1
|
Seyedi S, Harris VK, Kapsetaki SE, Narayanan S, Saha D, Compton Z, Yousefi R, May A, Fakir E, Boddy AM, Gerlinger M, Wu C, Mina L, Huijben S, Gouge DH, Cisneros L, Ellsworth PC, Maley CC. Resistance Management for Cancer: Lessons from Farmers. Cancer Res 2024; 84:3715-3727. [PMID: 39356625 PMCID: PMC11565176 DOI: 10.1158/0008-5472.can-23-3374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/29/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
One of the main reasons we have not been able to cure cancers is that treatments select for drug-resistant cells. Pest managers face similar challenges with pesticides selecting for pesticide-resistant insects, resulting in similar mechanisms of resistance. Pest managers have developed 10 principles that could be translated to controlling cancers: (i) prevent onset, (ii) monitor continuously, (iii) identify thresholds below which there will be no intervention, (iv) change interventions in response to burden, (v) preferentially select nonchemical control methods, (vi) use target-specific drugs, (vii) use the lowest effective dose, (viii) reduce cross-resistance, (ix) evaluate success based on long-term management, and (x) forecast growth and response. These principles are general to all cancers and cancer drugs and so could be employed broadly to improve oncology. Here, we review the parallel difficulties in controlling drug resistance in pests and cancer cells. We show how the principles of resistance management in pests might be applied to cancer. Integrated pest management inspired the development of adaptive therapy in oncology to increase progression-free survival and quality of life in patients with cancers where cures are unlikely. These pest management principles have the potential to inform clinical trial design.
Collapse
Affiliation(s)
- Sareh Seyedi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shrinath Narayanan
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Daniel Saha
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Zachary Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Rezvan Yousefi
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona
| | - Alexander May
- Research Casting International, Quinte West, Ontario, Canada
| | - Efe Fakir
- Istanbul University Cerrahpasa School of Medicine, Istanbul, Turkey
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, North Carolina
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital, London, United Kingdom
| | - Christina Wu
- Division of Hematology and Medical Oncology, Department of Medicine, Mayo Clinic, Phoenix, Arizona
| | | | - Silvie Huijben
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| | - Dawn H. Gouge
- Department of Entomology, University of Arizona, Tucson, Arizona
| | - Luis Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona
| |
Collapse
|
2
|
Wangrawa DW, Odero JO, Baldini F, Okumu F, Badolo A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:119-137. [PMID: 38303659 DOI: 10.1111/mve.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.
Collapse
Affiliation(s)
- Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Département des Sciences de la Vie et de la Terre, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
3
|
Insecticide susceptibility status in two medically important mosquito vectors , Anopheles gambiae, and Culex quinquefasciatus to three insecticides commonly used in Niger State, Nigeria. Saudi J Biol Sci 2023; 30:103524. [PMID: 36660609 PMCID: PMC9843493 DOI: 10.1016/j.sjbs.2022.103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/05/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
High resistance ability on insecticides among major mosquito vectors of diseases in Nigeria is of growing concern for severe control strategies. The objective of this study was to assess the susceptibility status of females Anopheles gambiae and Culex quinquefasciatus complexes mosquitoes to permethrin (21.5 μg/bottle-pyrethroids), propoxur(12.5 μg/bottle-carbamate) and malathion (50 μg/bottle organophosphate), in Niger State, North-Central, Nigeria. Anopheline and Culecine larvae were collected from the larval habitats of the studied sites (Bosso, Katcha, Lapai, and Shiroro) larvae and pupae were identified guided by standard keys and reared to adults in troughs. Insecticide susceptibility bioassays were performed according to the CDC bottle bioassay standard operating procedures on 3 days old, sugar-fed female Anopheles and Culex mosquitoes. Post-exposure mortality after 24hr and knockdown values for KDT50 were calculated. Knock-down at 1-hour insecticide exposure ranged (84-96 %) permethrin, (94-100 %) propoxur and (100 %) malathion for An. gambiae and (86-97 %) permethrin, (92-100 %) propoxur and (96-100 %) malathion for Cx. quinquefasciatus. Mortality, after 24hr post-exposure was 100 % in malathion, indicating the high effect of the insecticide. Tested samples were found potentially resistant to permethrin recorded against mosquitoes collected from all study sites, in two locations of the study sites to propoxur and one location site to malathion. All the tested mosquitoes were found to be potentially resistant to permethrin, however, mosquitoes tested in Katcha and Shiroro resist potentially to propoxur. Except, Culex quinqufasciatus from Lapai that partially resist malathion, all the tested mosquitoes were found to be susceptible to malathion, across the study sites.
Collapse
|
4
|
Liu W, Chang T, Zhao K, Sun X, Qiao H, Yan C, Wang Y. Genome-wide annotation of cuticular protein genes in non-biting midge Propsilocerus akamusi and transcriptome analysis of their response to heavy metal pollution. Int J Biol Macromol 2022; 223:555-566. [PMID: 36356871 DOI: 10.1016/j.ijbiomac.2022.10.279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
The insect cuticle is a sophisticated chitin-protein extracellular structure for mutable functions. The cuticles varied their structures and properties in different species, and the same species but in different regions or at different stages, to fill the requirements of different functions. The alteration of cuticle structures may also be induced due to challenges by some environmental crises, such as pollution exposures. The physical properties of the cuticle were determined by the cuticle proteins (CPs) they contain. The cuticle proteins are large protein groups in all insects, which are commonly divided into different families according to their conserved protein sequence motifs. Although Chironomidae is an abundant and universal insect in global aquatic ecosystems and a popular model for aquatic toxicology, no systematic annotation of CPs was done for any species in Chironomidae before. In this work, we annotated the CP genes of Propsilocerus akamusi, the most abundant Chironomidae species in Asia. A total of 160 CP genes were identified, and 97 of them could be well classified into eight CP families: 76 CPR genes can be subdivided into three groups (further divided into three subgroups: 36 RR1 genes, 37 RR2 genes, and 3 RR3 genes), 2 CPF genes, 3 CPLCA genes, 1 CPLCG gene, 8 CPAP genes, and 3 Tweedle genes. Additionally, we analyzed the response of P. akamusi CP genes at expression level to Cu exposure, which is related to the high heavy metal tolerance and the earlier onset of pupariation in heavy metal polluted water.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Tong Chang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Kangzhu Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
5
|
Portwood NM, Shayo MF, Tungu PK, Mbewe NJ, Mlay G, Small G, Snetselaar J, Kristan M, Levy P, Walker T, Kirby MJ, Kisinza W, Mosha FW, Rowland M, Messenger LA. Multi-centre discriminating concentration determination of broflanilide and potential for cross-resistance to other public health insecticides in Anopheles vector populations. Sci Rep 2022; 12:22359. [PMID: 36572746 PMCID: PMC9792579 DOI: 10.1038/s41598-022-26990-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Novel insecticides are urgently needed to control insecticide-resistant populations of Anopheles malaria vectors. Broflanilide acts as a non-competitive antagonist of the gamma-aminobutyric acid receptor and has shown prolonged effectiveness as an indoor residual spraying product (VECTRON T500) in experimental hut trials against pyrethroid-resistant vector populations. This multi-centre study expanded upon initial discriminating concentration testing of broflanilide, using six Anopheles insectary colonies (An. gambiae Kisumu KCMUCo, An. gambiae Kisumu NIMR, An. arabiensis KGB, An. arabiensis SENN, An. coluzzii N'Gousso and An. stephensi SK), representing major malaria vector species, to facilitate prospective susceptibility monitoring of this new insecticide; and investigated the potential for cross-resistance to broflanilide via the A296S mutation associated with dieldrin resistance (rdl). Across all vector species tested, the discriminating concentration for broflanilide ranged between LC99 × 2 = 1.126-54.00 μg/ml or LC95 × 3 = 0.7437-17.82 μg/ml. Lower concentrations of broflanilide were required to induce complete mortality of An. arabiensis SENN (dieldrin-resistant), compared to its susceptible counterpart, An. arabiensis KGB, and there was no association between the presence of the rdl mechanism of resistance and survival in broflanilide bioassays, demonstrating a lack of cross-resistance to broflanilide. Study findings provide a benchmark for broflanilide susceptibility monitoring as part of ongoing VECTRON T500 community trials in Tanzania and Benin.
Collapse
Affiliation(s)
- Natalie M Portwood
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Magreth F Shayo
- Kilimanjaro Christian Medical University College, Pan African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Patrick K Tungu
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Njelembo J Mbewe
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Kilimanjaro Christian Medical University College, Pan African Malaria Vector Research Consortium, Moshi, Tanzania
| | - George Mlay
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Graham Small
- Innovative Vector Control Consortium, Liverpool, UK
| | - Janneke Snetselaar
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Innovative Vector Control Consortium, Liverpool, UK
| | - Mojca Kristan
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Prisca Levy
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Matthew J Kirby
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd., Rockville, MD, 20852, USA
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Franklin W Mosha
- Kilimanjaro Christian Medical University College, Pan African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Mark Rowland
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
6
|
Wondji CS, Hearn J, Irving H, Wondji MJ, Weedall G. RNAseq-based gene expression profiling of the Anopheles funestus pyrethroid-resistant strain FUMOZ highlights the predominant role of the duplicated CYP6P9a/b cytochrome P450s. G3 (BETHESDA, MD.) 2022; 12:jkab352. [PMID: 34718535 PMCID: PMC8727960 DOI: 10.1093/g3journal/jkab352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/10/2021] [Indexed: 12/04/2022]
Abstract
Insecticide-based interventions, notably long-lasting insecticidal nets, against mosquito vectors of malaria are currently threatened by pyrethroid resistance. Here, we contrasted RNAseq-based gene expression profiling of laboratory-resistant (FUMOZ) and susceptible (FANG) strains of the major malaria vector Anopheles funestus. Cytochrome P450 genes were the predominant over-expressed detoxification genes in FUMOZ, with high expression of the duplicated CYP6P9a (fold-change of 82.23 vs FANG) and CYP6P9b (FC 11.15). Other over-expressed P450s belonged to the same cluster of P450s corresponding to the resistance to pyrethroid 1 (rp1) quantitative trait loci (QTL) on chromosome 2R. Several Epsilon class glutathione S-transferases were also over-expressed in FUMOZ, as was the ATP-binding cassette transporter AFUN019220 (ABCA) which also exhibited between-strain alternative splicing events at exon 7. Significant differences in single-nucleotide polymorphism frequencies between strains occurred in resistance QTLs rp1 (CYP6P9a/b and CYP6AA1), rp2 on chromosome 2L (CYP6Z1, CYP6M7, and CYP6Z3), and rp3 on chromosome 3R (CYP9J5, CYP9J4, and CYP9J3). Differences were also detected in CYP4G17 and CYP4G16 genes on the X chromosome, both of which are associated with cuticular resistance in Anopheles gambiae. A close analysis of nonsynonymous diversity at the CYP6P9a/b loci revealed a drastic loss of diversity in FUMOZ with only a single polymorphism and 2 haplotypes vs 18 substitutions and 8 haplotypes in FANG. By contrast, a lowly expressed cytochrome P450 (CYP4C36) did not exhibit diversity differences between strains. We also detected the known pyrethroid resistance conferring amino acid change N384S in CYP6P9b. This study further elucidates the molecular bases of resistance in An. funestus, informing strategies to better manage widespread resistance across Africa.
Collapse
Affiliation(s)
- Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, P.O. Box 1359, Cameroon
- Entomology Unit, International Institute of Tropical Agriculture (IITA), Yaoundé, P.O. Box 2008, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, P.O. Box 1359, Cameroon
| | - Gareth Weedall
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
7
|
Molecular mechanisms of hematological and biochemical alterations in malaria: A review. Mol Biochem Parasitol 2021; 247:111446. [PMID: 34953384 DOI: 10.1016/j.molbiopara.2021.111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
Abstract
Malaria is a dangerous disease that contributes to millions of hospital visits and hundreds of thousands of deaths, especially in children residing in sub-Saharan Africa. Although several interventions such as vector control, case detection, and treatment are already in place, there is no substantive reduction in the disease burden. Several studies in the past have reported the emergence of resistant strains of malaria parasites (MPs) and mosquitoes, and poor adherence and inaccessibility to effective antimalarial drugs as the major factors for this persistent menace of malaria infections. Moreover, victory against MP infections for many years has been hampered by an incomplete understanding of the complex nature of malaria pathogenesis. Very recent studies have identified different complex interactions and hematological alterations induced by malaria parasites. However, no studies have hybridized these alterations for a better understanding of Malaria pathogenesis. Hence, this review thoroughly discusses the molecular mechanisms of all reported hematological and biochemical alterations induced by MPs infections. Specifically, the mechanisms in which MP-infection induces anemia, thrombocytopenia, leukopenia, dyslipidemia, hypoglycemia, oxidative stress, and liver and kidney malfunctions were presented. The study also discussed how MPs evade the host's immune response and suggested strategies to limit evasion of the host's immune response to combat malaria and its complications.
Collapse
|
8
|
Muhammad A, Ibrahim SS, Mukhtar MM, Irving H, Abajue MC, Edith NMA, Da’u SS, Paine MJI, Wondji CS. High pyrethroid/DDT resistance in major malaria vector Anopheles coluzzii from Niger-Delta of Nigeria is probably driven by metabolic resistance mechanisms. PLoS One 2021; 16:e0247944. [PMID: 33705436 PMCID: PMC7951933 DOI: 10.1371/journal.pone.0247944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Entomological surveillance of local malaria vector populations is an important component of vector control and resistance management. In this study, the resistance profile and its possible mechanisms was characterised in a field population of the major malaria vector Anopheles coluzzii from Port Harcourt, the capital of Rivers state, in the Niger-Delta Region of Nigeria. Larvae collected in Port-Harcourt, were reared to adulthood and used for WHO bioassays. The population exhibited high resistance to permethrin, deltamethrin and DDT with mortalities of 6.7% ± 2.4, 37.5% ± 3.2 and 6.3% ± 4.1, respectively, but were fully susceptible to bendiocarb and malathion. Synergist bioassays with piperonylbutoxide (PBO) partially recovered susceptibility, with mortalities increasing to 53% ± 4, indicating probable role of CYP450s in permethrin resistance (χ2 = 29.48, P < 0.0001). Transcriptional profiling revealed five major resistance-associated genes overexpressed in the field samples compared to the fully susceptible laboratory colony, Ngoussou. Highest fold change (FC) was observed with GSTe2 (FC = 3.3 in permethrin exposed and 6.2 in unexposed) and CYP6Z3 (FC = 1.4 in exposed and 4.6 in unexposed). TaqMan genotyping of 32 F0 females detected the 1014F and 1575Y knockdown resistance (kdr) mutations with frequencies of 0.84 and 0.1, respectively, while 1014S mutation was not detected. Sequencing of a fragment of the voltage-gated sodium channel, spanning exon 20 from 13 deltamethrin-resistant and 9 susceptible females revealed only 2 distinct haplotypes with a low haplotype diversity of 0.33. The findings of high pyrethroid resistance but with a significant degree of recovery after PBO synergist assay suggests the need to move to PBO-based nets. This could be complemented with carbamate- or organophosphate-based indoor residual spraying in this area.
Collapse
Affiliation(s)
- Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- Centre for Biotechnology Research, Bayero University, Kano, Nigeria
| | - Sulaiman S. Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- Department of Biochemistry, Bayero University, Kano, Nigeria
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Maduamaka C. Abajue
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Noutcha M. A. Edith
- Department of Animal and Environmental Biology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Sabitu S. Da’u
- Department of Science, School of Continuing Education, Bayero University, Kano, Nigeria
| | - Mark J. I. Paine
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool, United Kingdom
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| |
Collapse
|
9
|
Yavaşoglu Sİ, Ülger C, Şimşek FM. The first implementation of allele-specific primers for detecting the knockdown and acetylcholinesterase target site mutations in malaria vector, Anopheles sacharovi. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104746. [PMID: 33357539 DOI: 10.1016/j.pestbp.2020.104746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Anopheles sacharovi, a primer malaria vector species of Turkey, have a significant public health importance. It is aimed to determine the insecticide resistance status in Anopheles sacharovi populations in the Aegean and Mediterranean regions of Turkey. A total of 1638 individuals were analysed from 15 populations. Bioassay results indicated all An. sacharovi populations were resistant to DDT, malathion, fenitrothion, bendiocarb, propoxur. Many populations have begun to have resistance against permethrin and deltamethrin. Biochemical analyses results revealed that glutathione-S-transferases and P450 monooxygenases might be responsible from the mechanisms of DDT resistance; esterases and acetylcholinesterase might be responsible for organophosphate and carbamate resistance; P450 monooxygenases and esterases might be responsible for pyrethroid resistance into populations sampled from the study area. Allele-specific primers detected L1014F and L1014S mutations that provide kdr resistance against pyrethroids and DDT. Increased acetylcholinesterase insensitivity was detected while Ace-1 G119S mutations were not detected in An. sacharovi populations by using allele-specific primers. Overall results indicate the presence of multiple resistance mechanisms in Turkish An. sacharovi field populations suggesting that populations might gain resistance against all possible insecticide in the future. Therefore, insecticide resistance management strategies are urgently needed for effective vector control implementation.
Collapse
Affiliation(s)
- Sare İlknur Yavaşoglu
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010 Aydın, Turkey.
| | - Celal Ülger
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010 Aydın, Turkey.
| | - Fatih Mehmet Şimşek
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010 Aydın, Turkey.
| |
Collapse
|
10
|
Buxton M, Wasserman RJ, Nyamukondiwa C. Spatial Anopheles arabiensis (Diptera: Culicidae) insecticide resistance patterns across malaria-endemic regions of Botswana. Malar J 2020; 19:415. [PMID: 33213466 PMCID: PMC7678117 DOI: 10.1186/s12936-020-03487-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
Background Since the advent of the Green Revolution, pesticides have played an important role in the global management of invertebrate pests including vector mosquitoes. Despite optimal efficacy, insects often display insensitivity to synthetic insecticides owing to prolonged exposure that may select for resistance development. Such insecticide insensitivity may regress national and regional coordination in mosquito vector management and indeed malaria control. In Botswana, prolonged use of synthetic insecticides against malaria vectors have been practiced without monitoring of targeted mosquito species susceptibility status. Methods Here, susceptibility status of a malaria vector (Anopheles arabiensis), was assessed against World Health Organization-recommended insecticides, across three malaria endemic districts. Adult virgin female mosquitoes (2–5 days old) emerging from wild-collected larvae were exposed to standardized insecticide-impregnated papers with discriminating doses. Results The results showed resistance dynamics were variable in space, presumably as a result of spatial differences in insecticide use across malaria endemic districts and the types of insecticides used in the country. Overall, there was a reduced susceptibility of An. arabiensis for the pyrethroid lambda-cyhalothrin and for dichloro diphenyl trichloroethane [DDT], which have similar modes of action and have been used in the country for many years. The Okavango district exhibited the greatest reduction in susceptibility, followed by Ngamiland and then Bobirwa, reflective of national intervention strategy spraying intensities. Vector mosquitoes were, however, highly susceptible to carbamates and organophosphates irrespective of region. Conclusions These results provide important findings of vector susceptibility to insecticides recommended for vector control. The results highlight the need to implement insecticide application regimes that more effectively including regionally integrated resistance management strategies for effective malaria control and elimination.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.,Department of Zoology and Entomology, Rhodes University, Makhanda, 6140, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.
| |
Collapse
|
11
|
Pinda PG, Eichenberger C, Ngowo HS, Msaky DS, Abbasi S, Kihonda J, Bwanaly H, Okumu FO. Comparative assessment of insecticide resistance phenotypes in two major malaria vectors, Anopheles funestus and Anopheles arabiensis in south-eastern Tanzania. Malar J 2020; 19:408. [PMID: 33176805 PMCID: PMC7661194 DOI: 10.1186/s12936-020-03483-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used. METHODS The study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes. FINDINGS At baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (> 98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%. CONCLUSIONS In south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.
Collapse
Affiliation(s)
- Polius G Pinda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.
| | - Claudia Eichenberger
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Dickson S Msaky
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Said Abbasi
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Japhet Kihonda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Hamis Bwanaly
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro, United Republic of Tanzania. .,Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Biotechnology, Arusha, United Republic of Tanzania. .,School of Public Health, University of the Witwatersrand, Parktown, South Africa. .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
12
|
Nkemngo FN, Mugenzi LMJ, Terence E, Niang A, Wondji MJ, Tchoupo M, Nguete ND, Tchapga W, Irving H, Ntabi JDM, Agonhossou R, Boussougou-Sambe TS, Akoton RB, Koukouikila-Koussounda F, Pinilla YT, Ntoumi F, Djogbenou LS, Ghogomu SM, Ndo C, Adegnika AA, Borrmann S, Wondji CS. Multiple insecticide resistance and Plasmodium infection in the principal malaria vectors Anopheles funestus and Anopheles gambiae in a forested locality close to the Yaoundé airport, Cameroon. Wellcome Open Res 2020; 5:146. [PMID: 33204845 PMCID: PMC7667521 DOI: 10.12688/wellcomeopenres.15818.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Reducing the burden of malaria requires better understanding of vector populations, particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the Yaoundé international airport, Cameroon, including species composition, abundance, Plasmodium infection rate, insecticide resistance profiles and underlying resistance mechanisms. Methods: Blood-fed adult mosquitoes resting indoors were aspirated from houses in April 2019 at Elende, a locality situated 2 km from the Yaoundé-Nsimalen airport. Female mosquitoes were forced to lay eggs to generate F 1 adults. Bioassays were performed to assess resistance profile to the four insecticides classes. The threshold of insecticide susceptibility was defined above 98% mortality rate and mortality rates below 90% were indicative of confirmed insecticide resistance. Furthermore, the molecular basis of resistance and Plasmodium infection rates were investigated. Results: Anopheles funestus s.s. was the most abundant species in Elende (85%) followed by Anopheles gambiae s.s. (15%) with both having similar sporozoite rate. Both species exhibited high levels of resistance to the pyrethroids, permethrin and deltamethrin (<40% mortality). An. gambiae s.s. was resistant to DDT (9.9% mortality) and bendiocarb (54% mortality) while susceptible to organophosphate. An. funestus s.s. was resistant to dieldrin (1% mortality), DDT (86% mortality) but susceptible to carbamates and organophosphates. The L119F-GSTe2 resistance allele (8%) and G119S ace-1 resistance allele (15%) were detected in An. funestus s.s. and An. gambiae s.s., respectively . Furthermore, the high pyrethroid/DDT resistances in An. gambiae corresponded with an increase frequency of 1014F kdr allele (95%). Transcriptional profiling of candidate cytochrome P450 genes reveals the over-expression of CYP6P5, CYP6P9a and CYP6P9b. Conclusion: The resistance to multiple insecticide classes observed in these vector populations alongside the significant Plasmodium sporozoite rate highlights the challenges that vector control programs encounter in sustaining the regular benefits of contemporary insecticide-based control interventions in forested areas.
Collapse
Affiliation(s)
- Francis N. Nkemngo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, South West, 237, Cameroon
| | - Leon M. J. Mugenzi
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, South West, 237, Cameroon
| | - Ebai Terence
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Abdoulaye Niang
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Murielle J. Wondji
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Micareme Tchoupo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Nguiffo D. Nguete
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Williams Tchapga
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jacques D. M. Ntabi
- Fondation Congolaise pour la Recherche Medicale (FCRM), Brazzaville, Congo
- Université Marien Ngouabi, Brazzaville, Congo
| | - Romuald Agonhossou
- Institut Régional de Santé Publique, Université d'Abomey-Calavi, Cotonou, Benin
| | - Terence S. Boussougou-Sambe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Romaric B. Akoton
- Institut Régional de Santé Publique, Université d'Abomey-Calavi, Cotonou, Benin
| | - Felix Koukouikila-Koussounda
- Fondation Congolaise pour la Recherche Medicale (FCRM), Brazzaville, Congo
- Université Marien Ngouabi, Brazzaville, Congo
| | - Yudi T. Pinilla
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Medicale (FCRM), Brazzaville, Congo
- Université Marien Ngouabi, Brazzaville, Congo
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Luc S. Djogbenou
- Institut Régional de Santé Publique, Université d'Abomey-Calavi, Cotonou, Benin
| | - Stephen M. Ghogomu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, South West, 237, Cameroon
| | - Cyrille Ndo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Ayola A. Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Eberhard Karls Universität Tübingen,, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Charles S. Wondji
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
13
|
Atoyebi SM, Tchigossou GM, Akoton R, Riveron JM, Irving H, Weedall G, Tossou E, Djegbe I, Oyewole IO, Bakare AA, Wondji CS, Djouaka R. Investigating the molecular basis of multiple insecticide resistance in a major malaria vector Anopheles funestus (sensu stricto) from Akaka-Remo, Ogun State, Nigeria. Parasit Vectors 2020; 13:423. [PMID: 32811561 PMCID: PMC7436991 DOI: 10.1186/s13071-020-04296-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
Background Understanding the mechanisms used by Anopheles mosquitoes to survive insecticide exposure is key to manage existing insecticide resistance and develop more suitable insecticide-based malaria vector control interventions as well as other alternative integrated tools. To this regard, the molecular basis of permethrin, DDT and dieldrin resistance in Anopheles funestus (sensu stricto) at Akaka-Remo was investigated. Methods Bioassays were conducted on 3–5-day-old adult An. funestus (s.s.) mosquitoes for permethrin, DDT and dieldrin susceptibility test. The molecular mechanisms of mosquito resistance to these insecticides were investigated using microarray and reverse transcriptase PCR techniques. The voltage-gated sodium channel region of mosquitoes was also screened for the presence of knockdown resistance mutations (kdr west and east) by sequencing method. Results Anopheles funestus (s.s.) population was resistant to permethrin (mortality rate of 68%), DDT (mortality rate of 10%) and dieldrin (mortality rate of 8%) insecticides. Microarray and RT-PCR analyses revealed the overexpression of glutathione S-transferase genes, cytochrome P450s, esterase, trypsin and cuticle proteins in resistant mosquitoes compared to control. The GSTe2 was the most upregulated detoxification gene in permethrin-resistant (FC = 44.89), DDT-resistant (FC = 57.39) and dieldrin-resistant (FC = 41.10) mosquitoes compared to control population (FC = 22.34). The cytochrome P450 gene, CYP6P9b was also upregulated in both permethrin- and DDT-resistant mosquitoes. The digestive enzyme, trypsin (hydrolytic processes) and the cuticle proteins (inducing cuticle thickening leading to reduced insecticides penetration) also showed high involvement in insecticide resistance, through their overexpression in resistant mosquitoes compared to control. The kdr east and west were absent in all mosquitoes analysed, suggesting their non-involvement in the observed mosquito resistance. Conclusions The upregulation of metabolic genes, especially the GSTe2 and trypsin, as well as the cuticle proteins is driving insecticide resistance of An. funestus (s.s.) population. However, additional molecular analyses, including functional metabolic assays of these genes as well as screening for a possible higher cuticular hydrocarbon and lipid contents, and increased procuticle thickness in resistant mosquitoes are needed to further describe their distinct roles in mosquito resistance.![]()
Collapse
Affiliation(s)
- Seun M Atoyebi
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Genevieve M Tchigossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Romaric Akoton
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Jacob M Riveron
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Insecticide Bioscience Department, Syngenta, Toulouse, UK
| | - Helen Irving
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Gareth Weedall
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Eric Tossou
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Innocent Djegbe
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.,National University of Sciences, Technologies, Engineering and Mathematics, Ecole Normale Supérieure de Natitingou, BP 123, Natitingou, Benin
| | - Isaac O Oyewole
- Biology Department, Babcock University, Ilisan Remo, Ogun State, Nigeria
| | - Adekunle A Bakare
- Cell Biology & Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Charles S Wondji
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), Yaounde, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture, 08 BP 0932, Cotonou, Benin.
| |
Collapse
|
14
|
Nkemngo FN, Mugenzi LMJ, Terence E, Niang A, Wondji MJ, Tchoupo M, Nguete ND, Tchapga W, Irving H, Ntabi JDM, Agonhossou R, Boussougou-Sambe TS, Akoton RB, Koukouikila-Koussounda F, Pinilla YT, Ntoumi F, Djogbenou LS, Ghogomu SM, Ndo C, Adegnika AA, Borrmann S, Wondji CS. Elevated Plasmodium sporozoite infection and multiple insecticide resistance in the principal malaria vectors Anopheles funestus and Anopheles gambiae in a forested locality close to the Yaoundé airport, Cameroon. Wellcome Open Res 2020; 5:146. [PMID: 33204845 PMCID: PMC7667521 DOI: 10.12688/wellcomeopenres.15818.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 11/13/2023] Open
Abstract
Background: Reducing the burden of malaria requires better understanding of vector populations, particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the Yaoundé international airport, Cameroon, including species composition, abundance, Plasmodium infection rate, insecticide resistance profiles and underlying resistance mechanisms. Methods: Blood-fed adult mosquitoes resting indoors were aspirated from houses in April 2019 at Elende, a village located 2 km from the Yaoundé-Nsimalen airport. Female mosquitoes were forced to lay eggs to generate F 1 adult progeny. Bioassays were performed to assess resistance profile to insecticides. The threshold of insecticide susceptibility was defined above 98% mortality rate and mortality rates below 90% were indicative of confirmed insecticide resistance. Furthermore, the molecular basis of resistance and Plasmodium infection rates were investigated. Results: Anopheles funestus s.s. was most abundant species in Elende (85%) followed by Anopheles gambiae s.s. (15%) with both having a similar sporozoite rate. Both species exhibited high levels of resistance to pyrethroids (<40% mortality). An. gambiae s.s. was also resistant to DDT (9.9% mortality) and bendiocarb (54% mortality) while susceptible to organophosphate. An. funestus s.s. was resistant to dieldrin (1% mortality), DDT (86% mortality) but susceptible to carbamates and organophosphates. The L119F-GSTe2 resistance allele (8%) and G119S ace-1 resistance allele (15%) were detected in An. funestus s.s. and An. gambiae s.s., respectively . Furthermore, the high pyrethroid/DDT resistances in An. gambiae s.s. corresponded with an increase frequency of 1014F kdr allele (95%). Transcriptional profiling of candidate cytochrome P450 genes reveals the over-expression of CYP6P5, CYP6P9a and CYP6P9b. Conclusion: The resistance to multiple insecticide classes observed in these vector populations alongside the high Plasmodium sporozoite rate highlights the challenges that vector control programs encounter in sustaining the regular benefits of contemporary insecticide-based control interventions in forested areas.
Collapse
Affiliation(s)
- Francis N. Nkemngo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, South West, 237, Cameroon
| | - Leon M. J. Mugenzi
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, South West, 237, Cameroon
| | - Ebai Terence
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Abdoulaye Niang
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Murielle J. Wondji
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Micareme Tchoupo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Nguiffo D. Nguete
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Williams Tchapga
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jacques D. M. Ntabi
- Fondation Congolaise pour la Recherche Medicale (FCRM), Brazzaville, Congo
- Université Marien Ngouabi, Brazzaville, Congo
| | - Romuald Agonhossou
- Institut Régional de Santé Publique, Université d'Abomey-Calavi, Cotonou, Benin
| | - Terence S. Boussougou-Sambe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Romaric B. Akoton
- Institut Régional de Santé Publique, Université d'Abomey-Calavi, Cotonou, Benin
| | - Felix Koukouikila-Koussounda
- Fondation Congolaise pour la Recherche Medicale (FCRM), Brazzaville, Congo
- Université Marien Ngouabi, Brazzaville, Congo
| | - Yudi T. Pinilla
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Medicale (FCRM), Brazzaville, Congo
- Université Marien Ngouabi, Brazzaville, Congo
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Luc S. Djogbenou
- Institut Régional de Santé Publique, Université d'Abomey-Calavi, Cotonou, Benin
| | - Stephen M. Ghogomu
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, South West, 237, Cameroon
| | - Cyrille Ndo
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Ayola A. Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Eberhard Karls Universität Tübingen,, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Charles S. Wondji
- Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaounde, Centre Region, 237, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
15
|
Fagbohun IK, Idowu ET, Otubanjo OA, Awolola TS. First report of AChE1 (G119S) mutation and multiple resistance mechanisms in Anopheles gambiae s.s. in Nigeria. Sci Rep 2020; 10:7482. [PMID: 32366848 PMCID: PMC7198501 DOI: 10.1038/s41598-020-64412-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Susceptibility and PBO synergist bioassays were done using 3-5 days old female Anopheles mosquito collected from Lagos State, Nigeria with WHO test papers DDT (4%), permethrin (0.75%), Bendiocarb (1%) and PBO (4%) according to standard procedures. The activities of cytochrome P450s, glutathione S-transferase and carboxylesterases were determined using biochemical assays. The presence of kdr-w, kdr-e and Ace-1R mutations were examined using molecular assays. Resistance to DDT and permethrin in An gambiae s.s from the four Local Government Areas (LGAs) was recorded while suspected resistance to bendiocarb was recorded in mosquitoes from Alimosho and Kosofe LGAs. PBO synergist reduced the knockdown time and also recorded significantly (P < 0.05) higher 24 hrs percentage mortality compared to non-synergized bioassays. Increased activities of detoxifying enzymes was recorded in wild mosquito compared to the insecticides susceptible laboratory strain and this was significant (P < 0.05) in P450s, esterase α and β. Kdr-w was detected in An. gambiae s.s from all the LGAs, kdr-e (L1014S) was detected in Alimosho, Kosofe and Ibeju-Lekki, while the Ace-1R gene was detected in Alimosho and Kosofe. Results from this study provide evidence for resistance of An. gambiae from Lagos State to multiple classes of neurotoxic insecticides with multiple resistance mechanisms to these insecticides.
Collapse
|
16
|
Marcombe S, Thammavong P, Luangamath P, Chonephetsarath S, Phommavanh N, Lakeomany K, Nilaxay S, Rahmani Z, Saverton PJ, Abdullateef OH, Forward J, Jacob AE, Khadam S, Ali W, Boer C, Kakinuma H, Hawkins J, Longstreeth R, Portwood NM, Smee M, Brown N, Kuyucu NC, Lechmere S, Stieger G, Maithaviphet S, Nambanya S, Brey PT, Jones AK. Malaria and Dengue Mosquito Vectors from Lao PDR Show a Lack of the rdl Mutant Allele Responsible for Cyclodiene Insecticide Resistance. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:815-823. [PMID: 31807752 DOI: 10.1093/jme/tjz227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The gamma-aminobutyric acid (GABA) receptor, RDL, plays important roles in neuronal signaling and is the target of highly effective insecticides. A mutation in RDL, commonly A296S, underlies resistance to several insecticides such as cyclodienes. Even though the use of cyclodienes has been banned, the occurrence of mutations substituting A296 is notably high in mosquitoes from several countries. Here, we report a survey investigating the prevalence of the Rdl mutant allele in mosquitoes from Laos, a country where mosquito-borne diseases such as malaria and dengue fever are health concerns. Anopheles and Aedes mosquitoes were collected from 12 provinces in Laos. Adult bioassays on Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) showed that all the populations tested were susceptible to dieldrin (4%) following WHO protocols. Exon 7 from a total of 791 mosquitoes was sequenced to identify the amino acid encoded for at 296 of RDL. Only one of these mosquitoes, Anopheles maculatus rampae Harbach and Somboon (Diptera: Culicidae) from Attapeu, carried the mutant allele being heterozygous for A296S. We therefore found a general lack of the Rdl mutant allele indicating that mosquitoes from Laos are not exposed to insecticides that act on the GABA receptor compared to mosquitoes in several other countries. Identifying the prevalence of the Rdl mutation may help inform the potential use of alternative insecticides that act on the GABA receptor should there be a need to replace pyrethroids in order to prevent/manage resistance.
Collapse
Affiliation(s)
- Sebastien Marcombe
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Phoutmany Thammavong
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Phonesavanh Luangamath
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | | | - Nothasin Phommavanh
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Khaitong Lakeomany
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Somphat Nilaxay
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Zuhal Rahmani
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Penelope J Saverton
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Omobolanle H Abdullateef
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Jordan Forward
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Anna E Jacob
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Safina Khadam
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Wlaa Ali
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Chloé Boer
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Hayato Kakinuma
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Joseph Hawkins
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Rosie Longstreeth
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Natalie M Portwood
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Madeleine Smee
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Natasha Brown
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Nursu C Kuyucu
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Susannah Lechmere
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Gabriela Stieger
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| | - Santi Maithaviphet
- Center for Malariology, Parasitology and Entomology, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Simone Nambanya
- Center for Malariology, Parasitology and Entomology, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Paul T Brey
- Institut Pasteur du Laos, Department of Entomology, Ministry of Health, Vientiane, Lao PDR
| | - Andrew K Jones
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford, UK
| |
Collapse
|
17
|
Exploring the Mechanisms of Multiple Insecticide Resistance in a Highly Plasmodium-Infected Malaria Vector Anopheles funestus Sensu Stricto from Sahel of Northern Nigeria. Genes (Basel) 2020; 11:genes11040454. [PMID: 32331386 PMCID: PMC7230678 DOI: 10.3390/genes11040454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
The Nigerian Government is scaling up the distribution of insecticide-treated bed nets for malaria control, but the lack of surveillance data, especially in the Sudan/Sahel region of the country, may hinder targeting priority populations. Here, the vectorial role and insecticide resistance profile of a population of a major malaria vector Anopheles funestus sensu stricto from Sahel of Nigeria was characterised. An. funestus s.s. was the only vector found, with a high human blood index (100%) and a biting rate of 5.3/person/night. High Plasmodium falciparum infection was discovered (sporozoite rate = 54.55%). The population is resistant to permethrin (mortality = 48.30%, LT50 = 65.76 min), deltamethrin, DDT (dichlorodiphenyltrichloroethane) and bendiocarb, with mortalities of 29.44%, 56.34% and 54.05%, respectively. Cone-bioassays established loss of efficacy of the pyrethroid-only long-lasting insecticidal nets (LLINs); but 100% recovery of susceptibility was obtained for piperonylbutoxide (PBO)-containing PermaNet®3.0. Synergist bioassays with PBO and diethyl maleate recovered susceptibility, implicating CYP450s (permethrin mortality = 78.73%, χ2 = 22.33, P < 0.0001) and GSTs (DDT mortality = 81.44%, χ2 = 19.12, P < 0.0001). A high frequency of 119F GSTe2 mutation (0.84) was observed (OR = 16, χ2 = 3.40, P = 0.05), suggesting the preeminent role of metabolic resistance. These findings highlight challenges associated with deployment of LLINs and indoor residual spraying (IRS) in Nigeria.
Collapse
|
18
|
Djamouko-Djonkam L, Mounchili-Ndam S, Kala-Chouakeu N, Nana-Ndjangwo SM, Kopya E, Sonhafouo-Chiana N, Talipouo A, Ngadjeu CS, Doumbe-Belisse P, Bamou R, Toto JC, Tchuinkam T, Wondji CS, Antonio-Nkondjio C. Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect Dis Poverty 2019; 8:84. [PMID: 31594541 PMCID: PMC6784347 DOI: 10.1186/s40249-019-0597-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022] Open
Abstract
Background The rapid and unplanned urbanization of African cities is considered to increase the risk of urban malaria transmission. The present study objective was to assess factors influencing the spatio-temporal distribution of Anopheles gambiae s.l. larvae in the city of Yaoundé, Cameroon. Methods All water bodies were checked once every 2 months for the presence of mosquito larvae from March 2017 to May 2018 in 32 districts of Yaoundé. Physico-chemical characteristics including the size, depth, turbidity, pH, temperature, conductivity, sulfates, organophosphates, hydrogen peroxide (H2O2), conductivity, iron and calcium were recorded and analyzed according to anopheline larvae presence or absence. High resolution satellite images from landsat sentinel Enhanced Thematic Mapper were used for spatial mapping of both field and environmental variables. Bivariate and multivariate logistic regression models were used to identify variables closely associated with anopheline larvae distribution. Results A total of 18 696 aquatic habitats were checked and only 2942 sites (15.7%) contained anopheline larvae. A high number of sites with anopheline larvae (≥ 69%) presented late instar larvae (L3, L4 and pupae). Anopheline mosquito larvae were sampled from a variety of breeding sites including puddles (51.6%), tire prints (12.9%), wells (11.7%) and drains (11.3%). Bivariate logistic regression analyses associated anopheline larvae presence with the absence of predators, absence of algae, absence of vegetation and depth of less than 1 m. Conductivity, turbidity, organophosphates, H2O2 and temperature were significantly high in breeding sites with anopheline larvae than in breeding sites without these larvae (P < 0.1). Anopheline species collected included An. coluzzii (91.1%) and An. gambiae s.s. (8.9%). GIS mapping indicated a heterogeneous distribution of anopheline breeding habitats in the city of Yaoundé. Land cover analysis indicated high variability of the city of Yaoundé’s landscape. Conclusions The data confirms adaptation of An. gambiae s.l. to the urban domain in the city of Yaoundé and calls for urgent actions to improve malaria vector control.
Collapse
Affiliation(s)
- Landre Djamouko-Djonkam
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Souleman Mounchili-Ndam
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Nelly Kala-Chouakeu
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Stella Mariette Nana-Ndjangwo
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Edmond Kopya
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Nadége Sonhafouo-Chiana
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Health Sciences University of Buea, P.O. Box 63, Buea, Cameroon
| | - Abdou Talipouo
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Carmene Sandra Ngadjeu
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Patricia Doumbe-Belisse
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Faculty of Science, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Roland Bamou
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon.,Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Jean Claude Toto
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon
| | - Timoléon Tchuinkam
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067, Dschang, Cameroon
| | | | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, Organization for the fight against Endemic diseases in Central Africa (OCEAC), P.O. Box 288, Yaoundé, Cameroon. .,Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
19
|
Temporal escalation of Pyrethroid Resistance in the major malaria vector Anopheles coluzzii from Sahelo-Sudanian Region of northern Nigeria. Sci Rep 2019; 9:7395. [PMID: 31089196 PMCID: PMC6517445 DOI: 10.1038/s41598-019-43634-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/28/2019] [Indexed: 11/28/2022] Open
Abstract
Despite the highest global burden of malaria, information on bionomics and insecticide resistance status of malaria vectors is grossly lacking in the densely populated Sahelo-Sudanian region of Nigeria. To support evidence-based vector control we characterised transmission and resistance profiles of Anopheles coluzzii populations from three sites in northern Nigeria. High sporozoite infection (~19.51%) was found in the An. coluzzii populations. A high pyrethroid resistance was observed with only 1% mortality against deltamethrin, a high LD50 (96.57 µg/ml), and a high LT50 (170.27 min, resistance ratio of ~51 compared with the fully susceptible Ngoussou colony). Moderate carbamate resistance was observed. Synergist bioassays significantly recovered deltamethrin susceptibility implicating CYP450s (mortality = 85%, χ2 = 134.04, p < 0.0001) and esterases (mortality = 56%, χ2 = 47.31, p < 0.0001). Reduced bed net efficacy was also observed, with mortalities on exposure to the roof of PermaNet3.0 (PBO + deltamethrin) more than 22 times compared to the side panel (deltamethrin). TaqMan genotyping revealed a high frequency of 1014F kdr mutation (82%) with significant difference in genotype distribution associated with permethrin resistance [OR = 4.69 (CI:1.53–14.35, χ2 = 8.22 p = 0.004]. Sequencing of exons 18–21 of the VGSC led to detection of two additional nonsynonymous mutations, Ile10148Asn and Ser1156Gly. These findings highlight the threats posed by the highly resistant An. coluzzii to malaria control in Nigeria.
Collapse
|
20
|
Yavaşoglu Sİ, Yaylagül EÖ, Akıner MM, Ülger C, Çağlar SS, Şimşek FM. Current insecticide resistance status in Anopheles sacharovi and Anopheles superpictus populations in former malaria endemic areas of Turkey. Acta Trop 2019; 193:148-157. [PMID: 30742803 DOI: 10.1016/j.actatropica.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/17/2022]
Abstract
Anopheles sacharovi and Anopheles superpictus have a significant public health importance since they are primer and seconder malaria vectors of Turkey, respectively. As a result of intensive insecticide usage in historically malaria endemic regions of Turkey for long years, insecticide resistance problem has occurred inevitably. In this study, we aimed to investigate the involvement of the detoxification enzymes in insecticide resistance in Turkish An. sacharovi and An. superpictus populations in the Mediterranean and South-eastern Anatolia region where have a malaria history in the past. Bioassay results indicated that both An. sacharovi and An. superpictus populations are resistant to DDT, resistant or possible resistant to organophosphates and carbamates and finally mostly susceptible to pyrethroids. Although bioassays results indicated high DDT resistance in all mosquito populations, biochemical assays did not show significantly high GST levels in all strains. Almost all An. sacharovi and An. superpictus populations had an increased α and β esterase activity levels while nearly half of the overall populations had an increased p-NPA esterase than the control group. Elevated levels of MFO frequency have been shown in the majority of the populations. Consequently, our results reveal that biochemical resistance mechanisms may play an important role in insecticide resistance in Turkish An. sacharovi and An. superpictus populations. These results give useful cues to monitor the insecticide resistance before it spreads throughout an entire population, enabling early intervention.
Collapse
Affiliation(s)
- Sare İlknur Yavaşoglu
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010, Aydın, Turkey.
| | - Esra Örenlili Yaylagül
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010, Aydın, Turkey.
| | - Muhammet Mustafa Akıner
- Faculty of Science and Arts, Department of Biology, Recep Tayyip Erdoğan University, 53100, Rize, Turkey.
| | - Celal Ülger
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010, Aydın, Turkey.
| | - Selim Sualp Çağlar
- Faculty of Science, Department of Biology, Hacettepe University, 06800, Ankara, Turkey.
| | - Fatih Mehmet Şimşek
- Faculty of Science and Arts, Department of Biology, Adnan Menderes University, 09010, Aydın, Turkey.
| |
Collapse
|
21
|
Chen S, Qin Q, Zhong D, Fang X, He H, Wang L, Dong L, Lin H, Zhang M, Cui L, Yan G. Insecticide Resistance Status and Mechanisms of Anopheles sinensis (Diptera: Culicidae) in Wenzhou, an Important Coastal Port City in China. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:803-810. [PMID: 30715428 PMCID: PMC6467641 DOI: 10.1093/jme/tjz001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 06/04/2023]
Abstract
Although scaled-up interventions and effective control efforts have drastically reduced malaria morbidity and mortality, malaria remains a serious threat to public health worldwide. Anopheles sinensis Wiedemann 1828 is a historically important vector of Plasmodium vivax (Haemosporida: Plasmodiidae) malaria in China. Insecticide resistance has become a major obstacle to vector-borne disease control. However, little is known about the insecticide resistance of An. sinensis in Wenzhou, an important coastal port city in Zhejiang province, China. The aim of this study was to examine insecticide resistance and mechanisms in An. sinensis field mosquito populations. Evidence of multiple insecticide resistance was found in An. sinensis adult female populations. Medium to high frequencies of target site kdr together with fixed ace-1 mutations was detected in both the Ruian and Yongjia populations. Both populations showed an association between kdr L1014 mutation and resistance phenotype when tested against deltamethrin and DDT. Significantly different metabolic enzyme activities were found between the susceptible laboratory strain and field-collected mosquitoes from both Ruian and Yongjia. Both field collected An. sinensis populations exhibited significantly higher P450 enzyme activity compared with the laboratory strain, while the field-collected resistant mosquitoes exhibited various GST and COE enzyme activities. These results indicate multiple resistance mechanisms in An. sinensis field populations. Effective implementation of insecticide resistance management strategies is urgently needed. The data collected in this study will be valuable for modeling insecticide resistance spread and vector-control interventions.
Collapse
Affiliation(s)
- Shixin Chen
- College of Medical and Health, Lishui University, Lishui, China
| | - Qian Qin
- College of Medical and Health, Lishui University, Lishui, China
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA
| | - Xia Fang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Hanjiang He
- College of Medical and Health, Lishui University, Lishui, China
| | - Linlin Wang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Lingjun Dong
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Haiping Lin
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Mengqi Zhang
- Department of Parasitology, Wenzhou Medical University, Wenzhou, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA
| |
Collapse
|
22
|
Tchouakui M, Chiang MC, Ndo C, Kuicheu CK, Amvongo-Adjia N, Wondji MJ, Tchoupo M, Kusimo MO, Riveron JM, Wondji CS. A marker of glutathione S-transferase-mediated resistance to insecticides is associated with higher Plasmodium infection in the African malaria vector Anopheles funestus. Sci Rep 2019; 9:5772. [PMID: 30962458 PMCID: PMC6453935 DOI: 10.1038/s41598-019-42015-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/13/2019] [Indexed: 01/02/2023] Open
Abstract
Metabolic resistance to insecticides is threatening malaria control in Africa. However, the extent to which it impacts malaria transmission remains unclear. Here, we investigated the association between a marker of glutathione S-transferase mediated metabolic resistance and Plasmodium infection in field population of Anopheles funestus s.s. in comparison to the A296S-RDL target site mutation. The 119F-GSTe2 resistant allele was present in southern (Obout) (56%) and central (Mibellon) (25%) regions of Cameroon whereas the 296S-RDL resistant allele was detected at 98.5% and 15% respectively. The whole mosquito Plasmodium and sporozoite infection rates were 57% and 14.8% respectively in Obout (n = 508) and 19.7% and 5% in Mibellon (n = 360). No association was found between L119F-GSTe2 genotypes and whole mosquito infection status. However, when analyzing oocyst and sporozoite infection rates separately, the resistant homozygote 119F/F genotype was significantly more associated with Plasmodium infection in Obout than both heterozygote (OR = 2.5; P = 0.012) and homozygote susceptible (L/L119) genotypes (OR = 2.10; P = 0.013). In contrast, homozygote RDL susceptible mosquitoes (A/A296) were associated more frequently with Plasmodium infection than other genotypes (OR = 4; P = 0.03). No additive interaction was found between L119F and A296S. Sequencing of the GSTe2 gene showed no association between the polymorphism of this gene and Plasmodium infection. Glutathione S-transferase metabolic resistance is potentially increasing the vectorial capacity of resistant An. funestus mosquitoes. This could result in a possible exacerbation of malaria transmission in areas of high GSTe2-based metabolic resistance to insecticides.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon. .,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon. .,Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.
| | - Mu-Chun Chiang
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK
| | - Cyrille Ndo
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,University of Douala, P.O. Box 2701, Douala, Cameroon
| | - Carine K Kuicheu
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Nathalie Amvongo-Adjia
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon.,Centre for Medical Research, Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 13033, Yaoundé, Cameroon
| | - Murielle J Wondji
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK
| | - Micareme Tchoupo
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Michael O Kusimo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Jacob M Riveron
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon.,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK
| | - Charles S Wondji
- Research Unit LSTM/OCEAC, P.O. BOX 288, Yaoundé, Cameroon. .,Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon. .,Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, L35QA, Liverpool, UK.
| |
Collapse
|
23
|
Olatunbosun-Oduola A, Abba E, Adelaja O, Taiwo-Ande A, Poloma-Yoriyo K, Samson-Awolola T. Widespread Report of Multiple Insecticide Resistance in Anopheles gambiae s.l. Mosquitoes in Eight Communities in Southern Gombe, North-Eastern Nigeria. J Arthropod Borne Dis 2019; 13:50-61. [PMID: 31346535 PMCID: PMC6643017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Timely entomological and insecticide resistance monitoring is a key to generating relevant data for vector management. We investigated the insecticide susceptibility status of Anopheles gambiae s.l. in eight rural farming communities in Southern Gombe, Nigeria. METHODS Overall, 3-5 days-old adult female Anopheles mosquitoes reared from field-collected immature stages between September and November, 2014 were exposed to the diagnostic doses of pyrethroids, organophosphate and carbamate insecticides using the Center for Disease Control Bottle bioassay. The observatory knockdown time from exposure to each insecticide was recorded up to two hours. The dead mosquitoes were then identified morphologically and by molecular assays. RESULTS Mortality results showed resistance in An. gambiae s.l. populations to bendiocarb (2.3-100%), deltamethrin (39-70%), pirimiphos-methyl (65-95%), dichloro-diphenyl-trichloroethane (0-38.1%), permethrin (0-46.3%) and lambda-cyhalothrin (42.5-86.4%). The few cases of full susceptibility were observed from lamdacyhalothrin exposed population of An. gambiae s.l. in Banbam and Pantami respectively. An. gambiae 177 (45%) was significantly higher (P< 0.05) than An. arabiensis 64 (16.3%), An. coluzzii 34 (8.7%) and An. gambiae/An. coluzzii hybrid 78 (19.8%). CONCLUSION A strong evidence of widespread resistance in the major malaria vector species in Southern Gombe to all common classes of insecticides is a justification for the State Malaria Elimination Programme to consciously consider incorporating insecticide resistance management strategies into control programs in order to sustain the future of current control interventions.
Collapse
Affiliation(s)
- Adedayo Olatunbosun-Oduola
- Department of Zoology, University of Ilorin, Ilorin, Kwara State, Nigeria,Corresponding author: Dr Adedayo Olatunbosun Oduola, E-mail:
| | - Ezra Abba
- Department of Biological Sciences, Faculty of Science, Gombe State University PMB 127, Gombe, Nigeria
| | - Olukayode Adelaja
- Department of Zoology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Adeolu Taiwo-Ande
- Department of Zoology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Kennedy Poloma-Yoriyo
- Department of Biological Sciences, Faculty of Science, Gombe State University PMB 127, Gombe, Nigeria
| | - Taiwo Samson-Awolola
- Public Health Division and Epidemiology, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| |
Collapse
|
24
|
Alonso Aguirre A, Basu N, Kahn LH, Morin XK, Echaubard P, Wilcox BA, Beasley VR. Transdisciplinary and social-ecological health frameworks-Novel approaches to emerging parasitic and vector-borne diseases. Parasite Epidemiol Control 2019; 4:e00084. [PMID: 30701206 PMCID: PMC6348238 DOI: 10.1016/j.parepi.2019.e00084] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 12/21/2022] Open
Abstract
Ecosystem Health, Conservation Medicine, EcoHealth, One Health, Planetary Health and GeoHealth are inter-related disciplines that underpin a shared understanding of the functional prerequisites of health, sustainable vitality and wellbeing. All of these are based on recognition that health interconnects species across the planet, and they offer ways to more effectively tackle complex real-world challenges. Herein we present a bibliometric analysis to document usage of a subset of such terms by journals over time. We also provide examples of parasitic and vector-borne diseases, including malaria, toxoplasmosis, baylisascariasis, and Lyme disease. These and many other diseases have persisted, emerged or re-emerged, and caused great harm to human and animal populations in developed and low income, biodiverse nations around the world, largely because of societal drivers that undermined natural processes of disease prevention and control, which had developed through co-evolution over millennia. Shortcomings in addressing drivers has arisen from a lack or coordinated efforts among researchers, health stewards, societies at large, and governments. Fortunately, specialists collaborating under transdisciplinary and socio-ecological health umbrellas are increasingly integrating established and new techniques for disease modeling, prediction, diagnosis, treatment, control, and prevention. Such approaches often emphasize conservation of biodiversity for health protection, and they provide novel opportunities to increase the efficiency and probability of success.
Collapse
Affiliation(s)
- A. Alonso Aguirre
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Laura H. Kahn
- Program on Science and Global Security, Woodrow Wilson School of Public & International Affairs, Princeton University, Princeton, NJ, USA
| | - Xenia K. Morin
- Department of Plant Biology, Rutgers University, NJ, USA
| | - Pierre Echaubard
- Global Health Asia Institute, Faculty of Public Health, Mahidol University, Thailand
| | - Bruce A. Wilcox
- Global Health Asia Institute, Faculty of Public Health, Mahidol University, Thailand
| | - Val R. Beasley
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
25
|
Mashatola T, Ndo C, Koekemoer LL, Dandalo LC, Wood OR, Malakoane L, Poumachu Y, Lobb LN, Kaiser M, Bourtzis K, Munhenga G. A review on the progress of sex-separation techniques for sterile insect technique applications against Anopheles arabiensis. Parasit Vectors 2018; 11:646. [PMID: 30583746 PMCID: PMC6304763 DOI: 10.1186/s13071-018-3219-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The feasibility of the sterile insect technique (SIT) as a malaria vector control strategy against Anopheles arabiensis has been under investigation over the past decade. One of the critical steps required for the application of this technique to mosquito control is the availability of an efficient and effective sex-separation system. Sex-separation systems eliminate female mosquitoes from the production line prior to irradiation and field release of sterile males. This is necessary because female mosquitoes can transmit pathogens such as malaria and, therefore, their release must be prevented. Sex separation also increases the efficiency of an SIT programme. Various sex-separation strategies have been explored including the exploitation of developmental and behavioural differences between male and female mosquitoes, and genetic approaches. Most of these are however species-specific and are not indicated for the major African malaria vectors such as An. arabiensis. As there is currently no reliable sex-separation method for An. arabiensis, various strategies were explored in an attempt to develop a robust system that can be applied on a mass-rearing scale. The progress and challenges faced during the development of a sexing system for future pilot and/or large-scale SIT release programmes against An. arabiensis are reviewed here. Three methods of sex separation were examined. The first is the use of pupal size for gender prediction. The second is the elimination of blood-feeding adult females through the addition of an endectocide to a blood meal source. The third is the establishment of a genetic sexing strain (GSS) carrying an insecticide resistance selectable marker (dieldrin-resistance rdl gene and/or other GABA receptor antagonists that can be used as alternative insecticides to dieldrin) or a temperature-sensitive lethal marker.
Collapse
Affiliation(s)
- Thabo Mashatola
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Cyrille Ndo
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de recherche de Yaoundé (IRY), Yaoundé, Cameroon
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
- Centre for Research in Infectious Disease (CRI), Yaoundé, Cameroon
| | - Lizette L. Koekemoer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leonard C. Dandalo
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Oliver R. Wood
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lerato Malakoane
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yacouba Poumachu
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), Institut de recherche de Yaoundé (IRY), Yaoundé, Cameroon
- Vector Borne Disease Laboratory of the Applied Biology and Ecology Research Unit (VBDL-URBEA) Department of Animal Biology, Faculty of Sciences of the University of Dschang, Dschang, Cameroon
| | - Leanne N. Lobb
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Kaiser
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Givemore Munhenga
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-Disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
26
|
Tchouakui M, Riveron JM, Djonabaye D, Tchapga W, Irving H, Soh Takam P, Njiokou F, Wondji CS. Fitness Costs of the Glutathione S-Transferase Epsilon 2 (L119F-GSTe2) Mediated Metabolic Resistance to Insecticides in the Major African Malaria Vector Anopheles Funestus. Genes (Basel) 2018; 9:E645. [PMID: 30572680 PMCID: PMC6316527 DOI: 10.3390/genes9120645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 01/18/2023] Open
Abstract
Metabolic resistance to insecticides threatens malaria control. However, little is known about its fitness cost in field populations of malaria vectors, thus limiting the design of suitable resistance management strategies. Here, we assessed the association between the glutathione S-transferase GSTe2-mediated metabolic resistance and life-traits of natural populations of Anopheles funestus. A total of 1200 indoor resting blood-fed female An. funestus (F₀) were collected in Mibellon, Cameroon (2016/2017), and allowed to lay eggs individually. Genotyping of F1 mosquitoes for the L119F-GSTE2 mutation revealed that L/L119-homozygote susceptible (SS) mosquitoes significantly laid more eggs than heterozygotes L119F-RS (odds ratio (OR) = 2.06; p < 0.0001) and homozygote resistant 119F/F-RR (OR = 2.93; p < 0.0001). L/L119-SS susceptible mosquitoes also showed the higher ability for oviposition than 119F/F-RR resistant (OR = 2.68; p = 0.0002) indicating a reduced fecundity in resistant mosquitoes. Furthermore, L119F-RS larvae developed faster (nine days) than L119F-RR and L119F-SS (11 days) (X² = 11.052; degree of freedom (df) = 4; p = 0.02) suggesting a heterozygote advantage effect for larval development. Interestingly, L/L119-SS developed faster than 119F/F-RR (OR = 5.3; p < 0.0001) revealing an increased developmental time in resistant mosquitoes. However, genotyping and sequencing revealed that L119F-RR mosquitoes exhibited a higher adult longevity compared to RS (OR > 2.2; p < 0.05) and SS (OR > 2.1; p < 0.05) with an increased frequency of GSTe2-resistant haplotypes in mosquitoes of D30 after adult emergence. Additionally, comparison of the expression of GSTe2 revealed a significantly increased expression from D1-D30 after emergence of adults (Anova test (F) = 8; df= 3; p = 0.008). The negative association between GSTe2 and some life traits of An. funestus could facilitate new resistance management strategies. However, the increased longevity of GSTe2-resistant mosquitoes suggests that an increase in resistance could exacerbate malaria transmission.
Collapse
Affiliation(s)
- Magellan Tchouakui
- LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon.
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon.
| | - Jacob M Riveron
- LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK.
| | - Doumani Djonabaye
- LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon.
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon.
| | - Williams Tchapga
- LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon.
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK.
| | - Patrice Soh Takam
- Department of Mathematics, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon.
| | - Flobert Njiokou
- LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon.
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812 Yaoundé, Cameroon.
| | - Charles S Wondji
- LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK.
| |
Collapse
|
27
|
Tchigossou G, Djouaka R, Akoton R, Riveron JM, Irving H, Atoyebi S, Moutairou K, Yessoufou A, Wondji CS. Molecular basis of permethrin and DDT resistance in an Anopheles funestus population from Benin. Parasit Vectors 2018; 11:602. [PMID: 30458849 PMCID: PMC6247751 DOI: 10.1186/s13071-018-3115-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/18/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. In order to implement suitable insecticide resistance management strategies, it is necessary to understand the underlying mechanisms involved. To achieve this, the molecular basis of permethrin and DDT resistance in the principal malaria vector, Anopheles funestus from inland Benin (Kpome), was investigated. RESULTS Here, using a microarray-based genome-wide transcription and qRT-PCR analysis, we showed that metabolic resistance mechanisms through over-expression of cytochrome P450 and glutathione S-transferase genes (GSTs) are a major contributor to DDT and permethrin resistance in Anopheles funestus from Kpome. The GSTe2 gene was the most upregulated detoxification gene in both DDT- [fold-change (FC: 16.0)] and permethrin-resistant (FC: 18.1) mosquitoes suggesting that upregulation of this gene could contribute to DDT resistance and cross-resistance to permethrin. CYP6P9a and CYP6P9b genes that have been previously associated with pyrethroid resistance were also significantly overexpressed with FC 5.4 and 4.8, respectively, in a permethrin resistant population. Noticeably, the GSTs, GSTd1-5 and GSTd3, were more upregulated in DDT-resistant than in permethrin-resistant Anopheles funestus suggesting these genes are more implicated in DDT resistance. The absence of the L1014F or L1014S kdr mutations in the voltage-gated sodium channel gene coupled with the lack of directional selection at the gene further supported that knockdown resistance plays little role in this resistance. CONCLUSIONS The major role played by metabolic resistance to pyrethroids in this An. funestus population in Benin suggests that using novel control tools combining the P450 synergist piperonyl butoxide (PBO), such as PBO-based bednets, could help manage the growing pyrethroid resistance in this malaria vector in Benin.
Collapse
Affiliation(s)
- Genevieve Tchigossou
- International Institute of Tropical Agriculture, Cotonou, 08 BP 0932, Benin. .,University of Abomey Calavi, BP 526, Cotonou, Benin.
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture, Cotonou, 08 BP 0932, Benin
| | - Romaric Akoton
- International Institute of Tropical Agriculture, Cotonou, 08 BP 0932, Benin.,University of Abomey Calavi, BP 526, Cotonou, Benin
| | - Jacob M Riveron
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Helen Irving
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Seun Atoyebi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | | | | | - Charles S Wondji
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,LSTM Research Unit at the Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
28
|
Akoton R, Tchigossou GM, Djègbè I, Yessoufou A, Atoyebi MS, Tossou E, Zeukeng F, Boko P, Irving H, Adéoti R, Riveron J, Wondji CS, Moutairou K, Djouaka R. Experimental huts trial of the efficacy of pyrethroids/piperonyl butoxide (PBO) net treatments for controlling multi-resistant populations of Anopheles funestus s.s. in Kpomè, Southern Benin. Wellcome Open Res 2018; 3:71. [PMID: 30175242 PMCID: PMC6113884 DOI: 10.12688/wellcomeopenres.14589.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 01/23/2023] Open
Abstract
Background: Insecticides resistance in
Anopheles mosquitoes limits Long-Lasting Insecticidal Nets (LLIN) used for malaria control in Africa, especially Benin. This study aimed to evaluate the bio-efficacy of current LLINs in an area where
An. funestus s.l. and
An. gambiae have developed multi-resistance to insecticides, and to assess in experimental huts the performance of a mixed combination of pyrethroids and piperonyl butoxide (PBO) treated nets on these resistant mosquitoes. Methods: The study was conducted at Kpomè, Southern Benin. The bio-efficacy of LLINs against
An. funestus and An. gambiae was assessed using the World Health Organization (WHO) cone and tunnel tests. A released/recapture experiment following WHO procedures was conducted to compare the efficacy of conventional LLINs treated with pyrethroids only and LLINs with combinations of pyrethroids and PBO. Prior to huts trials, we confirmed the level of insecticide and PBO residues in tested nets using high performance liquid chromatography (HPLC). Results: Conventional LLINs (Type 2 and Type 4) have the lowest effect against local multi-resistant
An. funestus s.s. and An. coluzzii populations from Kpomè. Conversely, when LLINs containing mixtures of pyrethroids and PBO (Type 1 and Type 3) were introduced in trial huts, we recorded a greater effect against the two mosquito populations (P < 0.0001). Tunnel test with
An. funestus s.s. revealed mortalities of over 80% with this new generation of LLINs (Type 1 and Type 3),while conventional LLINs produced 65.53 ± 8.33% mortalities for Type 2 and 71.25 ±7.92% mortalities for Type 4. Similarly, mortalities ranging from 77 to 87% were recorded with the local populations of
An. coluzzii. Conclusion: This study suggests the reduced efficacy of conventional LLINs (Pyrethroids alone) currently distributed in Benin communities where
Anopheles populations have developed multi-insecticide resistance. The new generation nets (pyrethroids+PBO) proved to be more effective on multi-resistant populations of mosquitoes.
Collapse
Affiliation(s)
- Romaric Akoton
- University of Abomey, Calavi, Abomey-Calavi, 526, Benin.,AgroEcoHealth Platform, International Institute of Tropical Agriculture, Cotonou, 0932, Benin
| | - Genevieve M Tchigossou
- University of Abomey, Calavi, Abomey-Calavi, 526, Benin.,AgroEcoHealth Platform, International Institute of Tropical Agriculture, Cotonou, 0932, Benin
| | - Innocent Djègbè
- AgroEcoHealth Platform, International Institute of Tropical Agriculture, Cotonou, 0932, Benin.,National University of Sciences, Technologies, Engineering and Mathematics of Abomey, Abomey, 123, Benin
| | | | - Michael Seun Atoyebi
- AgroEcoHealth Platform, International Institute of Tropical Agriculture, Cotonou, 0932, Benin.,Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Eric Tossou
- University of Abomey, Calavi, Abomey-Calavi, 526, Benin.,AgroEcoHealth Platform, International Institute of Tropical Agriculture, Cotonou, 0932, Benin
| | - Francis Zeukeng
- Faculty of Sciences, Department of Biochemistry, University of Yaounde I, Yaounde, 812, Cameroon
| | - Pelagie Boko
- National malaria and Neglected diseases control program, Ministry of Health, Cotonou, Benin
| | - Helen Irving
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA , UK
| | - Razack Adéoti
- AgroEcoHealth Platform, International Institute of Tropical Agriculture, Cotonou, 0932, Benin
| | - Jacob Riveron
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA , UK
| | | | | | - Rousseau Djouaka
- AgroEcoHealth Platform, International Institute of Tropical Agriculture, Cotonou, 0932, Benin
| |
Collapse
|
29
|
James S, Collins FH, Welkhoff PA, Emerson C, Godfray HCJ, Gottlieb M, Greenwood B, Lindsay SW, Mbogo CM, Okumu FO, Quemada H, Savadogo M, Singh JA, Tountas KH, Touré YT. Pathway to Deployment of Gene Drive Mosquitoes as a Potential Biocontrol Tool for Elimination of Malaria in Sub-Saharan Africa: Recommendations of a Scientific Working Group †. Am J Trop Med Hyg 2018; 98:1-49. [PMID: 29882508 PMCID: PMC5993454 DOI: 10.4269/ajtmh.18-0083] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Gene drive technology offers the promise for a high-impact, cost-effective, and durable method to control malaria transmission that would make a significant contribution to elimination. Gene drive systems, such as those based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein, have the potential to spread beneficial traits through interbreeding populations of malaria mosquitoes. However, the characteristics of this technology have raised concerns that necessitate careful consideration of the product development pathway. A multidisciplinary working group considered the implications of low-threshold gene drive systems on the development pathway described in the World Health Organization Guidance Framework for testing genetically modified (GM) mosquitoes, focusing on reduction of malaria transmission by Anopheles gambiae s.l. mosquitoes in Africa as a case study. The group developed recommendations for the safe and ethical testing of gene drive mosquitoes, drawing on prior experience with other vector control tools, GM organisms, and biocontrol agents. These recommendations are organized according to a testing plan that seeks to maximize safety by incrementally increasing the degree of human and environmental exposure to the investigational product. As with biocontrol agents, emphasis is placed on safety evaluation at the end of physically confined laboratory testing as a major decision point for whether to enter field testing. Progression through the testing pathway is based on fulfillment of safety and efficacy criteria, and is subject to regulatory and ethical approvals, as well as social acceptance. The working group identified several resources that were considered important to support responsible field testing of gene drive mosquitoes.
Collapse
Affiliation(s)
- Stephanie James
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | - Michael Gottlieb
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | - Brian Greenwood
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Fredros O. Okumu
- Ifakara Health Institute, Ifakara, Tanzania
- University of Glasgow, Glasgow, Scotland
- University of the Witwatersrand, Johannesburg, South Africa
| | - Hector Quemada
- Donald Danforth Plant Science Center, Saint Louis, Missouri
| | - Moussa Savadogo
- New Partnership for Africa’s Development, Ouagadougou, Burkina Faso
| | - Jerome A. Singh
- Centre for the AIDS Programme of Research in South Africa, Durban, KwaZulu-Natal, South Africa
| | - Karen H. Tountas
- Foundation for the National Institutes of Health, Bethesda, Maryland
| | - Yeya T. Touré
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
30
|
Agegnehu F, Shimeka A, Berihun F, Tamir M. Determinants of malaria infection in Dembia district, Northwest Ethiopia: a case-control study. BMC Public Health 2018; 18:480. [PMID: 29642899 PMCID: PMC5896134 DOI: 10.1186/s12889-018-5370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the progress in reducing malaria infections and related deaths, the disease remains a major global public health problem. The problem is among the top five leading causes of outpatient visits in Dembia district of the northwest Ethiopia. Therefore, this study aimed to assess the determinants of malaria infections in the district. METHODS An institution-based case-control study was conducted in Dembia district from October to November 2016. Out of the ten health centers in the district, four were randomly selected for the study in which 370 participants (185 cases and 185 controls) were enrolled. Data were collected using a pretested structured questionnaire. Factors associated with malaria infections were determined using logistic regression analysis. Odds ratio with 95% CI was used as a measure of association, and variables with a p-value of ≤0.05 were considered as statistically significant. RESULTS The median age of all participants was 26 years, while that of cases and controls was 22 and 30 with a range of 1 to 80 and 2 to 71, respectively. In the multivariable logistic regression, over 15 years of age adjusted odds ratio(AOR) and confidence interval (CI) of (AOR = 18; 95% CI: 2.1, 161.5), being male (AOR = 2.2; 95% CI: 1.2, 3.9), outdoor activities at night (AOR = 5.7; 95% CI: 2.5, 12.7), bed net sharing (AOR = 3.9; 95% CI: 2.0, 7.7), and proximity to stagnant water sources (AOR = 2.7; 95% CI: 1.3, 5.4) were independent predictors. CONCLUSION Being in over 15 years of age group, male gender, night time activity, bed net sharing and proximity to stagnant water sources were determinant factors of malaria infection in Dembia district. Additional interventions and strategies which focus on men, outdoor work at night, household net utilization, and nearby stagnant water sources are essential to reduce malaria infections in the area.
Collapse
Affiliation(s)
| | - Alemayehu Shimeka
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Firnus Berihun
- Clinical Psychology and Counseling Unit, University of Gondar Specialized Hospital, Gondar, Ethiopia
| | - Melkamu Tamir
- Departement of Human Nutrition, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| |
Collapse
|
31
|
Huijben S, Paaijmans KP. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl 2018; 11:415-430. [PMID: 29636796 PMCID: PMC5891050 DOI: 10.1111/eva.12530] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022] Open
Abstract
Since 2000, the world has made significant progress in reducing malaria morbidity and mortality, and several countries in Africa, South America and South-East Asia are working hard to eliminate the disease. These elimination efforts continue to rely heavily on antimalarial drugs and insecticide-based interventions, which remain the cornerstones of malaria treatment and prevention. However, resistance has emerged against nearly every antimalarial drug and insecticide that is available. In this review we discuss the evolutionary consequences of the way we currently implement antimalarial interventions, which is leading to resistance and may ultimately lead to control failure, but also how evolutionary principles can be applied to extend the lifespan of current and novel interventions. A greater understanding of the general evolutionary principles that are at the core of emerging resistance is urgently needed if we are to develop improved resistance management strategies with the ultimate goal to achieve a malaria-free world.
Collapse
Affiliation(s)
- Silvie Huijben
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
| | - Krijn P. Paaijmans
- ISGlobalBarcelona Ctr. Int. Health Res. (CRESIB)Hospital Clínic ‐ Universitat de BarcelonaBarcelonaSpain
- Centro de Investigação em Saúde de ManhiçaMaputoMozambique
| |
Collapse
|
32
|
Riveron JM, Watsenga F, Irving H, Irish SR, Wondji CS. High Plasmodium Infection Rate and Reduced Bed Net Efficacy in Multiple Insecticide-Resistant Malaria Vectors in Kinshasa, Democratic Republic of Congo. J Infect Dis 2018; 217:320-328. [PMID: 29087484 PMCID: PMC5853898 DOI: 10.1093/infdis/jix570] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accounting for approximately 11% of all malaria cases, the Democratic Republic of the Congo (DRC) is central to malaria elimination efforts. To support vector control interventions in DRC, we characterized the dynamics and impact of insecticide resistance in major malaria vectors in 2015. High Plasmodium infection rates were recorded in Anopheles gambiae and Anopheles funestus, with Plasmodium falciparum predominant over Plasmodium malariae. Both mosquito species exhibited high and multiple resistance to major public health insecticide classes. The extremely high resistance to permethrin and DDT (dichlorodiphenyltrichloroethane) in An. gambiae (low mortalities after 6 hours exposure) is worrisome, and is supported by a reduced insecticidal effect of bed nets against both mosquito species in laboratory tests. Metabolic and target site insensitivity mechanisms are driving this resistance in An. gambiae, but only the former was observed in An. funestus. These findings highlight the urgent need for actions to prolong the effectiveness of insecticide-based interventions in DRC.
Collapse
Affiliation(s)
- Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
- Research Unit, Liverpool School of Tropical Medicine (LSTM)/Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC) Research Unit, Yaoundé, Cameroon
| | - Francis Watsenga
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
| | - Seth R Irish
- US President’s Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, United Kingdom
- Research Unit, Liverpool School of Tropical Medicine (LSTM)/Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC) Research Unit, Yaoundé, Cameroon
| |
Collapse
|
33
|
Tchigossou G, Akoton R, Yessoufou A, Djegbe I, Zeukeng F, Atoyebi SM, Tossou E, Moutairou K, Djouaka R. Water source most suitable for rearing a sensitive malaria vector, Anopheles funestus in the laboratory. Wellcome Open Res 2017; 2:109. [PMID: 29387806 PMCID: PMC5721565 DOI: 10.12688/wellcomeopenres.12942.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 12/03/2022] Open
Abstract
Background: The insecticide susceptibility status of
Anopheles funestus, one of the main malaria vectors in the Afrotropical regions, remains under-studied due to the difficulty of working with this mosquito species. Collecting their larvae in natural breeding sites, rearing and maintaining them in normal laboratory conditions have been a difficult task. Forced-egg laying technique has been a very good tool to generate eggs from adult mosquitoes collected from the wild but rearing these eggs to obtain satisfying portion as adults has always been the problem. In this study, we optimized the development of mosquito species larvae under standard laboratory conditions for desired production of adult mosquitoes that can be useful for insecticide susceptibility tests. Methods: A forced-egg laying technique was used to obtain eggs from gravid female
Anopheles funestus collected from Kpome locality in Benin. Eggs were reared in three different water samples (water from the borehole, and two mineral water namely FIFA and Possotômè) and larvae were fed with TetraMin baby fish food. The physico-chemical parameters of the waters were investigated prior to use for egg incubation (introduction of eggs’ batches into water). Results: In contrast to mineral water that had no contamination, the borehole water source was contaminated with lead (2.5mg/L) and nitrate (118.8mg/L). Egg hatching rates ranged as 91.9 ± 4.4%, 89.1 ± 2.5% and 87.9 ± 2.6% in FIFA, Possotômè and borehole water respectively. High emergence of larvae to adult mosquitoes was recorded as in FIFA (74.3%) and Possotômè (79.5%) water. No adult mosquito was obtained from larvae reared in borehole water. Conclusions: This study gave insight on the water sources that could be good for rearing to mass produce
An. funestus in the laboratory. More analysis with other local mineral water sources in our environments could be considered in the future, hopefully giving better outputs.
Collapse
Affiliation(s)
- Genevieve Tchigossou
- International Institute of Tropical Agriculture (IITA), Cotonou, Benin.,Laboratory of Cell Biology and Physiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Romaric Akoton
- International Institute of Tropical Agriculture (IITA), Cotonou, Benin.,Laboratory of Cell Biology and Physiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Akadiri Yessoufou
- Laboratory of Cell Biology and Physiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Innocent Djegbe
- University of Sciences, Arts and Techniques of Natitingou, Natitingou, Benin
| | - Francis Zeukeng
- International Institute of Tropical Agriculture (IITA), Cotonou, Benin.,Faculty of Science, Department of Biochemistry, University of Yaounde I, Yaounde, Cameroon
| | - Seun M Atoyebi
- International Institute of Tropical Agriculture (IITA), Cotonou, Benin.,Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Oyo State, Nigeria
| | - Eric Tossou
- International Institute of Tropical Agriculture (IITA), Cotonou, Benin.,Laboratory of Cell Biology and Physiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Kabirou Moutairou
- Laboratory of Cell Biology and Physiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture (IITA), Cotonou, Benin
| |
Collapse
|
34
|
Tchigossou GM, Akoton R, Yessoufou A, Djegbe I, Zeukeng F, Atoyebi SM, Tossou E, Moutairou K, Djouaka R. Water source most suitable for rearing a sensitive malaria vector, Anopheles funestus in the laboratory. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.12942.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The insecticide susceptibility status ofAnopheles funestus,one of the main malaria vectors in the Afrotropical regions, remains under-studied due to the difficulty of working with this mosquito species. Collecting their larvae in natural breeding sites, rearing and maintaining them in normal laboratory conditions have been a difficult task. Forced-egg laying technique has been a very good tool to generate eggs from adult mosquitoes collected from the wild but rearing these eggs to obtain satisfying portion as adults has always been the problem. In this study, we optimized the development of mosquito species larvae under standard laboratory conditions for desired production of adult mosquitoes that can be useful for insecticide susceptibility tests.Methods: A forced-egg laying technique was used to obtain eggs from gravid femaleAnopheles funestuscollected from Kpome locality in Benin. Eggs were reared in three different water samples (water from the borehole,and two mineral water namely FIFA and Possotômè) and larvae were fed with TetraMin baby fish food. The physico-chemical parameters of the waters were investigated prior to use for egg incubation.Results:In contrast to mineral water that had no contamination, the borehole water source was contaminated with lead (2.5mg/L) and nitrate (118.8mg/L). Egg hatching rates ranged as 91.9 ± 4.4%, 89.1 ± 2.5% and 87.9 ± 2.6% in FIFA, Possotômè and borehole water respectively. High emergence of larvae to adult mosquitoes was recorded as in FIFA (74.3%) and Possotômè(79.5%) water. No adult mosquito was obtained from larvae reared in borehole water.Conclusions:This study gave insight on the water sources that could be good for rearing to mass produceAn. funestusin the laboratory. More analysis with other local mineral water sources in our environments could be considered in the future, hopefully giving better outputs.
Collapse
|
35
|
Chand G, Behera P, Bang A, Singh N. Status of insecticide resistance in An. culicifacies in Gadchiroli (Maharashtra) India. Pathog Glob Health 2017; 111:362-366. [PMID: 28971738 DOI: 10.1080/20477724.2017.1378836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
An. culicifacies is the major vector of malaria in tribal community and tribal dominated areas in India. Development of resistance to insecticides is the major challenge to curb the transmission. Gadchiroli (Maharashtra) is a tribal district in central India where incidence of malaria increased from 2012 to 2015 despite indoor space spray with synthetic pyrethroids. To determine the susceptibility status of An. culicifacies against commonly used insecticides in public health program in Gadchiroli. standard WHO method and test kit were used. The insecticide impregnated papers were procured from vector control unit Malaysia. An. culicifacies found resistance to three major groups of pesticides i.e. organochlorine (DDT 4%), organophosphorous (Malathion 5%) and pyrethroids (Cyfluthrin 0.15%, Deltametherin 0.05% and Lambdacyhalothrin 0.05%). The susceptibility status in Permethrin 0.75% needs further confirmation. Development of resistance to different insecticides of varied groups is an adverse finding for the elimination of malaria, explaining the recent increase in malaria incidence in Gadchiroli. The phenomenon further needs to be studied in different locations and the susceptibility needs to test against other insecticides. The findings may have significant implications to the choice of insecticides in the malaria control program in tribal areas.
Collapse
Affiliation(s)
- Gyan Chand
- a National Institute for Research in Tribal Health , Jabalpur , India
| | - Priyamadhaba Behera
- b Society for Education, Action and Research in Community Health , Gadchiroli , India
| | - Abhay Bang
- b Society for Education, Action and Research in Community Health , Gadchiroli , India
| | - Neeru Singh
- a National Institute for Research in Tribal Health , Jabalpur , India
| |
Collapse
|
36
|
Edi AVC, N'Dri BP, Chouaibou M, Kouadio FB, Pignatelli P, Raso G, Weetman D, Bonfoh B. First detection of N1575Y mutation in pyrethroid resistant Anopheles gambiae in Southern Côte d'Ivoire. Wellcome Open Res 2017; 2:71. [PMID: 29018842 PMCID: PMC5627500 DOI: 10.12688/wellcomeopenres.12246.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Background. The intensification of insecticide use for both public health and agriculture in Africa has contributed to growing insecticide resistance. Today, resistance to World Health Organization (WHO)-approved insecticide classes is widespread. In an agricultural area of Southern Côte d’Ivoire, the main malaria vector
Anopheles coluzzii shows multiple resistance across insecticides mediated by both target site mutation and metabolic mechanisms. To plan new vector control strategies and avert future resistance liabilities caused by cross-resistance mechanisms extant within populations, it is crucial to monitor the development and spread of both resistance and mechanisms. Methods. Larvae of
Anopheles gambiae were collected from natural breeding sites in Tiassalé and Elibou, between April and November 2016 and raised to adults
. Adult female non-blood fed mosquitoes, three to five days old, were exposed to deltamethrin in WHO bioassays. Extracted DNA samples from exposed mosquitoes were used for species characterisation and genotyping. Results. Most adult
An. gambiae tested were resistant to deltamethrin, with mortality rates of only 25% in Tiassalé and 4.4% in Elibou. Molecular analysis of DNA from samples tested showed the presence of both
An. coluzzii and
An. gambiae s.s in Elibou and only
An. coluzzii for Tiassalé. As previously, the L1014F
kdr mutation was present at high frequency (79%) in Tiassalé and the L1014S mutation was absent. The N1575Y mutation, which amplifies resistance conferred by L1014F was detected in a single unique individual from a Tiassalé
An. coluzzii female whereas in Elibou 1575Y was present in 10
An. gambiae s.s, but not in
An. coluzzii. Conclusion. This is the first report of the N1575Y mutation in Côte d’Ivoire, and as in other populations, it is found in both dominant West African malaria vector species. Continued monitoring of N1575Y is underway, as are studies to elucidate its contribution to the resistance of local vector populations.
Collapse
Affiliation(s)
- Ako Victorien Constant Edi
- Research and Development Department, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303, Cote d'Ivoire
| | - Bedjou Prisca N'Dri
- Research and Development Department, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303, Cote d'Ivoire.,Swiss Tropical and Public Health Institute, Basel, CH-4051 , Switzerland.,University of Basel, Basel, CH-4002 , Switzerland
| | - Mouhamadou Chouaibou
- Research and Development Department, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303, Cote d'Ivoire
| | - Fondjo Behi Kouadio
- Research and Development Department, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303, Cote d'Ivoire
| | - Patricia Pignatelli
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, , L3 5QA, UK
| | - Giovanna Raso
- Swiss Tropical and Public Health Institute, Basel, CH-4051 , Switzerland.,University of Basel, Basel, CH-4002 , Switzerland
| | - David Weetman
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, , L3 5QA, UK
| | - Bassirou Bonfoh
- Research and Development Department, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, 01 BP 1303, Cote d'Ivoire.,Swiss Tropical and Public Health Institute, Basel, CH-4051 , Switzerland
| |
Collapse
|
37
|
Irving H, Wondji CS. Investigating knockdown resistance (kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles funestus across Africa. BMC Genet 2017; 18:76. [PMID: 28793859 PMCID: PMC5549319 DOI: 10.1186/s12863-017-0539-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022] Open
Abstract
Background Understanding the molecular basis of insecticide resistance is key to improve the surveillance and monitoring of malaria vector populations under control. In the major malaria vector Anopheles funestus, little is currently known about the role of the knockdown resistance (kdr) mechanism. Here, we investigated the presence and contribution of knockdown resistance (kdr) to pyrethroids/DDT resistance observed in Anopheles funestus across Africa. Results Pyrosequencing genotyping and sequencing of the voltage gated sodium channel (VGSC) gene did not detect the common L1014F mutation in field collected An. funestus across Africa. Amplification and cloning of the full-length of the sodium channel gene in pyrethroid resistant mosquitoes revealed evidences of alternative splicing events with three transcripts of 2092, 2061 and 2117 amino acids (93% average similarity to An. gambiae). Several amino acid changes were detected close to the domain II of the protein such as L928R, F938 W, I939S, L802S and T1008 M. However, all these mutations are found at low frequency and their role in pyrethroid resistance could not be established. The presence of the exclusive alternative splicing at exon 19 was not associated with resistance phenotype. Analysis of patterns of genetic diversity of the VGSC gene revealed a high polymorphism level of this gene across Africa with no evidence of directional selection suggesting a limited role for knockdown resistance in pyrethroid resistance in An. funestus. Patterns of genetic differentiation correlate with previous observations of the existence of barriers to gene flow Africa-wide with southern population significantly differentiated from other regions. Conclusion Despite an apparent limited role of knockdown resistance in An. funestus, it is necessary to continue to monitor the contribution of the mutations detected here as increasing selection from insecticide-based interventions may change the dynamic in field populations as previously observed in other vectors. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0539-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,LSTM research Unit at the Organisation de Coordination pour la lutte contre les Endemies en Afrique Centrale, P.O Box 288, Yaoundé, Cameroon.
| |
Collapse
|
38
|
Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa. G3-GENES GENOMES GENETICS 2017; 7:1819-1832. [PMID: 28428243 PMCID: PMC5473761 DOI: 10.1534/g3.117.040147] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies.
Collapse
|