1
|
Kierbiedź-Guzik N, Sozańska B. The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs. Int J Mol Sci 2024; 26:120. [PMID: 39795977 PMCID: PMC11720134 DOI: 10.3390/ijms26010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Viral respiratory infections are a significant clinical problem among the pediatric population and are one of the leading causes of hospitalization. Most often, upper respiratory tract infections are self-limiting. Still, those that involve the lower respiratory tract are usually associated with asthma exacerbations, leading to worsening or even the initiation of the disease. A key role in regulating the immune response and inflammation during viral infections and their impact on the progression of asthma has been demonstrated for miRNA molecules (microRNA). Their interaction with mRNA (messenger RNA) regulates gene expression in innate and acquired immune responses, making them valuable biomarkers for diagnostics, monitoring, and predicting asthma exacerbations. The following paper presents changes in the expression of miRNAs during the five most common viral infections causing asthma worsening, with particular emphasis on the pediatric population. In addition, we describe the molecular mechanisms by which miRNAs influence the pathogenesis of viral infection, immune responses, and asthma exacerbations. These molecules represent promising targets for future innovative therapeutic strategies, paving the way for developing personalized medicine for patients with viral-induced asthma exacerbations.
Collapse
Affiliation(s)
- Natalia Kierbiedź-Guzik
- Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland
| | | |
Collapse
|
2
|
Shahdab N, Ward C, Hansbro PM, Cummings S, Young JS, Moheimani F. Distinct Effects of Respiratory Viral Infection Models on miR-149-5p, IL-6 and p63 Expression in BEAS-2B and A549 Epithelial Cells. Cells 2024; 13:919. [PMID: 38891051 PMCID: PMC11172188 DOI: 10.3390/cells13110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Respiratory viruses cause airway inflammation, resulting in epithelial injury and repair. miRNAs, including miR-149-5p, regulate different pathological conditions. We aimed to determine how miR-149-5p functions in regulating pro-inflammatory IL-6 and p63, key regulators of airway epithelial wound repair, in response to viral proteins in bronchial (BEAS-2B) and alveolar (A549) epithelial cells. BEAS-2B or A549 cells were incubated with poly (I:C, 0.5 µg/mL) for 48 h or SARS-CoV-2 spike protein-1 or 2 subunit (S1 or S2, 1 μg/mL) for 24 h. miR-149-5p was suppressed in BEAS-2B challenged with poly (I:C), correlating with IL-6 and p63 upregulation. miR-149-5p was down-regulated in A549 stimulated with poly (I:C); IL-6 expression increased, but p63 protein levels were undetectable. miR-149-5p remained unchanged in cells exposed to S1 or S2, while S1 transfection increased IL-6 expression in BEAS-2B cells. Ectopic over-expression of miR-149-5p in BEAS-2B cells suppressed IL-6 and p63 mRNA levels and inhibited poly (I:C)-induced IL-6 and p63 mRNA expressions. miR-149-5p directly suppressed IL-6 mRNA in BEAS-2B cells. Hence, BEAS-2B cells respond differently to poly (I:C), S1 or S2 compared to A549 cells. Thus, miR-149-5p dysregulation may be involved in poly (I:C)-stimulated but not S1- or S2-stimulated increased IL-6 production and p63 expression in BEAS-2B cells.
Collapse
Affiliation(s)
- Nafeesa Shahdab
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; (N.S.); (S.C.); (J.S.Y.)
| | - Christopher Ward
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia;
| | - Stephen Cummings
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; (N.S.); (S.C.); (J.S.Y.)
| | - John S. Young
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; (N.S.); (S.C.); (J.S.Y.)
| | - Fatemeh Moheimani
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
3
|
Read J, Reid AT, Thomson C, Plit M, Mejia R, Knight DA, Lize M, El Kasmi K, Grainge CL, Stahl H, Schuliga M. Alveolar epithelial cells of lung fibrosis patients are susceptible to severe virus-induced injury. Clin Sci (Lond) 2024; 138:537-554. [PMID: 38577922 DOI: 10.1042/cs20240220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Patients with pulmonary fibrosis (PF) often experience exacerbations of their disease, characterised by a rapid, severe deterioration in lung function that is associated with high mortality. Whilst the pathobiology of such exacerbations is poorly understood, virus infection is a trigger. The present study investigated virus-induced injury responses of alveolar and bronchial epithelial cells (AECs and BECs, respectively) from patients with PF and age-matched controls (Ctrls). Air-liquid interface (ALI) cultures of AECs, comprising type I and II pneumocytes or BECs were inoculated with influenza A virus (H1N1) at 0.1 multiplicity of infection (MOI). Levels of interleukin-6 (IL-6), IL-36γ and IL-1β were elevated in cultures of AECs from PF patients (PF-AECs, n = 8-11), being markedly higher than Ctrl-AECs (n = 5-6), 48 h post inoculation (pi) (P<0.05); despite no difference in H1N1 RNA copy numbers 24 h pi. Furthermore, the virus-induced inflammatory responses of PF-AECs were greater than BECs (from either PF patients or controls), even though viral loads in the BECs were overall 2- to 3-fold higher than AECs. Baseline levels of the senescence and DNA damage markers, nuclear p21, p16 and H2AXγ were also significantly higher in PF-AECs than Ctrl-AECs and further elevated post-infection. Senescence induction using etoposide augmented virus-induced injuries in AECs (but not viral load), whereas selected senotherapeutics (rapamycin and mitoTEMPO) were protective. The present study provides evidence that senescence increases the susceptibility of AECs from PF patients to severe virus-induced injury and suggests targeting senescence may provide an alternative option to prevent or treat the exacerbations that worsen the underlying disease.
Collapse
Affiliation(s)
- Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrew T Reid
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Claire Thomson
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Saint Vincent's Hospital, Sydney, NSW, Australia
| | | | - Ross Mejia
- John Hunter Hospital, Newcastle, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Muriel Lize
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | | | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- John Hunter Hospital, Newcastle, NSW, Australia
| | - Heiko Stahl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
4
|
Rani P, George B, V S, Biswas S, V M, Pal A, Rajmani RS, Das S. MicroRNA-22-3p displaces critical host factors from the 5' UTR and inhibits the translation of Coxsackievirus B3 RNA. J Virol 2024; 98:e0150423. [PMID: 38289119 PMCID: PMC10883805 DOI: 10.1128/jvi.01504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024] Open
Abstract
Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.
Collapse
Affiliation(s)
- Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Biju George
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sabarishree V
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Somarghya Biswas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Madhurya V
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
5
|
Elrebehy MA, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elshaer SS, Fathi D, Rizk NI, Moustafa YM, Elballal MS, Mohammed OA, Abdel-Reheim MA, Zaki MB, Mahmoud AMA, Rashad AA, Sawan ES, Al-Noshokaty TM, Saber S, Doghish AS. Tuning into miRNAs: A comprehensive analysis of their impact on diagnosis, and progression in asthma. Pathol Res Pract 2024; 254:155147. [PMID: 38246033 DOI: 10.1016/j.prp.2024.155147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Asthma is a diverse inflammatory illness affecting the respiratory passages, leading to breathing challenges, bouts of coughing and wheezing, and, in severe instances, significant deterioration in quality of life. Epigenetic regulation, which involves the control of gene expression through processes such as post-transcriptional modulation of microRNAs (miRNAs), plays a role in the evolution of various asthma subtypes. In immune-mediated diseases, miRNAs play a regulatory role in the behavior of cells that form the airway structure and those responsible for defense mechanisms in the bronchi and lungs. They control various cellular processes such as survival, growth, proliferation, and the production of chemokines and immune mediators. miRNAs possess chemical and biological characteristics that qualify them as suitable biomarkers for diseases. They allow for the categorization of patients to optimize drug selection, thus streamlining clinical management and decreasing both the economic burden and the necessity for critical care related to the disease. This study provides a concise overview of the functions of miRNAs in asthma and elucidates their regulatory effects on the underlying processes of the disease. We provide a detailed account of the present status of miRNAs as biomarkers for categorizing asthma, identifying specific asthma subtypes, and selecting appropriate treatment options.
Collapse
Affiliation(s)
- Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Eman S Sawan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
6
|
The Potential Role of Serum and Exhaled Breath Condensate miRNAs in Diagnosis and Predicting Exacerbations in Pediatric Asthma. Biomedicines 2023; 11:biomedicines11030763. [PMID: 36979742 PMCID: PMC10045893 DOI: 10.3390/biomedicines11030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Asthma is the most common chronic disease of the respiratory system in children and the number of new cases is constantly increasing. It is characterized by dyspnea, wheezing, tightness in the chest, or coughing. Due to diagnostic difficulties, disease monitoring, and the selection of safe and effective drugs, it has been shown that among the youngest patients, miRNAs fulfilling the above roles can be successfully used in common clinical practice. These biomolecules, by regulating the expression of the body’s genes, influence various biological processes underlying the pathogenesis of asthma, such as the inflammatory process, remodeling, and intensification of airway obstruction. They can be detected in blood serum and in exhaled breath condensate (EBC). Among children, common factors responsible for the onset or exacerbation of asthma, such as infections, allergens, air pollution, or tobacco smoke present in the home environment, cause a change the concentration of miRNAs in the body. This is related to their significant impact on the modulation of the disease process. In the following paper, we review the latest knowledge on miRNAs and their use, especially as diagnostic markers in assessing asthma exacerbation, with particular emphasis on the pediatric population.
Collapse
|
7
|
Advances and Highlights of miRNAs in Asthma: Biomarkers for Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24021628. [PMID: 36675145 PMCID: PMC9862966 DOI: 10.3390/ijms24021628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that causes breathing difficulties, episodes of cough and wheezing, and in more severe cases can greatly diminish quality of life. Epigenetic regulation, including post-transcriptional mediation of microRNAs (miRNAs), is one of the mechanisms behind the development of the range of asthma phenotypes and endotypes. As in every other immune-mediated disease, miRNAs regulate the behavior of cells that shape the airway structure as well as those in charge of the defense mechanisms in the bronchi and lungs, controlling cell survival, growth, proliferation, and the ability of cells to synthesize and secrete chemokines and immune mediators. More importantly, miRNAs are molecules with chemical and biological properties that make them appropriate biomarkers for disease, enabling stratification of patients for optimal drug selection and thereby simplifying clinical management and reducing both the economic burden and need for critical care associated with the disease. In this review, we summarize the roles of miRNAs in asthma and describe how they regulate the mechanisms of the disease. We further describe the current state of miRNAs as biomarkers for asthma phenotyping, endotyping, and treatment selection.
Collapse
|
8
|
Beheshti R, Halstead ES, Cusack B, Hicks SD. Multi-Omic Factors Associated with Frequency of Upper Respiratory Infections in Developing Infants. Int J Mol Sci 2023; 24:ijms24020934. [PMID: 36674462 PMCID: PMC9860840 DOI: 10.3390/ijms24020934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Susceptibility to upper respiratory infections (URIs) may be influenced by host, microbial, and environmental factors. We hypothesized that multi-omic analyses of molecular factors in infant saliva would identify complex host-environment interactions associated with URI frequency. A cohort study involving 146 infants was used to assess URI frequency in the first year of life. Saliva was collected at 6 months for high-throughput multi-omic measurement of cytokines, microRNAs, transcripts, and microbial RNA. Regression analysis identified environmental (daycare attendance, atmospheric pollution, breastfeeding duration), microbial (Verrucomicrobia, Streptococcus phage), and host factors (miR-22-5p) associated with URI frequency (p < 0.05). These results provide pathophysiologic clues about molecular factors that influence URI susceptibility. Validation of these findings in a larger cohort could one day yield novel approaches to detecting and managing URI susceptibility in infants.
Collapse
|
9
|
Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C, Foti M. MiR-22 Deficiency Fosters Hepatocellular Carcinoma Development in Fatty Liver. Cells 2022; 11:cells11182860. [PMID: 36139435 PMCID: PMC9496902 DOI: 10.3390/cells11182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
MiR-22 is mostly considered as a hepatic tumor-suppressor microRNA based on in vitro analyses. Yet, whether miR-22 exerts a tumor-suppressive function in the liver has not been investigated in vivo. Herein, in silico analyses of miR-22 expression were performed in hepatocellular carcinomas from human patient cohorts and different mouse models. Diethylnitrosamine-induced hepatocellular carcinomas were then investigated in lean and diet-induced obese miR-22-deficient mice. The proteome of liver tissues from miR-22-deficient mice prior to hepatocellular carcinoma development was further analyzed to uncover miR-22 regulated factors that impact hepatocarcinogenesis with miR-22 deficiency. MiR-22 downregulation was consistently observed in hepatocellular carcinomas from all human cohorts and mouse models investigated. The time of appearance of the first tumors was decreased and the number of tumoral foci induced by diethylnitrosamine was significantly increased by miR-22-deficiency in vivo, two features which were further drastically exacerbated with diet-induced obesity. At the molecular level, we provide evidence that the loss of miR-22 significantly affects the energetic metabolism and mitochondrial functions of hepatocytes, and the expression of tumor-promoting factors such as thrombospondin-1. Our study demonstrates that miR-22 acts as a hepatic tumor suppressor in vivo by restraining pro-carcinogenic metabolic deregulations through pleiotropic mechanisms and the overexpression of relevant oncogenes.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Xu C, Qin C, Jian J, Peng Y, Wang X, Chen X, Wu D, Song Y. Identification of an immune-related gene signature as a prognostic target and the immune microenvironment for adrenocortical carcinoma. Immun Inflamm Dis 2022; 10:e680. [PMID: 36039643 PMCID: PMC9382862 DOI: 10.1002/iid3.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare endocrine malignancy. Even with complete tumor resection and adjuvant therapies, the prognosis of patients with ACC remains unsatisfactory. In the microtumor environment, the impact of a disordered immune system and abnormal immune responses is enormous. To improve treatment, novel prognostic predictors and treatment targets for ACC need to be identified. Hence, credible prognostic biomarkers of immune-associated genes (IRGs) should be explored and developed. MATERIAL AND METHODS We downloaded RNA-sequencing data and clinical data from The Cancer Genome Atlas (TCGA) data set, Genotype-Tissue Expression data set, and Gene Expression Omnibus data set. Gene set enrichment analysis (GSEA) was applied to reveal the potential functions of differentially expressed genes. RESULTS GSEA indicated an association between ACC and immune-related functions. We obtained 332 IRGs and constructed a prognostic signature on the strength of 3 IRGs (INHBA, HELLS, and HDAC4) in the training cohort. The high-risk group had significantly poorer overall survival than the low-risk group (p < .001). Multivariate Cox regression was performed with the signature as an independent prognostic indicator for ACC. The testing cohort and the entire TCGA ACC cohort were utilized to validate these findings. Moreover, external validation was conducted in the GSE10927 and GSE19750 cohorts. The tumor-infiltrating immune cells analysis indicated that the quantity of T cells, natural killer cells, macrophage cells, myeloid dendritic cells, and mast cells in the immune microenvironment differed between the low-risk and high-risk groups. CONCLUSION Our three-IRG prognostic signature and the three IRGs can be used as prognostic indicators and potential immunotherapeutic targets for ACC. Inhibitors of the three novel IRGs might activate immune cells and play a synergistic role in combination therapy with immunotherapy for ACC in the future.
Collapse
Affiliation(s)
- Chengdang Xu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Caipeng Qin
- Department of UrologyPeking University People's HospitalBeijingChina
| | - Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Dushu Lake Hospital Affiliated to Soochow UniversitySuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yun Peng
- Department of UrologyPeking University People's HospitalBeijingChina
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xi Chen
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yuxuan Song
- Department of UrologyPeking University People's HospitalBeijingChina
- Department of UrologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
11
|
Kim SR. Viral Infection and Airway Epithelial Immunity in Asthma. Int J Mol Sci 2022; 23:9914. [PMID: 36077310 PMCID: PMC9456547 DOI: 10.3390/ijms23179914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.
Collapse
Affiliation(s)
- So Ri Kim
- Division of Respiratory Medicine and Allergy, Department of Internal Medicine, Medical School of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Korea
| |
Collapse
|
12
|
Lutter R, Ravi A. Reply to: ‘Key role of dysregulated airway epithelium in response to respiratory viral infections in asthma’ by Fatemeh Moheimani and colleagues. ERJ Open Res 2022; 8:00361-2022. [PMID: 36171991 PMCID: PMC9511152 DOI: 10.1183/23120541.00361-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022] Open
Abstract
We thank F. Moheimani and colleagues for their interest in our paper and their considerations, to which we like to respond. The defective translational control in bronchial epithelial cells from asthma patients is reflected by enhanced responses to viral infection and (temporarily?) worsened by a respiratory viral infectionhttps://bit.ly/3cInNDT
Collapse
|
13
|
Moheimani F, Shahdab N, Cummings S, Hansbro PM, Ward C. Key role of dysregulated airway epithelium in response to respiratory viral infections in asthma. ERJ Open Res 2022; 8:00314-2022. [PMID: 36171982 PMCID: PMC9511154 DOI: 10.1183/23120541.00314-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
We congratulate Raviet al. [1] for their recent paper in ERJ Open Research, “Imprinting of bronchial epithelial cells upon in vivo rhinovirus infection in people with asthma”. We would like to discuss their study and make some contributions. A differentiated air–liquid interface model shows that the airway epithelium plays a key role in response to respiratory viral infections in people with asthmahttps://bit.ly/3yDgiX1
Collapse
|
14
|
Wei L, Gou X, Su B, Han H, Guo T, Liu L, Wang L, Zhang L, Chen W. Mahuang Decoction Attenuates Airway Inflammation and Remodeling in Asthma via Suppression of the SP1/FGFR3/PI3K/AKT Axis. Drug Des Devel Ther 2022; 16:2833-2850. [PMID: 36051156 PMCID: PMC9427210 DOI: 10.2147/dddt.s351264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lina Wei
- Children’s Medical Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130021, People’s Republic of China
| | - Xulei Gou
- Department of Pediatrics, Beijing Daxing District Maternal and Child Health Care Hospital, Beijing, 102600, People’s Republic of China
| | - Baoning Su
- Department of Pediatrics, Shanghai Jiading Traditional Chinese Medicine Hospital, Shanghai, 201800, People’s Republic of China
| | - Haiqiong Han
- Department of Rehabilitation Medicine, Community Health Service Center of Jiangqiao Town in Jiading District, Shanghai, 201803, People’s Republic of China
| | - Tingting Guo
- Changchun University of Traditional Chinese Medicine, Changchun, 130017, People’s Republic of China
| | - Liang Liu
- Changchun University of Traditional Chinese Medicine, Changchun, 130017, People’s Republic of China
| | - Lei Wang
- Changchun University of Traditional Chinese Medicine, Changchun, 130017, People’s Republic of China
| | - Lina Zhang
- Department of Pediatrics, Shanghai Jiading Traditional Chinese Medicine Hospital, Shanghai, 201800, People’s Republic of China
- Correspondence: Lina Zhang, Department of Pediatrics, Shanghai Jiading Traditional Chinese Medicine Hospital, No. 222, Bole Road, Jiading District, Shanghai, 201800, People’s Republic of China, Tel +86-18930568760, Email
| | - Weibin Chen
- Department of Pediatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
- Weibin Chen, Department of Pediatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People’s Republic of China, Tel +86-18621863233, Email
| |
Collapse
|
15
|
Kooshkaki O, Asghari A, Mahdavi R, Azarkar G, Parsamanesh N. Potential of MicroRNAs As Biomarkers and Therapeutic Targets in Respiratory Viruses: A Literature Review. DNA Cell Biol 2022; 41:544-563. [PMID: 35699380 DOI: 10.1089/dna.2021.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through recognition of cognate sequences and interference of transcriptional, translational, or epigenetic processes. Hundreds of miRNA genes have been found in diverse viruses, and many of these are phylogenetically conserved. Respiratory viruses are the most frequent causative agents of disease in humans, with a significant impact on morbidity and mortality worldwide. Recently, the role of miRNAs in respiratory viral gene regulation, as well as host gene regulation during disease progression, has become a field of interest. This review highlighted the importance of various miRNAs and their potential role in fighting with respiratory viruses as therapeutic molecules with a focus on COVID-19.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Asghari
- Department of Hematology, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Reza Mahdavi
- Department of Hematology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghodsiyeh Azarkar
- Department of Hematology, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Department of Hematology, Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Science, Zanjan, Iran
| |
Collapse
|
16
|
Balázs A, Millar-Büchner P, Mülleder M, Farztdinov V, Szyrwiel L, Addante A, Kuppe A, Rubil T, Drescher M, Seidel K, Stricker S, Eils R, Lehmann I, Sawitzki B, Röhmel J, Ralser M, Mall MA. Age-Related Differences in Structure and Function of Nasal Epithelial Cultures From Healthy Children and Elderly People. Front Immunol 2022; 13:822437. [PMID: 35296085 PMCID: PMC8918506 DOI: 10.3389/fimmu.2022.822437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
The nasal epithelium represents the first line of defense against inhaled pathogens, allergens, and irritants and plays a key role in the pathogenesis of a spectrum of acute and chronic airways diseases. Despite age-dependent clinical phenotypes triggered by these noxious stimuli, little is known about how aging affects the structure and function of the airway epithelium that is crucial for lung homeostasis and host defense. The aim of this study was therefore to determine age-related differences in structural and functional properties of primary nasal epithelial cultures from healthy children and non-smoking elderly people. To achieve this goal, highly differentiated nasal epithelial cultures were established from nasal brushes at air–liquid interface and used to study epithelial cell type composition, mucin (MUC5AC and MUC5B) expression, and ion transport properties. Furthermore, we determined age-dependent molecular signatures using global proteomic analysis. We found lower numeric densities of ciliated cells and higher levels of MUC5AC expression in cultures from children vs. elderly people. Bioelectric studies showed no differences in basal ion transport properties, ENaC-mediated sodium absorption, or CFTR-mediated chloride transport, but detected decreased calcium-activated TMEM16A-mediated chloride secretory responses in cultures from children vs. elderly people. Proteome analysis identified distinct age-dependent molecular signatures associated with ciliation and mucin biosynthesis, as well as other pathways implicated in aging. Our data identified intrinsic, age-related differences in structure and function of the nasal epithelium and provide a basis for further studies on the role of these findings in age-dependent airways disease phenotypes observed with a spectrum of respiratory infections and other noxious stimuli.
Collapse
Affiliation(s)
- Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| | - Pamela Millar-Büchner
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Michael Mülleder
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Vadim Farztdinov
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
| | - Lukasz Szyrwiel
- Charité - Universitätsmedizin Berlin, Core Facility - High-Throughput Mass Spectrometry, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Tihomir Rubil
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Marika Drescher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Kathrin Seidel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Roland Eils
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Center for Digital Health, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Irina Lehmann
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Chariteí - Universitaätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Berlin, Germany
- *Correspondence: Anita Balázs, ; Marcus A. Mall,
| |
Collapse
|
17
|
Behl T, Kaur I, Aleya L, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152072. [PMID: 34863742 PMCID: PMC8634688 DOI: 10.1016/j.scitotenv.2021.152072] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 05/03/2023]
Abstract
The combat against the Corona virus disease of 2019 (COVID-19), has created a chaos among the healthcare institutions and researchers, in turn accelerating the dire need to curtail the infection spread. The already established entry mechanism, via ACE2 has not yet successfully aided in the development of a suitable and reliable therapy. Taking in account the constant progression and deterioration of the cases worldwide, a different perspective and mechanistic approach is required, which has thrown light onto the cluster of differentiation 147 (CD147) transmembrane protein, as a novel route for SARS-CoV-2 entry. Despite lesser affinity towards COVID-19 virus, as compared to ACE2, this receptor provides a suitable justification behind elevated blood glucose levels in infected patients, retarded COVID-19 risk in women, enhanced susceptibility in geriatrics, greater infection susceptibility of T cells, infection prevalence in non-susceptible human cardiac pericytes and so on. The manuscript invokes the title role and distribution of CD147 in COVID-19 as an entry receptor and mediator of endocytosis-promoted entry of the virus, along with the "catch and clump" hypothesis, thereby presenting its Fundamental significance as a therapeutic target for potential candidates, such as Azithromycin, melatonin, statins, beta adrenergic blockers, ivermectin, Meplazumab etc. Thus, the authors provide a comprehensive review of a different perspective in COVID-19 infection, aiming to aid the researchers and virologists in considering all aspects of viral entry, in order to develop a sustainable and potential cure for the 2019 COVID-19 disease.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania.
| |
Collapse
|
18
|
P N, R. N, B. V, S. R, A. S. COVID-19: Invasion, pathogenesis and possible cure - A review. J Virol Methods 2022; 300:114434. [PMID: 34919978 PMCID: PMC8669942 DOI: 10.1016/j.jviromet.2021.114434] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022]
Abstract
Today, Coronavirus disease (COVID-19) which is believed to be transmitted from bats to humans where the people of Wuhan city, China exposed to the wet animal market is an important international public health anxiety (Xiong et al., 2020). Although, several measures were undertaken to treat the diseases by various medical advancements and by a variety of treatment procedures, still the mortality is higher. Hence, social distancing has been implemented to control the current outburst of this pandemic which spreads through human to human transmission. As a consequence, there is a need to completely understand the route of invasions of the virus into the humans and the target receptors besides the other factors leading to the disease. Several vaccines and drugs have been developed with its own pros and cons. Many are still under the various phase of R&D and clinical trials. Here we highlight the possible entry molecules, pathogenesis, symptomatology, probable cure and the recently developed vaccines for the existing pandemic due to the COVID-19.
Collapse
Affiliation(s)
- Nitin P
- Research and Development Section, Verena Haptic & VR Systems, Bhuvaneswari Nagar, Velachery, Chennai, 600042, Tamil Nadu, India
| | - Nandhakumar R.
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, 641114, Tamil Nadu, India,Corresponding author at: Professor, Department of Applied Chemistry, Karunya Institute of Technology and Sciences(deemed to be University), Coimbatore - 641114, Tamil Nadu, India
| | - Vidhya B.
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, 641114, Tamil Nadu, India,Corresponding author
| | - Rajesh S.
- Department of Applied Physics, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, 641114, Tamil Nadu, India
| | - Sakunthala A.
- Department of Applied Physics, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, 641114, Tamil Nadu, India
| |
Collapse
|
19
|
Zhang J, Wang Z, Zhang D, Pan Y, Liu X, Qiao X, Cui W, Dong L. Integrative Analysis Reveals a miRNA-mRNA Regulatory Network and Potential Causative Agents in the Asthmatic Airway Epithelium. J Asthma Allergy 2021; 14:1307-1321. [PMID: 34744440 PMCID: PMC8566008 DOI: 10.2147/jaa.s331090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background During asthma progression, the intricate molecular networks, including microRNA (miRNA) transcriptional regulation in airway epithelium, remain largely undefined. The abnormal expression of miRNAs in asthmatic airway epithelium is a recent and fast-growing area in developing diagnostic and therapeutic targets for asthma. Material and Methods Analyses were conducted to compare airway epithelial miRNAs and gene expression between patients with asthma and healthy subjects from three datasets (two for miRNAs expression profiles and one for gene expression profile). The interactions network between differentially expressed (DE)-miRNAs and mRNAs was further identified for functional analysis. To verify the involvement and functions of all the identified miRNAs in asthma, we constructed two cellular models of asthma. The most promising causal miRNA candidate, miR-1246, was examined in an in vitro system to explore its targets and roles in asthma pathophysiology. Results Through integrative analysis, we obtained six miRNAs with 31 validated target genes in airway epithelium associated with asthma. Next, we confirmed that these miRNAs were all associated with asthma progression by in vitro functional experiments. They may participate in eosinophilic inflammation (miR-92b-3p, miR-1246, miR-197-3p, and miR-124-5p) or remodeling (miR-197-3p, miR-193a-5p, miR-1246, and miR-92b-3p). Additionally, some other non-screened valuable miRNAs were also examined and identified (miR-21-5p and miR-19b-3p), and some detected in blood correlated with the disease status. Furthermore, we found that miR-1246 could directly target POSTN and influence epithelial-to-mesenchymal transition and fibrosis in airway epithelial cells. Conclusion We constructed a preliminary epithelial regulatory network in asthma based on six identified miRNAs and their valuable target genes. Candidate factors in the biological miRNA-mRNA network in airway epithelium may provide further information on the pathogenesis of asthma. Strikingly, among all screened miRNAs, miR-1246, which could interact with POSTN may have multifunctional effects in the course of asthma and be a promising agent for asthma treatment and molecular subtyping.
Collapse
Affiliation(s)
- Jintao Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Zihan Wang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Dong Zhang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yun Pan
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xiaofei Liu
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Xinrui Qiao
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Wenjing Cui
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Liang Dong
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, People's Republic of China
| |
Collapse
|
20
|
Orr-Burks N, Murray J, Todd KV, Bakre A, Tripp RA. MicroRNAs affect GPCR and Ion channel genes needed for influenza replication. J Gen Virol 2021; 102:001691. [PMID: 34787540 PMCID: PMC8742985 DOI: 10.1099/jgv.0.001691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/03/2021] [Indexed: 11/18/2022] Open
Abstract
Influenza virus causes seasonal epidemics and sporadic pandemics resulting in morbidity, mortality, and economic losses worldwide. Understanding how to regulate influenza virus replication is important for developing vaccine and therapeutic strategies. Identifying microRNAs (miRs) that affect host genes used by influenza virus for replication can support an antiviral strategy. In this study, G-protein coupled receptor (GPCR) and ion channel (IC) host genes in human alveolar epithelial (A549) cells used by influenza virus for replication (Orr-Burks et al., 2021) were examined as miR target genes following A/CA/04/09- or B/Yamagata/16/1988 replication. Thirty-three miRs were predicted to target GPCR or IC genes and their miR mimics were evaluated for their ability to decrease influenza virus replication. Paired miR inhibitors were used as an ancillary measure to confirm or not the antiviral effects of a miR mimic. Fifteen miRs lowered influenza virus replication and four miRs were found to reduce replication irrespective of virus strain and type differences. These findings provide evidence for novel miR disease intervention strategies for influenza viruses.
Collapse
Affiliation(s)
- Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Kyle V. Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
21
|
Role of Epigenetics in the Pathogenesis, Treatment, Prediction, and Cellular Transformation of Asthma. Mediators Inflamm 2021; 2021:9412929. [PMID: 34566492 PMCID: PMC8457970 DOI: 10.1155/2021/9412929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma is a mysterious disease with heterogeneity in etiology, pathogenesis, and clinical phenotypes. Although ongoing studies have provided a better understanding of asthma, its natural history, progression, pathogenesis, diversified phenotypes, and even the exact epigenetic linkage between childhood asthma and adult-onset/old age asthma remain elusive in many aspects. Asthma heritability has been established through genetic studies, but genetics is not the only influencing factor in asthma. The increasing incidence and some unsolved queries suggest that there may be other elements related to asthma heredity. Epigenetic mechanisms link genetic and environmental factors with developmental trajectories in asthma. This review provides an overview of asthma epigenetics and its components, including several epigenetic studies on asthma, and discusses the epigenetic linkage between childhood asthma and adult-onset/old age asthma. Studies involving asthma epigenetics present valuable novel approaches to solve issues related to asthma. Asthma epigenetic research guides us towards gene therapy and personalized T cell therapy, directs the discovery of new therapeutic agents, predicts long-term outcomes in severe cases, and is also involved in the cellular transformation of childhood asthma to adult-onset/old age asthma.
Collapse
|
22
|
Abstract
There has been a substantial increase in the incidence and the prevalence of allergic disorders in the recent decades, which seems to be related to rapid environmental and lifestyle changes, such as higher exposure to factors thought to exert pro-allergic effects but less contact with factors known to be associated with protection against the development of allergies. Pollution is the most remarkable example of the former, while less contact with microorganisms, lower proportion of unprocessed natural products in diet, and others resulting from urbanization and westernization of the lifestyle exemplify the latter. It is strongly believed that the effects of environmental factors on allergy susceptibility and development are mediated by epigenetic mechanisms, i.e. biologically relevant biochemical changes of the chromatin carrying transcriptionally-relevant information but not affecting the nucleotide sequence of the genome. Classical epigenetic mechanisms include DNA methylation and histone modifications, for instance acetylation or methylation. In addition, microRNA controls gene expression at the mRNA level. Such epigenetic mechanisms are involved in crucial regulatory processes in cells playing a pivotal role in allergies. Those include centrally managing cells, such as T lymphocytes, as well as specific structural and effector cells in the affected organs, responsible for the local clinical presentation of allergy, e.g. epithelial or airway smooth muscle cells in asthma. Considering that allergic disorders possess multiple clinical (phenotypes) and mechanistic (endotypes) forms, targeted, stratified treatment strategies based on detailed clinical and molecular diagnostics are required. Since conventional diagnostic or therapeutic approaches do not suffice, this gap could possibly be filled out by epigenetic approaches.
Collapse
|
23
|
Wei W, Chen W, He N. HDAC4 induces the development of asthma by increasing Slug-upregulated CXCL12 expression through KLF5 deacetylation. J Transl Med 2021; 19:258. [PMID: 34118928 PMCID: PMC8199843 DOI: 10.1186/s12967-021-02812-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Asthma is a frequently occurring respiratory disease with an increasing incidence around the world. Airway inflammation and remodeling are important contributors to the occurrence of asthma. We conducted this study aiming at exploring the effect of Histone deacetylase 4 (HDAC4)-mediated Kruppel-like factor 5 (KLF5)/Slug/CXC chemokine ligand-12 (CXCL12) axis on the development of asthma in regulation of airway inflammation and remodeling. Methods An asthmatic rat model was induced by ovalbumin (OVA) irrigation, and determined HDAC4, KLF5, Slug, and CXCL12 expression in the lung tissues by RT-qPCR and Western blot assay. OVA was also used to induce a cell model of asthma in human BEAS-2B and HBE135-E6E7bronchial epithelial cells. The airway hyperresponsiveness (AHR), and expression of inflammatory cytokines in model mice were examined using methacholine challenge test and ELISA. The biological behaviors were measured in asthma model bronchial smooth muscle cells (BSMCs) following loss- and gain- function approaches. The interactions between HDAC4, KLF5, Slug, and CXCL12 were also detected by IP assay, dual luciferase gene reporter assay, and ChIP. Results HDAC4 was upregulated in lung tissues of OVA-induced asthmatic mice, and inhibition of HDAC4 alleviated the airway inflammation and remodeling. HDAC4 increased KLF5 transcriptional activity through deacetylation; deacetylated KLF5 bound to the promoter of Slug and transcriptionally upregulated Slug expression, which in turn increased the expression of CXCL12 to promote the inflammation in bronchial epithelial cells and thus induce the proliferation and migration of BSMCs. Conclusion Collectively, HDAC4 deacetylates KLF5 to upregulate Slug and CXCL12, thereby causing airway remodeling and facilitating progression of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02812-7.
Collapse
Affiliation(s)
- Wendi Wei
- Department of Hepatology, Taian Hospital of Traditional Chinese Medicine, Taian, 271000, People's Republic of China
| | - Weida Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China
| | - Naifeng He
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Raghav PK, Kalyanaraman K, Kumar D. Human cell receptors: potential drug targets to combat COVID-19. Amino Acids 2021; 53:813-842. [PMID: 33950300 PMCID: PMC8097256 DOI: 10.1007/s00726-021-02991-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19). The World Health Organization (WHO) has announced that COVID-19 is a pandemic having a higher spread rate rather than the mortality. Identification of a potential approach or therapy against COVID-19 is still under consideration. Therefore, it is essential to have an insight into SARS-CoV-2, its interacting partner, and domains for an effective treatment. The present study is divided into three main categories, including SARS-CoV-2 prominent receptor and its expression levels, other interacting partners, and their binding domains. The first section focuses primarily on coronaviruses' general aspects (SARS-CoV-2, SARS-CoV, and the Middle East Respiratory Syndrome Coronaviruses (MERS-CoV)) their structures, similarities, and mode of infections. The second section discusses the host receptors which includes the human targets of coronaviruses like dipeptidyl peptidase 4 (DPP4), CD147, CD209L, Angiotensin-Converting Enzyme 2 (ACE2), and other miscellaneous targets (type-II transmembrane serine proteases (TTSPs), furin, trypsin, cathepsins, thermolysin, elastase, phosphatidylinositol 3-phosphate 5-kinase, two-pore segment channel, and epithelium sodium channel C-α subunit). The human cell receptor, ACE2 plays an essential role in the Renin-Angiotensin system (RAS) pathway and COVID-19. Thus, this section also discusses the ACE2 expression and risk of COVID-19 infectivity in various organs and tissues such as the liver, lungs, intestine, heart, and reproductive system in the human body. Absence of ACE2 protein expression in immune cells could be used for limiting the SARS-CoV-2 infection. The third section covers the current available approaches for COVID-19 treatment. Overall, this review focuses on the critical role of human cell receptors involved in coronavirus pathogenesis, which would likely be used in designing target-specific drugs to combat COVID-19.
Collapse
Affiliation(s)
| | - Keerthana Kalyanaraman
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh, India
| | - Dinesh Kumar
- ICMR-National Institute of Cancer Prevention & Research, Noida, 201301, India.
| |
Collapse
|
25
|
Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, Schmidt‐Weber CB, Maes T, Rebane A, Krauss‐Etschmann S, Rådinger M. Spotlight on microRNAs in allergy and asthma. Allergy 2021; 76:1661-1678. [PMID: 33128813 PMCID: PMC8246745 DOI: 10.1111/all.14646] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/16/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
In past 10 years, microRNAs (miRNAs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases and their potential as biomarkers in liquid biopsies. They act as master post‐transcriptional regulators that control most cellular processes. As one miRNA can target several mRNAs, often within the same pathway, dysregulated expression of miRNAs may alter particular cellular responses and contribute, or lead, to the development of various diseases. In this review, we give an overview of the current research on miRNAs in allergic diseases, including atopic dermatitis, allergic rhinitis, and asthma. Specifically, we discuss how individual miRNAs function in the regulation of immune responses in epithelial cells and specialized immune cells in response to different environmental factors and respiratory viruses. In addition, we review insights obtained from experiments with murine models of allergic airway and skin inflammation and offer an overview of studies focusing on miRNA discovery using profiling techniques and bioinformatic modeling of the network effect of multiple miRNAs. In conclusion, we highlight the importance of research into miRNA function in allergy and asthma to improve our knowledge of the molecular mechanisms involved in the pathogenesis of this heterogeneous group of diseases.
Collapse
Affiliation(s)
- Julie Weidner
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - Sabine Bartel
- Department of Pathology and Medical Biology GRIAC Research Institute University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Ayse Kılıç
- Channing Division of Network Medicine Brigham and Women's Hospital Boston MA USA
| | - Ulrich M. Zissler
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Harald Renz
- Institut für Laboratoriumsmedizin und Pathobiochemie Philipps University of Marburg Marburg Germany
| | - Jürgen Schwarze
- Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Carsten B. Schmidt‐Weber
- Center for Allergy and Environment (ZAUM) Technical University of Munich and Helmholtz Center MunichGerman Research Center for Environmental Health Munich Germany
| | - Tania Maes
- Department of Respiratory Medicine Ghent University Ghent Belgium
| | - Ana Rebane
- Institute of Biomedicine and Translational Medicine University of Tartu Tartu Estonia
| | - Susanne Krauss‐Etschmann
- Research Center Borstel Borstel Germany
- Institute of Experimental Medicine Christian‐Albrechts University Kiel Kiel Germany
| | - Madeleine Rådinger
- Department of Internal Medicine and Clinical Nutrition Krefting Research Centre Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| |
Collapse
|
26
|
Yim J, Lim HH, Kwon Y. COVID-19 and pulmonary fibrosis: therapeutics in clinical trials, repurposing, and potential development. Arch Pharm Res 2021; 44:499-513. [PMID: 34047940 PMCID: PMC8161353 DOI: 10.1007/s12272-021-01331-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
In 2019, an unprecedented disease named coronavirus disease 2019 (COVID-19) emerged and spread across the globe. Although the rapid transmission of COVID-19 has resulted in thousands of deaths and severe lung damage, conclusive treatment is not available. However, three COVID-19 vaccines have been authorized, and two more will be approved soon, according to a World Health Organization report on December 12, 2020. Many COVID-19 patients show symptoms of acute lung injury that eventually leads to pulmonary fibrosis. Our aim in this article is to present the relationship between pulmonary fibrosis and COVID-19, with a focus on angiotensin converting enzyme-2. We also evaluate the radiological imaging methods computed tomography (CT) and chest X-ray (CXR) for visualization of patient lung condition. Moreover, we review possible therapeutics for COVID-19 using four categories: treatments related and unrelated to lung disease and treatments that have and have not entered clinical trials. Although many treatments have started clinical trials, they have some drawbacks, such as short-term and small-group testing, that need to be addressed as soon as possible.
Collapse
Affiliation(s)
- Joowon Yim
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Republic of Korea
| | - Hee Hyun Lim
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, 120-750, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Keshavarz M, Sabbaghi A, Koushki K, Miri SM, Sarshari B, Vahdat K, Ghaemi A. Epigenetic reprogramming mechanisms of immunity during influenza A virus infection. Microbes Infect 2021; 23:104831. [PMID: 33878459 DOI: 10.1016/j.micinf.2021.104831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
This paper reviews epigenetic mechanisms by which influenza viruses affect cellular gene activity to control their life cycles, aiming to provide new insights into the complexity of functional interactions between viral and cellular factors, as well as to introduce novel targets for therapeutic intervention and vaccine development against influenza infections.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Koushki
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Behrang Sarshari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Katayoun Vahdat
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
28
|
Chen Y, Ding X, Wang S, Ding P, Xu Z, Li J, Wang M, Xiang R, Wang X, Wang H, Feng Q, Qiu J, Wang F, Huang Z, Zhang X, Tang G, Tang S. A single-cell atlas of mouse olfactory bulb chromatin accessibility. J Genet Genomics 2021; 48:147-162. [PMID: 33926839 DOI: 10.1016/j.jgg.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
Olfaction, the sense of smell, is a fundamental trait crucial to many species. The olfactory bulb (OB) plays pivotal roles in processing and transmitting odor information from the environment to the brain. The cellular heterogeneity of the mouse OB has been studied using single-cell RNA sequencing. However, the epigenetic landscape of the mOB remains mostly unexplored. Herein, we apply single-cell assay for transposase-accessible chromatin sequencing to profile the genome-wide chromatin accessibility of 9,549 single cells from the mOB. Based on single-cell epigenetic signatures, mOB cells are classified into 21 clusters corresponding to 11 cell types. We identify distinct sets of putative regulatory elements specific to each cell cluster from which putative target genes and enriched potential functions are inferred. In addition, the transcription factor motifs enriched in each cell cluster are determined to indicate the developmental fate of each cell lineage. Our study provides a valuable epigenetic data set for the mOB at single-cell resolution, and the results can enhance our understanding of regulatory circuits and the therapeutic capacity of the OB at the single-cell level.
Collapse
Affiliation(s)
- Yin Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangning Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Shiyou Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Peiwen Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Zaoxu Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiankang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Mingyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Rong Xiang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoling Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Haoyu Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Qikai Feng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiaying Qiu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Feiyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xingliang Zhang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Gen Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China.
| | - Shengping Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Zunyi Medical University, Zunyi, Guizhou 563099, China; China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
29
|
Paw M, Wnuk D, Jakieła B, Bochenek G, Sładek K, Madeja Z, Michalik M. Responsiveness of human bronchial fibroblasts and epithelial cells from asthmatic and non-asthmatic donors to the transforming growth factor-β 1 in epithelial-mesenchymal trophic unit model. BMC Mol Cell Biol 2021; 22:19. [PMID: 33711932 PMCID: PMC7953709 DOI: 10.1186/s12860-021-00356-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The asthma-related airway wall remodeling is associated i.a. with a damage of bronchial epithelium and subepithelial fibrosis. Functional interactions between human bronchial epithelial cells and human bronchial fibroblasts are known as the epithelial-mesenchymal trophic unit (EMTU) and are necessary for a proper functioning of lung tissue. However, a high concentration of the transforming growth factor-β1 (TGF-β1) in the asthmatic bronchi drives the structural disintegrity of epithelium with the epithelial-to-mesenchymal transition (EMT) of the bronchial epithelial cells, and of subepithelial fibrosis with the fibroblast-to-myofibroblast transition (FMT) of the bronchial fibroblasts. Since previous reports indicate different intrinsic properties of the human bronchial epithelial cells and human bronchial fibroblasts which affect their EMT/FMT potential beetween cells derived from asthmatic and non-asthmatic patients, cultured separatelly in vitro, we were interested to see whether corresponding effects could be obtained in a co-culture of the bronchial epithelial cells and bronchial fibroblasts. In this study, we investigate the effects of the TGF-β1 on the EMT markers of the bronchial epithelial cells cultured in the air-liquid-interface and effectiveness of FMT in the bronchial fibroblast populations in the EMTU models. RESULTS Our results show that the asthmatic co-cultures are more sensitive to the TGF-β1 than the non-asthmatic ones, which is associated with a higher potential of the asthmatic bronchial cells for a profibrotic response, analogously to be observed in '2D' cultures. They also indicate a noticeable impact of human bronchial epithelial cells on the TGF-β1-induced FMT, stronger in the asthmatic bronchial fibroblast populations in comparison to the non-asthmatic ones. Moreover, our results suggest the protective effects of fibroblasts on the structure of the TGF-β1-exposed mucociliary differentiated bronchial epithelial cells and their EMT potential. CONCLUSIONS Our data are the first to demonstrate a protective effect of the human bronchial fibroblasts on the properties of the human bronchial epithelial cells, which suggests that intrinsic properties of not only epithelium but also subepithelial fibroblasts affect a proper condition and function of the EMTU in both normal and asthmatic individuals.
Collapse
Affiliation(s)
- Milena Paw
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland
| | - Bogdan Jakieła
- Division of Molecular Biology and Clinical Genetics, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grażyna Bochenek
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Sładek
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-378, Kraków, Poland.
| |
Collapse
|
30
|
Mahdian S, Zarrabi M, Panahi Y, Dabbagh S. Repurposing FDA-approved drugs to fight COVID-19 using in silico methods: Targeting SARS-CoV-2 RdRp enzyme and host cell receptors (ACE2, CD147) through virtual screening and molecular dynamic simulations. INFORMATICS IN MEDICINE UNLOCKED 2021; 23:100541. [PMID: 33649734 PMCID: PMC7904474 DOI: 10.1016/j.imu.2021.100541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Different approaches have been proved effective for combating the COVID-19 pandemic. Accordingly, in silico drug repurposing strategy, has been highly regarded as an accurate computational tool to achieve fast and reliable results. Considering SARS-CoV-2's structural proteins and their interaction the host's cell-specific receptors, this study investigated a drug repurposing strategy aiming to screen compatible inhibitors of FDA-approved drugs against viral entry receptors (ACE2 and CD147) and integral enzyme of the viral polymerase (RdRp). Methods The study screened the FDA-approved drugs against ACE2, CD147, and RDRP by virtual screening and molecular dynamics (MD) simulation. Results The results of this study indicated that five drugs with ACE2, four drugs with RDRP, and seven drugs with CD147 achieved the most favorable free binding energy (ΔG < −10). This study selected these drugs for MD simulation investigation whose results demonstrated that ledipasvir with ACE2, estradiol benzoate with CD147, and vancomycin with RDRP represented the most favorable ΔG. Also, paritaprevir and vancomycin have good binding energy with both targets (ACE2 and RdRp). Conclusions Ledipasvir, estradiol benzoate, and vancomycin and paritaprevir are potentially suitable candidates for further investigation as possible treatments of COVID-19 and novel drug development.
Collapse
Affiliation(s)
- Soodeh Mahdian
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahboobeh Zarrabi
- Department of Biotechnology, Biological Faculty, Alzahra University, Tehran, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somayyeh Dabbagh
- Department of Biotechnology, Biological Faculty, Alzahra University, Tehran, Iran
| |
Collapse
|
31
|
Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. F1000Res 2021; 10:127. [PMID: 33968364 PMCID: PMC8080978 DOI: 10.12688/f1000research.50850.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/08/2024] Open
Abstract
Background: Coronavirus (CoV) is an emerging human pathogen causing severe acute respiratory syndrome (SARS) around the world. Earlier identification of biomarkers for SARS can facilitate detection and reduce the mortality rate of the disease. Thus, by integrated network analysis and structural modeling approach, we aimed to explore the potential drug targets and the candidate drugs for coronavirus medicated SARS. Methods: Differentially expression (DE) analysis of CoV infected host genes (HGs) expression profiles was conducted by using the Limma. Highly integrated DE-CoV-HGs were selected to construct the protein-protein interaction (PPI) network. Results: Using the Walktrap algorithm highly interconnected modules include module 1 (202 nodes); module 2 (126 nodes) and module 3 (121 nodes) modules were retrieved from the PPI network. MYC, HDAC9, NCOA3, CEBPB, VEGFA, BCL3, SMAD3, SMURF1, KLHL12, CBL, ERBB4, and CRKL were identified as potential drug targets (PDTs), which are highly expressed in the human respiratory system after CoV infection. Functional terms growth factor receptor binding, c-type lectin receptor signaling, interleukin-1 mediated signaling, TAP dependent antigen processing and presentation of peptide antigen via MHC class I, stimulatory T cell receptor signaling, and innate immune response signaling pathways, signal transduction and cytokine immune signaling pathways were enriched in the modules. Protein-protein docking results demonstrated the strong binding affinity (-314.57 kcal/mol) of the ERBB4-3cLpro complex which was selected as a drug target. In addition, molecular dynamics simulations indicated the structural stability and flexibility of the ERBB4-3cLpro complex. Further, Wortmannin was proposed as a candidate drug to ERBB4 to control SARS-CoV-2 pathogenesis through inhibit receptor tyrosine kinase-dependent macropinocytosis, MAPK signaling, and NF-kb singling pathways that regulate host cell entry, replication, and modulation of the host immune system. Conclusion: We conclude that CoV drug target "ERBB4" and candidate drug "Wortmannin" provide insights on the possible personalized therapeutics for emerging COVID-19.
Collapse
Affiliation(s)
- Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Dong-Qing Wei
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, Shanghai, 200240, China
- IASIA (International Association of Scientists in the Interdisciplinary Areas), 125 Boul. de Bromont, Quebec, J2L 2K7, Canada
| |
Collapse
|
32
|
Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. F1000Res 2021; 10:127. [PMID: 33968364 PMCID: PMC8080978 DOI: 10.12688/f1000research.50850.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Coronavirus (CoV) is an emerging human pathogen causing severe acute respiratory syndrome (SARS) around the world. Earlier identification of biomarkers for SARS can facilitate detection and reduce the mortality rate of the disease. Thus, by integrated network analysis and structural modeling approach, we aimed to explore the potential drug targets and the candidate drugs for coronavirus medicated SARS. Methods: Differentially expression (DE) analysis of CoV infected host genes (HGs) expression profiles was conducted by using the Limma. Highly integrated DE-CoV-HGs were selected to construct the protein-protein interaction (PPI) network. Results: Using the Walktrap algorithm highly interconnected modules include module 1 (202 nodes); module 2 (126 nodes) and module 3 (121 nodes) modules were retrieved from the PPI network. MYC, HDAC9, NCOA3, CEBPB, VEGFA, BCL3, SMAD3, SMURF1, KLHL12, CBL, ERBB4, and CRKL were identified as potential drug targets (PDTs), which are highly expressed in the human respiratory system after CoV infection. Functional terms growth factor receptor binding, c-type lectin receptor signaling, interleukin-1 mediated signaling, TAP dependent antigen processing and presentation of peptide antigen via MHC class I, stimulatory T cell receptor signaling, and innate immune response signaling pathways, signal transduction and cytokine immune signaling pathways were enriched in the modules. Protein-protein docking results demonstrated the strong binding affinity (-314.57 kcal/mol) of the ERBB4-3cLpro complex which was selected as a drug target. In addition, molecular dynamics simulations indicated the structural stability and flexibility of the ERBB4-3cLpro complex. Further, Wortmannin was proposed as a candidate drug to ERBB4 to control SARS-CoV-2 pathogenesis through inhibit receptor tyrosine kinase-dependent macropinocytosis, MAPK signaling, and NF-kb singling pathways that regulate host cell entry, replication, and modulation of the host immune system. Conclusion: We conclude that CoV drug target "ERBB4" and candidate drug "Wortmannin" provide insights on the possible personalized therapeutics for emerging COVID-19.
Collapse
Affiliation(s)
- Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Dong-Qing Wei
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, Shanghai, 200240, China
- IASIA (International Association of Scientists in the Interdisciplinary Areas), 125 Boul. de Bromont, Quebec, J2L 2K7, Canada
| |
Collapse
|
33
|
Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. F1000Res 2021; 10:127. [PMID: 33968364 PMCID: PMC8080978 DOI: 10.12688/f1000research.50850.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Coronavirus (CoV) is an emerging human pathogen causing severe acute respiratory syndrome (SARS) around the world. Earlier identification of biomarkers for SARS can facilitate detection and reduce the mortality rate of the disease. Thus, by integrated network analysis and structural modeling approach, we aimed to explore the potential drug targets and the candidate drugs for coronavirus medicated SARS. Methods: Differentially expression (DE) analysis of CoV infected host genes (HGs) expression profiles was conducted by using the Limma. Highly integrated DE-CoV-HGs were selected to construct the protein-protein interaction (PPI) network. Results: Using the Walktrap algorithm highly interconnected modules include module 1 (202 nodes); module 2 (126 nodes) and module 3 (121 nodes) modules were retrieved from the PPI network. MYC, HDAC9, NCOA3, CEBPB, VEGFA, BCL3, SMAD3, SMURF1, KLHL12, CBL, ERBB4, and CRKL were identified as potential drug targets (PDTs), which are highly expressed in the human respiratory system after CoV infection. Functional terms growth factor receptor binding, c-type lectin receptor signaling, interleukin-1 mediated signaling, TAP dependent antigen processing and presentation of peptide antigen via MHC class I, stimulatory T cell receptor signaling, and innate immune response signaling pathways, signal transduction and cytokine immune signaling pathways were enriched in the modules. Protein-protein docking results demonstrated the strong binding affinity (-314.57 kcal/mol) of the ERBB4-3cLpro complex which was selected as a drug target. In addition, molecular dynamics simulations indicated the structural stability and flexibility of the ERBB4-3cLpro complex. Further, Wortmannin was proposed as a candidate drug to ERBB4 to control SARS-CoV-2 pathogenesis through inhibit receptor tyrosine kinase-dependent macropinocytosis, MAPK signaling, and NF-kb singling pathways that regulate host cell entry, replication, and modulation of the host immune system. Conclusion: We conclude that CoV drug target "ERBB4" and candidate drug "Wortmannin" provide insights on the possible personalized therapeutics for emerging COVID-19.
Collapse
Affiliation(s)
- Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Dong-Qing Wei
- Centre of Interdisciplinary Science-Computational Life Sciences, College of Chemistry and Chemical Engineering,, Henan University of Technology, Zhengzhou, Henan, 450001, China
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, Shanghai, 200240, China
- IASIA (International Association of Scientists in the Interdisciplinary Areas), 125 Boul. de Bromont, Quebec, J2L 2K7, Canada
| |
Collapse
|
34
|
Akachar J, Bouricha EM, Hakmi M, Belyamani L, El Jaoudi R, Ibrahimi A. Identifying epitopes for cluster of differentiation and design of new peptides inhibitors against human SARS-CoV-2 spike RBD by an in-silico approach. Heliyon 2020; 6:e05739. [PMID: 33364503 PMCID: PMC7753134 DOI: 10.1016/j.heliyon.2020.e05739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) is a highly contagious and rapidly spreading infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In some cases, the disease can be fatal which resulted in more than one million deaths worldwide according the WHO. Currently, there is no effective vaccine or treatment for COVID-19, however many small-molecule inhibitors have shown potent antiviral activity against SARS-CoV-2 and some of them are now under clinical trials. Despite their promising activities, the development of these small molecules for the clinical use can be limited by many factors like the off-target effect, the poor stability, and the low bioavailability. The clusters of differentiation CD147, CD209, CD299 have been identified as essential entry co-receptors for SARS-CoV-2 species specificity to humans, although the underlying mechanisms are yet to be fully elucidated. In this paper, protein-protein docking was utilized for identifying the critical epitopes in CD147, CD209 and CD299 which are involved in the binding with SARS-CoV-2 Spike receptor binding domain (RBD). The results of binding free energies showed a high affinity of SARS-CoV-2 RBD to CD299 receptor which was used as a reference to derive hypothetical peptide sequences with specific binding activities to SARS-CoV-2 RBD. Molecular docking and molecular dynamics simulations of the newly designed peptides showed favorable binding features and stability with SARS-CoV-2 RBD and therefore can be further considered as potential candidates in future anti-SARS CoV-2 drug discovery studies.
Collapse
Affiliation(s)
- Jihane Akachar
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - Lahcen Belyamani
- Emergency Department, Military Hospital Mohammed V, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - Rachid El Jaoudi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed Vth University in Rabat, Morocco
| |
Collapse
|
35
|
Role of microRNA and Oxidative Stress in Influenza A Virus Pathogenesis. Int J Mol Sci 2020; 21:ijms21238962. [PMID: 33255826 PMCID: PMC7728370 DOI: 10.3390/ijms21238962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate diverse cellular pathways by controlling gene expression. Increasing evidence has revealed their critical involvement in influenza A virus (IAV) pathogenesis. Host–IAV interactions induce different levels of oxidative stress (OS) by disrupting the balance between reactive oxygen species (ROS) and antioxidant factors. It is thought that miRNA may regulate the expression of ROS; conversely, ROS can induce or suppress miRNA expression during IAV infection. Thus, miRNA and OS are the two key factors of IAV infection and pathogenesis. Accordingly, interactions between OS and miRNA during IAV infection might be a critical area for further research. In this review, we discuss the crosstalk between miRNAs and OS during IAV infection. Additionally, we highlight the potential of miRNAs as diagnostic markers and therapeutic targets for IAV infections. This knowledge will help us to study host–virus interactions with novel intervention strategies.
Collapse
|
36
|
Rodrigues‐Diez RR, Tejera‐Muñoz A, Marquez‐Exposito L, Rayego‐Mateos S, Santos Sanchez L, Marchant V, Tejedor Santamaria L, Ramos AM, Ortiz A, Egido J, Ruiz‐Ortega M. Statins: Could an old friend help in the fight against COVID-19? Br J Pharmacol 2020; 177:4873-4886. [PMID: 32562276 PMCID: PMC7323198 DOI: 10.1111/bph.15166] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has overwhelmed healthcare systems requiring the rapid development of treatments, at least, to reduce COVID-19 severity. Drug repurposing offers a fast track. Here, we discuss the potential beneficial effects of statins in COVID-19 patients based on evidence that they may target virus receptors, replication, degradation, and downstream responses in infected cells, addressing both basic research and epidemiological information. Briefly, statins could modulate virus entry, acting on the SARS-CoV-2 receptors, ACE2 and CD147, and/or lipid rafts engagement. Statins, by inducing autophagy activation, could regulate virus replication or degradation, exerting protective effects. The well-known anti-inflammatory properties of statins, by blocking several molecular mechanisms, including NF-κB and NLRP3 inflammasomes, could limit the "cytokine storm" in severe COVID-19 patients which is linked to fatal outcome. Finally, statin moderation of coagulation response activation may also contribute to improving COVID-19 outcomes. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Raul R. Rodrigues‐Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Antonio Tejera‐Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Laura Marquez‐Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Sandra Rayego‐Mateos
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- GE‐06 Pathophysiology of Renal and Vascular Damage Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC)University of CórdobaCórdobaSpain
| | - Laura Santos Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Lucía Tejedor Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Adrian M. Ramos
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- Laboratory of Nephrology and HypertensionFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- Laboratory of Nephrology and HypertensionFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz Universidad AutónomaMadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Marta Ruiz‐Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
37
|
The tissue specific regulation of miR22 expression in the lung and brain by ribosomal protein L29. Sci Rep 2020; 10:16242. [PMID: 33004906 PMCID: PMC7530758 DOI: 10.1038/s41598-020-73281-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Endogenous miR22 is associated with a diverse range of biological processes through post-translational modification of gene expression and its deregulation results in various diseases including cancer. Its expression is usually tissue or cell-specific, however, the reasons behind this tissue or cell specificity are not clearly outlined till-date. Therefore, our keen interest was to investigate the mechanisms of tissue or cell-specific expression of miR22. In the current study, miR22 expression showed a tissues-specific difference in the poly(I:C) induced inflammatory mouse lung and brain tissues. The cell-specific different expression of miR22 was also observed in inflammatory glial cells and endothelial cells. The pattern of RPL29 expression was also similar to miR22 in these tissues and cells under the same treatment. Interestingly, the knockdown of RPL29 exerted an inhibitory effect on miR22 and its known transcription factors including Fos-B and c-Fos. Fos-B and c-Fos were also differentially expressed in the two cell lines transfected with poly(I:C). The knockdown of c-Fos also exerted its negative effects on miR22 expression in both cells. These findings suggest that RPL29 might have regulatory roles on tissue or cell-specific expression of miR22 through the transcription activities of c-Fos and also possibly through Fos-B.
Collapse
|
38
|
Khavinson V, Linkova N, Dyatlova A, Kuznik B, Umnov R. Peptides: Prospects for Use in the Treatment of COVID-19. Molecules 2020; 25:E4389. [PMID: 32987757 PMCID: PMC7583759 DOI: 10.3390/molecules25194389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
There is a vast practice of using antimalarial drugs, RAS inhibitors, serine protease inhibitors, inhibitors of the RNA-dependent RNA polymerase of the virus and immunosuppressants for the treatment of the severe form of COVID-19, which often occurs in patients with chronic diseases and older persons. Currently, the clinical efficacy of these drugs for COVID-19 has not been proven yet. Side effects of antimalarial drugs can worsen the condition of patients and increase the likelihood of death. Peptides, given their physiological mechanism of action, have virtually no side effects. Many of them are geroprotectors and can be used in patients with chronic diseases. Peptides may be able to prevent the development of the pathological process during COVID-19 by inhibiting SARS-CoV-2 virus proteins, thereby having immuno- and bronchoprotective effects on lung cells, and normalizing the state of the hemostasis system. Immunomodulators (RKDVY, EW, KE, AEDG), possessing a physiological mechanism of action at low concentrations, appear to be the most promising group among the peptides. They normalize the cytokines' synthesis and have an anti-inflammatory effect, thereby preventing the development of disseminated intravascular coagulation, acute respiratory distress syndrome and multiple organ failure.
Collapse
Affiliation(s)
- Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (A.D.); (R.U.)
- The Group of Peptide Regulation of Aging, Pavlov Institute of Physiology of RAS, 199034 St. Petersburg, Russia
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (A.D.); (R.U.)
- Department of Therapy, Geriatry, and Anti-Aging Medicine, Academy of Postgraduate Education under FSBU FSCC of FMBA of Russia, 125310 Moscow, Russia
- Department of Medical and Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Anastasiia Dyatlova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (A.D.); (R.U.)
| | - Boris Kuznik
- Department of the normal physiology, Chita State Medical Academy, 672000 Chita, Russia;
| | - Roman Umnov
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint Petersburg, Russia; (V.K.); (A.D.); (R.U.)
| |
Collapse
|
39
|
MicroRNA-132-3p suppresses type I IFN response through targeting IRF1 to facilitate H1N1 influenza A virus infection. Biosci Rep 2020; 39:221188. [PMID: 31746331 PMCID: PMC6904772 DOI: 10.1042/bsr20192769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence has indicated that microRNAs (miRNAs) have essential roles in innate immune responses to various viral infections; however, the role of miRNAs in H1N1 influenza A virus (IAV) infection is still unclear. The present study aimed to elucidate the role and mechanism of miRNAs in IAV replication in vitro. Using a microarray assay, we analyzed the expression profiles of miRNAs in peripheral blood from IAV patients. It was found that miR-132-3p was significantly up-regulated in peripheral blood samples from IAV patients. It was also observed that IAV infection up-regulated the expression of miR-132-3p in a dose- and time-dependent manner. Subsequently, we investigated miR-132-3p function and found that up-regulation of miR-132-3p promoted IAV replication, whereas knockdown of miR-132-3p repressed replication. Meanwhile, overexpression of miR-132-3p could inhibit IAV triggered INF-α and INF-β production and IFN-stimulated gene (ISG) expression, including myxovirus protein A (MxA), 2′,5′-oligoadenylate synthetases (OAS), and double-stranded RNA-dependent protein kinase (PKR), while inhibition of miR-132-3p enhanced IAV triggered these effects. Of note, interferon regulatory factor 1 (IRF1), a well-known regulator of the type I IFN response, was identified as a direct target of miR-132-3p during HIN1 IAV infection. Furthermore, knockdown of IRF1 by si-IRF1 reversed the promoting effects of miR-132-3p inhibition on type I IFN response. Taken together, up-regulation of miR-132-3p promotes IAV replication by suppressing type I IFN response through its target gene IRF1, suggesting that miR-132-3p could represent a novel potential therapeutic target of IAV treatment.
Collapse
|
40
|
Ochsner SA, Pillich RT, McKenna NJ. Consensus transcriptional regulatory networks of coronavirus-infected human cells. Sci Data 2020; 7:314. [PMID: 32963239 PMCID: PMC7509801 DOI: 10.1038/s41597-020-00628-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Establishing consensus around the transcriptional interface between coronavirus (CoV) infection and human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, or consensomes, that rank human genes based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, we show that high confidence transcriptional targets (HCTs) of MERS, SARS1 and SARS2 infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection. Among a series of novel use cases, we gather evidence for hypotheses that SARS2 infection efficiently represses E2F family HCTs encoding key drivers of DNA replication and the cell cycle; that progesterone receptor signaling antagonizes SARS2-induced inflammatory signaling in the airway epithelium; and that SARS2 HCTs are enriched for genes involved in epithelial to mesenchymal transition. The CoV infection consensomes and HCT intersection analyses are freely accessible through the Signaling Pathways Project knowledgebase, and as Cytoscape-style networks in the Network Data Exchange repository.
Collapse
Affiliation(s)
- Scott A Ochsner
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Neil J McKenna
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Holly JMP, Biernacka K, Maskell N, Perks CM. Obesity, Diabetes and COVID-19: An Infectious Disease Spreading From the East Collides With the Consequences of an Unhealthy Western Lifestyle. Front Endocrinol (Lausanne) 2020; 11:582870. [PMID: 33042029 PMCID: PMC7527410 DOI: 10.3389/fendo.2020.582870] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/17/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic of COVID-19, caused by the coronavirus, SARS-CoV-2, has had a global impact not seen for an infectious disease for over a century. This acute pandemic has spread from the East and has been overlaid onto a slow pandemic of metabolic diseases of obesity and diabetes consequent from the increasing adoption of a Western-lifestyle characterized by excess calorie consumption with limited physical activity. It has become clear that these conditions predispose individuals to a more severe COVID-19 with increased morbidity and mortality. There are many features of diabetes and obesity that may accentuate the clinical response to SARS-CoV-2 infection: including an impaired immune response, an atherothrombotic state, accumulation of advanced glycation end products and a chronic inflammatory state. These could prime an exaggerated cytokine response to viral infection, predisposing to the cytokine storm that triggers progression to septic shock, acute respiratory distress syndrome, and multi-organ failure. Infection leads to an inflammatory response and tissue damage resulting in increased metabolic activity and an associated increase in the mechanisms by which cells ingest and degrade tissue debris and foreign materials. It is becoming clear that viruses have acquired an ability to exploit these mechanisms to invade cells and facilitate their own life-cycle. In obesity and diabetes these mechanisms are chronically activated due to the deteriorating metabolic state and this may provide an increased opportunity for a more profound and sustained viral infection.
Collapse
Affiliation(s)
- Jeff M. P. Holly
- Faculty of Medicine, School of Translational Health Science, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
42
|
Alashkar Alhamwe B, Miethe S, Pogge von Strandmann E, Potaczek DP, Garn H. Epigenetic Regulation of Airway Epithelium Immune Functions in Asthma. Front Immunol 2020; 11:1747. [PMID: 32973742 PMCID: PMC7461869 DOI: 10.3389/fimmu.2020.01747] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the respiratory tract characterized by recurrent breathing problems resulting from airway obstruction and hyperresponsiveness. Human airway epithelium plays an important role in the initiation and control of the immune responses to different types of environmental factors contributing to asthma pathogenesis. Using pattern recognition receptors airway epithelium senses external stimuli, such as allergens, microbes, or pollutants, and subsequently secretes endogenous danger signaling molecules alarming and activating dendritic cells. Hence, airway epithelial cells not only mediate innate immune responses but also bridge them with adaptive immune responses involving T and B cells that play a crucial role in the pathogenesis of asthma. The effects of environmental factors on the development of asthma are mediated, at least in part, by epigenetic mechanisms. Those comprise classical epigenetics including DNA methylation and histone modifications affecting transcription, as well as microRNAs influencing translation. The common feature of such mechanisms is that they regulate gene expression without affecting the nucleotide sequence of the genomic DNA. Epigenetic mechanisms play a pivotal role in the regulation of different cell populations involved in asthma pathogenesis, with the remarkable example of T cells. Recently, however, there is increasing evidence that epigenetic mechanisms are also crucial for the regulation of airway epithelial cells, especially in the context of epigenetic transfer of environmental effects contributing to asthma pathogenesis. In this review, we summarize the accumulating evidence for this very important aspect of airway epithelial cell pathobiology.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,College of Pharmacy, International University for Science and Technology (IUST), Daraa, Syria.,Center for Tumor Biology and Immunology, Institute of Tumor Immunology, Philipps University Marburg, Marburg, Germany
| | - Sarah Miethe
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| | - Elke Pogge von Strandmann
- Center for Tumor Biology and Immunology, Institute of Tumor Immunology, Philipps University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,John Paul II Hospital, Kraków, Poland
| | - Holger Garn
- Institute of Laboratory Medicine, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center, Marburg, Germany.,Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
43
|
Ochsner SA, Pillich RT, McKenna NJ. Consensus transcriptional regulatory networks of coronavirus-infected human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.24.059527. [PMID: 32511379 PMCID: PMC7263508 DOI: 10.1101/2020.04.24.059527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Establishing consensus around the transcriptional interface between coronavirus (CoV) infection and human cellular signaling pathways can catalyze the development of novel anti-CoV therapeutics. Here, we used publicly archived transcriptomic datasets to compute consensus regulatory signatures, or consensomes, that rank human genes based on their rates of differential expression in MERS-CoV (MERS), SARS-CoV-1 (SARS1) and SARS-CoV-2 (SARS2)-infected cells. Validating the CoV consensomes, we show that high confidence transcriptional targets (HCTs) of CoV infection intersect with HCTs of signaling pathway nodes with known roles in CoV infection. Among a series of novel use cases, we gather evidence for hypotheses that SARS2 infection efficiently represses E2F family target genes encoding key drivers of DNA replication and the cell cycle; that progesterone receptor signaling antagonizes SARS2-induced inflammatory signaling in the airway epithelium; and that SARS2 HCTs are enriched for genes involved in epithelial to mesenchymal transition. The CoV infection consensomes and HCT intersection analyses are freely accessible through the Signaling Pathways Project knowledgebase, and as Cytoscape-style networks in the Network Data Exchange repository.
Collapse
Affiliation(s)
- Scott A Ochsner
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Neil J McKenna
- The Signaling Pathways Project and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
44
|
Al-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Genome-wide identification of methylated CpG sites in nongenital cutaneous warts. BMC Med Genomics 2020; 13:100. [PMID: 32641122 PMCID: PMC7346436 DOI: 10.1186/s12920-020-00745-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Low-risk HPV infection has not been the subject of epigenetic investigation. The present study was carried out in order to investigate the methylation status of CpG sites in non-genital cutaneous warts. METHODS Genomic DNA was extracted from 24 paired epidermal samples of warts and normal skin. DNA samples were bisulfite converted and underwent genome-wide methylation profiling using the Infinium MethylationEPIC BeadChip Kit. RESULTS From a total of 844,234 CpG sites, 56,960 and 43,040 CpG sites were found to be hypo- and hypermethylated, respectively, in non-genital cutaneous warts. The most differentially methylated CpG sites in warts were located within the C10orf26, FAM83H-AS1, ZNF644, LINC00702, GSAP, STAT5A, HDAC4, NCALD, and EXOC4 genes. CONCLUSION Non-genital cutaneous warts exhibit a unique CpG methylation signature.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan.
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Amneh H Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Firas A Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
45
|
Ulrich H, Pillat MM. CD147 as a Target for COVID-19 Treatment: Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell Rev Rep 2020; 16:434-440. [PMID: 32307653 PMCID: PMC7167302 DOI: 10.1007/s12015-020-09976-7] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The expressive number of deaths and confirmed cases of SARS-CoV-2 call for an urgent demand of effective and available drugs for COVID-19 treatment. CD147, a receptor on host cells, is a novel route for SARS-CoV-2 invasion. Thus, drugs that interfere in the spike protein/CD147 interaction or CD147 expression may inhibit viral invasion and dissemination among other cells, including in progenitor/stem cells. Studies suggest beneficial effects of azithromycin in reducing viral load of hospitalized patients, possibly interfering with ligand/CD147 receptor interactions; however, its possible effects on SARS-CoV-2 invasion has not yet been evaluated. In addition to the possible effect in invasion, azithromycin decreases the expression of some metalloproteinases (downstream to CD147), induces anti-viral responses in primary human bronchial epithelial infected with rhinovirus, decreasing viral replication and release. Moreover, resident lung progenitor/stem are extensively differentiated into myofibroblasts during pulmonary fibrosis, a complication observed in COVID-19 patients. This process, and the possible direct viral invasion of progenitor/stem cells via CD147 or ACE2, could result in the decline of these cellular stocks and failing lung repair. Clinical tests with allogeneic MSCs from healthy individuals are underway to enhance endogenous lung repair and suppress inflammation.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, São Paulo, Brazil
| | - Micheli M Pillat
- Department of Microbiology and Parasitology, Health Sciences Center, Federal University of Santa Maria-RS, Avenue Roraima n° 1000, Santa Maria, RS, 97105900, Brazil.
| |
Collapse
|
46
|
Tan KS, Lim RL, Liu J, Ong HH, Tan VJ, Lim HF, Chung KF, Adcock IM, Chow VT, Wang DY. Respiratory Viral Infections in Exacerbation of Chronic Airway Inflammatory Diseases: Novel Mechanisms and Insights From the Upper Airway Epithelium. Front Cell Dev Biol 2020; 8:99. [PMID: 32161756 PMCID: PMC7052386 DOI: 10.3389/fcell.2020.00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
Respiratory virus infection is one of the major sources of exacerbation of chronic airway inflammatory diseases. These exacerbations are associated with high morbidity and even mortality worldwide. The current understanding on viral-induced exacerbations is that viral infection increases airway inflammation which aggravates disease symptoms. Recent advances in in vitro air-liquid interface 3D cultures, organoid cultures and the use of novel human and animal challenge models have evoked new understandings as to the mechanisms of viral exacerbations. In this review, we will focus on recent novel findings that elucidate how respiratory viral infections alter the epithelial barrier in the airways, the upper airway microbial environment, epigenetic modifications including miRNA modulation, and other changes in immune responses throughout the upper and lower airways. First, we reviewed the prevalence of different respiratory viral infections in causing exacerbations in chronic airway inflammatory diseases. Subsequently we also summarized how recent models have expanded our appreciation of the mechanisms of viral-induced exacerbations. Further we highlighted the importance of the virome within the airway microbiome environment and its impact on subsequent bacterial infection. This review consolidates the understanding of viral induced exacerbation in chronic airway inflammatory diseases and indicates pathways that may be targeted for more effective management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Liyu Lim
- Infectious Disease Research and Training Office, National Centre for Infectious Diseases, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vivian Jiayi Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Fang Lim
- Division of Respiratory and Critical Care Medicine, National University Hospital, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kian Fan Chung
- Airway Disease, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Airway Disease, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
47
|
Taka S, Tzani-Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs in Asthma and Respiratory Infections: Identifying Common Pathways. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:4-23. [PMID: 31743961 PMCID: PMC6875476 DOI: 10.4168/aair.2020.12.1.4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRs) are single-stranded RNAs of 18-25 nucleotides. These molecules regulate gene expression at the post-transcriptional level; several of these are differentially expressed in asthma as well as in viral acute respiratory infections (ARIs), the main triggers of acute asthma exacerbations. In recent years, miRs have been studied in order to discover drug targets as well as biomarkers for diagnosis, disease severity and prognosis. We describe recent findings on miR expression and function in asthma and their role in the regulation of viral ARIs, according to cell tissue specificity and asthma severity. By combining the above information, we identify miRs that may be important in virus-induced asthma exacerbations. This is the first attempt to link miR profiles of asthmatic patients and ARI-induced miRs, addressing the question of whether there might be a specific miR deficit in asthmatic subjects that make them more susceptible and/or reactive to infection.
Collapse
Affiliation(s)
- Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Hannah Wanstall
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
48
|
Caramori G, Ruggeri P, Mumby S, Ieni A, Lo Bello F, Chimankar V, Donovan C, Andò F, Nucera F, Coppolino I, Tuccari G, Hansbro PM, Adcock IM. Molecular links between COPD and lung cancer: new targets for drug discovery? Expert Opin Ther Targets 2019; 23:539-553. [DOI: 10.1080/14728222.2019.1615884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gaetano Caramori
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Paolo Ruggeri
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Federica Lo Bello
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Filippo Andò
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Nucera
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
- Faculty of Science, Ultimo, and Centenary Institute, Centre for Inflammation, University of Technology Sydney, Sydney, Australia
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
49
|
Feketea G, Bocsan CI, Popescu C, Gaman M, Stanciu LA, Zdrenghea MT. A Review of Macrophage MicroRNAs' Role in Human Asthma. Cells 2019; 8:cells8050420. [PMID: 31071965 PMCID: PMC6562863 DOI: 10.3390/cells8050420] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
There is an imbalance in asthma between classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells) in favor of the latter. MicroRNAs (miRNAs) play a critical role in regulating macrophage proliferation and differentiation and control the balance of M1 and M2 macrophage polarization, thereby controlling immune responses. Here we review the current published data concerning miRNAs with known correlation to a specific human macrophage phenotype and polarization, and their association with adult asthma. MiRNA-targeted therapy is still in the initial stages, but clinical trials are under recruitment or currently running for some miRNAs in other diseases. Regulating miRNA expression via their upregulation or downregulation could show potential as a novel therapy for improving treatment efficacy in asthma.
Collapse
Affiliation(s)
- Gavriela Feketea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Corina I Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Cristian Popescu
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
| | - Mihaela Gaman
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Luminita A Stanciu
- National Heart and Lung Institute, Imperial College London, London W2 1PG, UK.
| | - Mihnea T Zdrenghea
- Department of Hematology, Iuliu Haţieganu University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania.
- Department of Hematology, Ion Chiricuta Oncology Institute, 400010 Cluj-Napoca, Romania.
| |
Collapse
|