1
|
Winner G J, Jain S, Gupta D. Unveiling novel molecules and therapeutic targets in hypertension - A narrative review. Eur J Pharmacol 2024; 984:177053. [PMID: 39393666 DOI: 10.1016/j.ejphar.2024.177053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Hypertension is a prevalent non-communicable disease with serious cardiovascular complications, including heart failure, myocardial infarction, and stroke, often resulting from uncontrolled hypertension. While current treatments primarily target the renin-angiotensin-aldosterone pathway, the therapeutic response remains modest in many patients, with some developing resistant hypertension. Newer therapeutic approaches aim to address hypertension from various aspects beyond conventional drugs, including targeting central nervous system pathways, inflammatory pathways, vascular smooth muscle function, and baroreceptors. Despite these advancements, each therapy faces unique clinical and mechanistic challenges that influence its clinical translatability and long-term viability. This review explores the mechanisms of novel molecules in preclinical and clinical development, highlights potential therapeutic targets, and discusses the challenges and ethical considerations related to hypertension therapeutics and their development.
Collapse
Affiliation(s)
| | - Surbhi Jain
- Aligarh Muslim University, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Ghosh A, Leung YH, Yu J, Sladek R, Chénier I, Oppong AK, Peyot ML, Madiraju SRM, Al-Khairi I, Thanaraj TA, Abubaker J, Al-Mulla F, Prentki M, Abu-Farha M. Silencing ANGPTL8 reduces mouse preadipocyte differentiation and insulin signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159461. [PMID: 38272177 DOI: 10.1016/j.bbalip.2024.159461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
ANGPTL8, expressed mainly in the liver and adipose tissue, regulates the activity of lipoprotein lipase (LPL) present in the extracellular space and triglyceride (TG) metabolism through its interaction with ANGPTL3 and ANGPTL4. Whether intracellular ANGPTL8 can also exert effects in tissues where it is expressed is uncertain. ANGPTL8 expression was low in preadipocytes and much increased during differentiation. To better understand the role of intracellular ANGPTL8 in adipocytes and assess whether it may play a role in adipocyte differentiation, we knocked down its expression in normal mouse subcutaneous preadipocytes. ANGPTL8 knockdown reduced adipocyte differentiation, cellular TG accumulation and also isoproterenol-stimulated lipolysis at day 7 of differentiation. RNA-Seq analysis of ANGPTL8 siRNA or control siRNA transfected SC preadipocytes on days 0, 2, 4 and 7 of differentiation showed that ANGPTL8 knockdown impeded the early (day 2) expression of adipogenic and insulin signaling genes, PPARγ, as well as genes related to extracellular matrix and NF-κB signaling. Insulin mediated Akt phosphorylation was reduced at an early stage during adipocyte differentiation. This study based on normal primary cells shows that ANGPTL8 has intracellular actions in addition to effects in the extracellular space, like modulating LPL activity. Preadipocyte ANGPTL8 expression modulates their differentiation possibly via changes in insulin signaling gene expression.
Collapse
Affiliation(s)
- Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jeffrey Yu
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Robert Sladek
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Isabelle Chénier
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Abel K Oppong
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | | | | | | | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | | |
Collapse
|
3
|
Hammad MM, Channanath AM, Abu-Farha M, Rahman A, Al Khairi I, Cherian P, Alramah T, Alam-Eldin N, Al-Mulla F, Thanaraj TA, Abubaker J. Adolescent obesity and ANGPTL8: correlations with high sensitivity C-reactive protein, leptin, and chemerin. Front Endocrinol (Lausanne) 2023; 14:1314211. [PMID: 38189043 PMCID: PMC10766807 DOI: 10.3389/fendo.2023.1314211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Angiopoietin-like proteins (ANGPTLs) mediate many metabolic functions. We had recently reported increased plasma levels of ANGPTL8 in obese adults of Arab ethnicity. However, data on ANGPTL8 levels in adolescent obesity is lacking. Arab population is characterized by a rapid transition, due to sudden wealth seen in the post-oil era, in lifestyle, food habits and extent of physical activity. We adopted a cross-sectional study on Arab adolescents from Kuwait to examine the role of ANGPTL8 in adolescent obesity. The study cohort included 452 adolescents, aged 11-14 years, recruited from Middle Schools across Kuwait. BMI-for-age growth charts were used to categorize adolescents as normal-weight, overweight, and obese. ELISA and bead-based multiplexing assays were used to measure plasma levels of ANGPTL8 and other inflammation and obesity-related biomarkers. Data analysis showed significant differences in the plasma levels of ANGPTL8 among the three subgroups, with a significant increase in overweight and obese children compared to normal-weight children. This observation persisted even when the analysis was stratified by sex. Multinomial logistic regression analysis illustrated that adolescents with higher levels of ANGPTL8 were 7 times more likely to become obese and twice as likely to be overweight. ANGPTL8 levels were correlated with those of hsCRP, leptin and chemerin. ANGPTL8 level had a reasonable prognostic power for obesity with an AUC of 0.703 (95%-CI=0.648-0.759). These observations relating to increased ANGPTL8 levels corresponding to increased BMI-for-age z-scores indicate that ANGPTL8, along with hsCRP, leptin and chemerin, could play a role in the early stages of obesity development in children. ANGPTL8 is a potential early marker for adolescent obesity and is associated with well-known obesity and inflammatory markers.
Collapse
Affiliation(s)
- Maha M. Hammad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Arshad M. Channanath
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Irina Al Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Tahani Alramah
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Nada Alam-Eldin
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
4
|
Thorin E, Labbé P, Lambert M, Mury P, Dagher O, Miquel G, Thorin-Trescases N. Angiopoietin-Like Proteins: Cardiovascular Biology and Therapeutic Targeting for the Prevention of Cardiovascular Diseases. Can J Cardiol 2023; 39:1736-1756. [PMID: 37295611 DOI: 10.1016/j.cjca.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Despite the best pharmacologic tools available, cardiovascular diseases (CVDs) remain a major cause of morbidity and mortality in developed countries. After 2 decades of research, new therapeutic targets, such as angiopoietin-like proteins (ANGPTLs), are emerging. ANGPTLs belong to a family of 8 members, from ANGPTL1 to ANGPTL8; they have structural homology with angiopoietins and are secreted in the circulation. ANGPTLs display a multitude of physiological and pathologic functions; they contribute to inflammation, angiogenesis, cell death, senescence, hematopoiesis, and play a role in repair, maintenance, and tissue homeostasis. ANGPTLs-particularly the triad ANGPTL3, 4, and 8-have an established role in lipid metabolism through the regulation of triacylglycerol trafficking according to the nutritional status. Some ANGPTLs also contribute to glucose metabolism. Therefore, dysregulation in ANGPTL expression associated with abnormal circulating levels are linked to a plethora of CVD and metabolic disorders including atherosclerosis, heart diseases, diabetes, but also obesity and cancers. Because ANGPTLs bind to different receptors according to the cell type, antagonists are therapeutically inadequate. Recently, direct inhibitors of ANGPTLs, mainly ANGPTL3, have been developed, and specific monoclonal antibodies and antisense oligonucleotides are currently being tested in clinical trials. The aim of the current review is to provide an up-to-date preclinical and clinical overview on the function of the 8 members of the ANGPTL family in the cardiovascular system, their contribution to CVD, and the therapeutic potential of manipulating some of them.
Collapse
Affiliation(s)
- Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada.
| | - Pauline Labbé
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Pauline Mury
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Olina Dagher
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Faculty of Medicine, Department of Surgery, Université de Montréal, Montréal, Québec, Canada; Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Géraldine Miquel
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
5
|
AlMajed HT, Abu-Farha M, Alshawaf E, Devarajan S, Alsairafi Z, Elhelaly A, Cherian P, Al-Khairi I, Ali H, Jose RM, Thanaraj TA, Al-Ozairi E, Al-Mulla F, Al Attar A, Abubaker J. Increased Levels of Circulating IGFBP4 and ANGPTL8 with a Prospective Role in Diabetic Nephropathy. Int J Mol Sci 2023; 24:14244. [PMID: 37762544 PMCID: PMC10531667 DOI: 10.3390/ijms241814244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic nephropathy (DN) is a complicated condition related to type 2 diabetes mellitus (T2D). ANGPTL8 is a hepatic protein highlighted as a risk factor for DN in patients with T2D; additionally, recent evidence from DN studies supports the involvement of growth hormone/IGF/IGF-binding protein axis constituents. The potential link between ANGPTL8 and IGFBPs in DN has not been explored before. Here, we assessed changes in the circulating ANGPTL8 levels in patients with DN and its association with IGFBP-1, -3, and -4. Our data revealed a significant rise in circulating ANGPTL8 in people with DN, 4443.35 ± 396 ng/mL compared to 2059.73 ± 216 ng/mL in people with T2D (p < 0.001). Similarly, levels of IGFBP-3 and -4 were significantly higher in people with DN compared to the T2D group. Interestingly, the rise in ANGPTL8 levels correlated positively with IGFBP-4 levels in T2DM patients with DN (p < 0.001) and this significant correlation disappeared in T2DM patients without DN. It also correlated positively with serum creatinine and negatively with the estimated glomerular filtration rate (eGFR, All < 0.05). The area under the curve (AUC) on receiver operating characteristic (ROC) analysis of the combination of ANGPTL8 and IGFBP4 was 0.76 (0.69-0.84), p < 0.001, and the specificity was 85.9%. In conclusion, our results showed a significant increase in ANGPTL8 in patients with DN that correlated exclusively with IGFBP-4, implicating a potential role of both proteins in the pathophysiology of DN. Our findings highlight the significance of these biomarkers, suggesting them as promising diagnostic molecules for the detection of diabetic nephropathy.
Collapse
Affiliation(s)
- Hana Th. AlMajed
- Applied Health Science Department, College of Health Sciences, Kuwait 15462, Kuwait;
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| | - Eman Alshawaf
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| | - Sriraman Devarajan
- National Dasman Diabetes Biobank, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (S.D.); (R.M.J.)
| | - Zahra Alsairafi
- Department of Pharmacy Practice, Faculty of Pharmacy, Kuwait 15462, Kuwait;
| | - Ashraf Elhelaly
- Clinical Laboratory, Amiri Hospital Kuwait, Kuwait 15462, Kuwait;
| | - Preethi Cherian
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| | - Hamad Ali
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (H.A.); (T.A.T.); (F.A.-M.)
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait 15462, Kuwait
| | - Rose Mol Jose
- National Dasman Diabetes Biobank, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (S.D.); (R.M.J.)
| | | | - Ebaa Al-Ozairi
- Medical Division, Dasman Diabetes Institute, Kuwait 15462, Kuwait;
| | - Fahd Al-Mulla
- Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (H.A.); (T.A.T.); (F.A.-M.)
| | - Abdulnabi Al Attar
- Diabetology Unit, Amiri Hospital, Dasman Diabetes Institute, Kuwait 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait 15462, Kuwait; (E.A.); (P.C.); (I.A.-K.)
| |
Collapse
|
6
|
Abu-Farha M, Joseph S, Mohammad A, Channanath A, Taher I, Al-Mulla F, Mujammami M, Thanaraj TA, Abubaker J, Abdel Rahman AM. Targeted Metabolomics Analysis of Individuals Carrying the ANGPTL8 R59W Variant. Metabolites 2023; 13:972. [PMID: 37755252 PMCID: PMC10536441 DOI: 10.3390/metabo13090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
ANGPTL8 is recognized as a regulator of lipid metabolism through its role in inhibiting lipoprotein lipase activity. ANGPTL8 gene variants, particularly rs2278426 leading to the R59W variant in the protein, have been associated with lipid traits in various ethnicities. We aimed to use metabolomics to understand the impact of the ANGPTL8 R59W variant on metabolites in humans. We used the Biocrates-p400 kit to quantify 408 plasma metabolites in 60 adult male Arab individuals from Kuwait and identify differences in metabolite levels between individuals carrying reference genotypes and those with carrier genotypes at ANGPTL8 rs2278426. Individuals with carrier genotypes (CT+TT) compared to those carrying the reference genotype (CC) showed statistically significant differences in the following metabolites: acylcarnitine (perturbs metabolic pathways), phosphatidylcholine (supports liver function and cholesterol levels), cholesteryl ester (brings chronic inflammatory response to lipoprotein depositions in arteries), α-aminoadipic acid (modulates glucose homeostasis), histamine (regulates glucose/lipid metabolism), sarcosine (links amino acid and lipid metabolism), diacylglycerol 42:1 (regulates homeostasis of cellular lipid stores), and lysophosphatidylcholine (regulates oxidative stress and inflammatory response). Functional aspects attributed to these metabolites indicate that the ANGPTL8 R59W variant influences the concentrations of lipid- and inflammation-related metabolites. This observation further highlights the role of ANGPTL8 in lipid metabolism.
Collapse
Affiliation(s)
- Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Shibu Joseph
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Ibrahim Taher
- Microbiology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Muhammad Mujammami
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh 11421, Saudi Arabia;
- University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh 11421, Saudi Arabia
| | - Thangavel Alphonse Thanaraj
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (A.C.); (F.A.-M.)
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait; (M.A.-F.); (S.J.); (A.M.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Centre for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, College of Science, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
7
|
Circulating ANGPTL8 as a Potential Protector of Metabolic Complications in Patients with Psoriasis. J Clin Med 2023; 12:jcm12062346. [PMID: 36983346 PMCID: PMC10058172 DOI: 10.3390/jcm12062346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) exerts pleiotropic effects, taking part in lipid and carbohydrate metabolism, inflammation, hematopoiesis and oncogenesis. So far, the exact molecular targets of ANGPTL8 remain poorly defined. We aimed to evaluate the serum concentration of ANGPTL8 in individuals with psoriasis and examine how systemic therapy affects the concentration of ANGPTL8. The study enrolled 35 patients with plaque-type psoriasis that were followed for 3 months of treatment with methotrexate or acitretin, and 18 healthy volunteers without psoriasis as controls. Serum ANGPTL8 concentrations were analyzed by ELISA and differences between groups were determined using Student’s t-test or the Mann–Whitney test, while correlations were assessed using Spearman’s rank test. The average concentration of ANGPTL8 differed significantly between the psoriasis group (before and after therapy) and the control group (p < 0.05). Significant negative correlations between ANGPTL8 and total cholesterol and LDL levels were noted (both p < 0.05). A significant increase in ANGPTL8 concentration was observed after acitretin (p < 0.05), whereas in patients treated with methotrexate the ANGPTL8 did not change significantly (p > 0.05). Additionally, a negative, statistically significant correlation with PASI was found after treatment (p < 0.05). Based on our study, it appears that elevated levels of ANGPTL8 may reduce the likelihood of atherogenic dyslipidemia in individuals with psoriasis, and treatment for psoriasis may impact the protective effects of ANGPTL8.
Collapse
|
8
|
Horn P, Radtke S, Metzing UB, Steidl R, Sponholz C, Sommerfeld O, Roth J, Claus RA, Birkenfeld AL, Settmacher U, Rauchfuß F, von Loeffelholz C. Associations of Betatrophin/ANGPTL8 with Septic Dyslipidemia in Human Peritonitis: An Explorative Analysis. Biomedicines 2022; 10:biomedicines10123151. [PMID: 36551906 PMCID: PMC9775570 DOI: 10.3390/biomedicines10123151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined by life-threatening organ dysfunction mediated by the host’s response to infection. This can result in septic dyslipidemia, which is involved in the neutralization of pathogen-related lipids. Knowledge of the regulatory mechanisms of septic dyslipidemia is incomplete. The cytokine betatrophin/Angiopoietin-like protein 8 (ANGPTL8) plays a role in the regulation of triacylglyceride metabolism, though its function in septic dyslipidemia remains unknown. Sixty-six patients were enrolled in a cross-sectional study. Circulating concentrations and adipose tissue (AT) mRNA expression of betatrophin/ANGPTL8 were studied in patients suffering from peritoneal sepsis. Insulin-resistant individuals and subjects without metabolic derangement/systemic inflammation were enrolled as controls. All underwent open abdominal surgery. Circulating betatrophin/ANGPTL8 was analyzed by an enzyme-linked immunosorbent assay and AT mRNA expression levels were assessed by real-time PCR. Standard laboratory analyses including lipid electrophoresis were evaluated. Sepsis patients showed pronounced septic dyslipidemia (p < 0.05 for all major lipid classes). Despite comparable betatrophin/ANGPTL8 mRNA expression in AT (p = 0.24), we found significantly increased circulating betatrophin/ANGPTL8 with septic dyslipidemia (p = 0.009). Expression levels of betatrophin/ANGPTL8 in AT correlated with circulating concentrations in both control groups (r = 0.61; p = 0.008 and r = 0.43; p = 0.034), while this association was undetectable in sepsis. After stratification, betatrophin/ANGPTL8 remained associated with hypertriacylglyceridemia (p < 0.05).
Collapse
Affiliation(s)
- Paul Horn
- Department of Internal Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, 07747 Jena, Germany
| | - Sascha Radtke
- Department of Anaesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Uta Barbara Metzing
- Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Ricardo Steidl
- Department of Anaesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Christoph Sponholz
- Department of Anaesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Oliver Sommerfeld
- Department of Anaesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Johannes Roth
- Department of Anaesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Ralf A. Claus
- Department of Anaesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Department of Therapy of Diabetes, Institute of Diabetes Research and Metabolic Diseases in the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King’s College London, London SE5 9RJ, UK
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Falk Rauchfuß
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Christian von Loeffelholz
- Department of Anaesthesiology and Intensive Care, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
- Correspondence: ; Tel.: +49-3641-9323-277; Fax: +49-3641-9323-102
| |
Collapse
|
9
|
Betatrophin and Insulin Resistance. Metabolites 2022; 12:metabo12100925. [PMID: 36295827 PMCID: PMC9610572 DOI: 10.3390/metabo12100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022] Open
Abstract
Betatrophin (angiopoietin-like protein 8 (ANGPTL8)) is a hormone that was recently discovered in the human liver. Multiple homologous sequences have been detected in mammalian liver, white adipose, and brown adipose tissues. Betatrophin is crucial for the development of type 2 diabetes (T2D), insulin resistance, and lipid metabolism. Similar to the intake of insulin, thyroid hormones, irisin, and calories, betatrophin expression in the organism is usually attributed to energy consumption or heat generation. It can mediate the activity of lipoprotein lipase (LPL), which is the key enzyme of lipoprotein lipolysis. Due to its association with metabolic markers and the roles of glucose and lipid, the physiological function of betatrophin in glucose homeostasis and lipid metabolism can be more comprehensively understood. Betatrophin was also shown to facilitate pancreatic β-cell proliferation in a mouse model of insulin resistance. There are also reports that demonstrate that betatrophin regulates triglycerides (TGs) in the liver. Therefore, the process of regulating the physiological function by betatrophin is complicated, and its exact biological significance remains elusive. This study provides a comprehensive review of the current research, and it discusses the possible physiological functions of betatrophin, and specifically the mechanism of betatrophin in regulating blood glucose and blood lipids.
Collapse
|
10
|
ANGPTL8 is a negative regulator in pathological cardiac hypertrophy. Cell Death Dis 2022; 13:621. [PMID: 35851270 PMCID: PMC9293964 DOI: 10.1038/s41419-022-05029-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023]
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the role of angiopoietin-like protein 8 (ANGPTL8) in pathological cardiac hypertrophy. We found that serum ANGPTL8 levels were significantly increased in hypertensive patients with cardiac hypertrophy and in mice with cardiac hypertrophy induced by Ang II or TAC. Furthermore, the secretion of ANGPTL8 from the liver was increased during hypertrophic processes, which were triggered by Ang II. In the Ang II- and transverse aortic constriction (TAC)-induced mouse cardiac hypertrophy model, ANGPTL8 deficiency remarkably accelerated cardiac hypertrophy and fibrosis with deteriorating cardiac dysfunction. Accordingly, both recombinant human full-length ANGPTL8 (rANGPTL8) protein and ANGPTL8 overexpression significantly mitigated Ang II-induced cell enlargement in primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cells. Mechanistically, the antihypertrophic effects of ANGPTL8 depended on inhibiting Akt and GSK-3β activation, and the Akt activator SC-79 abolished the antihypertrophic effects of rANGPTL8 in vitro. Moreover, we demonstrated that ANGPTL8 directly bound to the paired Ig-like receptor PIRB (LILRB3) by RNA-seq and immunoprecipitation-mass screening. Remarkably, the antihypertrophic effects of ANGPTL8 were largely blocked by anti-LILRB3 and siRNA-LILRB3. Our study indicated that ANGPTL8 served as a novel negative regulator of pathological cardiac hypertrophy by binding to LILRB3 (PIRB) and inhibiting Akt/GSK3β activation, suggesting that ANGPTL8 may provide synergistic effects in combination with AT1 blockers and become a therapeutic target for cardiac hypertrophy and heart failure.
Collapse
|
11
|
Sahmani M, Kianorooz Z, Javadi A, Gheibi N, Chegini KG. A New Insight Into the Anti-Proliferative and Apoptotic Effects of Betatrophin on Human Ovarian Cancer Cell Line Skov-3. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Wang Z, Song Y, Zhang F, Zhao C, Fu S, Xia C, Bai Y. Early warning for inactive ovaries based on liver function index, serum MDA, IL-6, FGF21 and ANGPTL8 in dairy cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.2020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhijie Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Feng Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, China
| | - Shixin Fu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Heilongjiang Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
13
|
Alduraywish AA. Cardiorespiratory and metabolic fitness indicators in novice volleyball trainees: effect of 1-week antioxidant supplementation with N-acetyl-cysteine/zinc/vitamin C. J Int Med Res 2021; 49:3000605211067125. [PMID: 34939440 PMCID: PMC8725015 DOI: 10.1177/03000605211067125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES This study aimed to determine the effect of 7-day dietary supplementation of N-acetylcysteine (NAC)/zinc/vitamin C on the time-to-exhaustion (TTE), the cardiorespiratory fitness (CRF) index, and metabolic indicators. METHODS This study enrolled volleyball student trainees (n = 18 men) who took NAC/zinc/vitamin C (750 mg/5 mg/100 mg) for 7 days at Jouf University, Saudi Arabia. The CRF index and TTE were determined. Serum concentrations of metabolic regulators (insulin, betatrophin, and hepatocyte growth factor), biomarkers of cellular damage/hypoxia, and indicators of lipid and glycemic control were measured. RESULTS Supplementation improved the TTE and CRF index, and lowered cytochrome c, C-reactive protein, hypoxia-inducible factor-1α (HIF-1α), total cholesterol, insulin, and glycated hemoglobin values. Before and after supplementation, the CRF index was negatively correlated with body mass index and positively correlated with the TTE. Before supplementation, the CRF index was positively correlated with betatrophin concentrations, and hepatocyte growth factor concentrations were positively correlated with betatrophin concentrations and negatively correlated with the homeostasis model assessment of insulin resistance index. After supplementation, the CRF index was negatively correlated with HIF-1α concentrations and metabolites. Additionally, the TTE was negatively correlated with HIF-1α, cytochrome c, and triacylglycerol concentrations. CONCLUSION Supplementation of NAC/zinc/vitamin C improves metabolic and CRF performance.
Collapse
|
14
|
Molecular cloning and characterization of angiopoietin-like protein-8 gene in pigs and its tissue-specific expression in different animals. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Pluimakers VG, van Santen SS, Fiocco M, Bakker MCE, van der Lelij AJ, van den Heuvel-Eibrink MM, Neggers SJCMM. Can biomarkers be used to improve diagnosis and prediction of metabolic syndrome in childhood cancer survivors? A systematic review. Obes Rev 2021; 22:e13312. [PMID: 34258851 PMCID: PMC8596408 DOI: 10.1111/obr.13312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022]
Abstract
Childhood cancer survivors (CCS) are at increased risk to develop metabolic syndrome (MetS), diabetes, and cardiovascular disease. Common criteria underestimate adiposity and possibly underdiagnose MetS, particularly after abdominal radiotherapy. A systematic literature review and meta-analysis on the diagnostic and predictive value of nine newer MetS related biomarkers (adiponectin, leptin, uric acid, hsCRP, TNF-alpha, IL-1, IL-6, apolipoprotein B (apoB), and lipoprotein(a) [lp(a)]) in survivors and adult non-cancer survivors was performed by searching PubMed and Embase. Evidence was summarized with GRADE after risk of bias evaluation (QUADAS-2/QUIPS). Eligible studies on promising biomarkers were pooled. We identified 175 general population and five CCS studies. In the general population, valuable predictive biomarkers are uric acid, adiponectin, hsCRP and apoB (high level of evidence), and leptin (moderate level of evidence). Valuable diagnostic biomarkers are hsCRP, adiponectin, uric acid, and leptin (low, low, moderate, and high level of evidence, respectively). Meta-analysis showed OR for hyperuricemia of 2.94 (age-/sex-adjusted), OR per unit uric acid increase of 1.086 (unadjusted), and AUC for hsCRP of 0.71 (unadjusted). Uric acid, adiponectin, hsCRP, leptin, and apoB can be alternative biomarkers in the screening setting for MetS in survivors, to enhance early identification of those at high risk of subsequent complications.
Collapse
Affiliation(s)
| | - Selveta S van Santen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Medicine, Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Medical Statistics, Department of Biomedical Data Science, Leiden UMC, Leiden, Netherlands.,Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Marie-Christine E Bakker
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Medicine, University Medical Center Utrecht, Netherlands
| | - Aart J van der Lelij
- Department of Medicine, Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Sebastian J C M M Neggers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Medicine, Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
16
|
Meng X, Zou H, Li D, Yu P, Huang L, Zhang J, Li W, Yu X. Association of Circulating ANGPTL8 Levels With Renal Dysfunction: A Case-Control Study. Front Public Health 2021; 9:710504. [PMID: 34557469 PMCID: PMC8452901 DOI: 10.3389/fpubh.2021.710504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Chronic kidney disease (CKD) is recognized as a major public health problem with high morbidity and mortality worldwide. Recently, angiopoietin-like protein 8 (ANGPTL8) was found to regulate lipid metabolism. Previous studies suggested that serum ANGPTL8 levels increased in patients with diabetes, especially in diabetic patients with albuminuria. This study aimed to investigate the association between circulating levels of ANGPTL8 and kidney function in the general population. Methods: The subjects were patients with renal dysfunction [estimated glomerular filtration rate (eGFR) <60/min/1.73 m2] from Risk Evaluation of cAncers in Chinese diabeTic Individuals: a lONgitudinal study (the REACTION study). Each case was matched by age, sex, and body mass index (BMI) with one control whose eGFR was ≥ 90 ml/min/1.73 m2. The case and control groups were compared using a paired t-test. Binary logistic regression analysis was used to calculate the odds ratio (OR) of renal dysfunction (RD). Results: Among 135 case-control pairs, circulating ANGPTL8 levels were elevated in patients with RD compared to control subjects [799.96 (410.12-1086.44) vs. 609.58 (365.13-740.06) pg/ml, p < 0.05]. Partial correlations showed that ANGPTL8 levels were negatively correlated with eGFR (r = -0.26, p < 0.05). Multivariable-adjusted binary logistic regression analysis showed that elevated ANGPTL8 levels were associated with an increased risk of RD (OR in quartile 4 vs. 1, 3.80; 95% CI, 1.71-8.41). Interestingly, the association between ANGPTL8 levels and RD was consistent with the overall findings in both nondiabetic individuals (OR, 1.44; 95% CI, 1.09 to 1.91) and diabetic patients (OR, 2.71; 95% CI, 1.13-6.49) in the subgroup analyses. Furthermore, the estimates for this association were also significant in females (OR, 2.12; 95% CI, 1.33-3.37), individuals aged > 60 years (OR, 1.55; 95% CI, 1.16-2.07), individuals with a BMI <24 (OR, 1.66; 95% CI, 1.16-2.39), and individuals without hyperlipidaemia (OR, 1.61; 95% CI, 1.16-2.23) (all p-values <0.05). Conclusion: Elevated circulating ANGPTL8 levels were associated with increased risk of RD in the general population, especially among females, individuals aged > 60 years, individuals with a BMI < 24, individuals without diabetes mellitus, individuals with diabetes mellitus (DM), and individuals without hyperlipidaemia. This finding implies that ANGPTL8 may play a role in the pathological process of RD.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Danpei Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Peng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Li Huang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Jianhua Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| | - Wenjun Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
17
|
Abstract
ANGPTL8 is an important cytokine, which is significantly increased in type 2 diabetes mellitus (T2DM), obesity and metabolic syndrome. Many studies have shown that ANGPTL8 can be used as a bio-marker of these metabolic disorders related diseases, and the baseline ANGPTL8 level has also been found to be positively correlated with retinopathy and all-cause mortality in patients with T2DM. This may be related to the inhibition of lipoprotein lipase activity and the reduction of circulating triglyceride (TG) clearance by ANGPTL8. Consistently, inhibition of ANGPTL8 seems to prevent or improve atherosclerosis. However, it is puzzling that ANGPTL8 seems to have a directing function for TG uptake in peripheral tissues; that is, ANGPTL8 specifically enhances the reserve and buffering function of white adipose tissue, which may alleviate the ectopic lipid accumulation to a certain extent. Furthermore, ANGPTL8 can improve insulin sensitivity and inhibit hepatic glucose production. These contradictory results lead to different opinions on the role of ANGPTL8 in metabolic disorders. In this paper, the correlation between ANGPTL8 and metabolic diseases, the regulation of ANGPTL8 and the physiological role of ANGPTL8 in the process of glucose and lipid metabolism were summarized, and the physiological/pathological significance of ANGPTL8 in the process of metabolic disorder was discussed.
Collapse
Affiliation(s)
- Chang Guo
- Department of Nephrology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Chenxi Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Hao Q, Zheng A, Zhang H, Cao H. Down-regulation of betatrophin enhances insulin sensitivity in type 2 diabetes mellitus through activation of the GSK-3β/PGC-1α signaling pathway. J Endocrinol Invest 2021; 44:1857-1868. [PMID: 33464548 DOI: 10.1007/s40618-020-01493-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The incidence of type 2 diabetes mellitus (T2DM) among children and adolescents has been rising. Accumulating evidences have noted the significant role of betatrophin in the regulation of lipid metabolism and glucose homeostasis. In our study, we tried to figure out the underlying mechanism of betatrophin in insulin resistance (IR) in type 2 diabetes mellitus (T2DM). METHODS First, fasting serum betatrophin, fasting blood glucose (FBG), insulin, total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) were detected in T2DM children. The homeostasis model assessment of insulin resistance (HOMA-IR), Gutt insulin sensitivity index (ISIG) and Matsuda insulin sensitivity index (ISIM) were calculated. A T2DM-IR mouse model was induced by high-fat diet, with the expression of GSK-3β and PGC-1α detected. Besides, HepG2 cells were induced by a high concentration of insulin to establish an IR cell model (HepG2-IR). The cell viability, glucose consumption, liver glycogen content, inflammation, and fluorescence level of GSK-3β and PGC-1α were analyzed. RESULTS Betatrophin was highly expressed in serum of T2DM children and was positively correlated with FBG, insulin, TC, TG, LDL-C and HOMA-IR, while negatively correlated with ISIG and ISIM. Betatrophin and GSK-3β in the liver tissues of T2DM-IR mice were increased, while the PGC-1α expression was decreased. Betatrophin expression was negatively correlated with PGC-1α and positively correlated with GSK-3β. Silencing of betatrophin enhanced insulin sensitivity through the activation of GSK-3β/PGC-1α signaling pathway. In vitro experiments also found that silencing of betatrophin promoted glucose consumption and glycogen synthesis while inhibited inflammation. CONCLUSION Our findings concluded that silencing of betatrophin could enhance insulin sensitivity and improve histopathological morphology through the activation of GSK-3β/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Q Hao
- Department of Endocrinology, The First People's Hospital of Shangqiu, No.292 Kaixuan South Road, Shangqiu, 476100, Henan, People's Republic of China
| | - A Zheng
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, Henan, People's Republic of China
| | - H Zhang
- Department of Endocrinology, The First People's Hospital of Shangqiu, No.292 Kaixuan South Road, Shangqiu, 476100, Henan, People's Republic of China
| | - H Cao
- Department of Endocrinology, The First People's Hospital of Shangqiu, No.292 Kaixuan South Road, Shangqiu, 476100, Henan, People's Republic of China.
| |
Collapse
|
19
|
Yang J, Song QY, Niu SX, Chen HJ, Petersen RB, Zhang Y, Huang K. Emerging roles of angiopoietin-like proteins in inflammation: Mechanisms and potential as pharmacological targets. J Cell Physiol 2021; 237:98-117. [PMID: 34289108 DOI: 10.1002/jcp.30534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/16/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022]
Abstract
Angiopoietin-like proteins (ANGPTLs), a family of eight secreted glycoproteins termed ANGTPL1-8, are involved in angiogenesis, lipid metabolism, cancer progression, and inflammation. Their roles in regulating lipid metabolism have been intensively studied, as some ANGPTLs are promising pharmacological targets for hypertriglyceridemia and associated cardiovascular disease. Recently, the emerging roles of ANGPTLs in inflammation have attracted great attention. First, elevated levels of multiple circulating ANGPTLs in inflammatory diseases make them potential disease biomarkers. Second, multiple ANGPTLs regulate acute or chronic inflammation via various mechanisms, including triggering inflammatory signaling through their action as ligands for integrin or forming homo- /hetero-oligomers to regulate signal transduction via extra- or intracellular mechanisms. As dysregulation of the inflammatory response is a critical trigger in many diseases, understanding the roles of ANGPTLs in inflammation will aid in drug/therapy development. Here, we summarize the roles, mechanisms, and potential therapeutic values for ANGPTLs in inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Qiu-Yi Song
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Shu-Xuan Niu
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Hui-Jing Chen
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Yu Zhang
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| | - Kun Huang
- Department of Biopharmacy, Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
20
|
Zou H, Xu Y, Meng X, Li D, Chen X, Du T, Yang Y, Chen Y, Shao S, Yuan G, Zhou X, Hu S, He W, Ma D, Xie J, Zhang B, Zhang J, Li W, Liu Z, Yu X. Circulating ANGPTL8 levels and risk of kidney function decline: Results from the 4C Study. Cardiovasc Diabetol 2021; 20:127. [PMID: 34167540 PMCID: PMC8223309 DOI: 10.1186/s12933-021-01317-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Background ANGPTL8, an important regulator of lipid metabolism, was recently proven to have additional intracellular and receptor-mediated functions. This study aimed to investigate circulating levels of ANGPTL8 and its potential association with the risk of kidney function decline in a cohort study. Methods We analysed 2,311 participants aged 40 years old and older from the China Cardiometabolic Disease and Cancer Cohort (4C) Study. Kidney function decline was defined as an estimated glomerular filtration rate (eGFR) less than 60 mL per minute per 1.73 m2 of body surface area, a decrease in eGFR of ≥ 30% from baseline, chronic kidney disease (CKD)-related hospitalization or death, or end-stage renal disease. The association between baseline ANGPTL8 levels and kidney function decline was assessed using multivariable-adjusted Cox proportional hazards models, and inverse possibility of treatment weight (IPTW) was utilized to prevent overfitting. Results There were 136 (5.9%) cases of kidney function decline over a median of 3.8 years of follow-up. We found that serum ANGPTL8 levels at baseline were elevated in individuals with kidney function decline compared to those without kidney function decline during follow-up (718.42 ± 378.17 vs. 522.04 ± 283.07 pg/mL, p < 0.001). Compared with the first quartile, multivariable-adjusted hazard ratio (95% confidence intervals [CIs]) for kidney function decline was 2.59 (95% CI, 1.41–4.77) for the fourth ANGPTL8 quartile. Furthermore, compared with patients in the first ANGPTL8 quartile, those in the fourth ANGPTL8 quartile were more likely to report a higher stage of CKD (relative risk: 1.33; 95% CI, 1.01–1.74). The conclusions of the regression analyses were not altered in the IPTW models. Multivariable-adjusted restricted cubic spline analyses suggested a linear relationship of ANGPTL8 with kidney function decline (p for nonlinear trend = 0.66, p for linear trend < 0.001). Conclusions Participants with higher circulating ANGPTL8 levels were at increased risk for kidney function decline, highlighting the importance of future studies addressing the pathophysiological role of ANGPTL8 in CKD. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-021-01317-3.
Collapse
Affiliation(s)
- Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yongping Xu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoyu Meng
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Danpei Li
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xi Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Tingting Du
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yan Yang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yong Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shiying Shao
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Gang Yuan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xinrong Zhou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shuhong Hu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Wentao He
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Delin Ma
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Junhui Xie
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Benping Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Jianhua Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Wenjun Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhelong Liu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China.
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China.
| |
Collapse
|
21
|
ANGPTL8 in cardio-metabolic diseases. Clin Chim Acta 2021; 519:260-266. [PMID: 34023284 DOI: 10.1016/j.cca.2021.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Dyslipidemia has been identified as an important factor in obesity, diabetes mellitus, and cardiovascular diseases (CVD), grouped as cardio-metabolic disorder diseases. Accordingly, dyslipidemia has become a major determinant in health worldwide. Both genome-wide association studies (GWAS) and research studies have focused on the elucidation of potential genetic mechanisms of dyslipidemia and the identification of new gene loci which contribute to the development of cardio-metabolic disorder diseases. Recent results indicate that both the ANGPTL8 gene and ANGPTL8 protein perform vital roles in modulating serum glucose and lipid metabolism. In this review, we examine the modulatory effects of ANGPTL8 and explore the potential mechanisms whereby ANGPTL8 affects serum glucose and lipid metabolism in cardio-metabolic disorder diseases.
Collapse
|
22
|
Yang F, Yang W, Wang G, Liu Y, Jin J. Association of betatrophin amounts with 25-(OH)D levels in patients with gestational diabetes mellitus. Medicine (Baltimore) 2021; 100:e25646. [PMID: 33879746 PMCID: PMC8078436 DOI: 10.1097/md.0000000000025646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
To determine the association of betatrophin amounts with 25-(OH)D levels in gestational diabetes mellitus (GDM) patients, and to provide new targets for the prevention and treatment of GDM.This study included 40 GDM patients (GDM group) and 37 healthy pregnant women (control group). Betatrophin, 25-(OH)D, fasting blood glucose (FBG), HbA1c, hsCRP, and FINS levels in peripheral blood, as well as betatrophin and 25-(OH)D amounts in cord blood, were measured. Then, associations of betatrophin levels with 25-(OH)D amounts and other indexes were determined.Maternal (P = .011) and cord (P = .022) blood betatrophin levels were significantly lower in the GDM group compared with control group. Cord blood betatrophin levels were higher compared with maternal blood amounts in both the GDM and control groups (both P = .000). Serum betatrophin levels were positively associated with 25-(OH)D levels (r = 0.677, P = .000), but negatively associated with hsCRP (r = -0.335, P = .037) and HOMA-IR (r = -0.346, P = .031) levels in the GDM group. Fetal weight was higher in the GDM group compared with control group (P = .023), and negatively associated with cord blood betatrophin amounts in the GDM group (r = -0.342, P = .031). However, cord blood betatrophin levels were not significantly associated with body length, Apgar score, and cord blood 25-(OH)D levels in the GDM group (all P > .05).Serum betatrophin and 25-(OH) D levels were positively associated in women with GDM, and both significantly lower compared with control values. Fetal weight was higher in the GDM group and associated with cord blood betatrophin. These findings provide insights into developing new predictive biomarkers or therapeutic targets for GDM.
Collapse
Affiliation(s)
| | | | | | | | - Jun Jin
- Clinical Lab Department, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, China
| |
Collapse
|
23
|
Su X, Zhang G, Cheng Y, Wang B. New insights into ANGPTL8 in modulating the development of cardio-metabolic disorder diseases. Mol Biol Rep 2021; 48:3761-3771. [PMID: 33864591 DOI: 10.1007/s11033-021-06335-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022]
Abstract
Dyslipidemia is being identified as the most important factors of several health problems, such as obesity, diabetes mellitus, and cardiovascular diseases (CVD), which are always grouped together as cardio-metabolic disorder diseases. Consistently, dyslipidemia has become one of the most rising crisis of general health. Recently, it is worth noting that both genome-wide association studies (GWAS) and experimental research are being taken advantage to elucidate the potential genetic mechanisms of dyslipidemia and to identify new gene loci which contribute to the development of cardio-metabolic disorder diseases. According to the results, both ANGPTL8 gene and ANGPTL8 protein has been shown to embrace vital functions in modulating serum glucose and lipid metabolism. In the current review, the modulatory effects of ANGPTL8 in cardio-metabolic disorder diseases were summarized. In addition, novel insights which elucidate the potential mechanisms whereby ANGPTL8 affects glucose and lipid metabolism were also provided.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, No. 2999 Jinshan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
24
|
Navaeian M, Asadian S, Ahmadpour Yazdi H, Gheibi N. ANGPTL8 roles in proliferation, metabolic diseases, hypothyroidism, polycystic ovary syndrome, and signaling pathways. Mol Biol Rep 2021; 48:3719-3731. [PMID: 33864588 DOI: 10.1007/s11033-021-06270-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/05/2021] [Indexed: 12/18/2022]
Abstract
A new and atypical member of the ANGPTL family is angiopoietin-like protein 8 (ANGPTL8). This newly discovered hormone is a drug target that can be used to treat diabetes and dyslipidemia. The protein, as a hepatocyte-derived circulating factor, can control the triglyceride level of plasma. ANGPTL8 is significantly associated with inflammation and metabolic syndrome consequences such as obesity, diabetes, hypothyroidism, and PCOS. ANGPTL8 gene has four exons encoding a 22/5 kDa weight of 198 amino acid polypeptides. A highly preserved ANGPTL8 gene among mammals exhibits the essential hormone functions of ANGPTL8. Nevertheless, the physiological function of this hormone in the body is poorly understood. Studies published in PubMed (2008-2020), Google Scholar (2004-2020), and Scopus (2004-2020) databases of clinical trials were reviewed. This analysis is aimed at collecting information on ANGPTL8. The emphasis of this review was on gathering information about the role of ANGPTL8 in the metabolism of glucose and lipids and cell proliferation. It addition to the different roles of ANGPTL8 in diabetes and lipid metabolism, this review emphasized on the protein role in signaling pathways. The study also proposes the signaling pathways that may be considered as a new target for treatment.
Collapse
Affiliation(s)
- Maryam Navaeian
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Samieh Asadian
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Ahmadpour Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
25
|
Hong T, Li JY, Wang YD, Qi XY, Liao ZZ, Bhadel P, Ran L, Yang J, Yan B, Liu JH, Xiao XH. High Serum Asprosin Levels Are Associated with Presence of Metabolic Syndrome. Int J Endocrinol 2021; 2021:6622129. [PMID: 33747078 PMCID: PMC7943292 DOI: 10.1155/2021/6622129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Asprosin, a new adipocytokine, has reportedly been associated with glucose release, dyslipidemia, and insulin resistance (IR). However, the relationship of asprosin with metabolic syndrome (MetS) remains unknown. This study aimed to investigate serum asprosin levels in MetS as well as their association with various metabolic parameters in humans. METHODS A total of 131 consecutive patients with MetS, and 162 age-matched, healthy subjects were recruited for this study. Serum asprosin concentrations were determined using the enzyme-linked immunosorbent assay. Lipid profile, glucose, insulin, and inflammatory markers were also measured. RESULTS Serum asprosin levels were higher in subjects with MetS (23.52 [16.70, 32.05] ng/mL) than in controls (16.70 [12.87, 22.38] ng/mL; P < 0.01), and they showed an increasing trend with increasing numbers of metabolic components (P for trend < 0.01). In all studied subjects, serum asprosin levels were positively correlated with body mass index, waist circumference, triglycerides, fasting plasma glucose, 2-hour plasma glucose, fasting insulin, homeostatic model assessment of insulin resistance (HOMA-IR) index, interleukin-6, and monocyte chemoattractant protein-1 and negatively correlated with high-density lipoprotein cholesterol (P < 0.05). In multiple linear regression, asprosin was independently and positively correlated with triglyceride and HOMA-IR (P < 0.05). Binary logistic regression revealed that asprosin was independently and positively correlated with the occurrence of MetS and IR, even after controlling for anthropometric variables, lipid profiles, and inflammatory markers. CONCLUSION Asprosin is a potential metabolic-related adipokine and may be related to IR and MetS. This trial was registered with ChiCTR, ChiCTR1800018347.
Collapse
Affiliation(s)
- Tao Hong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Jiao-Yang Li
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Xiao-Yan Qi
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Poonam Bhadel
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Li Ran
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Bin Yan
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
26
|
Changes in serum levels of angiopoietin-like protein-8 and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 after ezetimibe therapy in patients with dyslipidemia. Clin Chim Acta 2020; 510:675-680. [PMID: 32858055 DOI: 10.1016/j.cca.2020.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/26/2020] [Accepted: 08/21/2020] [Indexed: 01/09/2023]
Abstract
Changes in serum levels of angiopoietin-like protein-8 (ANGPTL8) and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) in patients with dyslipidemia after ezetimibe therapy remain to be elucidated. Thirty-eight patients who initially received ezetimibe and were followed for 16 weeks were enrolled. Various parameters were investigated before and after 16 weeks of ezetimibe treatment in all patients. In addition, the patients were also divided into metabolic syndrome (MetS) (n = 22) and Non-MetS (n = 16) groups, and various parameters were compared between these groups. ANGPTL8 was significantly positively correlated with triglyceride (TG) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) before treatment in all patients and in the MetS group. After treatment, TC and LDL-C were significantly decreased in all patients, and in both the MetS and Non-MetS groups, whereas there were no changes in TG or HDL-C. Serum levels of remnant-like particle cholesterol (RLP-C) significantly decreased in all patients and in the MetS group. The ANGPTL8 level before treatment was significantly positively associated with TG and negatively correlated with HDL-C in all patients and in the MetS group. ANGPTL8 and GPIHBP1were significantly decreased after treatment in all patients. GPIHBP1 was also significantly decreased after treatment in both groups. In conclusion, this is the first report to support the possibility of a new effect of ezetimibe therapy. Ezetimibe significantly decreased the serum level of LDL-C, but not TG or HDL-C, while reducing ANGPTL8 and GPIHBP1 in all patients with dyslipidemia. In addition, ezetimibe significantly decreased RLP-C levels in the MetS group.
Collapse
|
27
|
Leutner M, Matzhold C, Bellach L, Deischinger C, Thurner S, Klimek P, Kautzky-Willer A. Betatrophin is downregulated in pregnant women with a history of RYGB operation and a high risk of postprandial hypoglycaemia. Sci Rep 2020; 10:13152. [PMID: 32753693 PMCID: PMC7403341 DOI: 10.1038/s41598-020-70075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
Betatrophin is a liver and adipose tissue-derived protein which has recently been linked to glucose metabolism. So far, no data exist about the role of betatrophin in pregnant women with a history of Roux-En-Y gastric bypass (RYGB) operation with a high risk of postprandial hypoglycaemia. In this prospective clinical study, an oral glucose tolerance test (OGTT) and an intravenous glucose tolerance test (IVGTT) were performed between the 24th and 28th week of pregnancy and 3–6 months post-partum in a cohort of obese and normal-weight pregnant women, as well as in women with a history of RYGB operation. In the cohort of pregnant women with RYGB and exaggerated risk of postprandial hypoglycaemic events, basal and dynamic betatrophin levels during the OGTT were lower than in the obese or normal-weight pregnant women (basal levels: 13.66 ± 5.88 vs. 19.03 ± 4.15 vs. 15.68 ± 6.48, p = 0.016; OGTT 60′: 13.33 ± 5.40 vs. 17.37 ± 3.16 vs. 15.84 ± 4.99, p = 0.030). During the OGTT, basal and dynamic betatrophin levels at 60′ were positively associated with glucose levels at 60 min (r = 0.55, p = 0.01 and r = 0.45, p = 0.039). This positive association was followed by significant hypoglycaemic events in the RYGB group. It was only in the RYGB group that betatrophin was negatively related to the disposition index (rho = -0.53, p = 0.014). After pregnancy there was a decrease in basal and stimulated betatrophin levels during the OGTT in all three patient groups. In comparison to normal-weight and obese pregnant women, women with a history of RYGB operation and a high risk of postprandial hypoglycaemic events have lower levels of betatrophin. This indicate a mechanistic role in order to decrease the risk of postprandial hypoglycaemia in this specific cohort.
Collapse
Affiliation(s)
- Michael Leutner
- Unit of Gender Medicine, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.,Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080, Vienna, Austria
| | - Luise Bellach
- Unit of Gender Medicine, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Carola Deischinger
- Unit of Gender Medicine, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.,Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080, Vienna, Austria.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 85701, USA.,IIASA, Schlossplatz 1, 2361, Laxenburg, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.,Complexity Science Hub Vienna, Josefstädter Strasse 39, 1080, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Unit of Gender Medicine, Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria. .,Gender Institute, 3571, Gars am Kamp, Austria.
| |
Collapse
|
28
|
Zou H, Duan W, Zhang Z, Chen X, Lu P, Yu X. The circulating ANGPTL8 levels show differences among novel subgroups of adult patients with diabetes and are associated with mortality in the subsequent 5 years. Sci Rep 2020; 10:12859. [PMID: 32732946 PMCID: PMC7393150 DOI: 10.1038/s41598-020-69091-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
ANGPTL8, an important regulator of glucose and lipid metabolism, is associated with diabetes, but the role of ANGPTL8 in the outcomes of novel subgroups of diabetes remains unclear. To assess the circulating ANGPTL8 levels in novel subgroups of diabetes and their association with health outcomes, we performed a data-driven cluster analysis (k-means) of patients with newly diagnosed diabetes (741 patients enrolled from 2011 through 2016) from the Risk Evaluation of Cancers in Chinese Diabetic Individuals: a longitudinal (REACTION) study. The primary outcomes were mortality from all causes and cardiovascular diseases (CVD), and the secondary outcome was any cardiovascular event. Comparisons among groups were performed using the Kruskal-Wallis test, and the correlations between variables were assessed using the Pearson correlation test. Logistic regression was used to detect associations between the risk of outcomes and the ANGPTL8 levels. We identified four replicable clusters of patients with diabetes that exhibited significantly different patient characteristics and risks of all-cause mortality. The serum ANGPTL8 levels in the cluster of mild age-related diabetes (MARD), severe insulin-resistant diabetes (SIRD), and severe insulin-deficient diabetes (SIDD) were significantly higher than those in the mild obesity-related diabetes (MOD) cluster (685.01 ± 24.50 vs. 533.5 ± 18.39, p < 0.001; 649.69 ± 55.83 vs. 533.5 ± 18.39, = 0.040; 643.29 ± 30.89 vs. 533.5 ± 18.39, p = 0.001). High circulating ANGPTL8 levels were more highly associated with a greater hazard of all-cause mortality (quartile 4 vs 1: risk ratio [RR] 3.23, 95% CI 1.13-9.22; per unit increase in the Z score: RR 1.53, 95% CI 1.17-2.01) than low circulating ANGPTL8 levels. In conclusion, this 5-year follow-up REACTION study revealed that the circulating ANGPTL8 levels show differences among novel subgroups of adult patients with diabetes and are associated with all-cause mortality in the subsequent 5 years.
Collapse
Affiliation(s)
- Huajie Zou
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Zeqing Zhang
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xi Chen
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Puhan Lu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xuefeng Yu
- Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
29
|
Angiopoietin-like protein 8 accelerates atherosclerosis in ApoE -/- mice. Atherosclerosis 2020; 307:63-71. [PMID: 32739681 DOI: 10.1016/j.atherosclerosis.2020.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Angiopoietin-like protein 8 (ANGPTL8) is a hormone involved in regulating lipid metabolism. Patients with coronary artery disease have markedly higher plasma levels of ANGPTL8 than controls; however, the role of ANGPTL8 in atherosclerosis has not been explored. Therefore, we explored the effects of ANGPTL8 on atherosclerosis development in a mouse model. METHODS We induced experimental atherosclerosis in ApoE-/- mice ANGPTL8-knockdown. and ANGPTL8-overexpression ApoE-/- mice. We also explored the mechanism using ANGPTL8-overexpression macrophages. RESULTS ANGPTL8 expression was increased in human and mouse atherosclerotic lesions. ANGPTL8 overexpression promoted the development of atherosclerosis whereas ANGPTL8 knockdown protected against atherosclerosis. Immunofluorescence co-staining results showed that ANGPTL8 was expressed in macrophages in atherosclerotic plaques. Compared with wild type cells, ANGPTL8-overexpressing macrophages, including bone marrow-derived macrophages and Raw 264.7 macrophages, showed enhanced foam cell formation and increased accumulation of cholesterol that was induced by increased uptake and decreased efflux of cholesterol. The results of this study also showed that ANGPTL8 induced the expression of CD36 and scavenger receptor (SR)-A, and inhibited the expression of SR-BI. CONCLUSIONS Our findings demonstrate an unanticipated role of ANGPTL8 in the development of atherosclerosis and regulation of foam cell formation. ANGPTL8 may be a promising new target for atherosclerosis.
Collapse
|
30
|
Chen YQ, Pottanat TG, Siegel RW, Ehsani M, Qian YW, Zhen EY, Regmi A, Roell WC, Guo H, Luo MJ, Gimeno RE, Van't Hooft F, Konrad RJ. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res 2020; 61:1203-1220. [PMID: 32487544 PMCID: PMC7397750 DOI: 10.1194/jlr.ra120000781] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Angiopoietin-like protein (ANGPTL)8 has been implicated in metabolic syndrome and reported to regulate adipose FA uptake through unknown mechanisms. Here, we studied how complex formation of ANGPTL8 with ANGPTL3 or ANGPTL4 varies with feeding to regulate LPL. In human serum, ANGPTL3/8 and ANGPTL4/8 complexes both increased postprandially, correlated negatively with HDL, and correlated positively with all other metabolic syndrome markers. ANGPTL3/8 also correlated positively with LDL-C and blocked LPL-facilitated hepatocyte VLDL-C uptake. LPL-inhibitory activity of ANGPTL3/8 was >100-fold more potent than that of ANGPTL3, and LPL-inhibitory activity of ANGPTL4/8 was >100-fold less potent than that of ANGPTL4. Quantitative analyses of inhibitory activities and competition experiments among the complexes suggested a model in which localized ANGPTL4/8 blocks the LPL-inhibitory activity of both circulating ANGPTL3/8 and localized ANGPTL4, allowing lipid sequestration into fat rather than muscle during the fed state. Supporting this model, insulin increased ANGPTL3/8 secretion from hepatocytes and ANGPTL4/8 secretion from adipocytes. These results suggest that low ANGPTL8 levels during fasting enable ANGPTL4-mediated LPL inhibition in fat tissue to minimize adipose FA uptake. During feeding, increased ANGPTL8 increases ANGPTL3 inhibition of LPL in muscle via circulating ANGPTL3/8, while decreasing ANGPTL4 inhibition of LPL in adipose tissue through localized ANGPTL4/8, thereby increasing FA uptake into adipose tissue. Excessive caloric intake may shift this system toward the latter conditions, possibly predisposing to metabolic syndrome.
Collapse
Affiliation(s)
- Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Thomas G Pottanat
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ajit Regmi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - William C Roell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Haihong Guo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - M Jane Luo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - Ferdinand Van't Hooft
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet Karolinska University Hospital Solna, Stockholm, Sweden
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| |
Collapse
|
31
|
Proprotein Convertase Subtilisin/Kexin Type 9, Angiopoietin-Like Protein 8, Sortilin, and Cholesteryl Ester Transfer Protein-Friends of Foes for Psoriatic Patients at the Risk of Developing Cardiometabolic Syndrome? Int J Mol Sci 2020; 21:ijms21103682. [PMID: 32456228 PMCID: PMC7279158 DOI: 10.3390/ijms21103682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic, immune-metabolic disease with strong genetic predispositions and autoimmune pathogenic traits. During psoriasis progression, a wide spectrum of comorbidities comes into play with the leading role of the cardio-metabolic syndrome (CMS) that occurs with the frequency of 30–50% amongst the psoriatic patients. Both conditions—psoriasis and CMS—have numerous common pathways, mainly related to proinflammatory pathways and cytokine profiles. Surprisingly, despite the years of research, the exact pathways linking the occurrence of CMS in the psoriasis population are still not fully understood. Recently published papers, both clinical and based on the basic science, shed new light into this relationship providing an insight into novel key-players proteins with plausible effects on above-mentioned interplay. Taking into account recent advances in this important medical matter, this review aims to discuss comprehensively the role of four proteins: proprotein convertase subtilisin/kexin type-9 (PSCK9), angiopoietin-like protein 8 (ANGPLT8), sortilin (SORT1), and cholesteryl ester transfer proteins (CEPT) as plausible links between psoriasis and CMS.
Collapse
|
32
|
Holmannova D, Borska L, Andrys C, Borsky P, Kremlacek J, Hamakova K, Rehacek V, Malkova A, Svadlakova T, Palicka V, Krejsek J, Fiala Z. The Impact of Psoriasis and Metabolic Syndrome on the Systemic Inflammation and Oxidative Damage to Nucleic Acids. J Immunol Res 2020; 2020:7352637. [PMID: 32537470 PMCID: PMC7256681 DOI: 10.1155/2020/7352637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Psoriasis is a chronic systemic inflammatory disease associated with a wide range of comorbidities, including metabolic syndrome (MetS). Serum calprotectin, ANGPTL8, and oxidative damage to nucleic acids might be associated with both diseases. The presented study describes the influence of psoriasis and MetS on the serum levels of markers of systemic inflammation (calprotectin and ANGPTL8) and markers of oxidative damage to nucleic acids. The applicability of serum levels of calprotectin and ANGPTL8 for monitoring of the activity of psoriasis (diagnostic markers) is also evaluated. METHODS Clinical examination (PASI score, MetS), enzyme-linked immunosorbent assay (ELISA), and Enzyme Immunoassay (EIA). Serum calprotectin, ANGPTL8, 8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine. Results and Conclusions. The psoriasis significantly increased the serum level of calprotectin and the serum level of oxidative damage to nucleic acids, however not the serum level of ANGPTL8. The presence of MetS did not significantly affect the serum levels of calprotectin, ANGPTL8, and oxidative damage to nucleic acids in either psoriasis patients or controls. It seems that the serum level of calprotectin (but not the serum level of ANGPTL8) could be used as a biomarker for monitoring the activity of psoriasis.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Lenka Borska
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Pavel Borsky
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Jan Kremlacek
- Institute of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Kvetoslava Hamakova
- Clinic of Dermatology and Venereology, University Hospital Hradec Kralove, Czech Republic
| | - Vit Rehacek
- Transfusion Center, University Hospital, Hradec Kralove 500 03, Czech Republic
| | - Andrea Malkova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Tereza Svadlakova
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Vladimir Palicka
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| | - Zdenek Fiala
- Institute of Hygiene and Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Czech Republic
| |
Collapse
|
33
|
Association of ANGPTL8 (Betatrophin) Gene Variants with Components of Metabolic Syndrome in Arab Adults. Sci Rep 2020; 10:6764. [PMID: 32317770 PMCID: PMC7174409 DOI: 10.1038/s41598-020-63850-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Angiopoietin-like protein 8 (ANGPTL8) has a role in lipid metabolism, beta-cell proliferation and diabetes progression, however, the association between different variants in the ANGPTL8 gene and metabolic syndrome (MetS) components has not been studied widely especially in Arab ethnic groups. In this study, the associations of ANGPTL8 variants on MetS risk in Saudi Arab adults were investigated. A total of 905 unrelated Saudi adults (580 healthy controls and 325 MetS) were included. MetS was screened based on the International Diabetes Federation (IDF) criteria. The genotype and allele frequency distribution of rs737337 (T/C) and rs2278426 (C/T) polymorphism in ANGPTL8 gene was studied. Participants with MetS were significantly older, had higher BMI, and rs737337 polymorphism frequency was significantly lower than in control. Furthermore, the TC + CC genotype and C allele of rs737337 (T/C) was associated with decreased risk of hypercholesterolemia and hyperglycemia [odds ratio (OR) 0.61, 95%CI 0.40-0.93, p = 0.016 and OR 0.58, 0.39-0.86, p = 0.007 respectively for hypercholesterolemia; and OR 0.66, 0.45-0.97, p = 0.032 and OR 0.65, 0.46-0.93; p = 0.016 respectively for hyperglycemia]. Similarly, CT, CT + TT genotype and T allele of rs2278426 (C/T) were associated with decreased risk of hyperglycemia (p < 0.05). In conclusion, the study suggests that the gene variants in SNPs rs 737337 (T/C) and rs 2278426 (C/T) are associated with lower risk of hypercholesterolemia and hyperglycemia. These findings supplement the growing literature supporting the role of ANGPTL8 in lipid and glucose metabolism.
Collapse
|
34
|
Zheng J, Liu J, Hong BS, Ke W, Huang M, Li Y. Circulating betatrophin/ANGPTL8 levels correlate with body fat distribution in individuals with normal glucose tolerance but not those with glucose disorders. BMC Endocr Disord 2020; 20:51. [PMID: 32299395 PMCID: PMC7161171 DOI: 10.1186/s12902-020-0531-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The relationship between betatrophin/ANGPTL8 and obesity has been investigated using body mass index (BMI); however, since BMI reflects overall adiposity rather than body fat distribution, it remains unclear whether fat deposition in different areas of the body affects betatrophin expression. Here, we investigated the correlation between circulating betatrophin levels and body fat distribution in patients with different glucose tolerance. METHODS We performed a cross-sectional study in 128 participants with impaired glucose tolerance (IGT; n = 64) or normal glucose tolerance (NGT; n = 64). Circulating betatrophin levels were detected by enzyme-linked immunosorbent assay (ELISA). Body fat distribution (subcutaneous, visceral, and limb fat) was measured by magnetic resonance imaging (MRI) and a body fat meter. RESULTS After controlling for age, sex, and BMI, betatrophin was correlated positively with visceral adipose tissue-to-subcutaneous adipose tissue ratio (VAT/SAT ratio; r = 0.339, p = 0.009) and negatively with body fat ratio (BFR; r = - 0.275, p = 0.035), left lower limb fat ratio (LLR; r = - 0.330, p = 0.011), and right lower limb fat ratio (RLR; r = - 0.288, p = 0.027) in the NGT group, with these correlations remaining after controlling for triglycerides. VAT/SAT ratio (standardized β = 0.419, p = 0.001) was independently associated with serum betatrophin levels; however, betatrophin was not associated with body fat distribution variables in the IGT group. CONCLUSIONS Circulating betatrophin levels correlated positively with VAT/SAT ratio and negatively with lower limb fat, but not with subcutaneous or upper limb fat, in individuals with normal glucose tolerance. Thus, betatrophin may be a potential biomarker for body fat distribution in individuals without glucose disorders.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Endocrinology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Juan Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Beverly S Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weijian Ke
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minmin Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
35
|
Hammad MM, Abu-Farha M, Al-Taiar A, Alam-Eldin N, Al-Sabah R, Shaban L, Al-Mulla F, Abubaker J, Rahman A. Correlation of circulating ANGPTL5 levels with obesity, high sensitivity C-reactive protein and oxidized low-density lipoprotein in adolescents. Sci Rep 2020; 10:6330. [PMID: 32286392 PMCID: PMC7156513 DOI: 10.1038/s41598-020-63076-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Angiopoietin-like proteins (ANGPTL) is a family of eight members known to play an important role in metabolic diseases. Of these, ANGPTL5 is suggested to regulate triglyceride metabolism and is increased in obesity and diabetes. However, its role in metabolic diseases in adolescents is not well-studied. In this study, we tested the hypothesis of a positive association between plasma ANGPTL5, and obesity, high sensitivity C-reactive protein (HsCRP) and oxidized low-density lipoprotein (Ox-LDL) in adolescents. Adolescents (N = 431; age 11–14 years) were randomly selected from middle schools in Kuwait. Obesity was classified by the BMI-for-age based on the WHO growth charts. Plasma ANGPTL5, HsCRP, and Ox-LDL were measured using ELISA. The prevalence of overweight and obesity was 20.65% and 33.18%, respectively. Mean (SD) plasma ANGPTL5 levels were significantly higher in obese, compared with overweight and normal-weight adolescents (23.05 (8.79) vs 18.39 (7.08) ng/mL, and 18.26 (6.95) ng/ml, respectively). ANGPTL5 was positively associated with both HsCRP (ρ=0.27, p < 0.001) and Ox-LDL (ρ = 0.24, p < 0.001). In Conclusion, ANGPTL5 levels are elevated in obese adolescents and are associated with cardiovascular disease risk factors, HsCRP and Ox-LDL. The use of ANGPTL5 as a powerful diagnostic and prognostic tool in obesity and metabolic diseases needs to be further evaluated.
Collapse
Affiliation(s)
- Maha M Hammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdullah Al-Taiar
- School of Community & Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Nada Alam-Eldin
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Reem Al-Sabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Lemia Shaban
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
36
|
Higher circulating levels of ANGPTL8 are associated with body mass index, triglycerides, and endothelial dysfunction in patients with coronary artery disease. Mol Cell Biochem 2020; 469:29-39. [PMID: 32239421 DOI: 10.1007/s11010-020-03725-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/20/2020] [Indexed: 12/25/2022]
Abstract
Bac Coronary artery disease (CAD) is the leading cause of death worldwide and most commonly develops as a result of atherosclerosis. ANGPTL8 is a secreted adipokine that regulates lipid metabolism and is associated with cardiometabolic diseases, including type 2 diabetes and CAD. However, the association between circulating ANGPTL8 levels and CAD is inconsistent among studies and the mechanism by which ANGPTL8 contributes to CAD development remains poorly understood. Here we sought to evaluate the relationship between ANGPTL8 levels and endothelial dysfunction and adipose tissue inflammation in CAD patients. Concentrations of ANGPTL8, adiponectin, TNF-α, IL6, hsCRP, ICAM-1, and VCAM-1 were measured by ELISA in serum samples from 192 CAD patients diagnosed with stenosis > 50% in at least one coronary artery by angiography and 71 individuals with normal heart function. Serum ANGPTL8 levels were significantly higher in CAD patients compared to controls (83.84 ± 23.25 ng/mL vs. 50.45 ± 17.73; p < 0.001), independent of adjustment for age, sex, BMI, smoking and statin use. ANGPTL8 could also differentiate CAD patients from controls with 82.3% specificity and 81.4% sensitivity (p < 0.001). Adiponectin levels were lower in CAD patients, while ICAM-1, VCAM-1, TNF-α, IL6, and hsCRP levels were higher compared to non-CAD controls (all p < 0.001). ANGPTL8 levels were associated with BMI in controls and with BMI, TG, and ICAM-1 in CAD patients. The presence of elevated ANGPTL8 levels in CAD patients and independent association with TG and ICAM-1 suggest a possible role related to endothelial dysfunction in the pathogenesis of atherosclerosis.
Collapse
|
37
|
Hebbar P, Abu-Farha M, Mohammad A, Alkayal F, Melhem M, Abubaker J, Al-Mulla F, Thanaraj TA. FTO Variant rs1421085 Associates With Increased Body Weight, Soft Lean Mass, and Total Body Water Through Interaction With Ghrelin and Apolipoproteins in Arab Population. Front Genet 2020; 10:1411. [PMID: 32076432 PMCID: PMC7006511 DOI: 10.3389/fgene.2019.01411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
Association studies have implicated single nucleotide polymorphisms (SNPs), particularly rs1421085, from the fat mass and obesity-associated (FTO) gene with body composition phenotypes, obesity, dietary intake, and physical activity in European, East Asian, and African populations. However, the impact of the rs1421085 variant has not been sufficiently tested in ethnic populations (such as Arabs) with high levels of obesity. Further, there is a lack of studies identifying biomarkers that interact with FTO. Therefore, we investigated the association of rs1421085 with obesity and body composition traits and metabolic biomarkers in Arab population. We genotyped rs1421085 SNP in 278 Arab individuals, where multiple biomarkers relating to obesity, inflammation, and other metabolic pathways were quantified. We performed genetic association tests under additive mode of inheritance using linear regression models and found association of rs1421085_C allele with higher levels of body weight, soft lean mass (SLM), and total body water. Examination (using linear regression models under dominant mode of inheritance) of correlation among biomarkers and interaction with genotypes at the variant revealed that measures of these three body composition traits were found mediated by interaction between carrier genotypes (TC+CC) and measures of ghrelin, ApoA1, and ApoB48. Lean body mass (LBM), to which SLM contributes, is an important determinant of physical strength and is a focal point in studies on sarcopenia. Low LBM is known to be associated with higher risk of cardiometabolic disorders. Thus, the finding on the FTO variant as a genetic determinant of SLM via interaction with ghrelin, ApoA1, and ApoB48 is important.
Collapse
Affiliation(s)
| | | | - Anwar Mohammad
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fadi Alkayal
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Motasem Melhem
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Jehad Abubaker
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | | |
Collapse
|
38
|
Leiherer A, Ebner J, Muendlein A, Brandtner EM, Zach C, Geiger K, Fraunberger P, Drexel H. High betatrophin in coronary patients protects from cardiovascular events. Atherosclerosis 2020; 293:62-68. [DOI: 10.1016/j.atherosclerosis.2019.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/24/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022]
|
39
|
Guo C, Zhao Z, Deng X, Chen Z, Tu Z, Yuan G. Regulation of angiopoietin-like protein 8 expression under different nutritional and metabolic status. Endocr J 2019; 66:1039-1046. [PMID: 31631098 DOI: 10.1507/endocrj.ej19-0263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with increasing prevalence worldwide. Angiopoietin-like protein 8 (ANGPTL8), a member of the angiopoietin-like protein family, is involved in glucose metabolism, lipid metabolism, and energy homeostasis and believed to be associated with T2DM. Expression levels of ANGPTL8 are often significantly altered in metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD) and diabetes mellitus. Studies have shown that ANGPTL8, together with other members of this protein family, such as angiopoietin-like protein 3 (ANGPTL3) and angiopoietin-like protein 4 (ANGPTL4), regulates the activity of lipoprotein lipase (LPL), thereby participating in the regulation of triglyceride related lipoproteins (TRLs). In addition, members of the angiopoietin-like protein family are varyingly expressed among different tissues and respond differently under diverse nutritional and metabolic status. These findings may provide new options for the diagnosis and treatment of diabetes, metabolic syndromes and other diseases. In this review, the interaction between ANGPTL8 and ANGPTL3 or ANGPTL4, and the differential expression of ANGPTL8 responding to different nutritional and metabolic status during the regulation of LPL activity were reviewed.
Collapse
Affiliation(s)
- Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Zian Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| |
Collapse
|
40
|
The Relationship between Circulating ANGPTL8/Betatrophin Concentrations and Adult Obesity: A Meta-Analysis. DISEASE MARKERS 2019; 2019:5096860. [PMID: 31772689 PMCID: PMC6854917 DOI: 10.1155/2019/5096860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
In this study, we evaluated the relationship between circulating betatrophin levels and obesity. Obesity is a common public health problem that is increasing globally. Betatrophin, a newly identified protein, is predominantly expressed in white and brown fat tissues and in the liver. Growing evidence suggests that betatrophin plays a pivotal role in metabolism, including the synthesis and degradation of lipids in cells, and adipocyte differentiation. Previous studies have assessed the association between circulating betatrophin levels and obesity; however, this relationship remains unclear. Therefore, our study is aimed at examining the impact of betatrophin on obesity using a meta-analysis of the current evidence. We performed a meta-analysis to quantify the relationship between betatrophin levels and obesity. A literature search was conducted through the EMBASE, Web of Science, and MEDLINE databases. Retrieved studies were screened, without any language restrictions to identify relevant literature published up to December 2018. Observational studies, in which the association between circulating concentrations of betatrophin and obesity was evaluated, were considered suitable for the systematic review. Of the 65 manuscripts retrieved, 9 datasets from 6 studies, involving 681 participants, detected an association between circulating betatrophin and obesity. Circulating betatrophin levels of obese subjects were higher than those of nonobese subjects (random − effects weighted mean difference (WMD) = 0.250 μg/mL, 95% CI: 0.048–0.451, I2 = 94.8%, p = 0.015), yet with significant between-study heterogeneity. This heterogeneity appeared to be modified by glycemic status but not by age, the ELISA kits used, sample source, or body mass index. The high circulating betatrophin concentration may directly increase the risk of obesity in adults. Betatrophin may serve as a therapeutic target for obesity in adults.
Collapse
|
41
|
The effects of overt hypothyroidism on adipose tissue and serum betatrophin levels. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.610414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
42
|
Esfahani M, Baranchi M, Goodarzi MT. The implication of hepatokines in metabolic syndrome. Diabetes Metab Syndr 2019; 13:2477-2480. [PMID: 31405664 DOI: 10.1016/j.dsx.2019.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/27/2019] [Indexed: 01/26/2023]
Abstract
Hepatokines are liver-derived proteins with equivocal roles in metabolic syndrome (MetS). These proteins have prominent role in pathogenesis of MetS component such as obesity, insulin resistance, dyslipidemia and hypertension. The identification and functional characterization of hepatokines may provide significant insights that could help in better understanding of MetS pathogenesis. Fetuin-A, Hepatocyte-derived fibrinogen-related protein 1, Fibroblast growth factor 21, Angiopoietin-related growth factor, Selenoprotein-P, Angiopoietin like proteins, Leukocyte cell-derived chemotaxin 2 are regarded as the most significant hepatokines. We describe recent data on these new hormones in progression of MetS. Understanding of the accurate role of these proteins in pathophysiology of MetS can help improving prevention and treatment of this syndrome.
Collapse
Affiliation(s)
| | | | - Mohammad Taghi Goodarzi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
43
|
Pu D, Li L, Yin J, Liu R, Yang G, Liao Y, Wu Q. Circulating ANGPTL8 Is Associated with the Presence of Metabolic Syndrome and Insulin Resistance in Polycystic Ovary Syndrome Young Women. Mediators Inflamm 2019; 2019:6321427. [PMID: 31346314 PMCID: PMC6620840 DOI: 10.1155/2019/6321427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/14/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND ANGPTL8 has been reported to be a regulator of lipid metabolism, and it is associated with insulin resistance (IR) and metabolic syndrome (MetS). We investigated whether ANGPTL8 plays a role in MetS. METHODS ANGPTL8 and adiponectin concentrations were measured in PCOS patients with or without MetS and in their corresponding healthy controls. The association of circulating ANGPTL8 with adiponectin and other parameters was also examined. RESULTS Circulating ANGPTL8 concentrations were higher in PCOS women with MetS than in those without MetS and in the controls (P < 0.01). ANGPTL8 was positively correlated with age, BMI, FAT%, WHR, SBP, TG, FBG, HbA1c, Fins, and HOMA-IR (all P < 0.01) in the study populations and negatively associated with adiponectin and M-values (P < 0.001). In addition, ANGPTL8 was positively correlated with PRL, LH, TEST, and FAI and negatively correlated with SHBG (all P < 0.01). ROC curve analyses showed that the AUCMetS was 0.87 (P < 0.001), with a sensitivity of 92.4% and specificity of 75.4%, and the AUCIR was 0.82 (P < 0.01), with a sensitivity of 76.4% and specificity of 75.6%. CONCLUSION ANGPTL8 levels progressively decrease from PCOS patients with MetS to those without MetS and may be a serum marker associated with the degree of metabolic disorders.
Collapse
Affiliation(s)
- Danlan Pu
- Department of Endocrine Nephropathy, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, 400030, China
| | - Ling Li
- Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016, China
| | - Jingxia Yin
- Department of Endocrinology, Armed Police Hospital of Chongqing, Chongqing, China
| | - Rui Liu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yong Liao
- Department of Endocrinology, Armed Police Hospital of Chongqing, Chongqing, China
| | - Qinan Wu
- Department of Endocrine Nephropathy, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, 400030, China
| |
Collapse
|
44
|
Sertogullarindan B, Komuroglu AU, Ucler R, Gunbatar H, Sunnetcioglu A, Cokluk E. Betatrophin association with serum triglyceride levels in obstructive sleep apnea patients. Ann Thorac Med 2019; 14:63-68. [PMID: 30745937 PMCID: PMC6341867 DOI: 10.4103/atm.atm_52_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common sleep problem, in which patients are at increased risk for metabolic and cardiovascular problems, including metabolic syndrome, diabetes mellitus (DM), and dyslipidemia. Betatrophin is a novel protein that regulates fatty acid and triglyceride (TG) metabolism and is related to obesity and metabolic abnormalities, including metabolic syndrome, DM, and dyslipidemia. Although OSA and betatrophin share common abnormalities, their relationship has not been investigated. AIM The aim of this study is to investigate the relationships among betatrophin, OSA, and the serum lipid profile. METHODS Ninety consecutive patients with suspected OSA underwent polysomnography (PSG) to confirm OSA. Plasma betatrophin, leptin, adiponectin, and the full lipid profile were analyzed. The patients were categorized as OSA or control based on the apnea-hypopnea index (AHI). RESULTS About 61% of patients had OSA, and 39% had normal PSG. The levels of betatrophin, leptin, and adiponectin were higher in patients with OSA (256.59 ± 29.35, 374.20 ± 37.93, and 17.86 ± 2.63 μg/mL, respectively) compared to the controls (141.86 ± 26.20, 205.53 ± 14.75, and 7.52 ± 1.02 μg/mL, respectively). Betatrophin levels were correlated with the AHI, leptin (r = 0.413, P = 0.002, r = 0.782, P = 0.000). TG levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in OSA patients compared to controls (244 ± 20.33 vs. 138 ± 14.89, and 37.21 ± 1.26 vs. 43.78 ± 1.62, respectively). The TG level was correlated with betatrophin (r = 0.353, P = 0.013). Multiple regression analysis showed that the AHI, leptin, and arousals were independent predictors of betatrophin level (B = 1.70 P = 0.046 95%, B = 0.56 P < 0.005, and B = 1, 2, P = 0.003, respectively). CONCLUSIONS Our results suggest a complex relationship between OSA, betatrophin, TG, and HDL, as well as other adipokines. Our results require further investigation to assess this complex association and re-evaluate previous related studies.
Collapse
Affiliation(s)
| | | | - Rifki Ucler
- Department of Endocrinology and Metabolism, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - Hulya Gunbatar
- Department of Pulmonary Medicine, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - Aysel Sunnetcioglu
- Department of Pulmonary Medicine, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| | - Erdem Cokluk
- Department of Medical Biochemistry, Medical Faculty, Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
45
|
Alghanim G, Qaddoumi MG, Alhasawi N, Cherian P, Al-Khairi I, Nizam R, Alkayal F, Alanbaei M, Tuomilehto J, Abubaker J, Abu-Farha M, Al-Mulla F. Higher Levels of ANGPTL5 in the Circulation of Subjects With Obesity and Type 2 Diabetes Are Associated With Insulin Resistance. Front Endocrinol (Lausanne) 2019; 10:495. [PMID: 31396158 PMCID: PMC6668602 DOI: 10.3389/fendo.2019.00495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 11/30/2022] Open
Abstract
Objective: The family of angiopoietin-like proteins (ANGPTLs) is composed of eight ANGPTLs members that are involved in regulating various metabolic processes and have been implicated in type 2 diabetes (T2D) and obesity. ANGPTL5 is an understudied member of this family that has been suggested to regulate triglyceride metabolism with a potential role in obesity. This study was designed to investigate the expression levels of ANGPTL5 protein in the circulation of subjects with obesity and T2D. Methods: A total of 204 subjects were enrolled in this cross-sectional study, of which 95 had diagnosed T2D and 109 did not (non-T2D). Within the non-T2D group, 39 subjects were obese (BMI ≥ 30 Kg/m2) and 70 were not (BMI < 30 Kg/m2). Among subjects with T2D, 61 were obese and 34 were non-obese. Circulating ANGPTL5 plasma levels were measured by enzyme-linked immunosorbent assay (ELISA). Results: In this study, we showed that ANGPTL5 levels were higher in the plasma of subjects with T2D [mean ± standard error of the mean (SEM): 5.78 ± 2.70 ng/mL] compared with individuals without T2D (mean ± SEM: 4.42 ± 2.22 ng/mL; P < 0.001). Obese and non-T2D subjects had significantly higher levels of ANGPTL5 (mean ± SEM: 5.115 ± 0.366 ng/mL) compared with non-obese, non-T2D subjects (mean ± SEM: 4.02 ± 0.271 ng/mL; P = 0.003). Similarly, among subjects with diagnosed T2D, those who were obese had higher ANGPTL5 plasma levels than non-obese subjects, although this difference did not reach statistical significance (P = 0.088). Correlation analyses revealed that ANGPTL5 levels positively associated with fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), triglycerides (TGL), and insulin resistance as measured by HOMA-IR. Conclusion: our data shows for the first time that circulating ANGPTL5 levels were higher in obese individuals and those with T2D. Further analysis will be required to better understand the interaction between ANGPTL5 and other metabolic related biomarkers to shed more light on its role in diabetes and obesity.
Collapse
Affiliation(s)
- Ghazi Alghanim
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed G. Qaddoumi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Nouf Alhasawi
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fadi Alkayal
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Muath Alanbaei
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- *Correspondence: Jehad Abubaker
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Mohamed Abu-Farha ;
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Fahd Al-Mulla
| |
Collapse
|
46
|
Luo M, Zhang Z, Peng Y, Wang S, Peng D. The negative effect of ANGPTL8 on HDL-mediated cholesterol efflux capacity. Cardiovasc Diabetol 2018; 17:142. [PMID: 30409151 PMCID: PMC6223079 DOI: 10.1186/s12933-018-0785-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
Background It is well known that angiopoietin-like protein 8 (ANGPTL8) exerts its effects on lipid metabolism through the inhibition of lipoprotein lipase and subsequent elevation of plasma triglyceride. However, it is not clear whether ANGPTL8 could affect lipid metabolism via other pathways. The study was aimed to investigate the effects of ANGPTL8 on the function of high-density lipoprotein (HDL), which plays a protective role in atherosclerosis progression. Methods Two hundred and ten subjects were recruited. Plasma ANGPTL8 was measured by enzyme-linked immunosorbent assays. Cholesterol efflux capacity was chosen as the biomarker of HDL function and measured via H3-cholesterol loading THP-1 cell models. Results ANGPTL8 exhibited no significant difference between CAD group and nonCAD group, but ANGPTL8 in DM group was significantly higher than that in the nonDM group [568.3 (406.2–836.8) vs 458.2 (356.8–755.6), P = 0.023]. Compared to controls, subjects in CAD group and DM group exhibited significantly lower cholesterol efflux capacity [CAD: 14.58 ± 2.06 vs 12.51 ± 2.83%, P < 0.0001; DM: 13.62 ± 2.57 vs 12.34 ± 3.16%, P = 0.0099]. ANGPTL8 was inversely correlated with cholesterol efflux capacity (r = − 0.188, P < 0.01). Regression analysis revealed that plasma ANGPTL8 was an independent contributor to cholesterol efflux capacity (standardized β = − 0.143, P = 0.023). Conclusion ANGPTL8 presents a negative effect on HDL-mediated cholesterol efflux capacity. Electronic supplementary material The online version of this article (10.1186/s12933-018-0785-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengdie Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139, Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Ziyu Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139, Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Yani Peng
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139, Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139, Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
47
|
Yang S, Jiao X, Huo X, Zhu M, Wang Y, Fang X, Yang Y, Yue W, Qin Y. Association between circulating full-length angiopoietin-like protein 8 and non-high-density lipoprotein cholesterol levels in Chinese non-diabetic individuals: a cross-sectional study. Lipids Health Dis 2018; 17:161. [PMID: 30021605 PMCID: PMC6052512 DOI: 10.1186/s12944-018-0802-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/15/2018] [Indexed: 01/19/2023] Open
Abstract
Background Angiopoietin-like protein 8 (ANGPTL8) is a novel hormone involved in the regulation of lipid metabolism and glucose homeostasis. There are inconsistent results regarding the association between ANGPTL8 and lipids in humans. We aimed to investigate the associations between ANGPTL8 and lipids in people without diabetes. Methods This was a cross-sectional study of 107 patients with dyslipidemia and 141 patients without. Dyslipidemia diagnosis was based on Chinese guidelines for the prevention and treatment of dyslipidemia in adults. Total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol (HDL-C) were examined. Non-HDL-C was calculated by subtracting HDL-C from TC. Circulating full-length ANGPTL8 concentrations were measured using enzyme-linked immunosorbent assay. Associations between log-transformed circulating full-length ANGPTL8 and serum lipids were examined using multivariate linear regression analysis. Results Circulating ANGPTL8 concentrations were significantly elevated in patients with dyslipidemia compared with patients without dyslipidemia. Circulating full-length ANGPTL8 concentrations were positively associated with non-HDL-C, TG and TC levels after adjusting for age, gender, body mass index, high-sensitivity C-reactive protein, alanine aminotransferase, and creatinine. Conclusion In people without diabetes, circulating full-length ANGPTL8 concentrations in patients with dyslipidemia were significantly elevated compared with non-dyslipidemia, and ANGPTL8 was positively associated with serum non-HDL-C levels. Electronic supplementary material The online version of this article (10.1186/s12944-018-0802-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Song Yang
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiaolu Jiao
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiaoguang Huo
- Zibo Central Hospital, Zibo, 255000, Shandong Province, China
| | - Miaomiao Zhu
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yi Wang
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiangnan Fang
- Kailuan General Hospital Affiliated to North China University of Science and Technology, Tangshan, 063000, Hebei Province, China
| | - Yunyun Yang
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Weidong Yue
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| | - Yanwen Qin
- Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
48
|
Zheng T, Ge B, Liu H, Chen B, Qin L, Xiao L, Song J. Triglyceride-mediated influence of serum angiopoietin-like protein 8 on subclinical atherosclerosis in type 2 diabetic patients: results from the GDMD study in China. Cardiovasc Diabetol 2018; 17:84. [PMID: 30007407 PMCID: PMC6046091 DOI: 10.1186/s12933-018-0687-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/17/2018] [Indexed: 01/12/2023] Open
Abstract
Background Hypertriglyceridemia, insulin resistance and hyperglycemia are risk factors for atherosclerosis in type 2 diabetes. Angiopoietin-like protein 8 (ANGPTL8) is a newly identified liver-derived hormone related to these risk factors. Hence, we aimed to explore the correlations between serum levels of ANGPTL8 and subclinical atherosclerosis in type 2 diabetes. Methods We measured serum ANGPTL8, blood lipids, blood glucose, common carotid artery Intima-Media Thickness (c-IMT) and calculated homeostasis model assessment of insulin resistance in (1) control subjects (n = 100), (2) type 2 diabetic patients without subclinical atherosclerosis (n = 100), and (3) type 2 diabetic patients with subclinical atherosclerosis (n = 100). Results Serum levels of ANGPTL8 and triglyceride (TG) were significantly increased in type 2 diabetic patients with subclinical atherosclerosis as compared with type 2 diabetic patients without subclinical atherosclerosis and control subjects (P < 0.001). ANGPTL8 was positively associated with age, TG, diabetes duration, and c-IMT in type 2 diabetes. Logistic regression analysis revealed that ANGPTL8 had higher odds of having subclinical atherosclerosis [odds ratio (OR) 2.90, 95% confidence interval (CI) 1.48–5.70, P = 0.002] in type 2 diabetes. Mediation analysis indicated that TG acted as a partial mediator in the relationship between ANGPTL8 and c-IMT. Conclusions TG partially mediates the positive relationship between ANGPTL8 and c-IMT. Our data provide the first evidence for a strong link between ANGPTL8 and subclinical atherosclerosis, suggesting ANGPTL8 to be a new biomarker for subclinical atherosclerosis in type 2 diabetes.
Collapse
Affiliation(s)
- Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, 212 Renmin Road, Guilin, 541199, Guangxi, People's Republic of China.
| | - Bo Ge
- Department of Urology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Hongbo Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Bo Chen
- Department of Human Anatomy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Linyuan Qin
- Department of Epidemiology and Health Statistics, Guilin Medical University, Guilin, Guangxi, People's Republic of China
| | - Liuping Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, 212 Renmin Road, Guilin, 541199, Guangxi, People's Republic of China
| | - Jianfei Song
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
49
|
El-Lebedy D. Interaction between endothelial nitric oxide synthase rs1799983, cholesteryl ester-transfer protein rs708272 and angiopoietin-like protein 8 rs2278426 gene variants highly elevates the risk of type 2 diabetes mellitus and cardiovascular disease. Cardiovasc Diabetol 2018; 17:97. [PMID: 29973202 PMCID: PMC6032560 DOI: 10.1186/s12933-018-0742-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Background The aim of the present study was to examine the association of angiopoietin-like proteins-8 (ANGPTL8) rs2278426, cholesteryl ester-transfer protein (CETP) rs708272 and endothelial nitric oxide synthase (NOS3) rs1799983 variants with type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD), and to investigate the effect of the potential interaction between these variants on disease risk. Methods Our study included 272 subjects classified into 68 patients with T2DM, 68 patients with T2DM complicated with CVD and 136 control subjects. ANGPTL8 c194C>T, CETP Taq1B and NOS3 G894T polymorphisms were genotyped using TaqMan® SNP Genotyping Assay. Results The presence of NOS3, ANGPTL8, and homozygous CETP B1 variants were associated with increased risk of T2DM by 3.07-, 2.33- and 1.75-fold, respectively. NOS3 variant was associated with 3.08-fold increased risk of CVD (95% CI 1.70–5.60), while ANGPTL8 C allele was associated with 2.8-fold increased risk of CVD in T2DM patients (95% CI 1.13–6.97). Concomitant presence of both, CETP B1 and NOS3 T allele, associated with increased risk of T2DM, CVD and CVD in T2DM by 8.36-, 6.33- and 7.87-fold, respectively, while concomitant presence of ANGPTL8 variant with either CETP B1 or NOS3 T allele was not associated with increased risk of T2DM or CVD. However, concomitant presence of the three variants together elevated the risk of T2DM by 13.22-fold (p = 0.004), CVD risk by 8.86-fold (p = 0.03) and highly elevated the risk of CVD in T2DM patients by 13.8-fold (p = 0.008). Conclusions Concomitant presence of CETP B1, NOS3 T and ANGPTL8 T alleles augments the risk of CVD and T2DM. Further studies to clarify the mechanism of gene–gene interaction in the pathogenesis of CVD and T2DM are needed.
Collapse
Affiliation(s)
- Dalia El-Lebedy
- Department of Clinical and Chemical Pathology, Medical Research Division, National Research Center, Al-Bohouth Street, Cairo, 12311, Egypt.
| |
Collapse
|
50
|
Jiao X, He J, Yang Y, Yang S, Li J, Qin Y. Associations between circulating full-length angiopoietin-like protein 8 levels and severity of coronary artery disease in Chinese non-diabetic patients: a case-control study. Cardiovasc Diabetol 2018; 17:92. [PMID: 29940978 PMCID: PMC6016144 DOI: 10.1186/s12933-018-0736-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background Angiopoietin-like protein 8 (ANGPTL8), which is a novel hormone produced in liver and adipose tissue, is involved in regulating lipid metabolism. Patients with diabetes and coronary artery disease (CAD) have remarkably higher levels of ANGPTL8 than those with only diabetes. However, no studies have investigated the involvement of ANGPTL8 in CAD in Chinese non-diabetic individuals. Therefore, we investigated full-length circulating ANGPTL8 levels in patients with CAD and the association between ANGPT8 levels and severity of CAD in Chinese individuals without diabetes. Methods We performed a case–control study in 149 Chinese non-diabetic subjects, including 80 patients with CAD and 69 controls. The Gensini stenosis scoring system was used to assess the severity of CAD. Circulating full-length ANGPTL8 levels were measured by an enzyme-linked immunosorbent assay kit. The associations between circulating full-length ANGPTL8 levels and CAD were determined by multivariate logistic regression analysis. The association between ANGPTL8 levels and Gensini scores was determined by multivariate linear regression analysis. Results Circulating full-length ANGPTL8 levels were significantly higher in Chinese non-diabetic patients with CAD compared with controls (665.90 ± 243.49 vs 462.27 ± 151.85 pg/ml, P < 0.001). After adjusting for confounding factors, we found that circulating full-length ANGPTL8 levels were an independent risk factor for CAD (odds ratio = 2.002/100 pg ANGPTL8, 95% CI 1.430–2.803, P < 0.001) and circulating ANGPTL8 levels were positively associated with the Gensini score (β = 5.701/100 pg ANGPTL8, 95% CI 1.306–10.096, P = 0.012). Conclusions This study shows that the circulating ANGPTL8 levels are significantly increased in patients with CAD compared with controls in Chinese non-diabetic individuals. Circulating full-length ANGPTL8 levels are an independent risk factor for CAD and they are positively associated with the severity of CAD. Trial registration This study was registered in the Chinese Clinical Trial Registry (No. ChiCTR-COC-17010792) Electronic supplementary material The online version of this article (10.1186/s12933-018-0736-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolu Jiao
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, China
| | - Jiqiang He
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yunyun Yang
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, China
| | - Song Yang
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, China
| | - Juan Li
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, China
| | - Yanwen Qin
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China. .,Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|