1
|
Garba MN, M Moustapha L, Sow D, Karimoun A, Issa I, Sanoussi MK, Diallo MA, Doutchi M, Diongue K, Ibrahim ML, Ndiaye D, Badiane AS. Circulation of Non- falciparum Species in Niger: Implications for Malaria Diagnosis. Open Forum Infect Dis 2024; 11:ofae474. [PMID: 39282631 PMCID: PMC11394099 DOI: 10.1093/ofid/ofae474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Niger's National Malaria Control Programme and its partners use histidine-rich protein 2-based RDTs, which are specific to Plasmodium falciparum diagnosis. This study aimed to screen for the circulation of non-falciparum species in Zinder, a region of Niger, West Africa. Methods A cross-sectional study was carried out from July to December 2022 at the district hospital of the Zinder region of Niger. P falciparum histidine-rich protein 2-based rapid diagnostic tests were performed, and dried blood spot samples were collected for further laboratory multiplexed photo-induced electron transfer-polymerase chain reaction (PET-PCR) analysis on positive light microscopy from all patients with fever who attended the Zinder district hospital during the study period. Results In total, 340 dried blood spots were collected and analyzed by PET-PCR. Overall, 73.2% (95% CI, 68.2%-77.9%; 249/340) were positive for Plasmodium genus and species and represented the study population. Plasmodium species proportions were 89.5% (95% CI, 85.1%-93.1%; 223/249) for P falciparum, 38.5% (95% CI, 32.5%-44.9%; 96/249) for P malariae, 10.8% (95% CI, 7.3%-15.4%; 27/249) for P vivax, and 1.6% (95% CI, .4%-4.1%; 4/249) for P ovale. Single infection with Plasmodium species counted for 61.8% (95% CI, 55.5%-67.9%; 154/249), and the mixed infections rate, with at least 2 Plasmodium species, was 38.1% (95% CI, 32.1%-44.5%; 95/249). Single non-falciparum infections represented a rate of 10.0% (95% CI, 6.6%-14.5%; 25/249). Conclusion This study confirms the first evidence of Plasmodium vivax by PET-PCR in Niger in addition to the other 3 Plasmodium species. These findings underline the need to adapt malaria diagnostic tools and therapeutic management, as well as the training of microscopists, for recognition of non-falciparum plasmodial species circulating in the country. This will better inform the strategies toward malaria control and elimination, as well as the decision making of the health authorities of Niger.
Collapse
Affiliation(s)
- Mamane N Garba
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | - Lamine M Moustapha
- Faculté des Sciences et Techniques, Université André Salifou de Zinder, Niger
| | - Djiby Sow
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | | | - Ibrahima Issa
- Centre de Recherche Médicale et Sanitaire de Niamey, Niger
| | - Mamane K Sanoussi
- Programme National de Lutte contre le Paludisme/National Malaria Control Programme, Niamey, Niger
| | - Mamadou A Diallo
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | - Mahamadou Doutchi
- Faculté des Sciences de la Santé, Université André Salifou de Zinder, Niger
| | - Khadim Diongue
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | | | - Daouda Ndiaye
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| | - Aida S Badiane
- Centre International de Recherche et de Formation en Génomique Appliquée et de Surveillance Sanitaire, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop de Dakar, Sénégal
| |
Collapse
|
2
|
Aninagyei E, Puopelle DM, Tukwarlba I, Ghartey-Kwansah G, Attoh J, Adzakpah G, Acheampong DO. Molecular speciation of Plasmodium and multiplicity of P. falciparum infection in the Central region of Ghana. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002718. [PMID: 38236793 PMCID: PMC10796036 DOI: 10.1371/journal.pgph.0002718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
Malaria is endemic in the Central region of Ghana, however, the ecological and the seasonal variations of Plasmodium population structure and the intensity of malaria transmission in multiple sites in the region have not been explored. In this cross-sectional study, five districts in the region were involved. The districts were Agona Swedru, Assin Central and Gomoa East (representing the forest zone) and Abura-Asebu-Kwamankese and Cape Coast representing the coastal zone. Systematically, blood samples were collected from patients with malaria. The malaria status was screened with a rapid diagnostic test (RDT) kit (CareStart manufactured by Access Bio in Somerset, USA) and the positive ones confirmed microscopically. Approximately, 200 μL of blood was used to prepare four dried blood spots of 50μL from each microscopy positive sample. The Plasmodium genome was sequenced at the Malaria Genome Laboratory (MGL) of Wellcome Sanger Institute (WSI), Hinxton, UK. The single nucleotide polymorphisms (SNPs) in the parasite mitochondria (PfMIT:270) core genome aided the species identification of Plasmodium. Subsequently, the complexity of infection (COI) was determined using the complexity of infection likelihood (COIL) computational analysis. In all, 566 microscopy positive samples were sequenced. Of this number, Plasmodium genome was detected in 522 (92.2%). However, whole genome sequencing was successful in 409/522 (72.3%) samples. In total, 516/522 (98.8%) of the samples contained P. falciparum mono-infection while the rest (1.2%) were either P. falciparum/P. ovale (Pf/Po) (n = 4, 0.8%) or P. falciparum/P. malariae/P. vivax (Pf/Pm/Pv) mixed-infection (n = 2, 0.4%). All the four Pf/Po infections were identified in samples from the Assin Central municipality whilst the two Pf/Pm/Pv triple infections were identified in Abura-Asebu-Kwamankese district and Cape Coast metropolis. Analysis of the 409 successfully sequenced genome yielded between 1-6 P. falciparum clones per individual infection. The overall mean COI was 1.78±0.92 (95% CI: 1.55-2.00). Among the study districts, the differences in the mean COI between ecological zones (p = 0.0681) and seasons (p = 0.8034) were not significant. However, regression analysis indicated that the transmission of malaria was more than twice among study participants aged 15-19 years (OR = 2.16, p = 0.017) and almost twice among participants aged over 60 years (OR = 1.91, p = 0.021) compared to participants between 20-59 years. Between genders, mean COI was similar except in Gomoa East where females recorded higher values. In conclusion, the study reported, for the first time, P. vivax in Ghana. Additionally, intense malaria transmission was found to be higher in the 15-19 and > 60 years, compared to other age groups. Therefore, active surveillance for P. vivax in Ghana and enhanced malaria control measures in the 15-19 year group years and those over 60 years are recommended.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Dakorah Mavis Puopelle
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Isaac Tukwarlba
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Juliana Attoh
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Godwin Adzakpah
- Department of Health Information Management, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Sciences, School of Allied Health Science, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
3
|
Tokponnon TF, Ossè R, Yovogan B, Guidi E, Adoha CJ, Sominanhouin A, Ahouandjinou J, Sidick A, Akogbeto MC. Presence of Plasmodium vivax in Anopheles gambiae and absence in other malaria vectors in Cove-Zagnanando-Ouinhi health zone in southern Benin, West Africa. Malar J 2024; 23:20. [PMID: 38225627 PMCID: PMC10790420 DOI: 10.1186/s12936-023-04834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Malaria remains a major public health problem in sub-Saharan Africa, particularly in Benin. The present study aims to evaluate the different Plasmodium species transmitted by malaria vectors in the communes of Cove, Zagnanado and Ouinhi, Southern Benin. METHODS The study was conducted between December 2021 and October 2022 in 60 villages spread over the three study communes. Adult mosquitoes were collected from four houses in each village using human landing catches (HLCs). After morphological identification, a subsample of Anopheles gambiae, Anopheles funestus and Anopheles nili was analysed by PCR to test for their infection to the different Plasmodium species. RESULTS Anopheles gambiae was collected at higher frequency in all the three study communes, representing 93.5% (95% CI 92.9-94) of all collected mosquitoes (n = 10,465). In total, five molecular species were found, An. gambiae sensu stricto (s.s.) and Anopheles coluzzii of the Gambiae complex, An. funestus and Anopheles leesoni of the Funestus group, and An. nili s.s., the sole species of the Nili group. From the five molecular species, four (An. gambiae s.s., An. coluzzii, An. funestus s.s. and An. nili s.s.) were found to be infected. Plasmodium falciparum was the main Plasmodium species in the study area, followed by Plasmodium vivax and Plasmodium ovale. Only An. gambiae s.s. was infected with all three Plasmodium species, while An. coluzzii was infected with two species, P. falciparum and P. vivax. CONCLUSIONS Plasmodium falciparum was the only species tested for in malaria vectors in Benin, and remains the only one against which most control tools are directed. It is, therefore, necessary that particular attention be paid to secondary Plasmodium species for an efficient control of the disease. The presence of P. vivax emphasizes the need for an update of case management for malaria.
Collapse
Affiliation(s)
- Tatchémè Filémon Tokponnon
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou, Benin.
- Ecole Polytechnique d'Abomey Calavi, Université d'Abomey-Calavi, Abomey-Calavi, Benin.
| | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou, Benin
- Ecole de Gestion et d'Exploitation des Systèmes d'Elevage, Université Nationale d'Agriculture, Ketou, Benin
| | - Boulais Yovogan
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou, Benin
- Faculté des Sciences et Techniques, Université d'Abomey Calavi, Abomey-Calavi, Benin
| | - Ella Guidi
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou, Benin
- Ecole Polytechnique d'Abomey Calavi, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Constantin J Adoha
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou, Benin
- Faculté des Sciences et Techniques, Université d'Abomey Calavi, Abomey-Calavi, Benin
| | - André Sominanhouin
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou, Benin
| | - Juvenal Ahouandjinou
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou, Benin
| | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou, Benin
| | - Martin C Akogbeto
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou, Benin
| |
Collapse
|
4
|
Ahmed S, Pestana K, Ford A, Elfaki M, Gamil E, Elamin AF, Hamad SO, Elfaki TM, Abukashawa SMA, Lo E, Abdel Hamid MM. Prevalence and distribution of Plasmodium vivax Duffy Binding Protein gene duplications in Sudan. PLoS One 2023; 18:e0287668. [PMID: 37471337 PMCID: PMC10358875 DOI: 10.1371/journal.pone.0287668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Plasmodium vivax Duffy Binding Protein (PvDBP) is essential for interacting with Duffy antigen receptor for chemokines (DARC) on the surface of red blood cells to allow invasion. Earlier whole genome sequence analyses provided evidence for the duplications of PvDBP. It is unclear whether PvDBP duplications play a role in recent increase of P. vivax in Sudan and in Duffy-negative individuals. In this study, the prevalence and type of PvDBP duplications, and its relationship to demographic and clinical features were investigated. A total of 200 malaria-suspected blood samples were collected from health facilities in Khartoum, River Nile, and Al-Obied. Among them, 145 were confirmed to be P. vivax, and 43 (29.7%) had more than one PvDBP copies with up to four copies being detected. Both the Malagasy and Cambodian types of PvDBP duplication were detected. No significant difference was observed between the two types of duplications between Duffy groups. Parasitemia was significantly higher in samples with the Malagasy-type than those without duplications. No significant difference was observed in PvDBP duplication prevalence and copy number among study sites. The functional significance of PvDBP duplications, especially those Malagasy-type that associated with higher parasitemia, merit further investigations.
Collapse
Affiliation(s)
- Safaa Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Zoology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Kareen Pestana
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States of America
| | - Mohammed Elfaki
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Eiman Gamil
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Arwa F. Elamin
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Samuel Omer Hamad
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Tarig Mohamed Elfaki
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- National Malaria Control Program, Federal Ministry of Health, Khartoum, Sudan
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | | |
Collapse
|
5
|
Abebe A, Bouyssou I, Mabilotte S, Dugassa S, Assefa A, Juliano JJ, Lo E, Menard D, Golassa L. Potential hidden Plasmodium vivax malaria reservoirs from low parasitemia Duffy-negative Ethiopians: Molecular evidence. PLoS Negl Trop Dis 2023; 17:e0011326. [PMID: 37399221 PMCID: PMC10348516 DOI: 10.1371/journal.pntd.0011326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The interaction between the Plasmodium vivax Duffy-binding protein and the corresponding Duffy Antigen Receptor for Chemokines (DARC) is primarily responsible for the invasion of reticulocytes by P. vivax. The Duffy-negative host phenotype, highly prevalent in sub-Saharan Africa, is caused by a single point mutation in the GATA-1 transcription factor binding site of the DARC gene promoter. The aim of this study was to assess the Duffy status of patients with P. vivax infection from different study sites in Ethiopia. METHODS A cross-sectional study was conducted from February 2021 to September 2022 at five varying eco-epidemiological malaria endemic sites in Ethiopia. Outpatients who were diagnosed with P. vivax infection (pure and mixed P. vivax/P. falciparum) by microscopy and Rapid Diagnostic Test (RDT) were subjected to PCR genotyping at the DARC promoter. The associations between P. vivax infection, host genotypes and other factors were evaluated. RESULT In total, 361 patients with P. vivax infection were included in the study. Patients with pure P. vivax infections accounted for 89.8% (324/361), while the remaining 10.2% (37/361) had mixed P. vivax/P. falciparum infections. About 95.6% (345/361) of the participants were Duffy-positives (21.2% homozygous and 78.8%, heterozygous) and 4.4% (16/361) were Duffy-negatives. The mean asexual parasite density in homozygous and heterozygous Duffy-positives was 12,165 p/μl (IQR25-75: 1,640-24,234 p/μl) and11,655 p/μl (IQR25-75: 1,676-14,065 p/μl), respectively, significantly higher than that in Duffy-negatives (1,227p/μl; IQR25-75: 539-1,732p/μl). CONCLUSION This study confirms that Duffy-negativity does not provide complete protection against P. vivax infection. The development of P. vivax-specific elimination strategies, including alternative antimalarial vaccines should be facilitated by a better understanding of the epidemiological landscape of vivax malaria in Africa. More importantly, low parasitemia associated with P. vivax infections in Duffy-negative patients may represent hidden reservoirs of transmission in Ethiopia.
Collapse
Affiliation(s)
- Abnet Abebe
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Isabelle Bouyssou
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral ED 515 Complexité du Vivant, Paris, France
| | - Solenne Mabilotte
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute of Infectious Disease and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jonathan J. Juliano
- Institute of Infectious Disease and Global Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eugenia Lo
- Department of Biological Sciences, Bioinformatics Research Center, University of North Carolina at Charlotte, United States of America
| | - Didier Menard
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France
- Université de Strasbourg, Institute of Parasitology and Tropical Diseases, Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France
- Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, Paris, France
- CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, Strasbourg, France
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Ethiopia
| |
Collapse
|
6
|
Kartal L, Mueller I, Longley RJ. Using Serological Markers for the Surveillance of Plasmodium vivax Malaria: A Scoping Review. Pathogens 2023; 12:791. [PMID: 37375481 DOI: 10.3390/pathogens12060791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The utilisation of serological surveillance methods for malaria has the potential to identify individuals exposed to Plasmodium vivax, including asymptomatic carriers. However, the application of serosurveillance varies globally, including variations in methodology and transmission context. No systematic review exists describing the advantages and disadvantages of utilising serosurveillance in various settings. Collation and comparison of these results is a necessary first step to standardise and validate the use of serology for the surveillance of P. vivax in specific transmission contexts. A scoping review was performed of P. vivax serosurveillance applications globally. Ninety-four studies were found that met predefined inclusion and exclusion criteria. These studies were examined to determine the advantages and disadvantages of serosurveillance experienced in each study. If studies reported seroprevalence results, this information was also captured. Measurement of antibodies serves as a proxy by which individuals exposed to P. vivax may be indirectly identified, including those with asymptomatic infections, which may be missed by other technologies. Other thematic advantages identified included the ease and simplicity of serological assays compared to both microscopy and molecular diagnostics. Seroprevalence rates varied widely from 0-93%. Methodologies must be validated across various transmission contexts to ensure the applicability and comparability of results. Other thematic disadvantages identified included challenges with species cross-reactivity and determining changes in transmission patterns in both the short- and long-term. Serosurveillance requires further refinement to be fully realised as an actionable tool. Some work has begun in this area, but more is required.
Collapse
Affiliation(s)
- Lejla Kartal
- School of Population and Global Health, The University of Melbourne, Parkville 3010, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Ivo Mueller
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| | - Rhea J Longley
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
7
|
Ossè RA, Tokponnon F, Padonou GG, Glitho ME, Sidick A, Fassinou A, Koukpo CZ, Akinro B, Sovi A, Akogbéto M. Evidence of Transmission of Plasmodium vivax 210 and Plasmodium vivax 247 by Anopheles gambiae and An. coluzzii, Major Malaria Vectors in Benin/West Africa. INSECTS 2023; 14:231. [PMID: 36975916 PMCID: PMC10053026 DOI: 10.3390/insects14030231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Current diagnostic and surveillance systems in Benin are not designed to accurately identify or report non-Plasmodium falciparum (Pf) human malaria infections. This study aims to assess and compare the prevalence of circumsporozoite protein (CSP) antibodies of Pf and P. vivax (Pv) in Anopheles gambiae s.l. in Benin. For that, mosquito collections were performed through human landing catches (HLC) and pyrethrum spray catches (PSC). The collected mosquitoes were morphologically identified, and Pf, Pv 210, and Pv 247 CSP antibodies were sought in An. gambiae s.l. through the ELISA and polymerase chain reaction (PCR) techniques. Of the 32,773 collected mosquitoes, 20.9% were An. gambiae s.l., 3.9% An. funestus gr., and 0.6% An. nili gr. In An. gambiae s.l., the sporozoite rate was 2.6% (95% CI: 2.1-3.1) for Pf, against 0.30% (95% CI: 0.1-0.5) and 0.2% (95% CI: 0.1-0.4), respectively, for Pv 210 and Pv 247. P. falciparum sporozoite positive mosquitoes were mostly An. gambiae (64.35%), followed by An. coluzzii (34.78%) and An. arabiensis (0.86%). At the opposite, for the Pv 210 sporozoite-positive mosquitoes, An. coluzzii and An. gambiae accounted for 76.92% and 23.08%, respectively. Overall, the present study shows that P. falciparum is not the only Plasmodium species involved in malaria cases in Benin.
Collapse
Affiliation(s)
- Razaki A. Ossè
- Ecole de Gestion et d’Exploitation des Systèmes d’Elevage, Université Nationale d’Agriculture, Kétou BP 44, Benin
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
| | - Filémon Tokponnon
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Ecole Polytechnique d’Abomey Calavi, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Mariette E. Glitho
- Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
| | - Arsène Fassinou
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Come Z. Koukpo
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Abomey-Calavi 01 BP 526, Benin
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
- Faculté d’Agronomie, Université de Parakou, Parakou BP 123, Benin
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin Akogbéto
- Centre de Recherche Entomologique de Cotonou, Ministère de la Santé, Cotonou 06 BP 2604, Benin
| |
Collapse
|
8
|
Bouyssou I, Martínez FJ, Campagne P, Ma L, Doderer-Lang C, Chitnis CE, Ménard D. Plasmodium vivax blood stage invasion pathways: Contribution of omics technologies in deciphering molecular and cellular mechanisms. C R Biol 2022; 345:91-133. [PMID: 36847467 DOI: 10.5802/crbiol.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022]
Abstract
Vivax malaria is an infectious disease caused by Plasmodium vivax, a parasitic protozoan transmitted by female Anopheline mosquitoes. Historically, vivax malaria has often been regarded as a benign self-limiting infection due to the observation of low parasitemia in Duffy-positive patients in endemic transmission areas and the virtual absence of infections in Duffy-negative individuals in Sub Saharan Africa. However, the latest estimates show that the burden of the disease is not decreasing in many countries and cases of vivax infections in Duffy-negative individuals are increasingly reported throughout Africa. This raised questions about the accuracy of diagnostics and the evolution of interactions between humans and parasites. For a long time, our knowledge on P. vivax biology has been hampered due to the limited access to biological material and the lack of robust in vitro culture methods. Consequently, little is currently known about P. vivax blood stage invasion mechanisms. The introduction of omics technologies with novel and accessible techniques such as third generation sequencing and RNA sequencing at single cell level, two-dimensional electrophoresis, liquid chromatography, and mass spectrometry, has progressively improved our understanding of P. vivax genetics, transcripts, and proteins. This review aims to provide broad insights into P. vivax invasion mechanisms generated by genomics, transcriptomics, and proteomics and to illustrate the importance of integrated multi-omics studies.
Collapse
|
9
|
Molina-Franky J, Reyes C, Picón Jaimes YA, Kalkum M, Patarroyo MA. The Black Box of Cellular and Molecular Events of Plasmodium vivax Merozoite Invasion into Reticulocytes. Int J Mol Sci 2022; 23:ijms232314528. [PMID: 36498854 PMCID: PMC9739029 DOI: 10.3390/ijms232314528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Plasmodium vivax is the most widely distributed malaria parasite affecting humans worldwide, causing ~5 million cases yearly. Despite the disease's extensive burden, there are gaps in the knowledge of the pathophysiological mechanisms by which P. vivax invades reticulocytes. In contrast, this crucial step is better understood for P. falciparum, the less widely distributed but more often fatal malaria parasite. This discrepancy is due to the difficulty of studying P. vivax's exclusive invasion of reticulocytes, which represent 1-2% of circulating cells. Its accurate targeting mechanism has not yet been clarified, hindering the establishment of long-term continuous in vitro culture systems. So far, only three reticulocyte invasion pathways have been characterised based on parasite interactions with DARC, TfR1 and CD98 host proteins. However, exposing the parasite's alternative invasion mechanisms is currently being considered, opening up a large field for exploring the entry receptors used by P. vivax for invading host cells. New methods must be developed to ensure better understanding of the parasite to control malarial transmission and to eradicate the disease. Here, we review the current state of knowledge on cellular and molecular mechanisms of P. vivax's merozoite invasion to contribute to a better understanding of the parasite's biology, pathogenesis and epidemiology.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - César Reyes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Animal Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | | | - Markus Kalkum
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Correspondence: (M.K.); (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 112111, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Correspondence: (M.K.); (M.A.P.)
| |
Collapse
|
10
|
African Plasmodium vivax malaria improbably rare or benign. Trends Parasitol 2022; 38:683-696. [PMID: 35667992 DOI: 10.1016/j.pt.2022.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
The overwhelming dominance of Duffy blood group negativity among most people living in sub-Saharan Africa has been considered the basis of their protection from endemic Plasmodium vivax malaria. New evidence demonstrates widespread transmission of P. vivax in Duffy-negative Africa, though currently of unknown distribution, magnitude, or consequences. Other new evidence from outside of Africa demonstrates marked tropisms of P. vivax for extravascular tissues of bone marrow and spleen. Those establish states of proliferative infection with low-grade or undetectable parasitemia of peripheral blood causing acute and chronic disease. This review examines the plausibility of those infectious processes also operating in Duffy-negative Africans and causing harm of unrecognized origin.
Collapse
|
11
|
Wilairatana P, Masangkay FR, Kotepui KU, De Jesus Milanez G, Kotepui M. Prevalence and risk of Plasmodium vivax infection among Duffy-negative individuals: a systematic review and meta-analysis. Sci Rep 2022; 12:3998. [PMID: 35256675 PMCID: PMC8901689 DOI: 10.1038/s41598-022-07711-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
A better understanding of the occurrence and risk of Plasmodium vivax infection among Duffy-negative individuals is required to guide further research on these infections across Africa. To address this, we used a meta-analysis approach to investigate the prevalence of P. vivax infection among Duffy-negative individuals and assessed the risk of infection in these individuals when compared with Duffy-positive individuals. This study was registered with The International Prospective Register of Systematic Reviews website (ID: CRD42021240202) and followed Preferred Reporting Items for Systematic review and Meta-Analyses guidelines. Literature searches were conducted using medical subject headings to retrieve relevant studies in Medline, Web of Science, and Scopus, from February 22, 2021 to January 31, 2022. Selected studies were methodologically evaluated using the Joanna Briggs Institute (JBI) Critical Appraisal Tools to assess the quality of cross-sectional, case-control, and cohort studies. The pooled prevalence of P. vivax infection among Duffy-negative individuals and the odds ratio (OR) of infection among these individuals when compared with Duffy-positive individuals was estimated using a random-effects model. Results from individual studies were represented in forest plots. Heterogeneity among studies was assessed using Cochrane Q and I2 statistics. We also performed subgroup analysis of patient demographics and other relevant variables. Publication bias among studies was assessed using funnel plot asymmetry and the Egger's test. Of 1593 retrieved articles, 27 met eligibility criteria and were included for analysis. Of these, 24 (88.9%) reported P. vivax infection among Duffy-negative individuals in Africa, including Cameroon, Ethiopia, Sudan, Botswana, Nigeria, Madagascar, Angola, Benin, Kenya, Mali, Mauritania, Democratic Republic of the Congo, and Senegal; while three reported occurrences in South America (Brazil) and Asia (Iran). Among studies, 11 reported that all P. vivax infection cases occurred in Duffy-negative individuals (100%). Also, a meta-analysis on 14 studies showed that the pooled prevalence of P. vivax infection among Duffy-negative individuals was 25% (95% confidence interval (CI) - 3%-53%, I2 = 99.96%). A meta-analysis of 11 studies demonstrated a decreased odds of P. vivax infection among Duffy-negative individuals (p = 0.009, pooled OR 0.46, 95% CI 0.26-0.82, I2 = 80.8%). We confirmed that P. vivax infected Duffy-negative individuals over a wide prevalence range from 0 to 100% depending on geographical area. Future investigations on P. vivax infection in these individuals must determine if Duffy-negativity remains a protective factor for P. vivax infection.
Collapse
Affiliation(s)
- Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Giovanni De Jesus Milanez
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
12
|
Abstract
J. Kevin Baird and colleagues, examine and discuss the estimated global burden of vivax malaria and it's biological, clinical, and public health complexity.
Collapse
Affiliation(s)
- Katherine E. Battle
- Institute for Disease Modeling, Seattle, Washington, United States of America
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Baird JK. Basic Research of Plasmodium vivax Biology Enabling Its Management as a Clinical and Public Health Problem. Front Cell Infect Microbiol 2021; 11:696598. [PMID: 34540716 PMCID: PMC8447957 DOI: 10.3389/fcimb.2021.696598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
The emerging understanding of Plasmodium vivax as an infection seated in extravascular spaces of its human host carries fundamentally important implications for its management as a complex clinical and public health problem. This progress begins to reverse decades of neglected research borne of the false dogma of P. vivax as an intrinsically benign and inconsequential parasite. This Review provides real world context for the on-going laboratory explorations of the molecular and cellular events in the life of this parasite. Chemotherapies against the latent reservoir impose extraordinarily complex and difficult problems of science and medicine, but great strides in studies of the biology of hepatic P. vivax promise solutions. Fundamental assumptions regarding the interpretation of parasitaemia in epidemiology, clinical medicine, and public health are being revisited and reassessed in light of new studies of P. vivax cellular/molecular biology and pathogenesis. By examining these long overlooked complexities of P. vivax malaria, we open multiple new avenues to vaccination, chemoprevention, countermeasures against transmission, epidemiology, diagnosis, chemotherapy, and clinical management. This Review expresses how clarity of vision of biology and pathogenesis may rationally and radically transform the multiple means by which we may combat this insidiously harmful infection.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Hang JW, Tukijan F, Lee EQH, Abdeen SR, Aniweh Y, Malleret B. Zoonotic Malaria: Non- Laverania Plasmodium Biology and Invasion Mechanisms. Pathogens 2021; 10:889. [PMID: 34358039 PMCID: PMC8308728 DOI: 10.3390/pathogens10070889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.
Collapse
Affiliation(s)
- Jing-Wen Hang
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Farhana Tukijan
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Erica-Qian-Hui Lee
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Shifana Raja Abdeen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| | - Yaw Aniweh
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana;
| | - Benoit Malleret
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| |
Collapse
|
15
|
Brazeau NF, Mitchell CL, Morgan AP, Deutsch-Feldman M, Watson OJ, Thwai KL, Gelabert P, van Dorp L, Keeler CY, Waltmann A, Emch M, Gartner V, Redelings B, Wray GA, Mwandagalirwa MK, Tshefu AK, Likwela JL, Edwards JK, Verity R, Parr JB, Meshnick SR, Juliano JJ. The epidemiology of Plasmodium vivax among adults in the Democratic Republic of the Congo. Nat Commun 2021; 12:4169. [PMID: 34234124 PMCID: PMC8263614 DOI: 10.1038/s41467-021-24216-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/01/2021] [Indexed: 11/08/2022] Open
Abstract
Reports of P. vivax infections among Duffy-negative hosts have accumulated throughout sub-Saharan Africa. Despite this growing body of evidence, no nationally representative epidemiological surveys of P. vivax in sub-Saharan Africa have been performed. To overcome this gap in knowledge, we screened over 17,000 adults in the Democratic Republic of the Congo (DRC) for P. vivax using samples from the 2013-2014 Demographic Health Survey. Overall, we found a 2.97% (95% CI: 2.28%, 3.65%) prevalence of P. vivax infections across the DRC. Infections were associated with few risk-factors and demonstrated a relatively flat distribution of prevalence across space with focal regions of relatively higher prevalence in the north and northeast. Mitochondrial genomes suggested that DRC P. vivax were distinct from circulating non-human ape strains and an ancestral European P. vivax strain, and instead may be part of a separate contemporary clade. Our findings suggest P. vivax is diffusely spread across the DRC at a low prevalence, which may be associated with long-term carriage of low parasitemia, frequent relapses, or a general pool of infections with limited forward propagation.
Collapse
Affiliation(s)
- Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
- Medical Scientist Training Program, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Cedar L Mitchell
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew P Morgan
- Medical Scientist Training Program, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Molly Deutsch-Feldman
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Oliver John Watson
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Kyaw L Thwai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Pere Gelabert
- UCL Genetics Institute, University College London, London, UK
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, London, UK
| | - Corinna Y Keeler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Andreea Waltmann
- Institute for Global Health and Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Emch
- Department of Geography, University of North Carolina, Chapel Hill, NC, USA
| | | | - Ben Redelings
- Department of Biology, Duke University, Durham, NC, USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA
- Duke Center for Genomic and Computational Biology, Durham, NC, USA
| | | | - Antoinette K Tshefu
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Joris L Likwela
- Programme National de la Lutte Contre le Paludisme, Kinshasa, Democratic Republic of Congo
| | - Jessie K Edwards
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Robert Verity
- Medical Research Council Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Jonathan B Parr
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
16
|
The Pan African Vivax and Ovale Network (PAVON): Refocusing on Plasmodium vivax, ovale and asymptomatic malaria in sub-Saharan Africa. Parasitol Int 2021; 84:102415. [PMID: 34216801 DOI: 10.1016/j.parint.2021.102415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 11/20/2022]
Abstract
The recent World Malaria report shows that progress in malaria elimination has stalled. Current data acquisition by NMCPs depend on passive case detection and clinical reports focused mainly on Plasmodium falciparum (Pf). In recent times, several countries in sub-Saharan Africa have reported cases of Plasmodium vivax (Pv) with a considerable number being Duffy negative. The burden of Pv and Plasmodium ovale (Po) appear to be more than acknowledged. Similarly, the contribution of asymptomatic malaria in transmission is hardly considered by NMCPs in Africa. Inclusion of these as targets in malaria elimination agenda is necessary to achieve elimination goal, as these harbor hypnozoites. The Pan African Vivax and Ovale Network (PAVON) is a new consortium of African Scientists working in Africa on the transmission profile of Pv and Po. The group collaborates with African NMCPs to train in Plasmodium molecular diagnostics, microscopy, and interpretation of molecular data from active surveys to translate into policy. Details of the mission, rational and modus operandi of the group are outlined.
Collapse
|
17
|
Liu P, Shen L, Wang S, Qin P, Si Y, Pan M, Zeng W, Qin Y, Chen X, Zhang Y, Li C, Xiang Z, Menezes L, Huang Y, Cui L, Yang Z. Increasing proportions of relapsing parasite species among imported malaria in China's Guangxi Province from Western and Central Africa. Travel Med Infect Dis 2021; 43:102130. [PMID: 34166802 DOI: 10.1016/j.tmaid.2021.102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Travel-related malaria in non-endemic areas returning from endemic areas presents important challenges to diagnosis and treatment. Imported malaria to newly malaria-free countries poses further threats of malaria re-introduction and potential resurgence. For those traveling to places with high Plasmodium falciparum prevalence, prophylaxis against this parasite is recommended, whereas causal prophylaxis against relapsing malaria is often overlooked. METHODS We analyzed a cluster of imported malaria among febrile patients in Shanglin County, Guangxi Province, China, who had recent travel histories to Western and Central Africa. Malaria was diagnosed by microscopy and subsequently confirmed by species- and subspecies-specific PCR. Plasmodium vivax was genotyped using a barcode consisting of 42 single nucleotide polymorphisms. RESULTS Investigations of 344 PCR-confirmed malaria cases revealed that in addition to Plasmodium falciparum being the major parasite species, the relapsing parasites Plasmodium ovale and P. vivax accounted for ~40% of these imported cases. Of the 114 P. ovale infections, 65.8% and 34.2% were P. ovale curtisi and P. ovale wallikeri, respectively, with the two subspecies having a ~2:1 ratio in both Western and Central Africa. Phylogenetic analysis of 14 P. vivax isolates using a genetic barcode demonstrated that 11 formed a distinct clade from P. vivax populations from Eastern Africa. CONCLUSION This study provides support for active P. vivax transmission in areas with the predominant Duffy-negative blood group. With relapsing malaria making a substantial proportion of the imported malaria, causal prophylaxis should be advocated to travelers with a travel destination to Western and Central Africa.
Collapse
Affiliation(s)
- Penglu Liu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Lijie Shen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Siqi Wang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Pien Qin
- Shanglin County People's Hospital, Shanglin, Guangxi, 530500, China
| | - Yu Si
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Maohua Pan
- Shanglin County People's Hospital, Shanglin, Guangxi, 530500, China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Yucheng Qin
- Shanglin County People's Hospital, Shanglin, Guangxi, 530500, China
| | - Xi Chen
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Yanmei Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Zheng Xiang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China
| | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, MDC84, Tampa, FL, 33612, USA
| | - Yaming Huang
- Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, 530021, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, MDC84, Tampa, FL, 33612, USA.
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan Province, 650500, China.
| |
Collapse
|
18
|
Lo E, Russo G, Pestana K, Kepple D, Abagero BR, Dongho GBD, Gunalan K, Miller LH, Hamid MMA, Yewhalaw D, Paganotti GM. Contrasting epidemiology and genetic variation of Plasmodium vivax infecting Duffy-negative individuals across Africa. Int J Infect Dis 2021; 108:63-71. [PMID: 33991680 DOI: 10.1016/j.ijid.2021.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Plasmodium vivax malaria was thought to be rare in Africans who lack the Duffy blood group antigen expression. However, recent studies indicate that P. vivax can infect Duffy-negative individuals and has spread into areas of high Duffy negativity across Africa. Our study compared epidemiological and genetic features of P. vivax between African regions. METHODS A standardized approach was used to identify and quantify P. vivax from Botswana, Ethiopia, and Sudan, where Duffy-positive and Duffy-negative individuals coexist. The study involved sequencing the Duffy binding protein (DBP) gene and inferring genetic relationships among P. vivax populations across Africa. RESULTS Among 1215 febrile patients, the proportions of Duffy negativity ranged from 20-36% in East Africa to 84% in southern Africa. Average P. vivax prevalence among Duffy-negative populations ranged from 9.2% in Sudan to 86% in Botswana. Parasite density in Duffy-negative infections was significantly lower than in Duffy-positive infections. P. vivax in Duffy-negative populations were not monophyletic, with P. vivax in Duffy-negative and Duffy-positive populations sharing similar DBP haplotypes and occurring in multiple, well-supported clades. CONCLUSIONS Duffy-negative Africans are not resistant to P. vivax, and the public health significance of this should not be neglected. Our study highlights the need for a standardized approach and more resources/training directed towards the diagnosis of vivax malaria in Africa.
Collapse
Affiliation(s)
- Eugenia Lo
- Biological Sciences, University of North Carolina at Charlotte, USA.
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
| | - Kareen Pestana
- Biological Sciences, University of North Carolina at Charlotte, USA
| | - Daniel Kepple
- Biological Sciences, University of North Carolina at Charlotte, USA
| | - Beka Raya Abagero
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Ghyslaine Bruna Djeunang Dongho
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy; Evangelical University of Cameroon, Bandjoun, Cameroon
| | | | - Louis H Miller
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, USA
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Delenasaw Yewhalaw
- Tropical Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana; Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
19
|
Feufack-Donfack LB, Sarah-Matio EM, Abate LM, Bouopda Tuedom AG, Ngano Bayibéki A, Maffo Ngou C, Toto JC, Sandeu MM, Eboumbou Moukoko CE, Ayong L, Awono-Ambene P, Morlais I, Nsango SE. Epidemiological and entomological studies of malaria transmission in Tibati, Adamawa region of Cameroon 6 years following the introduction of long-lasting insecticide nets. Parasit Vectors 2021; 14:247. [PMID: 33964974 PMCID: PMC8106832 DOI: 10.1186/s13071-021-04745-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/23/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Malaria remains a serious public health problem in Cameroon. Implementation of control interventions requires prior knowledge of the local epidemiological situation. Here we report the results of epidemiological and entomological surveys carried out in Tibati, Adamawa Region, Cameroon, an area where malaria transmission is seasonal, 6 years after the introduction of long-lasting insecticidal bed nets. METHODS Cross-sectional studies were carried out in July 2015 and 2017 in Tibati. Thick blood smears and dried blood spots were collected from asymptomatic and symptomatic individuals in the community and at health centers, respectively, and used for the molecular diagnosis of Plasmodium species. Adult mosquitoes were collected by indoor residual spraying and identified morphologically and molecularly. The infection status of Plasmodium spp. was determined by quantitative PCR, and positivity of PCR-positive samples was confirmed by Sanger sequencing. RESULTS Overall malaria prevalence in our study population was 55.0% (752/1367) and Plasmodium falciparum was the most prevalent parasite species (94.3%), followed by P. malariae (17.7%) and P. ovale (0.8%); 92 (12.7%) infections were mixed infections. Infection parameters varied according to clinical status (symptomatic/asymptomatic) and age of the sampled population and the collection sites. Infection prevalence was higher in asymptomatic carriers (60.8%), but asexual and sexual parasite densities were lower. Prevalence and intensity of infection decreased with age in both the symptomatic and asymptomatic groups. Heterogeneity in infections was observed at the neighborhood level, revealing hotspots of transmission. Among the 592 Anopheles mosquitoes collected, 212 (35.8%) were An. gambiae, 172 (29.1%) were An. coluzzii and 208 (35.1%) were An. funestus (s.s.). A total of 26 (4.39%) mosquito specimens were infected by Plasmodium sp. and the three Anopheles mosquitoes transmitted Plasmodium at equal efficiency. Surprisingly, we found an An. coluzzii specimen infected by Plasmodium vivax, which confirms circulation of this species in Cameroon. The positivity of all 26 PCR-positive Plasmodium-infected mosquitoes was successively confirmed by sequencing analysis. CONCLUSION Our study presents the baseline malaria parasite burden in Tibati, Adamawa Region, Cameroon. Our results highlight the high malaria endemicity in the area, and hotspots of disease transmission are identified. Parasitological indices suggest low bednet usage and that implementation of control interventions in the area is needed to reduce malaria burden. We also report for the first time a mosquito vector with naturally acquired P. vivax infection in Cameroon.
Collapse
Affiliation(s)
- Lionel Brice Feufack-Donfack
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- CNRS UPR 9022, Inserm U 963, Université de Strasbourg, 2, allée Konrad Roentgen, 67084 Strasbourg Cedex, France
| | - Elangwe Milo Sarah-Matio
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Institut de Recherche pour le Développement, 911 avenue Agropolis, 34394 Montpellier, France
| | - Luc Marcel Abate
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Institut de Recherche pour le Développement, 911 avenue Agropolis, 34394 Montpellier, France
| | - Aline Gaelle Bouopda Tuedom
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- Faculté de Médecine et des Sciences Pharmaceutiques de l’Université de Douala (FMSP–UD), BP 2701 Douala, Cameroon
| | - Albert Ngano Bayibéki
- Université Catholique d’Afrique Centrale, Yaoundé-Campus Messa, BP 1110, Yaounde, Cameroon
| | - Christelle Maffo Ngou
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Institut de Recherche pour le Développement, 911 avenue Agropolis, 34394 Montpellier, France
| | - Jean-Claude Toto
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP 288, Yaounde, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases, Yaounde, 13591 Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundere, PO Box 454, Ngaoundere, Cameroon
| | - Carole Else Eboumbou Moukoko
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- Faculté de Médecine et des Sciences Pharmaceutiques de l’Université de Douala (FMSP–UD), BP 2701 Douala, Cameroon
| | - Lawrence Ayong
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP 288, Yaounde, Cameroon
| | - Isabelle Morlais
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Institut de Recherche pour le Développement, 911 avenue Agropolis, 34394 Montpellier, France
| | - Sandrine Eveline Nsango
- Service de Paludisme du Centre Pasteur Cameroun, BP 1274, Yaounde, Cameroon
- Faculté de Médecine et des Sciences Pharmaceutiques de l’Université de Douala (FMSP–UD), BP 2701 Douala, Cameroon
| |
Collapse
|
20
|
Leski TA, Taitt CR, Bangura U, Lahai J, Lamin JM, Baio V, Koroma MS, Swaray AG, Jacobsen KH, Jackson O, Jones BW, Phillips CL, Ansumana R, Stenger DA. Comparison of capillary and venous blood for malaria detection using two PCR-based assays in febrile patients in Sierra Leone. Malar J 2021; 20:133. [PMID: 33676502 PMCID: PMC7936501 DOI: 10.1186/s12936-021-03644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background Rapid and sensitive diagnostics are critical tools for clinical case management and public health control efforts. Both capillary and venous blood are currently used for malaria detection and while diagnostic technologies may not be equally sensitive with both materials, the published data on this subject are scarce and not conclusive. Methods Paired clinical samples of venous and capillary blood from 141 febrile individuals in Bo, Sierra Leone, were obtained between January and May 2019 and tested for the presence of Plasmodium parasites using two multiplexed PCR assays: the FilmArray-based Global Fever Panel (GFP) and the TaqMan-based Malaria Multiplex Sample Ready (MMSR) assay. Results No significant differences in Plasmodium parasite detection between capillary and venous blood for both assays were observed. The GFP assay was more sensitive than MMSR for all markers that could be compared (Plasmodium spp. and Plasmodium falciparum) in both venous and capillary blood. Conclusions No difference was found in malaria detection between venous and capillary blood using two different PCR-based detection assays. This data gives support for use of capillary blood, a material which can be obtained easier by less invasive methods, for PCR-based malaria diagnostics, independent of the platform.
Collapse
Affiliation(s)
- Tomasz A Leski
- Center for Bio/Molecular Science & Engineering, U.S. Naval Research Laboratory, Washington, DC, USA.
| | - Chris Rowe Taitt
- Center for Bio/Molecular Science & Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Umaru Bangura
- Mercy Hospital Research Laboratory, Bo, Sierra Leone
| | - Joseph Lahai
- Mercy Hospital Research Laboratory, Bo, Sierra Leone
| | | | - Victoria Baio
- Mercy Hospital Research Laboratory, Bo, Sierra Leone
| | | | - Abdulai G Swaray
- College of Science, George Mason University, Fairfax, Virginia, USA
| | - Kathryn H Jacobsen
- Department of Global & Community Health, George Mason University, Fairfax, Virginia, USA
| | | | | | | | - Rashid Ansumana
- Mercy Hospital Research Laboratory, Bo, Sierra Leone.,Njala University, Bo, Sierra Leone
| | - David A Stenger
- Center for Bio/Molecular Science & Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
21
|
Brown CA, Pappoe-Ashong PJ, Duah N, Ghansah A, Asmah H, Afari E, Koram KA. High frequency of the Duffy-negative genotype and absence of Plasmodium vivax infections in Ghana. Malar J 2021; 20:99. [PMID: 33596926 PMCID: PMC7888148 DOI: 10.1186/s12936-021-03618-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/02/2021] [Indexed: 01/01/2023] Open
Abstract
Background Recent studies from different malaria-endemic regions including western Africa have now shown that Plasmodium vivax can infect red blood cells (RBCs) and cause clinical disease in Duffy-negative people, though the Duffy-negative phenotype was thought to confer complete refractoriness against blood invasion with P. vivax. The actual prevalence of P. vivax in local populations in Ghana is unknown and little information is available about the distribution of Duffy genotypes. The aim of this study was to assess the prevalence of P. vivax in both asymptomatic and symptomatic outpatients and the distribution of Duffy genotypes in Ghana. Methods DNA was extracted from dried blood spots (DBS) collected from 952 subjects (845 malaria patients and 107 asymptomatic persons) from nine locations in Ghana. Plasmodium species identification was carried out by nested polymerase chain reaction (PCR) amplification of the small-subunit (SSU) rRNA genes. For P. vivax detection, a second PCR of the central region of the Pvcsp gene was carried out. Duffy blood group genotyping was performed by allele-specific PCR to detect the presence of the FYES allele. Results No cases of P. vivax were detected in any of the samples by both PCR methods used. Majority of infections (542, 94.8%) in the malaria patient samples were due to P. falciparum with only 1 infection (0.0017%) due to Plasmodium malariae, and 2 infections (0.0034%) due to Plasmodium ovale. No case of mixed infection was identified. Of the samples tested for the FYES allele from all the sites, 90.5% (862/952) had the FYES allele. All positive samples were genotyped as FY*B-33/FY*B-33 (Duffy-negative homozygous) and therefore classified as Fy(a−b−). Conclusions No cases of P. vivax were detected by both PCRs and majority of the subjects tested carried the FYES allele. The lack of P. vivax infections observed can be attributed to the high frequency of the FYES allele that silences erythroid expression of the Duffy. These results provide insights on the host susceptibility for P. vivax infections that had not been investigated in Ghana before.
Collapse
Affiliation(s)
- Charles A Brown
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana.
| | - Prince J Pappoe-Ashong
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Nancy Duah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Harry Asmah
- School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Edwin Afari
- School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
22
|
Kepple D, Pestana K, Tomida J, Abebe A, Golassa L, Lo E. Alternative Invasion Mechanisms and Host Immune Response to Plasmodium vivax Malaria: Trends and Future Directions. Microorganisms 2020; 9:E15. [PMID: 33374596 PMCID: PMC7822457 DOI: 10.3390/microorganisms9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Plasmodium vivax malaria is a neglected tropical disease, despite being more geographically widespread than any other form of malaria. The documentation of P. vivax infections in different parts of Africa where Duffy-negative individuals are predominant suggested that there are alternative pathways for P. vivax to invade human erythrocytes. Duffy-negative individuals may be just as fit as Duffy-positive individuals and are no longer resistant to P.vivax malaria. In this review, we describe the complexity of P. vivax malaria, characterize pathogenesis and candidate invasion genes of P. vivax, and host immune responses to P. vivax infections. We provide a comprehensive review on parasite ligands in several Plasmodium species that further justify candidate genes in P. vivax. We also summarize previous genomic and transcriptomic studies related to the identification of ligand and receptor proteins in P. vivax erythrocyte invasion. Finally, we identify topics that remain unclear and propose future studies that will greatly contribute to our knowledge of P. vivax.
Collapse
Affiliation(s)
- Daniel Kepple
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Kareen Pestana
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Junya Tomida
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa 1000, Ethiopia;
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 1000, Ethiopia;
| | - Eugenia Lo
- Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA; (K.P.); (J.T.)
| |
Collapse
|
23
|
Oboh MA, Oyebola KM, Idowu ET, Badiane AS, Otubanjo OA, Ndiaye D. Rising report of Plasmodium vivax in sub-Saharan Africa: Implications for malaria elimination agenda. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
Large Variations in Malaria Parasite Carriage by Afebrile School Children Living in Nearby Communities in the Central Region of Ghana. J Trop Med 2020; 2020:4125109. [PMID: 33029151 PMCID: PMC7528039 DOI: 10.1155/2020/4125109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Indicators of successful malaria control interventions include a reduction in the prevalence and densities of malaria parasites contained in both symptomatic and asymptomatic infections as well as a reduction in malaria transmission. Individuals harboring malaria parasites in asymptomatic infections serve as reservoirs for malaria transmission. This study determined the prevalence of asymptomatic malaria parasite carriage in afebrile children attending six different schools in two districts, the Cape Coast Metropolitan Assembly (CCMA) and the Komenda Edina Eguafo Abirem (KEEA) of the Central Region of Ghana. Methods This cross sectional study recruited afebrile children aged between 3 and 15 years old from six randomly selected schools in the Central Region of Ghana. Finger-pricked blood was collected and used to prepare thick and thin blood smears as well as spot a strip of filter paper (Whatman #3). Nested PCR was used to identify Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax in DNA extracted from the filter paper spots. The multiplicity of P. falciparum infection was determined using merozoite surface protein 2 genotyping. Results Out of the 528 children sampled, PCR identified 27.1% to harbor Plasmodium parasites in asymptomatic infections, whilst microscopy identified malaria parasites in 10.6% of the children. The overall PCR estimated prevalence of P. falciparum and P. malariae was 26.6% and 1.3%, respectively, with no P. ovale or P. vivax identified by PCR or microscopy. The RDT positivity rate ranged from 55.8% in Simiw to 4.5% in Kuful. Children from the Simiw Basic School accounted for 87.5% of all the asymptomatic infections. The multiplicity of P. falciparum infection was predominantly monoclonal and biclonal. Conclusions The low prevalence of asymptomatic malaria parasite carriage by the children living in the Cape Coast Metropolis suggests that the malaria control interventions in place in CCMA are highly effective and that additional malaria control interventions are required for the KEEA district to reduce the prevalence of asymptomatic malaria parasite carriers. No molecular evidence of P. ovale and P. vivax was identified in the afebrile children sampled from the selected schools.
Collapse
|
25
|
Oboh MA, Singh US, Ndiaye D, Badiane AS, Ali NA, Bharti PK, Das A. Presence of additional Plasmodium vivax malaria in Duffy negative individuals from Southwestern Nigeria. Malar J 2020; 19:229. [PMID: 32590997 PMCID: PMC7318376 DOI: 10.1186/s12936-020-03301-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background Malaria in sub-Saharan Africa (sSA) is thought to be mostly caused by Plasmodium falciparum. Recently, growing reports of cases due to Plasmodium ovale, Plasmodium malariae, and Plasmodium vivax have been increasingly observed to play a role in malaria epidemiology in sSA. This in fact is due to the usage of very sensitive diagnostic tools (e.g. PCR), which have highlighted the underestimation of non-falciparum malaria in this sub-region. Plasmodium vivax was historically thought to be absent in sSA due to the high prevalence of the Duffy negativity in individuals residing in this sub-continent. Recent studies reporting detection of vivax malaria in Duffy-negative individuals from Mali, Mauritania, Cameroon challenge this notion. Methods Following previous report of P. vivax in Duffy-negative individuals in Nigeria, samples were further collected and assessed RDT and/or microscopy. Thereafter, malaria positive samples were subjected to conventional PCR method and DNA sequencing to confirm both single/mixed infections as well as the Duffy status of the individuals. Results Amplification of Plasmodium gDNA was successful in 59.9% (145/242) of the evaluated isolates and as expected P. falciparum was the most predominant (91.7%) species identified. Interestingly, four P. vivax isolates were identified either as single (3) or mixed (one P. falciparum/P. vivax) infection. Sequencing results confirmed all vivax isolates as truly vivax malaria and the patient were of Duffy-negative genotype. Conclusion Identification of additional vivax isolates among Duffy-negative individuals from Nigeria, substantiate the expanding body of evidence on the ability of P. vivax to infect RBCs that do not express the DARC gene. Hence, such genetic-epidemiological study should be conducted at the country level in order to evaluate the true burden of P. vivax in Nigeria.
Collapse
Affiliation(s)
- Mary Aigbiremo Oboh
- Medical Research Council Unit The Gambia at LSHTM, Fajara, P.O. Box 273, Banjul, Gambia.
| | - Upasana Shyamsunder Singh
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK.,Genomic Epidemiology Laboratory, Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Daouda Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Aida Sadikh Badiane
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nazia Anwar Ali
- National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Praveen Kumar Bharti
- National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, 482003, India
| | - Aparup Das
- Genomic Epidemiology Laboratory, Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India.
| |
Collapse
|
26
|
Use of real-time multiplex PCR, malaria rapid diagnostic test and microscopy to investigate the prevalence of Plasmodium species among febrile hospital patients in Sierra Leone. Malar J 2020; 19:84. [PMID: 32085711 PMCID: PMC7035765 DOI: 10.1186/s12936-020-03163-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/13/2020] [Indexed: 11/24/2022] Open
Abstract
Background Malaria continues to affect over 200 million individuals every year, especially children in Africa. Rapid and sensitive detection and identification of Plasmodium parasites is crucial for treating patients and monitoring of control efforts. Compared to traditional diagnostic methods such as microscopy and rapid diagnostic tests (RDTs), DNA based methods, such as polymerase chain reaction (PCR) offer significantly higher sensitivity, definitive discrimination of Plasmodium species, and detection of mixed infections. While PCR is not currently optimized for routine diagnostics, its role in epidemiological studies is increasing as the world moves closer toward regional and eventually global malaria elimination. This study demonstrates the field use of a novel, ambient temperature-stabilized, multiplexed PCR assay in a small hospital setting in Sierra Leone. Methods Blood samples from 534 febrile individuals reporting to a hospital in Bo, Sierra Leone, were tested using three methods: a commercial RDT, microscopy, and a Multiplex Malaria Sample Ready (MMSR) PCR designed to detect a universal malaria marker and species-specific markers for Plasmodium falciparum and Plasmodium vivax. A separate PCR assay was used to identify species of Plasmodium in samples in which MMSR detected malaria, but was unable to identify the species. Results MMSR detected the presence of any malaria marker in 50.2% of all tested samples with P. falciparum identified in 48.7% of the samples. Plasmodium vivax was not detected. Testing of MMSR P. falciparum-negative/universal malaria-positive specimens with a panel of species-specific PCRs revealed the presence of Plasmodium malariae (n = 2) and Plasmodium ovale (n = 2). The commercial RDT detected P. falciparum in 24.6% of all samples while microscopy was able to detect malaria in 12.8% of tested specimens. Conclusions Wider application of PCR for detection of malaria parasites may help to fill gaps existing as a result of use of microscopy and RDTs. Due to its high sensitivity and specificity, species coverage, room temperature stability and relative low complexity, the MMSR assay may be useful for detection of malaria and epidemiological studies especially in low-resource settings.
Collapse
|
27
|
Lo E, Hostetler JB, Yewhalaw D, Pearson RD, Hamid MMA, Gunalan K, Kepple D, Ford A, Janies DA, Rayner JC, Miller LH, Yan G. Frequent expansion of Plasmodium vivax Duffy Binding Protein in Ethiopia and its epidemiological significance. PLoS Negl Trop Dis 2019; 13:e0007222. [PMID: 31509523 PMCID: PMC6756552 DOI: 10.1371/journal.pntd.0007222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/23/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Plasmodium vivax invasion of human erythrocytes depends on the Duffy Binding Protein (PvDBP) which interacts with the Duffy antigen. PvDBP copy number has been recently shown to vary between P. vivax isolates in Sub-Saharan Africa. However, the extent of PvDBP copy number variation, the type of PvDBP multiplications, as well as its significance across broad samples are still unclear. We determined the prevalence and type of PvDBP duplications, as well as PvDBP copy number variation among 178 Ethiopian P. vivax isolates using a PCR-based diagnostic method, a novel quantitative real-time PCR assay and whole genome sequencing. For the 145 symptomatic samples, PvDBP duplications were detected in 95 isolates, of which 81 had the Cambodian and 14 Malagasy-type PvDBP duplications. PvDBP varied from 1 to >4 copies. Isolates with multiple PvDBP copies were found to be higher in symptomatic than asymptomatic infections. For the 33 asymptomatic samples, PvDBP was detected with two copies in two of the isolates, and both were the Cambodian-type PvDBP duplication. PvDBP copy number in Duffy-negative heterozygotes was not significantly different from that in Duffy-positives, providing no support for the hypothesis that increased copy number is a specific association with Duffy-negativity, although the number of Duffy-negatives was small and further sampling is required to test this association thoroughly. Plasmodium vivax invasion of human erythrocytes relies on interaction between the Duffy antigen and P. vivax Duffy Binding Protein (PvDBP). Whole genome sequences from P. vivax field isolates in Madagascar identified a duplication of the PvDBP gene and PvDBP duplication has also been detected in non-African P. vivax-endemic countries. Two types of PvDBP duplications have been reported, termed Cambodian and Malagasy-type duplications. Our study used a combination of PCR-based diagnostic method, a novel quantitative real-time PCR assay, and whole genome sequencing to determine the prevalence and type of PvDBP duplications, as well as PvDBP copy number on a broad number of P. vivax samples in Ethiopia. We found that over 65% of P. vivax isolated from the symptomatic infections were detected with PvDBP duplications and PvDBP varied from 1 to >4 copies. The majority of PvDBP duplications belongs to the Cambodian-type while the Malagasy-type duplications was also detected. For the asymptomatic infections, despite a small sample size, the majority of P. vivax were detected with a single-copy based on both PCR and qPCR assays. There was no significant difference in PvDBP copy number between Duffy-null heterozygote and Duffy-positive homozygote/heterozygote. Further investigation is needed with expanded Duffy-null homozygotes to examine the functional significance of PvDBP expansion.
Collapse
Affiliation(s)
- Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Jessica B. Hostetler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Richard D. Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Muzamil M. A. Hamid
- Department of Parasitology and Medical Entomology, University of Khartoum, Khartoum, Sudan
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, United States of America
- * E-mail: (EL); (LHM); (GY)
| |
Collapse
|
28
|
Brazeau NF, Whitesell AN, Doctor SM, Keeler C, Mwandagalirwa MK, Tshefu AK, Likwela JL, Juliano JJ, Meshnick SR. Plasmodium vivax Infections in Duffy-Negative Individuals in the Democratic Republic of the Congo. Am J Trop Med Hyg 2019; 99:1128-1133. [PMID: 30203741 DOI: 10.4269/ajtmh.18-0277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although Plasmodium vivax has been assumed to be absent from sub-Saharan Africa because of the protective mutation conferring the Duffy-negative phenotype, recent evidence has suggested that P. vivax cases are prevalent in these regions. We selected 292 dried blood spots from children who participated in the 2013-2014 Demographic and Health Survey of the Democratic Republic of the Congo (DRC), to assess for P. vivax infection. Four P. vivax infections were identified by polymerase chain reaction, each in a geographically different survey cluster. Using these as index cases, we tested the remaining 73 samples from the four clusters. With this approach, 10 confirmed cases, three probable cases, and one possible case of P. vivax were identified. Among the 14 P. vivax cases, nine were coinfected with Plasmodium falciparum. All 14 individuals were confirmed to be Duffy-negative by sequencing for the single point mutation in the GATA motif that represses the expression of the Duffy antigen. This finding is consistent with a growing body of literature that suggests that P. vivax can infect Duffy-negative individuals in Africa. Future molecular and sequencing work is needed to understand the relationship of these isolates with other P. vivax samples from Asia and South America and discover variants linked to P. vivax virulence and erythrocyte invasion.
Collapse
Affiliation(s)
- Nicholas F Brazeau
- Medical Scientist Training Program, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Amy N Whitesell
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Stephanie M Doctor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Corinna Keeler
- Department of Geography, University of North Carolina, Chapel Hill, North Carolina
| | | | - Antoinette K Tshefu
- Programme National de la Lutte Contre le Paludisme, Kinshasa, Democratic Republic of Congo
| | - Joris L Likwela
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Jonathan J Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Feleke SM, Brhane BG, Mamo H, Assefa A, Woyessa A, Ogawa GM, Cama V. Sero-identification of the aetiologies of human malaria exposure (Plasmodium spp.) in the Limu Kossa District of Jimma Zone, South western Ethiopia. Malar J 2019; 18:292. [PMID: 31455373 PMCID: PMC6712699 DOI: 10.1186/s12936-019-2927-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Malaria remains a very important public health problem in Ethiopia. Currently, only Plasmodium falciparum and Plasmodium vivax are considered in the malaria diagnostic and treatment policies. However, the existence and prevalence of Plasmodium ovale spp. and Plasmodium malariae in Ethiopia have not been extensively investigated. The objective of this study was to use a multiplex IgG antibody detection assay to evaluate evidence for exposure to any of these four human malaria parasites among asymptomatic individuals. METHODS Dried blood spots (DBS) were collected from 180 healthy study participants during a 2016 onchocerciasis survey in the Jimma Zone, southwest Ethiopia. IgG antibody reactivity was detected using a multiplex bead assay for seven Plasmodium antigens: P. falciparum circumsporozoite protein (CSP), P. falciparum apical membrane antigen-1 (AMA1), P. falciparum liver stage antigen-1 (LSA1), and homologs of the merozoite surface protein-1 (MSP1)-19kD antigens that are specific for P. falciparum, P. vivax, P. ovale spp. and P. malariae. RESULTS One hundred six participants (59%) were IgG seropositive for at least one of the Plasmodium antigens tested. The most frequent responses were against P. falciparum AMA1 (59, 33%) and P. vivax (55, 28%). However, IgG antibodies against P. ovale spp. and P. malariae were detected in 19 (11%) and 13 (7%) of the participants, respectively, providing serological evidence that P. malariae and P. ovale spp., which are rarely reported, may also be endemic in Jimma. CONCLUSION The findings highlight the informative value of multiplex serology and the need to confirm whether P. malariae and P. ovale spp. are aetiologies of malaria in Ethiopia, which is critical for proper diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Adugna Woyessa
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Guilherme Maerschner Ogawa
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Vitaliano Cama
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| |
Collapse
|
30
|
Balogun ST, Sandabe UK, Okon KO, Akanmu AO, Fehintola FA. Malaria burden and pre-hospital medication among subjects with malaria in Maiduguri, Northeast Nigeria. Heliyon 2019; 5:e02280. [PMID: 31463393 PMCID: PMC6709405 DOI: 10.1016/j.heliyon.2019.e02280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/12/2019] [Accepted: 08/07/2019] [Indexed: 11/20/2022] Open
Abstract
The study re-visited malaria burden and pre-hospital medication among malarious subjects in Maiduguri, Northeast Nigeria. A total of 1,657 febrile subjects were screened for malaria by microscopy at two health institutions. Giemsa-stained blood smears were examined for parasitaemia and gametocytaemia; and parasite density (PD), gametocyte density (GD) and gametocyte sex ratio (GSR) were determined. The mean age of the 1,657 subjects was 27.5 ± 12.2 years and 7.8% (130/1,657) of the subjects aged <5 years. Sex distribution showed 47.0% (778/1,657) males and 53.0% (879/1657) females. Parasitaemia was recorded in 22.6% (375/1,657) with geometric mean PD of 8,925 (320–275,000) parasites/μl blood. The prevalence of parasitaemia was highest among subjects <5 years (χ2 = 401.1; df = 5; p < 0.0001) and in August and September (χ2 = 406.9; df = 11; p < 0.0001). Prevalence of gametocytaemia was 12.8% (48/375) with geometric mean GD of 109 (8–464) gametocytes/μl blood. The prevalence was higher in dry (16.5%, 29/176) than wet (9.5%, 19/199) months (χ2 = 4.0; df = 1; p = 0.045). The weighted mean GSR was 0.4 ± 0.1 with highest value in March (0.7 ± 0.2). Pre-hospital medication was recorded in 74.1% (278/375) of the subjects with parasitaemia. Analgesics (51.7%; 194/375) accounted for the highest proportion of drug consumed while 9.3% (35/375) of the subjects took antimalarial drugs. Malaria persisted in Maiduguri especially among subjects <5 years during wet months and pre-hospital medication is a common practice. These findings could serve as guide for policy decision that could contribute to effective treatment and control of malaria in the region.
Collapse
Affiliation(s)
- Sulayman T Balogun
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, University of Maiduguri, PMB 1069, Maiduguri, Nigeria
| | - Umar K Sandabe
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, PMB 1069, Maiduguri, Nigeria
| | - Kenneth O Okon
- Department of Laboratory Services, Federal Medical Centre, Makurdi, Benue State, Nigeria
| | - Ayodele O Akanmu
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, University of Maiduguri, PMB 1069, Maiduguri, Nigeria
| | - Fatai A Fehintola
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
31
|
Affiliation(s)
- Peter A Zimmerman
- Professor of International Health, Genetics and Biology, The Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
32
|
Transcriptome profiling of Plasmodium vivax in Saimiri monkeys identifies potential ligands for invasion. Proc Natl Acad Sci U S A 2019; 116:7053-7061. [PMID: 30872477 DOI: 10.1073/pnas.1818485116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Unlike the case in Asia and Latin America, Plasmodium vivax infections are rare in sub-Saharan Africa due to the absence of the Duffy blood group antigen (Duffy antigen), the only known erythrocyte receptor for the P. vivax merozoite invasion ligand, Duffy binding protein 1 (DBP1). However, P. vivax infections have been documented in Duffy-negative individuals throughout Africa, suggesting that P. vivax may use ligands other than DBP1 to invade Duffy-negative erythrocytes through other receptors. To identify potential P. vivax ligands, we compared parasite gene expression in Saimiri and Aotus monkey erythrocytes infected with P. vivax Salvador I (Sal I). DBP1 binds Aotus but does not bind to Saimiri erythrocytes; thus, P. vivax Sal I must invade Saimiri erythrocytes independent of DBP1. Comparing RNA sequencing (RNAseq) data for late-stage infections in Saimiri and Aotus erythrocytes when invasion ligands are expressed, we identified genes that belong to tryptophan-rich antigen and merozoite surface protein 3 (MSP3) families that were more abundantly expressed in Saimiri infections compared with Aotus infections. These genes may encode potential ligands responsible for P. vivax infections of Duffy-negative Africans.
Collapse
|
33
|
Oboh MA, Badiane AS, Ntadom G, Ndiaye YD, Diongue K, Diallo MA, Ndiaye D. Molecular identification of Plasmodium species responsible for malaria reveals Plasmodium vivax isolates in Duffy negative individuals from southwestern Nigeria. Malar J 2018; 17:439. [PMID: 30486887 PMCID: PMC6263541 DOI: 10.1186/s12936-018-2588-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/22/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Malaria in Nigeria is principally due to Plasmodium falciparum and, to a lesser extent to Plasmodium malariae and Plasmodium ovale. Plasmodium vivax is thought to be absent in Nigeria in particular and sub-Saharan Africa in general, due to the near fixation of the Duffy negative gene in this population. Nevertheless, there are frequent reports of P. vivax infection in Duffy negative individuals in the sub-region, including reports from two countries sharing border with Nigeria to the west (Republic of Benin) and east (Cameroon). Additionally, there were two cases of microscopic vivax-like malaria from Nigerian indigenous population. Hence molecular surveillance of the circulating Plasmodium species in two states (Lagos and Edo) of southwestern Nigeria was carried out. METHODS A cross-sectional survey between September 2016 and March 2017 was conducted. 436 febrile patients were included for the present work. Venous blood of these patients was subjected to RDT as well as microscopy. Further, parasite DNA was isolated from positive samples and PCR diagnostic was employed followed by direct sequencing of the 18S rRNA of Plasmodium species as well as sequencing of a portion of the promoter region of the Duffy antigen receptor for chemokines. Samples positive for P. vivax were re-amplified several times and finally using the High Fidelity Taq to rule out any bias introduced. RESULTS Of the 256 (58.7%) amplifiable malaria parasite DNA, P. falciparum was, as expected, the major cause of infection, either alone 85.5% (219/256; 97 from Edo and 122 from Lagos), or mixed with P. malariae 6.3% (16/256) or with P. vivax 1.6% (4/256). Only one of the five P. vivax isolates was found to be a single infection. DNA sequencing and subsequent alignment of the 18S rRNA of P. vivax with the reference strains displayed very high similarities (100%). Remarkably, the T-33C was identified in all P. vivax samples, thus confirming that all vivax-infected patients in the current study are Duffy negative. CONCLUSION The present study gave the first molecular evidence of P. vivax in Nigeria in Duffy negative individuals. Though restricted to two states; Edo in South-South and Lagos in South-west Nigeria, the real burden of this species in Nigeria and sub-Saharan Africa might have been underestimated, hence there is need to put in place a country-wide, as well as a sub-Saharan Africa-wide surveillance and appropriate control measures.
Collapse
MESH Headings
- Child, Preschool
- Cross-Sectional Studies
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Duffy Blood-Group System/genetics
- Female
- Humans
- Infant
- Infant, Newborn
- Malaria, Vivax/epidemiology
- Malaria, Vivax/parasitology
- Male
- Nigeria/epidemiology
- Plasmodium vivax/classification
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
- RNA, Ribosomal, 18S/genetics
- Receptors, Cell Surface/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Mary Aigbiremo Oboh
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal.
| | - Aida Sadikh Badiane
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Godwin Ntadom
- National Malaria Elimination Programme/Epidemiology Division, Department of Public Health, Federal Ministry of Health, Abuja, Nigeria
| | - Yaye Die Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Khadim Diongue
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Daouda Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| |
Collapse
|
34
|
Specificity of the IgG antibody response to Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale MSP1 19 subunit proteins in multiplexed serologic assays. Malar J 2018; 17:417. [PMID: 30413163 PMCID: PMC6230236 DOI: 10.1186/s12936-018-2566-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/01/2018] [Indexed: 11/21/2022] Open
Abstract
Background Multiplex bead assays (MBA) that measure IgG antibodies to the carboxy-terminal 19-kDa sub-unit of the merozoite surface protein 1 (MSP119) are currently used to determine malaria seroprevalence in human populations living in areas with both stable and unstable transmission. However, the species specificities of the IgG antibody responses to the malaria MSP119 antigens have not been extensively characterized using MBA. Methods Recombinant Plasmodium falciparum (3D7), Plasmodium malariae (China I), Plasmodium ovale (Nigeria I), and Plasmodium vivax (Belem) MSP119 proteins were covalently coupled to beads for MBA. Threshold cut-off values for the assays were estimated using sera from US citizens with no history of foreign travel and by receiver operator characteristic curve analysis using diagnostic samples. Banked sera from experimentally infected chimpanzees, sera from humans from low transmission regions of Haiti and Cambodia (N = 12), and elutions from blood spots from humans selected from a high transmission region of Mozambique (N = 20) were used to develop an antigen competition MBA for antibody cross-reactivity studies. A sub-set of samples was further characterized using antibody capture/elution MBA, IgG subclass determination, and antibody avidity measurement. Results Total IgG antibody responses in experimentally infected chimpanzees were species specific and could be completely suppressed by homologous competitor protein at a concentration of 10 μg/ml. Eleven of 12 samples from the low transmission regions and 12 of 20 samples from the high transmission area had antibody responses that were completely species specific. For 7 additional samples, the P. falciparum MSP119 responses were species specific, but various levels of incomplete heterologous competition were observed for the non-P. falciparum assays. A pan-malaria MSP119 cross-reactive antibody response was observed in elutions of blood spots from two 20–30 years old Mozambique donors. The antibody response from one of these two donors had low avidity and skewed almost entirely to the IgG3 subclass. Conclusions Even when P. falciparum, P. malariae, P. ovale, and P. vivax are co-endemic in a high transmission setting, most antibody responses to MSP119 antigens are species-specific and are likely indicative of previous infection history. True pan-malaria cross-reactive responses were found to occur rarely. Electronic supplementary material The online version of this article (10.1186/s12936-018-2566-0) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Dayananda KK, Achur RN, Gowda DC. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J Vector Borne Dis 2018; 55:1-8. [PMID: 29916441 DOI: 10.4103/0972-9062.234620] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Malaria, caused by the protozoan parasites of the genus Plasmodium, is a major health problem in many countries of the world. Five parasite species namely, Plasmodium falciparum, P. vivax, P. malariae, P. ovale, and P. knowlesi, cause malaria in humans. Of these, P. falciparum and P. vivax are the most prevalent and account for the majority of the global malaria cases. In most areas of Africa, P. vivax infection is essentially absent because of the inherited lack of Duffy antigen receptor for chemokines on the surface of red blood cells that is involved in the parasite invasion of erythrocytes. Therefore, in Africa, most malaria infections are by P. falciparum and the highest burden of P. vivax infection is in Southeast Asia and South America. Plasmodium falciparum is the most virulent and as such, it is responsible for the majority of malarial mortality, particularly in Africa. Although, P. vivax infection has long been considered to be benign, recent studies have reported life-threatening consequences, including acute respiratory distress syndrome, cerebral malaria, multi-organ failure, dyserythropoiesis and anaemia. Despite exhibiting low parasite biomass in infected people due to parasite's specificity to infect only reticulocytes, P. vivax infection triggers higher inflammatory responses and exacerbated clinical symptoms than P. falciparum, such as fever and chills. Another characteristic feature of P. vivax infection, compared to P. falciparum infection, is persistence of the parasite as dormant liver-stage hypnozoites, causing recurrent episodes of malaria. This review article summarizes the published information on P. vivax epidemiology, drug resistance and pathophysiology.
Collapse
Affiliation(s)
- Kiran K Dayananda
- Department of Biochemistry, K.S. Hegde Medical Academy, NITTE University, Mangaluru, Karnataka, India
| | - Rajeshwara N Achur
- Department of Biochemistry, Kuvempu University, Shankaraghatta, Karnataka, India
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
36
|
Gunalan K, Niangaly A, Thera MA, Doumbo OK, Miller LH. Plasmodium vivax Infections of Duffy-Negative Erythrocytes: Historically Undetected or a Recent Adaptation? Trends Parasitol 2018. [PMID: 29530446 DOI: 10.1016/j.pt.2018.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmodium vivax is the main cause of malarial disease in Asia and South America. Plasmodium vivax infection was thought to be absent in African populations who are Duffy blood group antigen negative (Duffy-negative). However, many cases of P. vivax infection have recently been observed in Duffy-negative Africans. This raises the question: were P. vivax infections in Duffy-negative populations previously missed or has P. vivax adapted to infect Duffy-negative populations? This review focuses on recent P. vivax findings in Africa and reports views on the parasite ligands that may play a role in Duffy-negative P. vivax infections. In addition, clues gained from studying P. vivax infection of reticulocytes are presented, which may provide possible avenues for establishing P. vivax culture in vitro.
Collapse
Affiliation(s)
- Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; These authors contributed equally.
| | - Amadou Niangaly
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali; These authors contributed equally
| | - Mahamadou A Thera
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
37
|
Doritchamou JYA, Akuffo RA, Moussiliou A, Luty AJF, Massougbodji A, Deloron P, Tuikue Ndam NG. Submicroscopic placental infection by non-falciparum Plasmodium spp. PLoS Negl Trop Dis 2018; 12:e0006279. [PMID: 29432484 PMCID: PMC5825172 DOI: 10.1371/journal.pntd.0006279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/23/2018] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Among the Plasmodium species that infect humans, adverse effects of P. falciparum and P. vivax have been extensively studied and reported with respect to poor outcomes particularly in first time mothers and in pregnant women living in areas with unstable malaria transmission. Although, other non-falciparum malaria infections during pregnancy have sometimes been reported, little is known about the dynamics of these infections during pregnancy. METHODS AND FINDINGS Using a quantitative PCR approach, blood samples collected from Beninese pregnant women during the first antenatal visit (ANV) and at delivery including placental blood were screened for Plasmodium spp. Risk factors associated with Plasmodium spp. infection during pregnancy were assessed as well as the relationships with pregnancy outcomes. P. falciparum was the most prevalent Plasmodium species detected during pregnancy, irrespective either of parity, of age or of season during which the infection occurred. Although no P. vivax infections were detected in this cohort, P. malariae (9.2%) and P. ovale (5.8%) infections were observed in samples collected during the first ANV. These non-falciparum infections were also detected in maternal peripheral blood (1.3% for P. malariae and 1.2% for P. ovale) at delivery. Importantly, higher prevalence of P. malariae (5.5%) was observed in placental than peripheral blood while that of P. ovale was similar (1.8% in placental blood). Among the non-falciparum infected pregnant women with paired peripheral and placental samples, P. malariae infections in the placental blood was significantly higher than in the peripheral blood, suggesting a possible affinity of P. malariae for the placenta. However, no assoctiation of non-falciparum infections and the pregnancy outcomes was observed. CONCLUSIONS Overall this study provided insights into the molecular epidemiology of Plasmodium spp. infection during pregnancy, indicating placental infection by non-falciparum Plasmodium and the lack of association of these infections with adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Justin Y. A. Doritchamou
- MERIT, Intitut de Recherche pour le Developpement—Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
| | - Richard A. Akuffo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Azizath Moussiliou
- MERIT, Intitut de Recherche pour le Developpement—Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
| | - Adrian J. F. Luty
- MERIT, Intitut de Recherche pour le Developpement—Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
| | - Achille Massougbodji
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
| | - Philippe Deloron
- MERIT, Intitut de Recherche pour le Developpement—Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nicaise G. Tuikue Ndam
- MERIT, Intitut de Recherche pour le Developpement—Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance (CERPAGE), Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- * E-mail:
| |
Collapse
|
38
|
Niang M, Diop F, Niang O, Sadio BD, Sow A, Faye O, Diallo M, Sall AA, Perraut R, Toure-Balde A. Unexpected high circulation of Plasmodium vivax in asymptomatic children from Kédougou, southeastern Senegal. Malar J 2017; 16:497. [PMID: 29284488 PMCID: PMC5747145 DOI: 10.1186/s12936-017-2146-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
Background Malaria in Senegal is due essentially to infections by Plasmodium falciparum and, to a lesser extent to Plasmodium malariae and Plasmodium ovale. By the use of molecular methods, detection of Plasmodium vivax has been recently reported in the region of Kedougou, raising the question of appraisal of its potential prevalence in this setting. Methods A retrospective serological study was carried out using 188 samples taken from 2010 to 2011 in a longitudinal school survey during which 48 asymptomatic children (9–11 years) were recruited. Four collections of samples collected during two successive dry and rainy seasons were analysed for antibody responses to P. vivax and P. falciparum. Recombinant P. falciparum and P. vivax MSP1 antigens and total P. falciparum schizont lysate from African 07/03 strain (adapted to culture) were used for ELISA. Nested PCR amplification was used for molecular detection of P. vivax. Results A surprising high prevalence of IgG responses against P. vivax MSP1 was evidenced with 53% of positive samples and 58% of the individuals that were found positive to this antigen. There was 77% of responders to P. falciparum outlined by 63% of positive samples. Prevalence of responders did not differ as function of seasons. Levels of antibodies to P. falciparum fluctuated with significant increasing between dry and rainy season (P < 0.05), contrary to responses to P. vivax. There was a significant reciprocal relationship (P < 10−3) between antibody responses to the different antigens, but with weak coefficient of correlation (Rho around 0.3) underlining a variable profile at the individual level. Clear molecular signature was found in positive IgG to P. vivax msp1 samples by PCR. Conclusion This cross-sectional longitudinal study highlights the unexpected high circulation of P. vivax in this endemic area. Sero-immunology and molecular methods are powerful additive tools to identify endemic sites where relevant control measures have to be settled and monitored.
Collapse
Affiliation(s)
- Makhtar Niang
- Immunology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Fode Diop
- Immunology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oulimata Niang
- Immunology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Bacary D Sadio
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Abdourahmane Sow
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal.,West African Health Organization, Ouagadougou, Burkina Faso
| | - Ousmane Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mawlouth Diallo
- Medical Entomology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou A Sall
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ronald Perraut
- Immunology Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | | |
Collapse
|
39
|
Asua V, Tukwasibwe S, Conrad M, Walakira A, Nankabirwa JI, Mugenyi L, Kamya MR, Nsobya SL, Rosenthal PJ. Plasmodium Species Infecting Children Presenting with Malaria in Uganda. Am J Trop Med Hyg 2017; 97:753-757. [PMID: 28990911 DOI: 10.4269/ajtmh.17-0345] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Contributions of species other than Plasmodium falciparum to human malaria in sub-Saharan Africa are uncertain. We collected blood from children aged 6 months to 10 years diagnosed with malaria by Giemsa-stained blood smears (176 subjects) or histidine rich protein-2-based rapid diagnostic tests (323 subjects) in 2016; 50 samples from each of 10 sites across Uganda were studied to identify infecting species. Of 499 available samples, 474 demonstrated plasmodial infection by polymerase chain reaction amplification of 18S ribosomal RNA genes, including P. falciparum in 472, Plasmodium malariae in 22, Plasmodium ovale in 15, and Plasmodium vivax in four; 435 were pure P. falciparum, two did not contain P. falciparum, and the remainder were mixed infections including P. falciparum. The prevalence of nonfalciparum species varied geographically. Stratifying based on recent history of indoor residual spraying (IRS) of insecticides, nonfalciparum infections were seen in 27/189 (14.8%) samples from sites that received and 13/285 (4.6%) samples from sites that did not receive IRS since 2010 (P = 0.0013). Overall, 39/474 (8.2%) samples from individuals diagnosed with malaria included nonfalciparum infections. Thus, a substantial proportion of episodes of malaria in Uganda include infections with plasmodial species other than P. falciparum.
Collapse
Affiliation(s)
- Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Melissa Conrad
- Department of Medicine, University of California, San Francisco, San Francisco, California; 3Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Joaniter I Nankabirwa
- Deparment of Pathology, Makerere University, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Moses R Kamya
- Deparment of Pathology, Makerere University, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Samuel L Nsobya
- Deparment of Pathology, Makerere University, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, California; 3Department of Medicine, Makerere University, Kampala, Uganda
| |
Collapse
|
40
|
Niangaly A, Karthigayan Gunalan, Amed Ouattara, Coulibaly D, Sá JM, Adams M, Travassos MA, Ferrero J, Laurens MB, Kone AK, Thera MA, Plowe CV, Miller LH, Doumbo OK. Plasmodium vivax Infections over 3 Years in Duffy Blood Group Negative Malians in Bandiagara, Mali. Am J Trop Med Hyg 2017; 97:744-752. [PMID: 28749772 DOI: 10.4269/ajtmh.17-0254] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium vivax was thought to infect only the erythrocytes of Duffy blood group positive people. In the last decade, P. vivax has appeared throughout Africa, both in areas where Duffy positive and negative people live side by side as in Madagascar and Ethiopia and in areas where people are primarily Duffy negative, such as in western Kenya. We performed quantitative polymerase chain reaction on blood samples dried onto filter paper to determine the prevalence of P. vivax and Plasmodium falciparum in a cohort of 300 children (newborn to 6 years of age) in Bandiagara, a Sahelian area of Mali, west Africa, where the people are Duffy negative. We report 1-3 occurrences of P. vivax in each of 25 Duffy-negative children at six time points over two rainy seasons and the beginning of the third season. The prevalence of P. vivax infection was 2.0-2.5% at every time point (June 2009 to June 2010). All children with P. vivax infections were asymptomatic and afebrile, and parasite densities were extremely low. Anemia, however, was the main burden of infection. Plasmodium vivax could become a burden to sub-Saharan Africa, and the evidence of P. vivax existence needs to be taken into consideration in designing malaria control and elimination strategies in Africa.
Collapse
Affiliation(s)
- Amadou Niangaly
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Amed Ouattara
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland.,Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Matthew Adams
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark A Travassos
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jennifer Ferrero
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew B Laurens
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Abdoulaye K Kone
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Mahamadou A Thera
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Christopher V Plowe
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Ogobara K Doumbo
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| |
Collapse
|