individual (R2 = 70.07%). Microbiota alpha diversity and composition, and SCFAs did not differ between IBS severity groups, nor between IBS and controls. Relative abundances of Bifidobacterium, Terrisporobacter, and Turicibacter consistently differed between IBS and controls, but not between IBS severity groups. Large dynamics over time were observed in the association of microbiota composition with questionnaire data where IBS symptom severity was associated at T1 but not at T2. CONCLUSIONS Fecal microbiota and SCFA signatures were not consistently associated with IBS severity over time, indicating the importance of repeated sampling in IBS research.
Collapse
|
31
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang MY, Zhao Q, Duan RY, Liu Y, Wan YY. The effect of atrazine on intestinal histology, microbial community and short chain fatty acids in Pelophylax nigromaculatus tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117702. [PMID: 34246997 DOI: 10.1016/j.envpol.2021.117702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The intestine is the main organ for nutrient absorption in amphibians. It is sensitive to atrazine, which is a herbicide widely used in agricultural areas. At present, there is a lack of systematic research on the effect of atrazine on the amphibian intestine. In this study, we evaluated the effects of atrazine exposure (0, 50 μg/L, 100 μg/L, and 500 μg/L) for 20 days on intestinal histology, microbiota and short chain fatty acids in Pelophylax nigromaculatus tadpoles. Our research showed that 500 μg/L atrazine exposure significantly decreased the height of microvilli and epithelial cells, and altered the composition and diversity of intestinal microbiota in P. nigromaculatus tadpoles compared to the control. At the phylum level, the abundance of Bacteroidetes and Fusobacteria increased significantly, while that of Verrucomicrobia and Firmicutes decreased significantly in the 500 μg/L atrazine treatment group. At the genus level, Akkermansia and Lactococcus had significantly lower abundance in the 100 μg/L and 500 μg/L atrazine exposure group, while Cetobacterium was only detected in the 100 μg/L and 500 μg/L atrazine treated group. Also, function prediction of intestinal microbiota showed that atrazine treatment significantly changed the metabolism pathways of P. nigromaculatus tadpoles. In addition, 500 μg/L atrazine exposure changed the content of short chain fatty acids by significantly increasing the content of total SFCAs, butyric acid, and valeric acid, and decreasing the content of isovaleric acid in the intestine. Taken together, atrazine exposure could affect the intestinal histology and induce intestinal microbiota imbalance and metabolic disorder in amphibian tadpoles.
Collapse
Affiliation(s)
- Min-Yi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Qiang Zhao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Ren-Yan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China.
| | - Yang Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| | - Yu-Yue Wan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China
| |
Collapse
|
33
|
Burns GL, Hoedt EC, Walker MM, Talley NJ, Keely S. Physiological mechanisms of unexplained (functional) gastrointestinal disorders. J Physiol 2021; 599:5141-5161. [PMID: 34705270 DOI: 10.1113/jp281620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs) encompass a range of complex conditions with similar clinical characteristics and no overt pathology. Recent recognition of sub-clinical pathologies in FGIDs, in conjunction with physiological and biochemical abnormalities including increased intestinal permeability, microbial profile alterations, differences in metabolites and extra-intestinal manifestations of disease, call into question the designation of these conditions as 'functional'. This is despite significant heterogeneity in both symptom profile and specifics of reported physiological abnormalities hampering efforts to determine defined mechanisms that drive onset and chronicity of symptoms. Instead, the literature demonstrates these conditions are disorders of homeostatic imbalance, with disruptions in both host and microbial function and metabolism. This imbalance is also associated with extraintestinal abnormalities including psychological comorbidities and fatigue that may be a consequence of gastrointestinal disruption. Given the exploitation of such abnormalities will be crucial for improved therapeutic selection, an enhanced understanding of the relationship between alterations in function of the gastrointestinal tract and the response of the immune system is of interest in identifying mechanisms that drive FGID onset and chronicity. Considerations for future research should include the role of sex hormones in regulating physiological functions and treatment responses in patients, as well as the importance of high-level phenotyping of clinical, immune, microbial and physiological parameters in study cohorts. There is opportunity to examine the functional contribution of the microbiota and associated metabolites as a source of mechanistic insight and targets for therapeutic modulation.
Collapse
Affiliation(s)
- Grace L Burns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia.,NHMRC Centre for Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia.,New Lambton Heights, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Emily C Hoedt
- NHMRC Centre for Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia.,New Lambton Heights, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Marjorie M Walker
- NHMRC Centre for Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia.,New Lambton Heights, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J Talley
- NHMRC Centre for Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia.,New Lambton Heights, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia.,NHMRC Centre for Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia.,New Lambton Heights, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
34
|
Xiao L, Liu Q, Luo M, Xiong L. Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome. Front Cell Infect Microbiol 2021; 11:729346. [PMID: 34631603 PMCID: PMC8495119 DOI: 10.3389/fcimb.2021.729346] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is the most common functional bowel disorder worldwide and is associated with visceral hypersensitivity, gut motility, immunomodulation, gut microbiota alterations, and dysfunction of the brain-gut axis; however, its pathophysiology remains poorly understood. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. The aim of our study was to investigate specific types of microbiota-derived metabolites, especially bile acids, short-chain fatty acids, vitamins, amino acids, serotonin and hypoxanthine, which are all implicated in the pathogenesis of IBS. Metabolites-focused research has identified multiple microbial targets relevant to IBS patients, important roles of microbiota-derived metabolites in the development of IBS symptoms have been established. Thus, we provide an overview of gut microbiota and their metabolites on the different subtypes of IBS (constipation-predominant IBS-C, diarrhea-predominant IBS-D) and present controversial views regarding the role of microbiota in IBS.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qin Liu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei Luo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
di Michele F. Why use nutraceutical strategies for the Irritable Bowel Syndrome. Curr Med Chem 2021; 29:2075-2092. [PMID: 34533437 DOI: 10.2174/0929867328666210917115255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic functional bowel disorder, often stress-related, identified by many abdominal symptoms, the most important of which is the chronic visceral abdominal pain. Therefore, IBS commonly impairs the quality of life of patients, moreover it is frequently linked to depressive and anxiety symptoms. The treatment of IBS primarily focuses on symptoms relief. Unfortunately, up to now, no efficacious therapies have been found. Therefore, it would be important to develop new anti-IBS interventions. The aim of this brief review is to summarize the current evidence of nutraceutical supplementation in IBS treatment, with probiotics, prebiotics, synbiotics, butyrate, palmitoylethanolamide and colostrum. Since nutraceutics are over the counter products, the review has the purpose to better inform the medicinal chemist and the practitioner about the possible benefit mechanisms and the many advantages that these therapies offer. All of these compounds present multiple mechanisms of action, such as restoring the physiological microbiota, potentiating gastrointestinal barrier's function, immunomodulatory, anti-inflammatory and antinociceptive activities. From the literature data it results that these compounds are not only capable to improve IBS symptomatology, but mainly display an optimal safety and tolerability profile. Although extensive studies must be carried out to reinforce the evidences from the so far limited clinical trials, the supplementation with these compounds may be useful considering the warnings of prescription medicines for special populations of patients, such as elders, youngsters, or patients who need a combination therapy. Finally, the nutraceutical approach may improve adherence to treatment, given its better acceptance by the patients compared to pharmacological therapy.
Collapse
Affiliation(s)
- Flavia di Michele
- Dept Systems Medicine, Policlinico Tor Vergata (PTV) Foundation, Rome, Italy
| |
Collapse
|
36
|
Kim MY, Choi SW. Dietary modulation of gut microbiota for the relief of irritable bowel syndrome. Nutr Res Pract 2021; 15:411-430. [PMID: 34349876 PMCID: PMC8313387 DOI: 10.4162/nrp.2021.15.4.411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a frequently diagnosed gastrointestinal (GI) disorder characterized by recurrent abdominal pain, bloating, and changes in the stool form or frequency without any structural changes and overt inflammation. It is not a life-threatening condition but causes a considerable level of discomfort and distress. Among the many pathophysiologic factors, such as altered GI motility, visceral hypersensitivity, and low-grade mucosal inflammation, as well as other immunologic, psychologic, and genetic factors, gut microbiota imbalance (dysbiosis), which is frequently found in IBS, has been highlighted as an etiology of IBS. Dysbiosis may affect gut mucosal homeostasis, immune function, metabolic regulation, and even visceral motor function. As diet is shown to play a fundamental role in the gut microbiota profile, this review discusses the influence of diet on IBS occurring through the modulation of gut microbiota. Based on previous studies, it appears that dietary modulation of the gut microbiota may be effective for the alleviation of IBS symptoms and, also an effective IBS management strategy based on the underlying mechanism; especially because, IBS currently has no specific treatment owing to its uncertain etiology.
Collapse
Affiliation(s)
- Mi-Young Kim
- Chaum Life Center, CHA University, Seoul 06062, Korea
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam 13497, Korea
| | - Sang-Woon Choi
- Chaum Life Center, CHA University, Seoul 06062, Korea
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
37
|
Sun QH, Liu ZJ, Zhang L, Wei H, Song LJ, Zhu SW, He MB, Duan LP. Sex-based differences in fecal short-chain fatty acid and gut microbiota in irritable bowel syndrome patients. J Dig Dis 2021; 22:246-255. [PMID: 33822477 PMCID: PMC8252430 DOI: 10.1111/1751-2980.12988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To explore alterations in fecal short-chain fatty acids (SCFA) and gut microbiota in patients with diarrhea-predominant irritable bowel disease (IBS-D) and their relationships with clinical manifestations. METHODS We recruited 162 patients with IBS-D and 66 healthy controls (HC). Their manifestations and psychological status were evaluated using the IBS severity scoring system and the Hospital Anxiety and Depression Scale (HADS). Colorectal visceral sensitivity was evaluated using a barostat. Systemic inflammation was evaluated using plasma cytokine levels. Fecal SCFA were quantified using ultra-performance liquid chromatography-tandem mass spectrometry, and fecal microbiota communities were analyzed using 16S rRNA sequencing. RESULTS More men presented with IBS-D than women in our patient cohort. Patients with IBS-D had more severe manifestations, higher HADS score, and a higher rate of previous infectious enteritis than HC. Notably, female patients had significantly higher HADS scores than male patients. Male patients had significantly higher levels of plasma interleukin (IL)-12, fecal propionate and colorectal visceral sensitivity than male HC, while no differences were observed between female patients and female HC. Fecal acetate, butyrate and valerate correlated with the initial visceral sensory threshold, stressors, and IL-10 and IL-12 levels. The propionate-producing Prevotella 9 genus was significantly increased in male patients and positively correlated with fecal propionate. CONCLUSION Distinct sex-based differences in clinical manifestations, fecal SCFA and microbiota richness are found in Chinese patients with IBS-D, which may be used to diagnose dysbiosis in these patients.
Collapse
Affiliation(s)
- Qing Hua Sun
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Zuo Jing Liu
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Lu Zhang
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Hui Wei
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Li Jin Song
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Shi Wei Zhu
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| | - Mei Bo He
- Institute of Systems Biomedicine, School of Basic Medical SciencesPeking UniversityBeijingChina
| | - Li Ping Duan
- Department of GastroenterologyPeking University Third HospitalBeijingChina
| |
Collapse
|
38
|
Ratajczak W, Mizerski A, Rył A, Słojewski M, Sipak O, Piasecka M, Laszczyńska M. Alterations in fecal short chain fatty acids (SCFAs) and branched short-chain fatty acids (BCFAs) in men with benign prostatic hyperplasia (BPH) and metabolic syndrome (MetS). Aging (Albany NY) 2021; 13:10934-10954. [PMID: 33847600 PMCID: PMC8109139 DOI: 10.18632/aging.202968] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Gut microbiome-derived short-chain fatty acids (SCFAs) emerge in the process of fermentation of polysaccharides that resist digestion (dietary fiber, resistant starch). SCFAs have a very high immunomodulatory potential and ensure local homeostasis of the intestinal epithelium, which helps maintain the intestinal barrier. We analyzed the association between stool SCFAs levels acetic acid (C 2:0), propionic acid (C 3:0), isobutyric acid (C 4:0i), butyric acid (C 4:0n), isovaleric acid (C 5:0i) valeric acid (C 5:0n), isocaproic acid (C 6:0i), and caproic acid (C 6:0n)) in aging man with benign prostatic hyperplasia (BPH) and healthy controls. The study involved 183 men (with BPH, n = 103; healthy controls, n = 80). We assessed the content of SCFAs in the stool samples of the study participants using gas chromatography. The levels of branched SCFAs (branched-chain fatty acids, BCFAs): isobutyric acid (C4:0i) (p = 0.008) and isovaleric acid (C5:0i) (p < 0.001) were significantly higher in patients with BPH than in the control group. In healthy participants isocaproic acid (C6:0i) predominated (p = 0.038). We also analyzed the relationship between stool SCFA levels and serum diagnostic parameters for MetS. We noticed a relationship between C3:0 and serum lipid parameters (mainly triglycerides) in both healthy individuals and patients with BPH with regard to MetS. Moreover we noticed relationship between C4:0i, C5:0i and C6:0i and MetS in both groups. Our research results suggest that metabolites of the intestinal microflora (SCFAs) may indicate the proper function of the intestines in aging men, and increased BCFAs levels are associated with the presence of BPH.
Collapse
Affiliation(s)
- Weronika Ratajczak
- Department of Histology and Development Biology, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland.,Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Arnold Mizerski
- Department of General and Gastroentereological Surgery, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Aleksandra Rył
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Marcin Słojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University in Szczecin, Szczecin 70-111, Poland
| | - Olimpia Sipak
- Department of Obstetrics and Pathology of Pregnancy, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Małgorzata Piasecka
- Department of Histology and Development Biology, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| | - Maria Laszczyńska
- Department of Histology and Development Biology, Pomeranian Medical University in Szczecin, Szczecin 71-210, Poland
| |
Collapse
|
39
|
Gawlik-Kotelnicka O, Skowrońska A, Margulska A, Czarnecka-Chrebelska KH, Łoniewski I, Skonieczna-Żydecka K, Strzelecki D. The Influence of Probiotic Supplementation on Depressive Symptoms, Inflammation, and Oxidative Stress Parameters and Fecal Microbiota in Patients with Depression Depending on Metabolic Syndrome Comorbidity-PRO-DEMET Randomized Study Protocol. J Clin Med 2021; 10:jcm10071342. [PMID: 33804999 PMCID: PMC8036404 DOI: 10.3390/jcm10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
There is a huge need to search for new treatment options and potential biomarkers of therapeutic response to antidepressant treatment. Depression and metabolic syndrome often coexist, while a pathophysiological overlap, including microbiota changes, may play a role. The paper presents a study protocol that aims to assess the effect of probiotic supplementation on symptoms of depression, anxiety and stress, metabolic parameters, inflammatory and oxidative stress markers, as well as fecal microbiota in adult patients with depressive disorders depending on the co-occurrence of metabolic syndrome. The trial will be a four-arm, parallel-group, prospective, randomized, double-blind, controlled design that will include 200 participants and will last 20 weeks (ClinicalTrials.gov identifier: NCT04756544). The probiotic preparation will contain Lactobacillus helveticus Rosell®-52, Bifidobacterium longum Rosell®-175. We will assess the level of depression, anxiety and stress, quality of life, blood pressure, body mass index and waist circumference, white blood cells count, serum levels of C-reactive protein, high-density lipoprotein (HDL) cholesterol, triglycerides, fasting glucose, fecal microbiota composition and the level of some fecal microbiota metabolites, as well as serum inflammatory markers and oxidative stress parameters. The proposed trial may establish a safe and easy-to-use adjunctive treatment option in a subpopulation of depressive patients only partially responsive to pharmacologic therapy.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
- Correspondence:
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
| | - Aleksandra Margulska
- Admission Department, Central Teaching Hospital of Medical University of Lodz, 92-216 Lodz, Poland;
| | | | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
| |
Collapse
|
40
|
|
41
|
Oliver L, Ramió-Pujol S, Amoedo J, Malagón M, Serrano M, Bahí A, Lluansí A, Torrealba L, Busquets D, Pardo L, Serra-Pagès M, Aldeguer X, Garcia-Gil J. A Novel Grape-Derived Prebiotic Selectively Enhances Abundance and Metabolic Activity of Butyrate-Producing Bacteria in Faecal Samples. Front Microbiol 2021; 12:639948. [PMID: 33833742 PMCID: PMC8021714 DOI: 10.3389/fmicb.2021.639948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) patients have different faecal microbiota profiles compared to healthy controls. Prebiotics intake influences intestinal microbiota composition which in turn influence the growth of short-chain fatty acids (SCFA) producing bacteria. This study aimed to evaluate the capacity of Previpect, a new prebiotic obtained from grapes fibre, to balance the dysbiosis found in patients with intestinal disorders. This was achieved through the analysis of specific bacterial markers and SCFA production using an in vitro fermentation system and comparing the obtained results with those obtained with other commercial prebiotics. Fresh faecal samples from patients with IBD (N = 6), IBS (N = 3), and control subjects (N = 6) were used. Previpect showed high fermentative ability enabling the growth of butyrate producing bacteria and increasing SCFA concentration up to 2.5-fold. Previpect is a promising prebiotic which may be used as a therapeutic strategy towards promotion of intestinal microbiota restoration, microbial healing, and as a preventive supplement for healthy individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Bahí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | - Aleix Lluansí
- Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain
| | | | - David Busquets
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | - Laura Pardo
- Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | | - Xavier Aldeguer
- GoodGut SL, Girona, Spain.,Institut d'Investigació Biomèdica de Girona-IDIBGI, Salt, Spain.,Hospital Universitari de Girona Dr. Josep Trueta, Girona, Spain
| | | |
Collapse
|
42
|
Nakov R, Snegarova V, Dimitrova-Yurukova D, Velikova T. Biomarkers in Irritable Bowel Syndrome: Biological Rationale and Diagnostic Value. Dig Dis 2021; 40:23-32. [PMID: 33752201 DOI: 10.1159/000516027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Patients with irritable bowel syndrome (IBS) usually suffer from nonspecific and overlapping signs that hamper the diagnostic process. In line with this, biomarkers specific for IBS could be of great benefit for diagnosing and managing patients. In IBS, the need is for apparent distinguishing features linked to the disease that improve diagnosis, differentiate from other organic diseases, and discriminate between IBS subtypes. SUMMARY Some biomarkers are associated with a possible pathophysiologic mechanism of IBS; others are used for differentiating IBS from non-IBS patients. Implementation of IBS biomarkers in everyday clinical practice is critical for early diagnosis and treatment. However, our knowledge about their efficient use is still scarce. Key Messages: This review discusses the biomarkers implemented for IBS diagnosis and management, such as blood (serum), fecal, immunological, related to the microbiome, microRNAs, and some promising novel biomarkers associated with imaging and psychological features of the disease. We focus on the most commonly studied and validated biomarkers and their biological rationale, diagnostic, and clinical value.
Collapse
Affiliation(s)
- Radislav Nakov
- Clinic of Gastroenterology, Tsaritsa Yoanna University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | - Violeta Snegarova
- Department of Hygiene and Epidemiology, Medical University of Varna, Varna, Bulgaria
| | | | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| |
Collapse
|
43
|
Fredericks E, Theunissen R, Roux S. Short chain fatty acids and monocarboxylate transporters in irritable bowel syndrome. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:840-847. [PMID: 33625995 DOI: 10.5152/tjg.2020.19856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Gut microbiota ferments indigestible food that rests in the colon to produce short-chain fatty acids (SCFAs) acetate, propionate, and butyrate. Colonic SCFA stimulate the synthesis of serotonin which is central in irritable bowel syndrome (IBS) pathophysiology. Reduced SCFA have been linked to specific IBS symptoms like colonic hyperalgesia and hypersensitivity. SCFA enter the colonocyte mainly via 2 energy-dependent monocarboxylate transporters, MCT1 (SLC16A1) and SMCT1 (SLC5A8). We investigated specific gut microbiota, SCFA concentrations, and monocarboxylate transporter mRNA expression in patients with IBS. MATERIAL AND METHODS A total of 30 IBS patients-15 constipation-predominant (C-IBS) and 15 diarrhoea-predominant (D-IBS)-and 15 healthy controls were recruited. Bacteroidetes and Bifidobacterium species were analyzed using quantitative polymerase chain reaction (qPCR) on stool samples. SCFA concentrations were determined by gas chromatography/mass spectroscopy of stool samples. Monocarboxylate transporter mRNA was quantified by qPCR on colon biopsy specimens. RESULTS Bacteroides was significantly increased in the D-IBS group compared with the C-IBS group and healthy controls. Bifidobacterium was significantly reduced in both IBS groups. SCFA ratios were altered in both IBS groups with a reduction of all 3 measured SCFA in C-IBS and acetic acid in D-IBS. MCT1 and SMCT1 were significantly reduced in C-IBS and D-IBS. CONCLUSION In agreement with findings of previous studies, the microbiota assessed were significantly altered inferring dysbiosis in IBS. SCFA and their ratios were significantly altered in both IBS groups. SCFA transporters, MCT1 and SMCT1 were significantly reduced in both IBS groups, suggesting reduced colonocyte SCFA transfer. SCFA availability and transfer into the colonocytes may be important in IBS pathogenesis and should be prospectively studied.
Collapse
Affiliation(s)
- Ernst Fredericks
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| | - Reza Theunissen
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| | - Saartjie Roux
- Department of Physiology, Nelson Mandela University School of Science, Port Elizabeth, South Africa
| |
Collapse
|
44
|
Lingpeng P, Jingzhu S, Wei L, Enqi W, Yaqin L. Effect of water extracts from Cynanchum thesioides (Freyn) K. Schum. on visceral hypersensitivity and gut microbiota profile in maternally separated rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113352. [PMID: 32891821 DOI: 10.1016/j.jep.2020.113352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irritable bowel syndrome (IBS) is a chronic, stress-related, functional gastrointestinal disorder characterized by abdominal discomfort and altered bowel habits; the manipulation of the microbiota is emerging as a promising therapeutic option for IBS. Cynanchum thesioides (CT) is an herb of traditional Mongolian medicine that has been employed in treating abdominal pain and diarrhea for hundreds of years. Phytochemical studies of this plant showed the presence of various flavonoids with antibacterial and anti-inflammatory activities. We hypothesized that Cynanchum thesioides manipulates the gut mycobiome and reverses visceral hypersensitivity in IBS rat model. PURPOSE OF THE STUDY The aims of this study were to prove the in vivo efficacy of Cynanchum thesioides on improving visceral hypersensitivity in IBS rat model and to examine its effect on gut bacterial communities, focusing on the potential interrelationships among microbiota and visceral hypersensitivity. MATERIALS AND METHODS We induced visceral hypersensitivity rat models by maternal separation (MS) of Sprague-Dawley rats, and administered CT water extracts to MS rats for 10 consecutive days. The abdominal withdrawal reflex score and threshold of colorectal distention were employed to assess visceral sensitivity. We then used the Illumina HiSeq platform to analyze bacterial 16S rRNA gene. RESULTS Treatment with CT improved visceral hypersensitivity in MS rats, and this was accompanied by alterations in the structure and composition of the gut microbiota. The extent of the stability of the gut microbiota was improved after treatment with CT. The genera Pseudomonas, Lachnospiracea_incertae_sedis, and Clostridium XlVa (which were more prevalent in MS rats) were significantly decreased, whereas the abundance of some genera were less prevalent in MS rats-for example, Clostridium IV, Elusimicrobium, Clostridium_sensu_stricto, and Acetatifactor were significantly enriched after treatment with CT. CONCLUSION Water-extracted CT was beneficial against visceral hypersensitivity in IBS and favorably affected the structure, composition, and functionality of gut microbiota. CT is therefore a promising agent in therapy of IBS.
Collapse
Affiliation(s)
- Pei Lingpeng
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Song Jingzhu
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Liu Wei
- College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China.
| | - Wu Enqi
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Ling Yaqin
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| |
Collapse
|
45
|
Weng CY, Kuo TH, Chai LMX, Zou HB, Feng TH, Huang YJ, Tsai JC, Wu PH, Chiu YW, Lan EI, Sheen LY, Hsu CC. Rapid Quantification of Gut Microbial Short-Chain Fatty Acids by pDART-MS. Anal Chem 2020; 92:14892-14897. [PMID: 33151059 DOI: 10.1021/acs.analchem.0c03862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Short-chain fatty acids (SCFAs) are small molecules ubiquitous in nature. In mammalian guts, SCFAs are mostly produced by anaerobic intestinal microbiota through the fermentation of dietary fiber. Levels of microbe-derived SCFAs are closely relevant to human health status and indicative to gut microbiota dysbiosis. However, the quantification of SCFA using conventional chromatographic approaches is often time consuming, thus limiting high-throughput screening tests. Herein, we established a novel method to quantify SCFAs by coupling amidation derivatization of SCFAs with paper-loaded direct analysis in real time mass spectrometry (pDART-MS). Remarkably, SCFAs of a biological sample were quantitatively determined within a minute using the pDART-MS platform, which showed a limit of detection at the μM level. This platform was applied to quantify SCFAs in various biological samples, including feces from stressed rats, sera of patients with kidney disease, and fermentation products of metabolically engineered cyanobacteria. Significant differences in SCFA levels between different groups of biological practices were promptly revealed and evaluated. As there is a burgeoning demand for the analysis of SCFAs due to an increasing academic interest of gut microbiota and its metabolism, this newly developed platform will be of great potential in biological and clinical sciences as well as in industrial quality control.
Collapse
Affiliation(s)
- Cheng-Yu Weng
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | | | - Hsin-Bai Zou
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Tzu-Hsuan Feng
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Yun-Ju Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei 106216, Taiwan
| | - Jemmy C Tsai
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ping-Hsun Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yi-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300093, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 106216, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
46
|
Maity C, Gupta AK, Saroj DB, Biyani A, Bagkar P, Kulkarni J, Dixit Y. Impact of a Gastrointestinal Stable Probiotic Supplement Bacillus coagulans LBSC on Human Gut Microbiome Modulation. J Diet Suppl 2020; 18:577-596. [PMID: 32896190 DOI: 10.1080/19390211.2020.1814931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacillus coagulans LBSC showed stability in acidic pH, bile and simulated human gastrointenstinal juices. Under static gut model, when passed through oral, gastric and intestinal phases, B. coagulans LBSC was found to be stable as free viable spores and also with various foods such as milk and baby foods, as well as American and European diets. In human studies, modulation of gut microbiota by B. coagulans LBSC was comprehended by whole genome metagenome analysis of fecal samples obtained from pre- and post-treatment of irritable bowel syndrome (IBS) patients. B. coagulans LBSC treatment showed positive modulation in gut microbiota, especially up regulation of phyla such as Actinobacteria and Firmicutes, whereas down regulation of Bacteroids, Proteobacteria, Streptophyta and Verrucomicrobia. Simultaneously, it has altered various microbiota associated metabolic pathways to create the normalcy of gut microenvironment.
Collapse
Affiliation(s)
| | | | - Dina B Saroj
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| | - Atul Biyani
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| | - Pratik Bagkar
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| | | | - Yogini Dixit
- Advanced Enzyme Technologies Ltd, Thane, Maharashtra, India
| |
Collapse
|
47
|
Fukui H, Nishida A, Matsuda S, Kira F, Watanabe S, Kuriyama M, Kawakami K, Aikawa Y, Oda N, Arai K, Matsunaga A, Nonaka M, Nakai K, Shinmura W, Matsumoto M, Morishita S, Takeda AK, Miwa H. Usefulness of Machine Learning-Based Gut Microbiome Analysis for Identifying Patients with Irritable Bowels Syndrome. J Clin Med 2020; 9:E2403. [PMID: 32727141 PMCID: PMC7464323 DOI: 10.3390/jcm9082403] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Irritable bowel syndrome (IBS) is diagnosed by subjective clinical symptoms. We aimed to establish an objective IBS prediction model based on gut microbiome analyses employing machine learning. We collected fecal samples and clinical data from 85 adult patients who met the Rome III criteria for IBS, as well as from 26 healthy controls. The fecal gut microbiome profiles were analyzed by 16S ribosomal RNA sequencing, and the determination of short-chain fatty acids was performed by gas chromatography-mass spectrometry. The IBS prediction model based on gut microbiome data after machine learning was validated for its consistency for clinical diagnosis. The fecal microbiome alpha-diversity indices were significantly smaller in the IBS group than in the healthy controls. The amount of propionic acid and the difference between butyric acid and valerate were significantly higher in the IBS group than in the healthy controls (p < 0.05). Using LASSO logistic regression, we extracted a featured group of bacteria to distinguish IBS patients from healthy controls. Using the data for these featured bacteria, we established a prediction model for identifying IBS patients by machine learning (sensitivity >80%; specificity >90%). Gut microbiome analysis using machine learning is useful for identifying patients with IBS.
Collapse
Affiliation(s)
- Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.F.); (H.M.)
| | - Akifumi Nishida
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
- Department of Electrical Engineering and Bioscience, Waseda University, 1-104, Totsuka, Shinjuku, Tokyo 169-8050, Japan
- School of Computing, Tokyo Institute of Technology, 2-12-1, Okayama, Meguro, Tokyo 152-8550, Japan
| | - Satoshi Matsuda
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Fumitaka Kira
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
- Department of Gastroenterology, JCHO Tokyo Shinjuku Medical Center, 5-1, Tsukudo, Shinjuku, Tokyo 162-8543, Japan; (W.S.); (M.M.); (S.M.)
| | - Satoshi Watanabe
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
| | - Minoru Kuriyama
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
| | - Kazuhiko Kawakami
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Yoshiko Aikawa
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Noritaka Oda
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Kenichiro Arai
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Atsushi Matsunaga
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Masahiko Nonaka
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Katsuhiko Nakai
- Colo-proctological Institute, Matsuda Hospital, 753, Irino-cho, Nishi-ku, Hamamatsu, Shizuoka 432-8061, Japan; (S.M.); (K.K.); (Y.A.); (N.O.); (K.A.); (A.M.); (M.N.); (K.N.)
| | - Wahei Shinmura
- Department of Gastroenterology, JCHO Tokyo Shinjuku Medical Center, 5-1, Tsukudo, Shinjuku, Tokyo 162-8543, Japan; (W.S.); (M.M.); (S.M.)
| | - Masao Matsumoto
- Department of Gastroenterology, JCHO Tokyo Shinjuku Medical Center, 5-1, Tsukudo, Shinjuku, Tokyo 162-8543, Japan; (W.S.); (M.M.); (S.M.)
| | - Shinji Morishita
- Department of Gastroenterology, JCHO Tokyo Shinjuku Medical Center, 5-1, Tsukudo, Shinjuku, Tokyo 162-8543, Japan; (W.S.); (M.M.); (S.M.)
| | - Aya K. Takeda
- Cykinso Inc., 1-36-1, Yoyogi, Shinjuku, Tokyo 151-0053 Japan; (A.N.); (F.K.); (S.W.); (M.K.)
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.F.); (H.M.)
| |
Collapse
|
48
|
β-Galactooligosaccharide in Conjunction With Low FODMAP Diet Improves Irritable Bowel Syndrome Symptoms but Reduces Fecal Bifidobacteria. Am J Gastroenterol 2020; 115:906-915. [PMID: 32433273 DOI: 10.14309/ajg.0000000000000641] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The low FODMAP diet (LFD) reduces symptoms and bifidobacteria in irritable bowel syndrome (IBS). β-galactooligosaccharides (B-GOS) may reduce the symptoms and increase bifidobacteria in IBS. We investigated whether B-GOS supplementation alongside the LFD improves IBS symptoms while preventing the decline in bifidobacteria. METHODS We performed a randomized, placebo-controlled, 3-arm trial of 69 Rome III adult patients with IBS from secondary care in the United Kingdom. Patients were randomized to a sham diet with placebo supplement (control) or LFD supplemented with either placebo (LFD) or 1.4 g/d B-GOS (LFD/B-GOS) for 4 weeks. Gastrointestinal symptoms, fecal microbiota (fluorescent in situ hybridization and 16S rRNA sequencing), fecal short-chain fatty acids (gas-liquid chromatography) and pH (probe), and urine metabolites (H NMR) were analyzed. RESULTS At 4 weeks, adequate symptom relief was higher in the LFD/B-GOS group (16/24, 67%) than in the control group (7/23, 30%) (odds ratio 4.6, 95% confidence interval: 1.3-15.6; P = 0.015); Bifidobacterium concentrations (log10 cells/g dry weight) were not different between LFD and LFD/B-GOS but were lower in the LFD/B-GOS (9.49 [0.73]) than in the control (9.77 [0.41], P = 0.018). A proportion of Actinobacteria was lower in LFD (1.9%, P = 0.003) and LFD/B-GOS (1.8%, P < 0.001) groups than in the control group (4.2%). Fecal butyrate was lower in the LFD (387.3, P = 0.028) and LFD/B-GOS (346.0, P = 0.007) groups than in the control group (609.2). DISCUSSION The LFD combined with B-GOS prebiotic produced a greater symptom response than the sham diet plus placebo, but addition of 1.4 g/d B-GOS did not prevent the reduction of bifidobacteria. The LFD reduces fecal Actinobacteria and butyrate thus strict long-term use should not be advised.
Collapse
|
49
|
Lee JS, Kim SY, Chun YS, Chun YJ, Shin SY, Choi CH, Choi HK. Characteristics of fecal metabolic profiles in patients with irritable bowel syndrome with predominant diarrhea investigated using 1 H-NMR coupled with multivariate statistical analysis. Neurogastroenterol Motil 2020; 32:e13830. [PMID: 32125749 DOI: 10.1111/nmo.13830] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/21/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gut microbiota are known to be closely related to irritable bowel syndrome (IBS). However, not much is known about characteristic fecal metabolic profiles of IBS. We aimed to characterize fecal metabolites in patients with IBS with predominant diarrhea (IBS-D) using 1 H-nuclear magnetic resonance (1 H-NMR) spectroscopy. METHODS In this study, we enrolled 29 patients diagnosed with IBS-D according to the Rome IV criteria, 22 healthy controls (HC) and 11 HC administered laxatives (HC-L) in the age group of 20-69 year. The usual diet of the patients and HC was maintained, their fecal samples were collected and investigated by NMR-based global metabolic profiling coupled with multivariate statistical analysis. RESULTS We detected 55 metabolites in 1 H-NMR spectra of fecal samples: four amines, 16 amino acids, six fatty acids, eight organic acids, three sugars, and 18 other compounds. Orthogonal partial least square-discriminant analysis derived score plots showed clear separation between the IBS-D group and the HC and HC-L groups. Among the 55 metabolites identified, we found five disease-relevant potential biomarkers distinguishing the IBS-D from the HC, namely, cadaverine, putrescine, threonine, tryptophan, and phenylalanine. CONCLUSIONS The patients with IBS-D were clearly differentiated from the HC and HC-L by fecal metabolite analysis using 1 H-NMR spectroscopy, and five fecal metabolites characteristic of IBS-D were found. The findings of this study could be used to develop alternative and complementary diagnostic methods and as a source of fundamental information for developing novel therapies for IBS-D.
Collapse
Affiliation(s)
- Jae Soung Lee
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | | | | | - Seung Yong Shin
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | | |
Collapse
|
50
|
James SC, Fraser K, Young W, McNabb WC, Roy NC. Gut Microbial Metabolites and Biochemical Pathways Involved in Irritable Bowel Syndrome: Effects of Diet and Nutrition on the Microbiome. J Nutr 2020; 150:1012-1021. [PMID: 31891398 PMCID: PMC7198292 DOI: 10.1093/jn/nxz302] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/25/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
The food we consume and its interactions with the host and their gut microbiota affect normal gut function and health. Functional gut disorders (FGDs), including irritable bowel syndrome (IBS), can result from negative effects of these interactions, leading to a reduced quality of life. Certain foods exacerbate or reduce the severity and prevalence of FGD symptoms. IBS can be used as a model of perturbation from normal gut function with which to study the impact of foods and diets on the severity and symptoms of FGDs and understand how critical processes and biochemical mechanisms contribute to this impact. Analyzing the complex interactions between food, host, and microbial metabolites gives insights into the pathways and processes occurring in the gut which contribute to FGDs. The following review is a critical discussion of the literature regarding metabolic pathways and dietary interventions relevant to FGDs. Many metabolites, for example bile acids, SCFAs, vitamins, amino acids, and neurotransmitters, can be altered by dietary intake, and could be valuable for identifying perturbations in metabolic pathways that distinguish a "normal, healthy" gut from a "dysfunctional, unhealthy" gut. Dietary interventions for reducing symptoms of FGDs are becoming more prevalent, but studies investigating the underlying mechanisms linked to host, microbiome, and metabolite interactions are less common. Therefore, we aim to evaluate the recent literature to assist with further progression of research in this field.
Collapse
Affiliation(s)
- Shanalee C James
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Karl Fraser
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Wayne Young
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|