1
|
Beigoli S, Boskabady MH. The molecular basis of the immunomodulatory effects of natural products: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156028. [PMID: 39276685 DOI: 10.1016/j.phymed.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Natural products (NPs) have long been recognized for their potential to modulate the immune system, offering a natural and holistic approach to enhancing immune function. In recent years, the immunomodulation effects of various natural products have attained significant attention. PURPOSE This article provides an overview of the role of natural products in immunomodulation, exploring their mechanisms of action, common types of NPs with immunomodulation properties, clinical applications, as well as considerations for their safety and efficacy. METHODS Extensive research has been conducted to compile important discoveries on the immunomodulatory properties of NPs through thorough searches of multiple databases such as PubMed, Science Direct, and Scopus up until January 2024. RESULTS By decreasing the levels of Th2 cytokines and pro-inflammatory cytokines, the results suggested that NPs have the ability to modulate the immune system. Therefore, NPs alleviate inflammation in various disorders such as asthma and cancer. Furthermore, the observed increase in CD4 cells and IFN-ɣ/IL4 levels, along with an increased IFN-c/IL4 ratio, indicates a stimulatory effect of NPs on Th1 activity in various inflammatory conditions. Therefore, NPs regulate the immune system by inhibiting T-cells and decreasing the growth of young B-cell lymphoma cells. CONCLUSION Reviewing studies indicated that NPs have the potential to serve as immunomodulatory candidates for treating disorders characterized by immune dysregulation. However, additional experimental and clinical studies are necessary before these agents can be implemented in clinical settings.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Kartal B, Alimogullari E, Elçi P, Fatsa T, Ören S. The effects of Quercetin on wound healing in the human umbilical vein endothelial cells. Cell Tissue Bank 2024; 25:851-860. [PMID: 38944663 DOI: 10.1007/s10561-024-10144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/12/2024] [Indexed: 07/01/2024]
Abstract
An injury that affects the integrity of the skin, either inside or externally, is called a wound. Damaged tissue is repaired by a set of cellular and molecular mechanisms known as wound healing. Quercetin, a naturally occurring flavonoid, may hasten the healing of wounds. The study's objective was to investigate any potential impacts of quercetin on the wound-healing process. Human umbilical vein endothelial cells (HUVECs) were treated to varying dose ranges of quercetin (5-320 nM) for 24 and 48 h. Cultured cells were evaluated by using the MTT analysis, wound scratch assay and vascular tube formation. Furthermore the gene expression of VEGF and FGF were evaluated by qRT-PCR to determine the effects of quercetin on angiogenezis and wound repair. Positive effects of quercetin on cellular viability were demonstrated by the MTT experiment. In HUVECs quercetin promoted tube formation, migration, and proliferation while also averting wound breakage. Moreover, quercetin increased the expression of the FGF and VEGF genes, which aid in the healing of wounds in HUVECs. Quercetin may be bioactive molecule that successfully speeds up wound healing by regulating the vasculogenezis and healing cells.
Collapse
Affiliation(s)
- Bahar Kartal
- Ankara Yıldırım Beyazıt Üniversitesi: Ankara Yildirim Beyazit Universitesi Ankara, Çankaya, Turkey.
| | - Ebru Alimogullari
- Ankara Yıldırım Beyazıt Üniversitesi: Ankara Yildirim Beyazit Universitesi Ankara, Çankaya, Turkey
| | - Pınar Elçi
- Ankara Yıldırım Beyazıt Üniversitesi: Ankara Yildirim Beyazit Universitesi Ankara, Çankaya, Turkey
| | - Tugba Fatsa
- Ankara Yıldırım Beyazıt Üniversitesi: Ankara Yildirim Beyazit Universitesi Ankara, Çankaya, Turkey
| | - Sema Ören
- Ankara Yıldırım Beyazıt Üniversitesi: Ankara Yildirim Beyazit Universitesi Ankara, Çankaya, Turkey
| |
Collapse
|
3
|
Finnegan D, Mechoud MA, FitzGerald JA, Beresford T, Mathur H, Cotter PD, Loscher C. Novel Fermentates Can Enhance Key Immune Responses Associated with Viral Immunity. Nutrients 2024; 16:1212. [PMID: 38674902 PMCID: PMC11053696 DOI: 10.3390/nu16081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Fermented foods have long been known to have immunomodulatory capabilities, and fermentates derived from the lactic acid bacteria of dairy products can modulate the immune system. We have used skimmed milk powder to generate novel fermentates using Lb. helveticus strains SC234 and SC232 and we demonstrate here that these fermentates can enhance key immune mechanisms that are critical to the immune response to viruses. We show that our novel fermentates, SC234 and SC232, can positively impact on cytokine and chemokine secretion, nitric oxide (NO) production, cell surface marker expression, and phagocytosis in macrophage models. We demonstrate that the fermentates SC234 and SC232 increase the secretion of cytokines IL-1β, IL-6, TNF-α, IL-27, and IL-10; promote an M1 pro-inflammatory phenotype for viral immunity via NO induction; decrease chemokine expression of Monocyte Chemoattractant Protein (MCP); increase cell surface marker expression; and enhance phagocytosis in comparison to their starting material. These data suggest that these novel fermentates have potential as novel functional food ingredients for the treatment, management, and control of viral infection.
Collapse
Affiliation(s)
- Dearbhla Finnegan
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (D.F.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (P.D.C.)
- School of Biotechnology, Faculty of Science, Glasnevin Campus, Dublin City University, D09 DX63 Dublin, Ireland
| | - Monica A. Mechoud
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (D.F.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Jamie A. FitzGerald
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (D.F.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (P.D.C.)
- College of Health and Agricultural Sciences, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Tom Beresford
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (D.F.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Harsh Mathur
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (D.F.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Paul D. Cotter
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (D.F.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (P.D.C.)
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, University College Cork, T12 R229 Cork, Ireland
- VistaMilk, Teagasc, Moorepark, Shanacloon, Fermoy, P61 C996 Co. Cork, Ireland
| | - Christine Loscher
- Food for Health Ireland, Science Centre South (S2.79), University College Dublin, Dublin 4, Ireland; (D.F.); (M.A.M.); (J.A.F.); (T.B.); (H.M.); (P.D.C.)
- School of Biotechnology, Faculty of Science, Glasnevin Campus, Dublin City University, D09 DX63 Dublin, Ireland
| |
Collapse
|
4
|
Baghban N, Momeni S, Behboudi E, Dianat-Moghadam H, Darabi A, Targhi HS, Keshavarz M. Green synthesis of MnO 2 NPs using Arabic gum: assessing its potential antiviral activity against influenza A/H1N1. Virol J 2024; 21:48. [PMID: 38395943 PMCID: PMC10893694 DOI: 10.1186/s12985-024-02315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The antiviral properties of metal nanoparticles against various viruses, including those resistant to drugs, are currently a subject of intensive research. Recently, the green synthesis of nanoparticles and their anti-viral function have attracted a lot of attention. Previous studies have shown promising results in the use of Arabic gum for the green synthesis of nanoparticles with strong antiviral properties. In this study we aimed to investigate the antiviral effects of MnO2 nanoparticles (MnO2-NPs) synthesized using Arabic gum, particularly against the influenza virus. METHODS Arabic gum was used as a natural polymer to extract and synthesize MnO2-NPs using a green chemistry approach. The synthesized MnO2-NPs were characterized using SEM and TEM. To evaluate virus titration, cytotoxicity, and antiviral activity, TCID50, MTT, and Hemagglutination assay (HA) were performed, respectively. Molecular docking studies were also performed to investigate the potential antiviral activity of the synthesized MnO2-NPs against the influenza virus. The molecular docking was carried out using AutoDock Vina software followed by an analysis with VMD software to investigate the interaction between Arabic gum and the hemagglutinin protein. RESULTS Simultaneous combination treatment with the green-synthesized MnO2-NPs resulted in a 3.5 log HA decrement and 69.7% cellular protection, which demonstrated the most significant difference in cellular protection compared to the virus control group (p-value < 0.01). The docking results showed that binding affinities were between - 3.3 and - 5.8 kcal/mole relating with the interaction between target with MnO2 and beta-D-galactopyranuronic acid, respectively. CONCLUSION The results of the study indicated that the MnO2-NPs synthesized with Arabic gum had significant antiviral effects against the influenza virus, highlighting their potential as a natural and effective treatment for inhibition of respiratory infections.
Collapse
Affiliation(s)
- Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Safieh Momeni
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Darabi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
5
|
Yang J, Zhang Z, Liu H, Wang J, Xie S, Li P, Wen J, Wei S, Li R, Ma X, Zhao Y. Network Pharmacology and Experimental Validation of Qingwen Baidu Decoction Therapeutic Potential in COVID-19-related Lung Injury. Comb Chem High Throughput Screen 2024; 27:1286-1302. [PMID: 37957903 DOI: 10.2174/0113862073236899230919062725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND PURPOSE Coronavirus disease 2019 (COVID-19) is a lifethreatening disease worldwide due to its high infection and serious outcomes resulting from acute lung injury. Qingwen Baidu decoction (QBD), a well-known herbal prescription, has shown significant efficacy in patients with Coronavirus disease 2019. Hence, this study aims to uncover the molecular mechanism of QBD in treating COVID-19-related lung injury. METHODS Traditional Chinese Medicine Systems Pharmacology database (TCMSP), DrugBanks database, and Chinese Knowledge Infrastructure Project (CNKI) were used to retrieve the active ingredients of QBD. Drug and disease targets were collected using UniProt and Online Mendelian Inheritance in Man databases (OMIM). The core targets of QBD for pneumonia were analyzed by the Protein-Protein Interaction Network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the underlying molecular mechanisms. The analysis of key targets using molecular docking and animal experiments was also validated. RESULTS A compound-direct-acting target network mainly containing 171 compounds and 110 corresponding direct targets was constructed. The key targets included STAT3, c-JUN, TNF-α, MAPK3, MAPK1, FOS, PPARG, MAPK8, IFNG, NFκB1, etc. Moreover, 117 signaling pathways mainly involved in cytokine storm, inflammatory response, immune stress, oxidative stress and glucose metabolism were found by KEGG. The molecular docking results showed that the quercetin, alanine, and kaempferol in QBD demonstrated the strongest affinity to STAT3, c- JUN, and TNF-α. Experimental results displayed that QBD could effectively reduce the pathological damage to lung tissue by LPS and significantly alleviate the expression levels of the three key targets, thus playing a potential therapeutic role in COVID-19. CONCLUSION QBD might be a promising therapeutic agent for COVID-19 via ameliorating STAT3-related signals.
Collapse
Affiliation(s)
- Ju Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Zhao Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Honghong Liu
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jiawei Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shuying Xie
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Pengyan Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Ruisheng Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| |
Collapse
|
6
|
Ghorani V, Saadat S, Khazdair MR, Gholamnezhad Z, El-Seedi H, Boskabady MH. Phytochemical Characteristics and Anti-Inflammatory, Immunoregulatory, and Antioxidant Effects of Portulaca oleracea L.: A Comprehensive Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2075444. [PMID: 37693918 PMCID: PMC10484659 DOI: 10.1155/2023/2075444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Portulaca oleracea L. (P. oleracea) or purslane is a plant from the Portulacaceae family, which is used as food and traditional medicine for various diseases. This review article provides comprehensive information on the antioxidant, immunomodulatory, and anti-inflammatory properties of P. oleracea and its constituents. The literature survey of the different databases until the end of June 2023 was explored based on the keywords including the "P. oleracea, purslane, anti-inflammatory, immunomodulatory, and antioxidant properties." The plant contains flavonoids, alkaloids, terpenoids, fatty acids, vitamins, minerals, and some other compounds. The results indicated that P. oleracea and its constituents showed anti-inflammatory and immunomodulatory properties through reduction of inflammatory mediators including interferon gama (IFN-γ), interleukin (IL)-10, IL-4, tumor necrosis factor-alpha (TNF-α), and nitric oxide. Improvement in cytokines' serum levels (IFN-γ, IL-10, and IL-4) and increased IgG and IgM serum levels, as well as reduction of IgE, phospholipase A2, and total protein were demonstrated for P. oleracea. The plant and its constituents also improved oxidative stress by reduction of oxidant and increase of antioxidant markers. P. oleracea could be considered as an effective remedy for various inflammatory and immune diseases.
Collapse
Affiliation(s)
- Vahideh Ghorani
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesham El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 210024, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Alvarez De Lauro AE, Pelaez MA, Marquez AB, Wagner MS, Scolaro LA, García CC, Damonte EB, Sepúlveda CS. Effects of the Natural Flavonoid Quercetin on Arenavirus Junín Infection. Viruses 2023; 15:1741. [PMID: 37632083 PMCID: PMC10459926 DOI: 10.3390/v15081741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
There is no specific chemotherapy approved for the treatment of pathogenic arenaviruses that cause severe hemorrhagic fever (HF) in the population of endemic regions in America and Africa. The present study reports the effects of the natural flavonoid quercetin (QUER) on the infection of A549 and Vero cells with Junín virus (JUNV), agent of the Argentine HF. By infectivity assays, a very effective dose-dependent reduction of JUNV multiplication was shown by cell pretreatment at 2-6 h prior to the infection at non-cytotoxic concentrations, with 50% effective concentration values in the range of 6.1-7.5 µg/mL. QUER was also active by post-infection treatment but with minor efficacy. Mechanistic studies indicated that QUER mainly affected the early steps of virus adsorption and internalization in the multiplication cycle of JUNV. Treatment with QUER blocked the phosphorylation of Akt without changes in the total protein expression, detected by Western blot, and the consequent perturbation of the PI3K/Akt pathway was also associated with the fluorescence redistribution from membrane to cytoplasm of TfR1, the cell receptor recognized by JUNV. Then, it appears that the cellular antiviral state, induced by QUER treatment, leads to the prevention of JUNV entry into the cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elsa Beatriz Damonte
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - Claudia Soledad Sepúlveda
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| |
Collapse
|
8
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
9
|
Mohammed MA. Fighting cytokine storm and immunomodulatory deficiency: By using natural products therapy up to now. Front Pharmacol 2023; 14:1111329. [PMID: 37124230 PMCID: PMC10134036 DOI: 10.3389/fphar.2023.1111329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
A novel coronavirus strain (COVID-19) caused severe illness and mortality worldwide from 31 December 2019 to 21 March 2023. As of this writing, 761,071,826 million cases have been diagnosed worldwide, with 6,879,677 million deaths accorded by WHO organization and has spread to 228 countries. The number of deaths is closely connected to the growth of innate immune cells in the lungs, mainly macrophages, which generate inflammatory cytokines (especially IL-6 and IL-1β) that induce "cytokine storm syndrome" (CSS), multi-organ failure, and death. We focus on promising natural products and their biologically active chemical constituents as potential phytopharmaceuticals that target virus-induced pro-inflammatory cytokines. Successful therapy for this condition is currently rare, and the introduction of an effective vaccine might take months. Blocking viral entrance and replication and regulating humoral and cellular immunity in the uninfected population are the most often employed treatment approaches for viral infections. Unfortunately, no presently FDA-approved medicine can prevent or reduce SARS-CoV-2 access and reproduction. Until now, the most important element in disease severity has been the host's immune response activation or suppression. Several medicines have been adapted for COVID-19 patients, including arbidol, favipiravir, ribavirin, lopinavir, ritonavir, hydroxychloroquine, chloroquine, dexamethasone, and anti-inflammatory pharmaceutical drugs, such as tocilizumab, glucocorticoids, anakinra (IL-1β cytokine inhibition), and siltuximab (IL-6 cytokine inhibition). However, these synthetic medications and therapies have several side effects, including heart failure, permanent retinal damage in the case of hydroxyl-chloroquine, and liver destruction in the case of remdesivir. This review summarizes four strategies for fighting cytokine storms and immunomodulatory deficiency induced by COVID-19 using natural product therapy as a potential therapeutic measure to control cytokine storms.
Collapse
Affiliation(s)
- Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
10
|
Zhao J, Sun Y, Yuan C, Li T, Liang Y, Zou H, Zhang J, Ren L. Quercetin ameliorates hepatic fat accumulation in high-fat diet-induced obese mice via PPARs. Food Funct 2023; 14:1674-1684. [PMID: 36691903 DOI: 10.1039/d2fo03013f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a natural pigment in food, quercetin possesses multiple biological activities and plays a crucial role in regulating metabolic syndrome. Herein, we aim to explore the potential mechanism of quercetin to ameliorate hepatic fat accumulation. In vivo experiments showed that quercetin significantly relieved inflammation response by decreasing the serum TNF-α and IL-6 levels and also improved high-fat diet-induced hepatic steatosis without other organ injuries. Quercetin can effectively reduce lipid aggregation and down-regulate the protein expression of PCK1 in HepG2 cells induced by oleic acid and palmitic acid, indicating that inhibiting gluconeogenesis leads to hepatic fat accumulation reduction. Furthermore, molecular docking results suggested that quercetin can bind to both PPARα and PPARγ, with an even more potent binding affinity than indeglitazar, a pan-agonist of PPARs. In conclusion, quercetin may regulate gluconeogenesis to ameliorate hepatic fat accumulation via targeting PPARα/γ.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuiping Yuan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
11
|
Lv C, Li Y, Wang T, Zhang Q, Qi J, Sima M, Li E, Qin T, Shi Z, Li F, Wang X, Sun W, Feng N, Yang S, Xia X, Jin N, Zhou Y, Gao Y. Taurolidine improved protection against highly pathogenetic avian influenza H5N1 virus lethal-infection in mouse model by regulating the NF-κB signaling pathway. Virol Sin 2023; 38:119-127. [PMID: 36450323 PMCID: PMC10006309 DOI: 10.1016/j.virs.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Taurolidine (TRD), a derivative of taurine, has anti-bacterial and anti-tumor effects by chemically reacting with cell-walls, endotoxins and exotoxins to inhibit the adhesion of microorganisms. However, its application in antiviral therapy is seldom reported. Here, we reported that TRD significantly inhibited the replication of influenza virus H5N1 in MDCK cells with the half-maximal inhibitory concentration (EC50) of 34.45 μg/mL. Furthermore, the drug inhibited the amplification of the cytokine storm effect and improved the survival rate of mice lethal challenged with H5N1 (protection rate was 86%). Moreover, TRD attenuated virus-induced lung damage and reduced virus titers in mice lungs. Administration of TRD reduced the number of neutrophils and increased the number of lymphocytes in the blood of H5N1 virus-infected mice. Importantly, the drug regulated the NF-κB signaling pathway by inhibiting the separation of NF-κB and IκBa, thereby reducing the expression of inflammatory factors. In conclusion, our findings suggested that TRD could act as a potential anti-influenza drug candidate in further clinical studies.
Collapse
Affiliation(s)
- Chaoxiang Lv
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Animal Medicine, Jilin University, Changchun, 130000, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Qiqi Zhang
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China
| | - Jing Qi
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Mingwei Sima
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Entao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Tian Qin
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Zhuangzhuang Shi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130033, China
| | - Fangxu Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xuefeng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Weiyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China
| | - Ningyi Jin
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130033, China.
| | - Yifa Zhou
- College of Life Sciences, Northeast Normal University, Changchun, Jilin, 130021, China.
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences. Changchun, 130122, China; College of Basic Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130033, China; College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
12
|
Mori M, Quaglio D, Calcaterra A, Ghirga F, Sorrentino L, Cammarone S, Fracella M, D’Auria A, Frasca F, Criscuolo E, Clementi N, Mancini N, Botta B, Antonelli G, Pierangeli A, Scagnolari C. Natural Flavonoid Derivatives Have Pan-Coronavirus Antiviral Activity. Microorganisms 2023; 11:microorganisms11020314. [PMID: 36838279 PMCID: PMC9960971 DOI: 10.3390/microorganisms11020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The SARS-CoV-2 protease (3CLpro) is one of the key targets for the development of efficacious drugs for COVID-19 treatment due to its essential role in the life cycle of the virus and exhibits high conservation among coronaviruses. Recent studies have shown that flavonoids, which are small natural molecules, have antiviral activity against coronaviruses (CoVs), including SARS-CoV-2. In this study, we identified the docking sites and binding affinity of several natural compounds, similar to flavonoids, and investigated their inhibitory activity towards 3CLpro enzymatic activity. The selected compounds were then tested in vitro for their cytotoxicity, for antiviral activity against SARS-CoV-2, and the replication of other coronaviruses in different cell lines. Our results showed that Baicalein (100 μg/mL) exerted strong 3CLpro activity inhibition (>90%), whereas Hispidulin and Morin displayed partial inhibition. Moreover, Baicalein, up to 25 μg/mL, hindered >50% of SARS-CoV-2 replication in Vero E6 cultures. Lastly, Baicalein displayed antiviral activity against alphacoronavirus (Feline-CoV) and betacoronavirus (Bovine-CoV and HCoV-OC43) in the cell lines. Our study confirmed the antiviral activity of Baicalein against SARS-CoV-2 and demonstrated clear evidence of its pan-coronaviral activity.
Collapse
Affiliation(s)
- Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Cammarone
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Criscuolo
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Bruno Botta
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
13
|
Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions. Molecules 2023; 28:molecules28030938. [PMID: 36770606 PMCID: PMC9920550 DOI: 10.3390/molecules28030938] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Many of the medicinally active molecules in the flavonoid class of phytochemicals are being researched for their potential antiviral activity against various DNA and RNA viruses. Quercetin is a flavonoid that can be found in a variety of foods, including fruits and vegetables. It has been reported to be effective against a variety of viruses. This review, therefore, deciphered the mechanistic of how Quercetin works against some of the deadliest viruses, such as influenza A, Hepatitis C, Dengue type 2 and Ebola virus, which cause frequent outbreaks worldwide and result in significant morbidity and mortality in humans through epidemics or pandemics. All those have an alarming impact on both human health and the global and national economies. The review extended computing the Quercetin-contained natural recourse and its modes of action in different experimental approaches leading to antiviral actions. The gap in effective treatment emphasizes the necessity of a search for new effective antiviral compounds. Quercetin shows potential antiviral activity and inhibits it by targeting viral infections at multiple stages. The suppression of viral neuraminidase, proteases and DNA/RNA polymerases and the alteration of many viral proteins as well as their immunomodulation are the main molecular mechanisms of Quercetin's antiviral activities. Nonetheless, the huge potential of Quercetin and its extensive use is inadequately approached as a therapeutic for emerging and re-emerging viral infections. Therefore, this review enumerated the food-functioned Quercetin source, the modes of action of Quercetin for antiviral effects and made insights on the mechanism-based antiviral action of Quercetin.
Collapse
|
14
|
Outama P, Le Xuan C, Wannavijit S, Lumsangkul C, Linh NV, Montha N, Tongsiri S, Chitmanat C, Van Doan H. Modulation of growth, immune response, and immune-antioxidant related gene expression of Nile tilapia (Oreochromis niloticus) reared under biofloc system using mango peel powder. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1136-1143. [PMID: 36122638 DOI: 10.1016/j.fsi.2022.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the effects of mango peel powder (MGPP) on growth, innate immunity, and immune-antioxidant related gene expression of Nile tilapia reared under biofloc system. Three hundred Nile tilapia (average weight 14.78 ± 0.05 g) were distributed into 15 fiber tanks (300 L per tank) assigned to five treatments in triplication. Fish were fed basal diet containing different levels MGPP as follows: 0 (MGPP0: control), 6.25 (MGPP 6.25), 12.5 (MGPP 12.25), 25 (MGPP 25), and 50 (MGPP 50) g kg-1 diet for 8 weeks. Specific growth rate (SGR), weight gain (WG), final weight (FW), feed conversion ratio (FCR), skin mucus of lysozyme (SMLA), and peroxidase activities (SMPA), serum of lysozyme (SL) and peroxidase (SP) were measured every for weeks; while immune-antioxidant-related gene expressions were determined after 8 weeks post-feeding. The results indicated that MGPP 25 diet resulted in higher SGR, WG, FW, and FCR but no significant differences among treatments were noticed. In terms of immune responses, lysozyme and peroxidase activities in mucus and serum were significantly higher in MGPP 12.5 and MGPP 25 diets against the control. Similarly, significant up-regulation of IL-1 and IL-8 gene expressions was observed in fish fed MGPP 25 against the control. However, no significant differences in LBP, GSTa, GPX, and GSR among treatments were observed. Overall, dietary inclusion of MGPP 25 significantly enhanced immune response and immune related gene expressions but not growth performance and antioxidant gene expressions. The results implied that MGPP can be potentially used as an immunostimulants in Nile tilapia culture.
Collapse
Affiliation(s)
- Piyatida Outama
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chinh Le Xuan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supreya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, 239 Huay Kaew Road, Chiang Mai, 50200, Thailand.
| | - Napatsorn Montha
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sudaporn Tongsiri
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Chanagun Chitmanat
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
15
|
Chen Z, Ye SY. Research progress on antiviral constituents in traditional Chinese medicines and their mechanisms of action. PHARMACEUTICAL BIOLOGY 2022; 60:1063-1076. [PMID: 35634712 PMCID: PMC9154771 DOI: 10.1080/13880209.2022.2074053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Viruses have the characteristics of rapid transmission and high mortality. At present, western medicines still lack an ideal antiviral. As natural products, many traditional Chinese medicines (TCM) have certain inhibitory effects on viruses, which has become the hotspot of medical research in recent years. OBJECTIVE The antiviral active ingredients and mechanisms of TCM against viral diseases was studied in combination with the pathogenesis of viral diseases and antiviral effects. MATERIALS AND METHODS English and Chinese literature from 1999 to 2021 was collected from databases including Web of Science, PubMed, Elsevier, Chinese Pharmacopoeia 2020 (CP), and CNKI (Chinese). Traditional Chinese medicines (TCM), active ingredients, antiviral, mechanism of action, and anti-inflammatory effect were used as the key words. RESULTS The antiviral activity of TCM is clarified to put forward a strategy for discovering active compounds against viruses, and provide reference for screening antivirus drugs from TCM. TCM can not only directly kill viruses and inhibit the proliferation of viruses in cells, but also prevent viruses from infecting cells and causing cytophilia. It can also regulate the human immune system, enhance human immunity, and play an indirect antiviral role. DISCUSSION AND CONCLUSION Based on the experimental study and antiviral mechanism of TCM, this paper can provide analytical evidence that supports the effectiveness of TCM in treating virus infections, as well as their mechanisms against viruses. It could be helpful to provide reference for the research and development of innovative TCMs with multiple components, multiple targets and low toxicity.
Collapse
Affiliation(s)
- Zhi Chen
- Pharmaceutical College, Shandong University of TCM, Jinan, People’s Republic of China
| | - Si-yong Ye
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, People’s Republic of China
| |
Collapse
|
16
|
Abdalla MA, Famuyide I, Wooding M, McGaw LJ, Mühling KH. Secondary Metabolite Profile and Pharmacological Opportunities of Lettuce Plants following Selenium and Sulfur Enhancement. Pharmaceutics 2022; 14:pharmaceutics14112267. [PMID: 36365086 PMCID: PMC9695180 DOI: 10.3390/pharmaceutics14112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Selenium (Se) is an essential trace nutrient for humans and animals owing to its role in redox regulation, thyroid hormone control factors, immunity, inflammatory reactions, brain activities, and carbohydrate regulation. It is also important to support muscle development, as well as for reproductive and cardiovascular well-being. Furthermore, sulfur is known to be a healing element, due to the remarkable function of specialized and secondary S-containing compounds. The scope of the current study was to determine the impact of Se and S enrichment on the secondary metabolite accumulation and antibacterial and NO inhibition activities in green and red leaf lettuce (V1 and V2, respectively). The plants were grown in a hydroponic system supplied with different S concentrations (S0: 0, S1: 1 mM and S2: 1.5 mM K2SO4) via the nutrient solution and foliar-applied varying levels of Se (0, 0.2 and 2.6 µM). Electrospray ionization-quadrupole time-of-flight mass spectrometry (ESI-QTOF/MS) combined with ultra-performance liquid chromatography (UPLC) was used to identify the secondary metabolites in green and red lettuce. The results indicated that extracts of the biofortified lettuce were not cytotoxic to Vero kidney cells at the highest concentration tested of 1 mg/mL. The ESI/MS of the tentatively identified metabolites showed that the response values of 5-O-caffeoylquinic acid, cyanidin 3-O-galactoside, quercetin 3-O-(6''-acetyl-glucoside) and quercetin 3-O-malonylglucoside were induced synergistically under higher Se and S levels in red lettuce plants. The acetone extract of red lettuce had antibacterial activity against Pseudomonas aeruginosa, with a minimum inhibitory concentration (MIC) of 0.156 and 0.625 μg/mL under S2/Se1 and S2/Se2 treatments, respectively. As with antibacterial activity, the acetone extract of green (V1) lettuce treated with adequate (S1) and higher S (S2) under Se-limiting conditions showed the ability to inhibit nitric oxide (NO) release from macrophages. NO production by macrophages was inhibited by 50% at respective concentrations of 106.1 ± 2.4 and 101.0 ± 0.6 μg/mL with no toxic effect on the cells, in response to S1 and S2, respectively, under Se-deficient conditions (Se0). Furthermore, the red cultivar (V2) exhibited the same effect as the green cultivar (V1) regarding NO inhibition, with IC50 = 113.0 ± 4.2 μg/mL, in response to S1/Se2 treatments. Collectively, the promising NO inhibitory effect and antibacterial activity of red lettuce under the above-mentioned conditions might be attributed to the production of flavonoid glycosides and phenylpropanoic acid esters under the same condition. To the best of our knowledge, this is the first report to show the novel approach of the NO inhibitory effect of Se and S enrichment in food crops, as an indicator for the potential of Se and S as natural anti-inflammatory agents.
Collapse
Affiliation(s)
- Muna Ali Abdalla
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
- Correspondence: (M.A.A.); (K.H.M.); Tel.: +49-431-880-6471 (M.A.A.); +49-0431-880-3189 (K.H.M.)
| | - Ibukun Famuyide
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Madelien Wooding
- Department of Chemistry, Natural Sciences 1 Building, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Karl H. Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
- Correspondence: (M.A.A.); (K.H.M.); Tel.: +49-431-880-6471 (M.A.A.); +49-0431-880-3189 (K.H.M.)
| |
Collapse
|
17
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Gasmi Benahmed A, Beley N, Kovalska N, Bjørklund G. Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Pharmaceuticals (Basel) 2022; 15:1049. [PMID: 36145270 PMCID: PMC9504481 DOI: 10.3390/ph15091049] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 outbreak seems to be the most dangerous challenge of the third millennium due to its highly contagious nature. Amongst natural molecules for COVID-19 treatment, the flavonoid molecule quercetin (QR) is currently considered one of the most promising. QR is an active agent against SARS and MERS due to its antimicrobial, antiviral, anti-inflammatory, antioxidant, and some other beneficial effects. QR may hold therapeutic potential against SARS-CoV-2 due to its inhibitory effects on several stages of the viral life cycle. In fact, QR inhibits viral entry, absorption, and penetration in the SARS-CoV virus, which might be at least partly explained by the ability of QR and its derivatives to inhibit 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). QR is a potent immunomodulatory molecule due to its direct modulatory effects on several immune cells, cytokines, and other immune molecules. QR-based nanopreparations possess enhanced bioavailability and solubility in water. In this review, we discuss the prospects for the application of QR as a preventive and treatment agent for COVID-19. Given the multifactorial beneficial action of QR, it can be considered a very valid drug as a preventative, mitigating, and therapeutic agent of COVID-19 infection, especially in synergism with zinc, vitamins C, D, and E, and other polyphenols.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | | | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| |
Collapse
|
18
|
Oriola AO, Oyedeji AO. Plant-Derived Natural Products as Lead Agents against Common Respiratory Diseases. Molecules 2022; 27:3054. [PMID: 35630531 PMCID: PMC9144277 DOI: 10.3390/molecules27103054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/23/2022] [Accepted: 05/07/2022] [Indexed: 12/16/2022] Open
Abstract
Never has the world been more challenged by respiratory diseases (RDs) than it has witnessed in the last few decades. This is evident in the plethora of acute and chronic respiratory conditions, ranging from asthma and chronic obstructive pulmonary disease (COPD) to multidrug-resistant tuberculosis, pneumonia, influenza, and more recently, the novel coronavirus (COVID-19) disease. Unfortunately, the emergence of drug-resistant strains of pathogens, drug toxicity and side effects are drawbacks to effective chemotherapeutic management of RDs; hence, our focus on natural sources because of their unique chemical diversities and novel therapeutic applications. This review provides a summary on some common RDs, their management strategies, and the prospect of plant-derived natural products in the search for new drugs against common respiratory diseases.
Collapse
Affiliation(s)
- Ayodeji Oluwabunmi Oriola
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, P/Bag X1, Mthatha 5117, South Africa;
| | | |
Collapse
|
19
|
Cao L, Wang J, Zhang Y, Tian F, Wang C. Osteoprotective effects of flavonoids: Evidence from in vivo and in vitro studies (Review). Mol Med Rep 2022; 25:200. [PMID: 35475514 DOI: 10.3892/mmr.2022.12716] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis is a systemic bone disease characterized by decreased bone mass and quality and bone micro‑architecture degradation. Its primary cause is disorder of bone metabolism: Over‑formation of osteoclasts, resulting in increased bone resorption and insufficient osteogenesis. Traditional herbal flavonoids can be used as alternative drugs to prevent and treat osteoporosis due to their wide range of sources, structural diversity and less adverse effects. The present paper reviewed six flavonoids, including quercetin, icariin, hesperitin, naringin, chrysin and pueraria, that promote bone formation and have been widely studied in the literature over the past five years, with the aim of providing novel ideas for the development of drugs for bone‑associated disease.
Collapse
Affiliation(s)
- Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yujuan Zhang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, P.R. China
| | - Chunfang Wang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
20
|
Pawar A, Russo M, Rani I, Goswami K, Russo GL, Pal A. A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytother Res 2022; 36:2394-2415. [PMID: 35393674 PMCID: PMC9111035 DOI: 10.1002/ptr.7461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
The interim results of the large, multinational trials on coronavirus disease 2019 (COVID‐19) using a combination of antiviral drugs appear to have little to no effect on the 28‐day mortality or the in‐hospital course. Therefore, there is a still vivid interest in finding alternate re‐purposed drugs and nutrition supplements, which can halt or slow the disease severity. We review here the multiple preclinical studies, partially supported by clinical evidence showing the quercetin's possible therapeutic/prophylaxis efficacy against severe acute respiratory syndrome coronavirus (SARS‐CoV) as well as comorbidities like chronic obstructive pulmonary disease (COPD), diabetes mellitus, obesity, coagulopathy, and hypertension. Currently, 14 interventional clinical trials are underway assessing the efficacy of quercetin along with other antiviral drugs/nutritional supplements as prophylaxis/treatment option against COVID‐19. The present review is tempting to suggest that, based on circumstantial scientific evidence and preliminary clinical data, the flavonoid quercetin can ameliorate COVID‐19 infection and symptoms acting in concert on two parallel and independent paths: inhibiting key factors responsible for SARS‐CoV‐2 infections and mitigating the clinical manifestations of the disease in patients with comorbid conditions. Despite the broad therapeutic properties of quercetin, further high power randomized clinical trials are needed to firmly establish its clinical efficacy against COVID‐19.
Collapse
Affiliation(s)
- Anil Pawar
- Department of Zoology, DAV University, Jalandhar, India
| | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Ambala, India
| | | | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Amit Pal
- Department of Biochemistry, AIIMS, Kalyani, India
| |
Collapse
|
21
|
Velazquez‐Martinez V, Quintero‐Quiroz J, Rodriguez‐Uribe L, Valles‐Rosales DV, Reyes‐Jaquez D, Klasson T, Delgado E. Effect of glandless cottonseed meal protein and maltodextrin as microencapsulating agents on spray‐drying of sugarcane bagasse phenolic compounds. J Food Sci 2022; 87:750-763. [DOI: 10.1111/1750-3841.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Victor Velazquez‐Martinez
- Industrial Engineering Department New Mexico State University Las Cruces New Mexico USA
- Family and Consumer Sciences Department New Mexico State University Las Cruces New Mexico USA
| | - Julian Quintero‐Quiroz
- Facultad de Ciencias Farmacéuticas y Alimentarias Universidad de Antioquia Medellín Colombia
| | - Laura Rodriguez‐Uribe
- Plant and Environmental Sciences Department New Mexico State University Las Cruces New Mexico USA
| | | | - Damian Reyes‐Jaquez
- Department of Chemical and Biochemical Engineering Tecnologico Nacional de Mexico – Instituto Tecnologico de Durango Durango Mexico
| | - Thomas Klasson
- USDA‐ARS, Commodity Utilization Research New Orleans Louisiana USA
| | - Efren Delgado
- Family and Consumer Sciences Department New Mexico State University Las Cruces New Mexico USA
| |
Collapse
|
22
|
Lee M, Park J, Cho IH. Target-Specific Drug Discovery of Natural Products against SARS-CoV-2 Life Cycle and Cytokine Storm in COVID-19. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:927-959. [PMID: 35729089 DOI: 10.1142/s0192415x22500380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is currently a worldwide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are no drugs that can specifically combat SARS-CoV-2. Besides, multiple SARS-CoV-2 variants are circulating globally. These variants may lead to immune escape or drug resistance. Natural products may be appropriate for this need due to their cost efficiency, fewer side effects, and antiviral activities. Considering these circumstances, there is a need to develop or discover more compounds that have potential to target SARS-CoV-2. Therefore, we searched for articles on natural products describing anti-SARS-CoV-2 activities by targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19 from academic databases. We reviewed anti-SARS-CoV-2 activities of natural products, especially those that target the SARS-CoV-2 life cycle (angiotensin-converting enzyme 2, transmembrane serine protease 2, cathepsin L, 3CL protease, PL protease, RNA-dependent RNA polymerase, and helicase) and cytokine storm in COVID-19. This review may provide a repurposed approach for the discovery of specific medications using natural products to treat COVID-19 through targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19.
Collapse
Affiliation(s)
- Minjun Lee
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junwoo Park
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ik-Hyun Cho
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
23
|
Alizadeh SR, Ebrahimzadeh MA. O-Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure-activity relationship for drug design, a review. Phytother Res 2021; 36:778-807. [PMID: 34964515 DOI: 10.1002/ptr.7352] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Quercetin as a valuable natural flavonoid has shown extensive biological activities, including anticancer, antioxidant, antibacterial, antiinflammatory, anti-Alzheimer, antifungal, antiviral, antithalassemia, iron chelation, antiobesity, antidiabetic, antihypertension, and antiphospholipase A2 (PLA2) activities, by the modulation of various targets and signaling pathways that have attracted much attention. However, the low solubility and poor bioavailability of quercetin have limited its applications; therefore, the researchers have tried to design and synthesize many new derivatives of quercetin through different strategies to modify quercetin restrictions and improve its biological activities. This review categorized the O-glycoside derivatives of Quercetin into two main classes, 3-O-glycoside and other O-glycoside derivatives. Also, it studied biological activities, structure-activity relationship (SAR), and the action mechanism of O-glycoside quercetin derivatives. Overall, we summarized past and present research for discovering new potent lead compounds.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
24
|
Angellotti G, Presentato A, Murgia D, Di Prima G, D’Agostino F, Scarpaci AG, D’Oca MC, Alduina R, Campisi G, De Caro V. Lipid Nanocarriers-Loaded Nanocomposite as a Suitable Platform to Release Antibacterial and Antioxidant Agents for Immediate Dental Implant Placement Restorative Treatment. Pharmaceutics 2021; 13:2072. [PMID: 34959353 PMCID: PMC8706998 DOI: 10.3390/pharmaceutics13122072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Immediate implant placement is a single-stage restorative approach for missing teeth widely used to overcome the ridge remodeling process occurring after dental extractions. The success of this procedure relies on opportune osseointegration in the surrounding tissues. To support this process, a multifunctional nanocomposite, to be applied in the fresh post-extraction socket, was here designed, prepared, and characterized. This formulation consists of quercetin (QRC)-loaded nanostructured lipid carriers (NLCs) entrapped in a chitosan-based solid matrix containing ciprofloxacin (CPX). QRC-NLCs were prepared by homogenization followed by high-frequency sonication, and thereafter this dispersion was trapped in a chitosan-based CPX-loaded gel, obtaining the nanocomposite powder (BioQ-CPX) by lyophilization. BioQ-CPX displayed desirable properties such as high porosity (94.1 ± 0.5%), drug amounts (2.1% QRC and 3.5% CPX). and low swelling index (100%). Moreover, the mechanism of drug release from BioQ-CPX and their ability to be accumulated in the target tissue were in vitro and ex vivo elucidated, also by applying mathematical models. When trapped into the nanocomposite, QRC stressed under UV light exposure (50 W) was shown to maintain its antioxidant power, and CPX and QRC under natural light were stable over nine months. Finally, both the measured antioxidant power and the antimicrobial and antibiofilm properties on Staphylococcus aureus demonstrated that BioQ-CPX could be a promising platform to support the single-stage dental restorative treatment.
Collapse
Affiliation(s)
- Giuseppe Angellotti
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche (DICHIRONS), Università degli Studi di Palermo, 90127 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Denise Murgia
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche (DICHIRONS), Università degli Studi di Palermo, 90127 Palermo, Italy;
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Giulia Di Prima
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Fabio D’Agostino
- Istituto per lo Studio degli Impatti Antropici e Sostenibilità dell’Ambiente Marino, Consiglio Nazionale delle Ricerche (IAS-CNR), Campobello di Mazara, 91021 Trapani, Italy;
| | - Amalia Giulia Scarpaci
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Maria Cristina D’Oca
- Dipartimento di Fisica e Chimica, Università degli Studi Palermo, 90128 Palermo, Italy;
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| | - Giuseppina Campisi
- Dipartimento di Discipline Chirurgiche, Oncologiche e Stomatologiche (DICHIRONS), Università degli Studi di Palermo, 90127 Palermo, Italy;
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (G.A.); (A.P.); (D.M.); (G.D.P.); (A.G.S.); (R.A.)
| |
Collapse
|
25
|
Baranwal M, Gupta Y, Dey P, Majaw S. Antiinflammatory phytochemicals against virus-induced hyperinflammatory responses: Scope, rationale, application, and limitations. Phytother Res 2021; 35:6148-6169. [PMID: 34816512 DOI: 10.1002/ptr.7222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Uncontrolled inflammatory responses or cytokine storm associated with viral infections results in deleterious consequences such as vascular leakage, severe hemorrhage, shock, immune paralysis, multi-organ failure, and even death. With the emerging new viral infections and lack of effective prophylactic vaccines, evidence-based complementary strategies that limit viral infection-mediated hyperinflammatory responses could be a promising approach to limit host tissue injury. The present review emphasizes the potentials of antiinflammatory phytochemicals in limiting hyperinflammatory injury caused by viral infections. The predominant phytochemicals along with their mechanism in limiting hyperimmune and pro-inflammatory responses under viral infection have been reviewed comprehensively. How certain phytochemicals can be effective in limiting hyper-inflammatory response indirectly by favorably modulating gut microbiota and maintaining a functional intestinal barrier has also been presented. Finally, we have discussed improved systemic bioavailability of phytochemicals, efficient delivery strategies, and safety measures for effective antiinflammatory phytotherapies, in addition to emphasizing the requirement of tightly controlled clinical studies to establish the antiinflammatory efficacy of the phytochemicals. Collectively, the review provides a scooping overview on the potentials of bioactive phytochemicals to mitigate pro-inflammatory injury associated with viral infections.
Collapse
Affiliation(s)
- Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Suktilang Majaw
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, India
| |
Collapse
|
26
|
Di Petrillo A, Orrù G, Fais A, Fantini MC. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res 2021; 36:266-278. [PMID: 34709675 PMCID: PMC8662201 DOI: 10.1002/ptr.7309] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023]
Abstract
Quercetin, widely distributed in fruits and vegetables, is a flavonoid known for its antioxidant, antiviral, antimicrobial, and antiinflammatory properties. Several studies highlight the potential use of quercetin as an antiviral, due to its ability to inhibit the initial stages of virus infection, to be able to interact with proteases important for viral replication, and to reduce inflammation caused by infection. Quercetin could also be useful in combination with other drugs to potentially enhance the effects or synergistically interact with them, in order to reduce their side effects and related toxicity. Since there is no comprehensive compilation about antiviral activities of quercetin and derivates, the aim of this review is providing a summary of their antiviral activities on a set of human viral infections along with mechanisms of action. Thus, the following family of viruses are examined: Flaviviridae, Herpesviridae, Orthomyxoviridae, Coronaviridae, Hepadnaviridae, Retroviridae, Picornaviridae, Pneumoviridae, and Filoviridae.
Collapse
Affiliation(s)
- Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Massimo C Fantini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
27
|
Bernini R, Velotti F. Natural Polyphenols as Immunomodulators to Rescue Immune Response Homeostasis: Quercetin as a Research Model against Severe COVID-19. Molecules 2021; 26:molecules26195803. [PMID: 34641348 PMCID: PMC8510228 DOI: 10.3390/molecules26195803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2 and is leading to the worst health crisis of this century. It emerged in China during late 2019 and rapidly spread all over the world, producing a broad spectrum of clinical disease severity, ranging from asymptomatic infection to death (4.3 million victims so far). Consequently, the scientific research is devoted to investigating the mechanisms of COVID-19 pathogenesis to both identify specific therapeutic drugs and develop vaccines. Although immunological mechanisms driving COVID-19 pathogenesis are still largely unknown, new understanding has emerged about the innate and adaptive immune responses elicited in SARS-CoV-2 infection, which are mainly focused on the dysregulated inflammatory response in severe COVID-19. Polyphenols are naturally occurring products with immunomodulatory activity, playing a relevant role in reducing inflammation and preventing the onset of serious chronic diseases. Mainly based on data collected before the appearance of SARS-CoV-2, polyphenols have been recently suggested as promising agents to fight COVID-19, and some clinical trials have already been approved with polyphenols to treat COVID-19. The aim of this review is to analyze and discuss the in vitro and in vivo research on the immunomodulatory activity of quercetin as a research model of polyphenols, focusing on research that addresses issues related to the dysregulated immune response in severe COVID-19. From this analysis, it emerges that although encouraging data are present, they are still insufficient to recommend polyphenols as potential immunomodulatory agents against COVID-19.
Collapse
Affiliation(s)
- Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Correspondence: (R.B.); (F.V.)
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
- Correspondence: (R.B.); (F.V.)
| |
Collapse
|
28
|
Khazeei Tabari MA, Iranpanah A, Bahramsoltani R, Rahimi R. Flavonoids as Promising Antiviral Agents against SARS-CoV-2 Infection: A Mechanistic Review. Molecules 2021; 26:3900. [PMID: 34202374 PMCID: PMC8271800 DOI: 10.3390/molecules26133900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
A newly diagnosed coronavirus in 2019 (COVID-19) has affected all human activities since its discovery. Flavonoids commonly found in the human diet have attracted a lot of attention due to their remarkable biological activities. This paper provides a comprehensive review of the benefits of flavonoids in COVID-19 disease. Previously-reported effects of flavonoids on five RNA viruses with similar clinical manifestations and/or pharmacological treatments, including influenza, human immunodeficiency virus (HIV), severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Ebola, were considered. Flavonoids act via direct antiviral properties, where they inhibit different stages of the virus infective cycle and indirect effects when they modulate host responses to viral infection and subsequent complications. Flavonoids have shown antiviral activity via inhibition of viral protease, RNA polymerase, and mRNA, virus replication, and infectivity. The compounds were also effective for the regulation of interferons, pro-inflammatory cytokines, and sub-cellular inflammatory pathways such as nuclear factor-κB and Jun N-terminal kinases. Baicalin, quercetin and its derivatives, hesperidin, and catechins are the most studied flavonoids in this regard. In conclusion, dietary flavonoids are promising treatment options against COVID-19 infection; however, future investigations are recommended to assess the antiviral properties of these compounds on this disease.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran;
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Kermanshah USERN Office, Universal Scientific Education and Research Network (USERN), Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran;
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran;
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
29
|
Ti H. Phytochemical Profiles and their Anti-inflammatory Responses Against Influenza from Traditional Chinese Medicine or Herbs. Mini Rev Med Chem 2021; 20:2153-2164. [PMID: 32767941 DOI: 10.2174/1389557520666200807134921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 11/22/2022]
Abstract
Traditional Chinese medicine (TCM) or herbs are widely used in the prevention and treatment of viral infectious diseases. However, the underlying mechanisms of TCMs remain largely obscure due to complicated material basis and multi-target therapeutics. TCMs have been reported to display anti-influenza activity associated with immunoregulatory mechanisms by enhancing host antiinfluenza immune responses. Previous studies have helped us understand the direct harm caused by the virus itself. In this review, we have tried to summarize recent progress in TCM-based anti-influenza research on the indirect harmful immune responses caused by influenza viruses. In particular, the phytochemicals from TCMs responsible for molecular mechanisms of action belonging to different classes, including phenolic compounds, flavonoids, alkaloids and polysaccharides, have been identified and demonstrated. In addition, this review focuses on the pharmacological mechanism, e.g., inflammatory responses and the interferon (IFN) signaling pathway, which can provide a theoretical basis and approaches for TCM based anti-influenza treatment.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
30
|
Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, Meraya AM, Ahsan W, Mohan S, Taha MME, Khalid A. Medicinal Plants and Isolated Molecules Demonstrating Immunomodulation Activity as Potential Alternative Therapies for Viral Diseases Including COVID-19. Front Immunol 2021; 12:637553. [PMID: 34054806 PMCID: PMC8155592 DOI: 10.3389/fimmu.2021.637553] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Plants have been extensively studied since ancient times and numerous important chemical constituents with tremendous therapeutic potential are identified. Attacks of microorganisms including viruses and bacteria can be counteracted with an efficient immune system and therefore, stimulation of body's defense mechanism against infections has been proven to be an effective approach. Polysaccharides, terpenoids, flavonoids, alkaloids, glycosides, and lactones are the important phytochemicals, reported to be primarily responsible for immunomodulation activity of the plants. These phytochemicals may act as lead molecules for the development of safe and effective immunomodulators as potential remedies for the prevention and cure of viral diseases. Natural products are known to primarily modulate the immune system in nonspecific ways. A number of plant-based principles have been identified and isolated with potential immunomodulation activity which justify their use in traditional folklore medicine and can form the basis of further specified research. The aim of the current review is to describe and highlight the immunomodulation potential of certain plants along with their bioactive chemical constituents. Relevant literatures of recent years were searched from commonly employed scientific databases on the basis of their ethnopharmacological use. Most of the plants displaying considerable immunomodulation activity are summarized along with their possible mechanisms. These discussions shall hopefully elicit the attention of researchers and encourage further studies on these plant-based immunomodulation products as potential therapy for the management of infectious diseases, including viral ones such as COVID-19.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M. Meraya
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Manal M. E. Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
31
|
Attah AF, Fagbemi AA, Olubiyi O, Dada-Adegbola H, Oluwadotun A, Elujoba A, Babalola CP. Therapeutic Potentials of Antiviral Plants Used in Traditional African Medicine With COVID-19 in Focus: A Nigerian Perspective. Front Pharmacol 2021; 12:596855. [PMID: 33981214 PMCID: PMC8108136 DOI: 10.3389/fphar.2021.596855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by an infectious novel strain of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which was earlier referred to as 2019-nCoV. The respiratory disease is the most consequential global public health crisis of the 21st century whose level of negative impact increasingly experienced globally has not been recorded since World War II. Up till now, there has been no specific globally authorized antiviral drug, vaccines, supplement or herbal remedy available for the treatment of this lethal disease except preventive measures, supportive care and non-specific treatment options adopted in different countries via divergent approaches to halt the pandemic. However, many of these interventions have been documented to show some level of success particularly the Traditional Chinese Medicine while there is paucity of well reported studies on the impact of the widely embraced Traditional African Medicines (TAM) adopted so far for the prevention, management and treatment of COVID-19. We carried out a detailed review of publicly available data, information and claims on the potentials of indigenous plants used in Sub-Saharan Africa as antiviral remedies with potentials for the prevention and management of COVID-19. In this review, we have provided a holistic report on evidence-based antiviral and promising anti-SARS-CoV-2 properties of African medicinal plants based on in silico evidence, in vitro assays and in vivo experiments alongside the available data on their mechanistic pharmacology. In addition, we have unveiled knowledge gaps, provided an update on the effort of African Scientific community toward demystifying the dreadful SARS-CoV-2 micro-enemy of man and have documented popular anti-COVID-19 herbal claims emanating from the continent for the management of COVID-19 while the risk potentials of herb-drug interaction of antiviral phytomedicines when used in combination with orthodox drugs have also been highlighted. This review exercise may lend enough credence to the potential value of African medicinal plants as possible leads in anti-COVID-19 drug discovery through research and development.
Collapse
Affiliation(s)
- Alfred Francis Attah
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adeshola Adebayo Fagbemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Olujide Olubiyi
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Dada-Adegbola
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Anthony Elujoba
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Chinedum Peace Babalola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
- Centre for Drug Discovery, Development and Production, University of Ibadan, Ibadan, Nigeria
- College of Basic Medical Sciences, Chrisland University, Abeokuta, Nigeria
| |
Collapse
|
32
|
Omrani M, Keshavarz M, Nejad Ebrahimi S, Mehrabi M, McGaw LJ, Ali Abdalla M, Mehrbod P. Potential Natural Products Against Respiratory Viruses: A Perspective to Develop Anti-COVID-19 Medicines. Front Pharmacol 2021; 11:586993. [PMID: 33679384 PMCID: PMC7926205 DOI: 10.3389/fphar.2020.586993] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
The emergence of viral pneumonia caused by a novel coronavirus (CoV), known as the 2019 novel coronavirus (2019-nCoV), resulted in a contagious acute respiratory infectious disease in December 2019 in Wuhan, Hubei Province, China. Its alarmingly quick transmission to many countries across the world and a considerable percentage of morbidity and mortality made the World Health Organization recognize it as a pandemic on March 11, 2020. The perceived risk of infection has led many research groups to study COVID-19 from different aspects. In this literature review, the phylogenetics and taxonomy of COVID-19 coronavirus, epidemiology, and respiratory viruses similar to COVID-19 and their mode of action are documented in an approach to understand the behavior of the current virus. Moreover, we suggest targeting the receptors of SARS-CoV and SARS-CoV-2 such as ACE2 and other proteins including 3CLpro and PLpro for improving antiviral activity and immune response against COVID-19 disease. Additionally, since phytochemicals play an essential role in complementary therapies for viral infections, we summarized different bioactive natural products against the mentioned respiratory viruses with a focus on influenza A, SARS-CoV, MERS, and COVID-19.Based on current literature, 130 compounds have antiviral potential, and of these, 94 metabolites demonstrated bioactivity against coronaviruses. Interestingly, these are classified in different groups of natural products, including alkaloids, flavonoids, terpenoids, and others. Most of these compounds comprise flavonoid skeletons. Based on our survey, xanthoangelol E (88), isolated from Angelica keiskei (Miq.) Koidz showed inhibitory activity against SARS-CoV PLpro with the best IC50 value of 1.2 μM. Additionally, hispidulin (3), quercetin (6), rutin (8), saikosaponin D (36), glycyrrhizin (47), and hesperetin (55) had remarkable antiviral potential against different viral infections. Among these compounds, quercetin (6) exhibited antiviral activities against influenza A, SARS-CoV, and COVID-19 and this seems to be a highly promising compound. In addition, our report discusses the obstacles and future perspectives to highlight the importance of developing screening programs to investigate potential natural medicines against COVID-19.
Collapse
Affiliation(s)
- Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Meysam Mehrabi
- Shafa Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Muna Ali Abdalla
- Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum North, Sudan
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
33
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front Pharmacol 2021; 11:583777. [PMID: 33708109 PMCID: PMC7941276 DOI: 10.3389/fphar.2020.583777] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has caused a global health crisis, with no specific antiviral to treat the infection and the absence of a suitable vaccine to prevent it. While some individuals contracting the SARS-CoV-2 infection exhibit a well coordinated immune response and recover, others display a dysfunctional immune response leading to serious complications including ARDS, sepsis, MOF; associated with morbidity and mortality. Studies revealed that in patients with a dysfunctional immune response, there is a massive cytokine and chemokine release, referred to as the 'cytokine storm'. As a result, such patients exhibit higher levels of pro-inflammatory/modulatory cytokines and chemokines like TNFα, INFγ, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, MCSF, HGF and chemokines CXCL8, MCP1, IP10, MIP1α and MIP1β. Targeting this cytokine storm is a novel, promising treatment strategy to alleviate this excess influx of cytokines observed at the site of infection and their subsequent disastrous consequences. Natural immunosuppressant compounds, derived from plant sources like curcumin, luteolin, piperine, resveratrol are known to inhibit the production and release of pro-inflammatory cytokines and chemokines. This inhibitory effect is mediated by altering signal pathways like NF-κB, JAK/STAT, MAPK/ERK that are involved in the production and release of cytokines and chemokines. The use of these natural immunosuppressants as adjuvants to ameliorate the cytokine storm; in combination with antiviral agents and other treatment drugs currently in use presents a novel, synergistic approach for the treatment and effective cure of COVID-19. This review briefly describes the immunopathogenesis of the cytokine storm observed in SARS-CoV-2 infection and details some natural immunosuppressants that can be used as adjuvants in treating COVID-19 disease.
Collapse
Affiliation(s)
- Angela E. Peter
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. V. Sandeep
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. Ganga Rao
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - V. Lakshmi Kalpana
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam, India
| |
Collapse
|
34
|
Velazquez-Martinez V, Valles-Rosales D, Rodriguez-Uribe L, Holguin O, Quintero-Quiroz J, Reyes-Jaquez D, Rodriguez-Borbon MI, Villagrán-Villegas LY, Delgado E. Antimicrobial, Shelf-Life Stability, and Effect of Maltodextrin and Gum Arabic on the Encapsulation Efficiency of Sugarcane Bagasse Bioactive Compounds. Foods 2021; 10:foods10010116. [PMID: 33429841 PMCID: PMC7827221 DOI: 10.3390/foods10010116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023] Open
Abstract
This study shows the effects of maltodextrins and gum arabic as microencapsulation agents on the stability of sugarcane bagasse extracts and the potential use of the extracts as antimicrobial agents. The bioactive compounds in sugarcane bagasse (SCB) were extracted using 90% methanol and an orbital shaker at a fixed temperature of 50 °C, thereby obtaining a yield of the total phenolic content of 5.91 mg GAE/g. The bioactive compounds identified in the by-product were flavonoids, alkaloids, and lignan (-) Podophyllotoxin. The total phenolic content (TPC), antioxidant activity, and shelf-life stability of fresh and microencapsulated TPC were analyzed. This experiment's optimal microencapsulation can be obtained with a ratio of 0.6% maltodextrin (MD)/9.423% gum arabic (GA). Sugarcane bagasse showed high antioxidant activities, which remained stable after 30 days of storage and antimicrobial properties against E. coli, B. cereus, S. aureus, and the modified yeast SGS1. The TPC of the microencapsulated SCB extracts was not affected (p > 0.05) by time or storage temperature due to the combination of MD and GA as encapsulating agents. The antioxidant and antimicrobial capacities of sugarcane bagasse extracts showed their potential use as a source of bioactive compounds for further use as a food additive or nutraceutical. The results are a first step in encapsulating phenolic compounds from SCB as a promising source of antioxidant agents and ultimately a novel resource for functional foods.
Collapse
Affiliation(s)
- Victor Velazquez-Martinez
- Industrial Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (V.V.-M.); (D.V.-R.); (M.I.R.-B.)
- Department of Family and Consumer Sciences, Food Science and Technology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Delia Valles-Rosales
- Industrial Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (V.V.-M.); (D.V.-R.); (M.I.R.-B.)
| | - Laura Rodriguez-Uribe
- Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (L.R.-U.); (O.H.)
| | - Omar Holguin
- Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (L.R.-U.); (O.H.)
| | - Julian Quintero-Quiroz
- Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, University Campus, Medellin 050010, Colombia;
| | - Damian Reyes-Jaquez
- Posgrado en Ingenieria Quimica, Instituto Tecnologico de Durango Durango, Durango 34080, DGO., Mexico;
| | - Manuel Ivan Rodriguez-Borbon
- Industrial Engineering, New Mexico State University, Las Cruces, NM 88003, USA; (V.V.-M.); (D.V.-R.); (M.I.R.-B.)
| | | | - Efren Delgado
- Department of Family and Consumer Sciences, Food Science and Technology, New Mexico State University, Las Cruces, NM 88003, USA
- Correspondence: ; Tel.: +1-575-646-1759
| |
Collapse
|
35
|
Mehrbod P, Hudy D, Shyntum D, Markowski J, Łos MJ, Ghavami S. Quercetin as a Natural Therapeutic Candidate for the Treatment of Influenza Virus. Biomolecules 2020; 11:E10. [PMID: 33374214 PMCID: PMC7824064 DOI: 10.3390/biom11010010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The medical burden caused by respiratory manifestations of influenza virus (IV) outbreak as an infectious respiratory disease is so great that governments in both developed and developing countries have allocated significant national budget toward the development of strategies for prevention, control, and treatment of this infection, which is seemingly common and treatable, but can be deadly. Frequent mutations in its genome structure often result in resistance to standard medications. Thus, new generations of treatments are critical to combat this ever-evolving infection. Plant materials and active compounds have been tested for many years, including, more recently, active compounds like flavonoids. Quercetin is a compound belonging to the flavonols class and has shown therapeutic effects against influenza virus. The focus of this review includes viral pathogenesis as well as the application of quercetin and its derivatives as a complementary therapy in controlling influenza and its related symptoms based on the targets. We also touch on the potential of this class of compounds for treatment of SARS-COV-2, the cause of new pandemic.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Dorota Hudy
- Department of Laryngology, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (D.H.); (J.M.)
| | - Divine Shyntum
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (D.H.); (J.M.)
| | - Marek J. Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland;
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| |
Collapse
|
36
|
Kant V, Kumar M, Jangir BL, Kumar V. Temporal Effects of Different Vehicles on Wound Healing Potentials of Quercetin: Biochemical, Molecular, and Histopathological Approaches. INT J LOW EXTR WOUND 2020; 21:588-600. [PMID: 33305630 DOI: 10.1177/1534734620977582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Development of novel drugs or formulations to accelerate the wound healing process is the need of current era. Quercetin (Q), a bioflavonoid, at 0.3% concentration has showed some wound healing potential in our preliminary studies. The present study was aimed to explore the wound healing potential of 0.3% quercetin formulated in 3 different vehicles, that is, dimethyl sulfoxide (DMSO; 10%), ointment base, and corn oil. Ninety experimentally wounded rats were grouped in 6 groups. The 0.3% quercetin mixed with DMSO, ointment base, and corn oil was topically applied once daily for 21 days on the wounds of groups 2, 4, and 6, respectively. DMSO, ointment base, and corn oil alone was applied similarly in groups 1, 3, and 5, respectively. Gross evaluation and wound contraction results revealed accelerated wound closure in all quercetin-treated groups. The mRNA expressions of vascular endothelial growth factor, transforming growth factor-β1, and interluekin-10 were markedly upregulated in healing tissues of quercetin-treated groups. Tumor necrosis factor-α mRNA expression and protein levels were lowered by quercetin treatment. Quercetin-treated groups also showed increased activities of SOD (superoxide dismutase) and catalase, and levels of total thiols in wound tissues on day 7. Levels of superoxide anion radicals and malondialdehyde were markedly lower in quercetin-treated groups. Histologically, wound sections of quercetin-treated groups showed early dominance of fibroblasts, increased blood vessels, marked collagen deposition, and regenerated epithelial layer. The significant effects were more pronounced in ointment + Q group among all the quercetin-treated groups. In conclusion, 0.3% quercetin mixed in ointment base produced the fastest and better wound healing in rats.
Collapse
Affiliation(s)
- Vinay Kant
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Manish Kumar
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Babu Lal Jangir
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary & Animal Sciences (LUVAS), Hisar, Haryana, India
| |
Collapse
|
37
|
Du HX, Zhou HF, Yang JH, Lu YY, He Y, Wan HT. Preliminary study of Yinhuapinggan granule against H1N1 influenza virus infection in mice through inhibition of apoptosis. PHARMACEUTICAL BIOLOGY 2020; 58:979-991. [PMID: 32962483 PMCID: PMC7534346 DOI: 10.1080/13880209.2020.1818792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/09/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Yinhuapinggan granule (YHPG) is frequently used for treating fever, cough, and viral pneumonia in traditional Chinese medicine. OBJECTIVE This study investigated the antiviral effects of YHPG in H1N1 influenza virus (IFV)-infected mice and its possible mechanism. MATERIALS AND METHODS ICR mice were intranasally infected with 10 LD50 viral dose of IFV and then oral administration of YHPG (6, 12, and 18 g/kg) or oseltamivir (positive control) once a day for 2 or 4 consecutive days, six mice in each group. The lung, spleen and thymus indexes of IFV-infected mice, the expression of viral loads and pathological changes in lung tissues were performed to evaluate the antiviral effects of YHPG. Real-time PCR, immunohistochemistry and western blot assays were used to determine the expression of Bax, Bcl-2 and caspase-3. RESULTS LD50 in mice was 10-3.5/0.02 mL. YHPG (6, 12, and 18 g/kg) dose-dependently decreased the lung index and viral load; the inhibition ratio of lung index was 5.31, 18.22, and 34.06%, respectively. Further detection revealed that YHPG (12 and 18 g/kg) significantly attenuated lung pathological changes, and increased the spleen and thymus indexes. Moreover, YHPG significantly down-regulated the mRNA and protein expression of Bax and caspase-3 in lung tissues of mice infected with IFV, and up-regulated the expression of Bcl-2. CONCLUSIONS YHPG has significant antiviral effects in IFV-infected mice, partially by inhibiting influenza virus replication and regulating the occurrence of apoptosis induced by influenza virus infection, suggesting that YHPG may be a promising antiviral agent with potential clinical application prospects.
Collapse
Affiliation(s)
- Hai-xia Du
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-fen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie-hong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi-yu Lu
- Institute of Microbiology, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hai-tong Wan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
38
|
Antioxidant potential of flavonoid glycosides from Manniophyton fulvum Müll. (Euphorbiaceae): Identification and molecular modeling. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Choudhary A, Kant V, Jangir BL, Joshi VG. Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats. Eur J Pharmacol 2020; 880:173172. [PMID: 32407724 DOI: 10.1016/j.ejphar.2020.173172] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/25/2022]
Abstract
Previous studies have shown that quercetin on topical application improved cutaneous wound healing in rats, but hydrophobic nature and less skin penetration limits its potential as topical healing agent. Therefore, present study was planned to investigate wound healing potential of chitosan based quercetin nanoparticles. Quercetin loaded nanoparticles were synthesized by ionic gelation method and characterized by various standard techniques. A 2 × 2 cm2 square shaped wound was created on the thoraco-lumbar part of rats. Wounded rats were divided into 6 groups namely, gel (20%), blank nanoparticle (0.16%), bulk quercetin (0.3%), quercetin nanoparticles (0.03%), quercetin nanoparticles (0.1%) and quercetin nanoparticles (0.3%) treated groups. Different formulations of quercetin nanoparticles were applied on the wounds for the duration of study and healing tissues were collected on 7th, 14th and 21st day to study various parameters. Quercetin loaded nanoparticles were 361.16 ± 9.72 nm size and spherical in shape. We observed quercetin nanoparticles (0.03%) treatment caused marked reduction in the tumor necrosis factor-alpha, whereas expressions of interleukin 10, vascular endothelial growth factor and transforming growth factor beta1 was increased significantly with treatment. The granulation tissue of quercetin nanoparticles (0.03%) treated group showed better quality healing and maturity as supported by the increased blood vessels density, decreased inflammatory cells, increased number of myofibroblasts, deposition and arrangement of collagen fibers and re-epithelialization. In conclusion, quercetin nanoparticles (0.03%) treatment significantly improved wound healing by modulation of cytokines and growth factors involved in inflammatory and proliferative phases of wound healing.
Collapse
Affiliation(s)
- Abhinav Choudhary
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Vinay Kant
- Department of Veterinary Pharmacology & Toxicology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India.
| | - Babu Lal Jangir
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - V G Joshi
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
40
|
Mehrbod P, Ebrahimi SN, Fotouhi F, Eskandari F, Eloff JN, McGaw LJ, Fasina FO. Experimental validation and computational modeling of anti-influenza effects of quercetin-3-O-α-L-rhamnopyranoside from indigenous south African medicinal plant Rapanea melanophloeos. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:346. [PMID: 31791311 PMCID: PMC6888925 DOI: 10.1186/s12906-019-2774-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Influenza A virus (IAV) is still a major health threat. The clinical manifestations of this infection are related to immune dysregulation, which causes morbidity and mortality. The usage of traditional medication with immunomodulatory properties against influenza infection has been increased recently. Our previous study showed antiviral activity of quercetin-3-O-α-L-rhamnopyranoside (Q3R) isolated from Rapanea melanophloeos (RM) (L.) Mez (family Myrsinaceae) against H1N1 (A/PR/8/34) infection. This study aimed to confirm the wider range of immunomodulatory effect of Q3R on selective pro- and anti-inflammatory cytokines against IAV in vitro, to evaluate the effect of Q3R on apoptosis pathway in combination with H1N1, also to assess the physical interaction of Q3R with virus glycoproteins and RhoA protein using computational docking. METHODS MDCK cells were exposed to Q3R and 100CCID50/100 μl of H1N1 in combined treatments (co-, pre- and post-penetration treatments). The treatments were tested for the cytokines evaluation at RNA and protein levels by qPCR and ELISA, respectively. In another set of treatment, apoptosis was examined by detecting RhoA GTPase protein and caspase-3 activity. Molecular docking was used as a tool for evaluation of the potential anti-influenza activity of Q3R. RESULTS The expressions of cytokines in both genome and protein levels were significantly affected by Q3R treatment. It was shown that Q3R was much more effective against influenza when it was applied in co-penetration treatment. Q3R in combination with H1N1 increased caspase-3 activity while decreasing RhoA activation. The molecular docking results showed strong binding ability of Q3R with M2 transmembrane, Neuraminidase of 2009 pandemic H1N1, N1 and H1 of PR/8/1934 and Human RhoA proteins, with docking energy of - 10.81, - 10.47, - 9.52, - 9.24 and - 8.78 Kcal/mol, respectively. CONCLUSIONS Quercetin-3-O-α-L-rhamnopyranoside from RM was significantly effective against influenza infection by immunomodulatory properties, affecting the apoptosis pathway and binding ability to viral receptors M2 transmembrane and Neuraminidase of 2009 pandemic H1N1 and human RhoA cellular protein. Further research will focus on detecting the detailed specific mechanism of Q3R in virus-host interactions.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Eskandari
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Jacobus N. Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Folorunso O. Fasina
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- ECTAD, Food and Agriculture Organization of the United Nations (FAO), Dar es Salaam, Tanzania
| |
Collapse
|
41
|
Xiao G, Lyu M, Wang Y, He S, Liu X, Ni J, Li L, Fan G, Han J, Gao X, Wang X, Zhu Y. Ginkgo Flavonol Glycosides or Ginkgolides Tend to Differentially Protect Myocardial or Cerebral Ischemia-Reperfusion Injury via Regulation of TWEAK-Fn14 Signaling in Heart and Brain. Front Pharmacol 2019; 10:735. [PMID: 31333457 PMCID: PMC6624656 DOI: 10.3389/fphar.2019.00735] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Shuxuening injection (SXNI), one of the pharmaceutical preparations of Ginkgo biloba extract, has significant effects on both ischemic stroke and heart diseases from bench to bedside. Its major active ingredients are ginkgo flavonol glycosides (GFGs) and ginkgolides (GGs). We have previously reported that SXNI as a whole protected ischemic brain and heart, but the active ingredients and their contribution to the therapeutic effects remain unclear. Therefore, we combined experimental and network analysis approach to further explore the specific effects and underlying mechanisms of GFGs and GGs of SXNI on ischemia–reperfusion injury in mouse brain and heart. In the myocardial ischemia–reperfusion injury (MIRI) model, pretreatment with GFGs at 2.5 ml/kg was superior to the same dose of GGs in improving cardiac function and coronary blood flow and reducing the levels of lactate dehydrogenase and aspartate aminotransferase in serum, with an effect similar to that achieved by SXNI. In contrast, pretreatment with GGs at 2.5 ml/kg reduced cerebral infarction area and cerebral edema similarly to that of SXNI but more significantly compared with GFGs in cerebral ischemia–reperfusion injury (CIRI) model. Network pharmacology analysis of GFGs and GGs revealed that tumor necrosis factor-related weak inducer of apoptosis (TWEAK)–fibroblast growth factor-inducible 14 (Fn14) signaling pathway as an important common mechanism but with differential targets in MIRI and CIRI. In addition, immunohistochemistry and enzyme linked immunosorbent assay (ELISA) assays were performed to evaluate the regulatory roles of GFGs and GGs on the common TWEAK–Fn14 signaling pathway to protect the heart and brain. Experimental results confirmed that TWEAK ligand and Fn14 receptor were downregulated by GFGs to mitigate MIRI in the heart while upregulated by GGs to improve CIRI in the brain. In conclusion, our study showed that GFGs and GGs of SXNI tend to differentially protect brain and heart from ischemia–reperfusion injuries at least in part by regulating a common TWEAK–Fn14 signaling pathway.
Collapse
Affiliation(s)
- Guangxu Xiao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medicial Sciences, Beijing, China
| | - Yule Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Shuang He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Xinyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Jingyu Ni
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jihong Han
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
42
|
Niu B, Lu Y, Wang J, Hu Y, Chen J, Chen Q, He G, Zheng L. 2D-SAR, Topomer CoMFA and molecular docking studies on avian influenza neuraminidase inhibitors. Comput Struct Biotechnol J 2018; 17:39-48. [PMID: 30595814 PMCID: PMC6305694 DOI: 10.1016/j.csbj.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022] Open
Abstract
Avian influenza is a serious zoonotic infectious disease with huge negative impacts on local poultry farming, human health and social stability. Therefore, the design of new compounds against avian influenza has been the focus in this field. In this study, computational methods were applied to investigate the compounds with neuraminidase inhibitory activity. First, 2D-SAR model was built to recognize neuraminidase inhibitors (NAIs). As a result, the accuracy of 10 cross-validation and independent tests is 96.84% and 98.97%, respectively. Then, the Topomer CoMFA model was constructed to predict the inhibitory activity and analyses molecular fields. Two models were obtained by changing the cutting methods. The second model is employed to predict the activity (q2 = 0.784 and r2 = 0.982). Molecular docking was also used to further analyze the binding sites between NAIs and neuraminidase from human and avian virus. As a result, it is found that same binding Total Score has some differences, but the binding sites are basically the same. At last, some potential NAIs were screened and some optimal opinions were taken. It is expected that our study can assist to study and develop new types of NAIs.
Collapse
Affiliation(s)
- Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yi Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jianying Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yan Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiahui Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Guangwu He
- Department of Radiology, Shanghai First People's Hospital, Baoshan Branch, Shanghai 200940, China
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
- Department of Radiology, Shanghai First People's Hospital, Baoshan Branch, Shanghai 200940, China
| |
Collapse
|