1
|
Nazarpour S, Shokati Poursani A, Mousavi M, Ramezani Tehrani F, Behboudi-Gandevani S. Investigation of the relationship between air pollution and gestational diabetes. J OBSTET GYNAECOL 2024; 44:2362962. [PMID: 38853776 DOI: 10.1080/01443615.2024.2362962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) can have negative effects on both the pregnancy and perinatal outcomes, as well as the long-term health of the mother and the child. It has been suggested that exposure to air pollution may increase the risk of developing GDM. This study investigated the relationship between exposure to air pollutants with gestational diabetes. METHODS The present study is a retrospective cohort study. We used data from a randomised community trial conducted between September 2016 and January 2019 in Iran. During this period, data on air pollutant levels of five cities investigated in the original study, including 6090 pregnant women, were available. Concentrations of ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulphur dioxide (SO2), carbon monoxide (CO), particulate matter < 2.5 (PM2.5) or <10 μm (PM10) were obtained from air pollution monitoring stations. Exposure to air pollutants during the three months preceding pregnancy and the first, second and third trimesters of pregnancy for each participant was estimated. The odds ratio was calculated based on logistic regression in three adjusted models considering different confounders. Only results that had a p < .05 were considered statistically significant. RESULTS None of the logistic regression models showed any statistically significant relationship between the exposure to any of the pollutants and GDM at different time points (before pregnancy, in the first, second and third trimesters of pregnancy and 12 months in total) (p > .05). Also, none of the adjusted logistic regression models showed any significant association between PM10 exposure and GDM risk at all different time points after adjusting for various confounders (p > .05). CONCLUSIONS This study found no association between GDM risk and exposure to various air pollutants before and during the different trimesters of pregnancy. This result should be interpreted cautiously due to the lack of considering all of the potential confounders.
Collapse
Affiliation(s)
- Sima Nazarpour
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Midwifery, Varamin-Pishva Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Shokati Poursani
- Department of Chemical Engineering - Health, Safety & Environment, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Maryam Mousavi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Ganguly A, Ghosh S, Shin BC, Touma M, Wadehra M, Devaskar SU. Gestational exposure to air pollutants perturbs metabolic and placenta-fetal phenotype. Reprod Toxicol 2024; 128:108657. [PMID: 39002939 DOI: 10.1016/j.reprotox.2024.108657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Air pollution (AP) is detrimental to pregnancies including increasing risk factors of gestational diabetes mellitus. We hypothesized that exposure to AP causes cardiovascular and metabolic disruption thereby altering placental gene expression, which in turn affects the placental phenotype and thereby embryonic/fetal development. To test this hypothesis, we investigated the impact of intra-nasal instilled AP upon gestational day 16-19 maternal mouse cardiovascular and metabolic status, placental nutrient transporters, and placental-fetal size and morphology. To further unravel mechanisms, we also examined placental total DNA 5'-hydroxymethylation and bulk RNA sequenced gene expression profiles. AP exposed pregnant mice and fetuses were tachycardic with a reduction in maternal left ventricular fractional shortening and increased uterine artery with decreased umbilical artery systolic peak velocities. In addition, they were hyperglycemic, glucose intolerant and insulin resistant, with changes in placental glucose (Glut3) and fatty acid (Fatp1 & Cd36) transporters, and a spatial disruption of cells expressing Glut10 that imports L-dehydroascorbic acid in protecting against oxidative stress. Placentas revealed inflammatory cellular infiltration with associated cellular edema and necrosis, with dilated vascular spaces and hemorrhage. Placental and fetal body weights decreased in mid-gestation with a reduction in brain cortical thickness emerging in late gestation. Placental total DNA 5'-hydroxymethylation was 2.5-fold higher, with perturbed gene expression profiles involving key metabolic, inflammatory, transcriptional, cellular polarizing and processing genes and pathways. We conclude that gestational exposure to AP incites a maternal inflammatory response resulting in features mimicking maternal gestational diabetes mellitus with altered placental DNA 5'-hydroxymethylation, gene expression, and associated injury.
Collapse
Affiliation(s)
- Amit Ganguly
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Shubhamoy Ghosh
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Bo-Chul Shin
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Marlin Touma
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Madhuri Wadehra
- Department of Pathology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA
| | - Sherin U Devaskar
- Department of Pediatrics & the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095-1752, USA.
| |
Collapse
|
3
|
Wan Z, Zhang S, Zhuang G, Liu W, Qiu C, Lai H, Liu W. Effect of fine particulate matter exposure on gestational diabetes mellitus risk: a retrospective cohort study. Eur J Public Health 2024; 34:787-793. [PMID: 38783609 PMCID: PMC11293809 DOI: 10.1093/eurpub/ckae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The literature on the association between fine particulate matter (PM2.5) exposure and gestational diabetes mellitus (GDM) risk has focused mainly on exposure during the first and second trimesters, and the research results are inconsistent. Therefore, this study aimed to investigate the associations between PM2.5 exposure during preconception, the first trimester and second trimester and GDM risk in pregnant women in Guangzhou. METHODS A retrospective cohort study of 26 354 pregnant women was conducted, estimating PM2.5, particulate matter with a diameter >10 µm (PM10), sulphur dioxide (SO2), carbon monoxide (CO) and ozone (O3) exposure during preconception and the first and second trimesters. Analyses were performed using Cox proportional hazards models and nonlinear distributed lag models. RESULTS The study found that exposure to PM2.5 or a combination of two pollutants (PM2.5+PM10, PM2.5+SO2, PM2.5+CO and PM2.5+O3) was found to be significantly associated with GDM risk (P < 0.05). In the second trimester, with significant interactions found for occupation and anaemia between PM2.5 and GDM. When the PM2.5 concentrations were ≥19.56, ≥25.69 and ≥23.87 μg/m3 during preconception and the first and second trimesters, respectively, the hazard ratio for GDM started to increase. The critical window for PM2.5 exposure was identified to be from 9 to 11 weeks before conception. CONCLUSIONS Our study results suggest that PM2.5 exposure during preconception and the first and second trimesters increases the risk of GDM, with the preconception period appearing to be the critical window for PM2.5 exposure.
Collapse
Affiliation(s)
- Zhenyan Wan
- Division of Neonatology, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Shandan Zhang
- Division of Neonatology, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Guiying Zhuang
- Division of Neonatology, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Weiqi Liu
- Department of Clinical Laboratory, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Cuiqing Qiu
- Medical Information Office, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, People’s Republic of China
| | - Huiqin Lai
- Department of Clinical Laboratory, Guanzhou Yuexiu Liurong Community Health Service Center, Guangzhou, Guangdong, People’s Republic of China
| | - Weiling Liu
- Department of Clinical Laboratory, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, People’s Republic of China
| |
Collapse
|
4
|
Li Y, Yang Z. The causal effect of exposure to air pollution on risk of adverse pregnancy outcomes: A two-sample Mendelian randomisation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172234. [PMID: 38615756 DOI: 10.1016/j.scitotenv.2024.172234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Epidemiological studies have examined the relation between air pollution (NOx, NO2, PM2.5, PM2.5-10, and PM10) and adverse pregnancy outcomes (APOs). There's increasing evidence that air pollution increases the risk of APOs. However, the results of these studies are controversial, and the causal relation remains uncertain. We aimed to assess whether a genetic causal link exists between air pollution and APOs and the potential effects of this relation. METHODS A novel two-sample Mendelian randomisation (MR) study used pooled data from a large-scale complete genome correlation study. The primary analysis method was inverse variance weighting (IVW), which explored the expose-outcome relationship for assessing single nucleotide polymorphisms (SNPs) associated with air pollution. Further sensitivity analysis, including MR-PRESSO, MR-Egger regression, and leave-one analysis, was used to test the consistency of the results. RESULTS There was a significant correlation between air pollution-related SNPs and APOs. A robust causal link was found between genetic susceptibility to air pollution and APOs. CONCLUSIONS Our MR analysis reveals a genetic causal relation between air pollution and APOs, which may help provide new insights into further mechanisms and clinical studies in air pollution-mediated APOs.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, 107 Wenhua West Road, Lixia District, Jinan City, Shandong Province, China.
| | - Zhou Yang
- Department of Obstetrics and Gynecology, Shandong University Qilu Hospital, 107 Wenhua West Road, Lixia District, Jinan City, Shandong Province, China
| |
Collapse
|
5
|
Ahn TG, Kim YJ, Lee G, You YA, Kim SM, Chae R, Hur YM, Park MH, Bae JG, Lee SJ, Kim YH, Na S. Association Between Individual Air Pollution (PM 10, PM 2.5) Exposure and Adverse Pregnancy Outcomes in Korea: A Multicenter Prospective Cohort, Air Pollution on Pregnancy Outcome (APPO) Study. J Korean Med Sci 2024; 39:e131. [PMID: 38599601 PMCID: PMC11004777 DOI: 10.3346/jkms.2024.39.e131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Prenatal exposure to ambient air pollution is linked to a higher risk of unfavorable pregnancy outcomes. However, the association between pregnancy complications and exposure to indoor air pollution remains unclear. The Air Pollution on Pregnancy Outcomes research is a hospital-based prospective cohort research created to look into the effects of aerodynamically exposed particulate matter (PM)10 and PM2.5 on pregnancy outcomes. METHODS This prospective multicenter observational cohort study was conducted from January 2021 to June 2023. A total of 662 women with singleton pregnancies enrolled in this study. An AirguardK® air sensor was installed inside the homes of the participants to measure the individual PM10 and PM2.5 levels in the living environment. The time-activity patterns and PM10 and PM2.5, determined as concentrations from the time-weighted average model, were applied to determine the anticipated exposure levels to air pollution of each pregnant woman. The relationship between air pollution exposure and pregnancy outcomes was assessed using logistic and linear regression analyses. RESULTS Exposure to elevated levels of PM10 throughout the first, second, and third trimesters as well as throughout pregnancy was strongly correlated with the risk of pregnancy problems according to multiple logistic regression models adjusted for variables. Except for in the third trimester of pregnancy, women exposed to high levels of PM2.5 had a high risk of pregnancy complications. During the second trimester and entire pregnancy, the risk of preterm birth (PTB) increased by 24% and 27%, respectively, for each 10 μg/m3 increase in PM10. Exposure to high PM10 levels during the second trimester increased the risk of gestational diabetes mellitus (GDM) by 30%. The risk of GDM increased by 15% for each 5 μg/m3 increase in PM2.5 during the second trimester and overall pregnancy, respectively. Exposure to high PM10 and PM2.5 during the first trimester of pregnancy increased the risk of delivering small for gestational age (SGA) infants by 96% and 26%, respectively. CONCLUSION Exposure to high concentrations of PM10 and PM2.5 is strongly correlated with the risk of adverse pregnancy outcomes. Exposure to high levels of PM10 and PM2.5 during the second trimester and entire pregnancy, respectively, significantly increased the risk of PTB and GDM. Exposure to high levels of PM10 and PM2.5 during the first trimester of pregnancy considerably increased the risk of having SGA infants. Our findings highlight the need to measure individual particulate levels during pregnancy and the importance of managing air quality in residential environment.
Collapse
Affiliation(s)
- Tae Gyu Ahn
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Ewha Medical Research Institute College of Medicine, Seoul, Korea
| | - Gain Lee
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Soo Min Kim
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Rin Chae
- Division of Artificial Intelligence and Software/Artificial Intelligence Convergence, Ewha Womans University, Seoul, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Mi Hye Park
- Department of Obstetrics and Gynecology, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Jin-Gon Bae
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Dongsan Medical Center, Daegu, Korea
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea.
| |
Collapse
|
6
|
Singhal B, Chauhan S, Soni N, Gurjar V, Joshi V, Kaur P, Ratre P, Kumari R, Mishra PK. Modulatory Effects of Vitamin D: A Possible Approach to Mitigate Air Pollution Related Pregnancy Complications. J Reprod Infertil 2024; 25:79-101. [PMID: 39157803 PMCID: PMC11327426 DOI: 10.18502/jri.v25i2.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/18/2024] [Indexed: 08/20/2024] Open
Abstract
Approximately 99% of people on the planet breathe air that exceeds the World Health Organization's permitted threshold for pollution. South Asia is home to the world's most polluted cities. Population-based studies have suggested that women's reproductive health outcomes are worsening due to air pollution. Preeclampsia, miscarriage, gestational diabetes, high blood pressure, and unfavorable birth outcomes, including preterm birth, low birth weight, or even stillbirth are all linked to exposure to air pollution during pregnancy. It is estimated that 0.61 million deaths in India alone were related to indoor air pollution. Females frequently cook in the household using solid fuel as a primary combustion source. Women in the regions with the highest population density are disproportionately affected by high levels of poor-quality indoor air. Recently, it has been proposed that air pollution has a distinct role in the onset of vitamin D deficiency. Numerous studies have explored associations between low vitamin D level and various female reproductive health conditions since the discovery of the vitamin D receptor. It is worthy to note that some of these reproductive health conditions positively correlate with the severity of air pollution. In this study, the evidence has been synthesized on vitamin D's protective properties and dietary and pharmaceutical interventions have been discussed to show their beneficial effects in decreasing the long-term negative impacts of air pollution on women's health.
Collapse
Affiliation(s)
| | | | - Nikita Soni
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Vikas Gurjar
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Vibhor Joshi
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Prasan Kaur
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pooja Ratre
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Roshani Kumari
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- - Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| |
Collapse
|
7
|
Zhu K, Mendola P, Barnabei VM, Wang M, Hageman Blair R, Schwartz J, Shelton J, Lei L, Mu L. Association of prenatal exposure to PM 2.5 and NO 2 with gestational diabetes in Western New York. ENVIRONMENTAL RESEARCH 2024; 244:117873. [PMID: 38072106 DOI: 10.1016/j.envres.2023.117873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Although many studies have examined the association between prenatal air pollution exposure and gestational diabetes (GDM), the relevant exposure windows remain inconclusive. We aim to examine the association between preconception and trimester-specific exposure to PM2.5 and NO2 and GDM risk and explore modifying effects of maternal age, pre-pregnancy body mass index (BMI), smoking, exercise during pregnancy, race and ethnicity, and neighborhood disadvantage. METHODS Analyses included 192,508 birth records of singletons born to women without pre-existing diabetes in Western New York, 2004-2016. Daily PM2.5 and NO2 at 1-km2 grids were estimated from ensemble-based models. We assigned each birth with exposures averaged in preconception and each trimester based on residential zip-codes. We used logistic regression to examine the associations and distributed lag models (DLMs) to explore the sensitive windows by month. Relative excess risk due to interaction (RERI) and multiplicative interaction terms were calculated. RESULTS GDM was associated with PM2.5 averaged in the first two trimesters (per 2.5 μg/m3: OR = 1.08, 95% CI: 1.01, 1.14) or from preconception to the second trimester (per 2.5 μg/m3: OR = 1.10, 95% CI: 1.03, 1.18). NO2 exposure during each averaging period was associated with GDM risk (per 10 ppb, preconception: OR = 1.10, 95% CI: 1.06, 1.14; first trimester: OR = 1.12, 95% CI: 1.08, 1.16; second trimester: OR = 1.10, 95% CI: 1.06, 1.14). In DLMs, sensitive windows were identified in the 5th and 6th gestational months for PM2.5 and one month before and three months after conception for NO2. Evidence of interaction was identified for pre-pregnancy BMI with PM2.5 (P-for-interaction = 0.023; RERI = 0.21, 95% CI: 0.10, 0.33) and with NO2 (P-for-interaction = 0.164; RERI = 0.16, 95% CI: 0.04, 0.27). CONCLUSION PM2.5 and NO2 exposure may increase GDM risk, and sensitive windows may be the late second trimester for PM2.5 and periconception for NO2. Women with higher pre-pregnancy BMI may be more susceptible to exposure effects.
Collapse
Affiliation(s)
- Kexin Zhu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Pauline Mendola
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Vanessa M Barnabei
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James Shelton
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Lijian Lei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
8
|
Zeng X, Zhan Y, Zhou W, Qiu Z, Wang T, Chen Q, Qu D, Huang Q, Cao J, Zhou N. The Influence of Airborne Particulate Matter on the Risk of Gestational Diabetes Mellitus: A Large Retrospective Study in Chongqing, China. TOXICS 2023; 12:19. [PMID: 38250975 PMCID: PMC10818620 DOI: 10.3390/toxics12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Emerging research findings suggest that airborne particulate matter might be a risk factor for gestational diabetes mellitus (GDM). However, the concentration-response relationships and the susceptible time windows for different types of particulate matter may vary. In this retrospective analysis, we employ a novel robust approach to assess the crucial time windows regarding the prevalence of GDM and to distinguish the susceptibility of three GDM subtypes to air pollution exposure. This study included 16,303 pregnant women who received routine antenatal care in 2018-2021 at the Maternal and Child Health Hospital in Chongqing, China. In total, 2482 women (15.2%) were diagnosed with GDM. We assessed the individual daily average exposure to air pollution, including PM2.5, PM10, O3, NO2, SO2, and CO based on the volunteers' addresses. We used high-accuracy gridded air pollution data generated by machine learning models to assess particulate matter per maternal exposure levels. We further analyzed the association of pre-pregnancy, early, and mid-pregnancy exposure to environmental pollutants using a generalized additive model (GAM) and distributed lag nonlinear models (DLNMs) to analyze the association between exposure at specific gestational weeks and the risk of GDM. We observed that, during the first trimester, per IQR increases for PM10 and PM2.5 exposure were associated with increased GDM risk (PM10: OR = 1.19, 95%CI: 1.07~1.33; PM2.5: OR = 1.32, 95%CI: 1.15~1.50) and isolated post-load hyperglycemia (GDM-IPH) risk (PM10: OR = 1.23, 95%CI: 1.09~1.39; PM2.5: OR = 1.38, 95%CI: 1.18~1.61). Second-trimester O3 exposure was positively correlated with the associated risk of GDM, while pre-pregnancy and first-trimester exposure was negatively associated with the risk of GDM-IPH. Exposure to SO2 in the second trimester was negatively associated with the risk of GDM-IPH. However, there were no observed associations between NO2 and CO exposure and the risk of GDM and its subgroups. Our results suggest that maternal exposure to particulate matter during early pregnancy and exposure to O3 in the second trimester might increase the risk of GDM, and GDM-IPH is the susceptible GDM subtype to airborne particulate matter exposure.
Collapse
Affiliation(s)
- Xiaoling Zeng
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.Z.); (Z.Q.)
| | - Wei Zhou
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing 401147, China; (W.Z.); (Q.H.)
| | - Zhimei Qiu
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China; (Y.Z.); (Z.Q.)
| | - Tong Wang
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Qing Chen
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Dandan Qu
- Clinical Research Centre, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China;
- Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiao Huang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children’s Hospital of Chongqing Medical University), Chongqing 401147, China; (W.Z.); (Q.H.)
| | - Jia Cao
- Institute of Toxicology, Facutly of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; (X.Z.); (T.W.); (Q.C.)
| | - Niya Zhou
- Clinical Research Centre, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China;
- Chongqing Research Centre for Prevention & Control of Maternal and Child Diseases and Public Health, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
9
|
Holzhausen EA, Kupsco A, Chalifour BN, Patterson WB, Schmidt KA, Mokhtari P, Lurmann F, Baccarelli AA, Goran MI, Alderete TL. Human milk EV-miRNAs: a novel biomarker for air pollution exposure during pregnancy. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:035002. [PMID: 37692372 PMCID: PMC10486183 DOI: 10.1088/2752-5309/ace075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 09/12/2023]
Abstract
Exposure to ambient and near-roadway air pollution during pregnancy has been linked with several adverse health outcomes for pregnant women and their babies. Emerging research indicates that microRNA (miRNA) expression can be altered by exposure to air pollutants in a variety of tissues. Additionally, miRNAs from breast tissue and circulating miRNAs have previously been proposed as a biomarker for breast cancer diagnosis and prognosis. Therefore, this study sought to evaluate the associations between pregnancy exposures to ambient (PM10, PM2.5, NO2, O3) and near-roadway air pollution (total NOx, freeway NOx, non-freeway NOx) with breast milk extracellular vesicle miRNA (EV-miRNA), measured at 1-month postpartum, in a cohort of 108 Latina women living in Southern California. We found that PM10 exposure during pregnancy was positively associated with hsa-miR-200c-3p, hsa-miR-200b-3p, and hsa-let-7c-5p, and was negatively associated with hsa-miR-378d. We also found that pregnancy PM2.5 exposure was positively associated with hsa-miR-200c-3p and hsa-miR-200b-3p. First and second trimester exposure to PM10 and PM2.5 was associated with several EV-miRNAs with putative messenger RNA targets related to cancer. This study provides preliminary evidence that air pollution exposure during pregnancy is associated with human milk EV-miRNA expression.
Collapse
Affiliation(s)
- Elizabeth A Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public
Health, New York, NY, United States of America
| | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - William B Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - Kelsey A Schmidt
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | - Pari Mokhtari
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public
Health, New York, NY, United States of America
| | - Michael I Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| |
Collapse
|
10
|
Cao L, Diao R, Shi X, Cao L, Gong Z, Zhang X, Yan X, Wang T, Mao H. Effects of Air Pollution Exposure during Preconception and Pregnancy on Gestational Diabetes Mellitus. TOXICS 2023; 11:728. [PMID: 37755739 PMCID: PMC10534707 DOI: 10.3390/toxics11090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/28/2023]
Abstract
This study aimed to investigate the association between air pollution and gestational diabetes mellitus (GDM) in small- and medium-sized cities, identify sensitive periods and major pollutants, and explore the effects of air pollution on different populations. A total of 9820 women who delivered in Handan Maternal and Child Health Hospital in the Hebei Province from February 2018 to July 2020 were included in the study. Logistic regression and principal component logistic regression models were used to assess the effects of air pollution exposure during preconception and pregnancy on GDM risk and the differences in the effects across populations. The results suggested that each 20 μg/m3 increase in PM2.5 and PM10 exposure during preconception and pregnancy significantly increased the risk of GDM, and a 10 μg/m3 increase in NO2 exposure during pregnancy was also associated with the risk of GDM. In a subgroup analysis, pregnant women aged 30-35 years, nulliparous women, and those with less than a bachelor's education were the most sensitive groups. This study provides evidence for an association between air pollution and the prevalence of GDM, with PM2.5, PM10, and NO2 as risk factors for GDM.
Collapse
Affiliation(s)
- Lei Cao
- China Institute for Radiation Protection, Taiyuan 030006, China
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key, Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ruiping Diao
- Handan Maternal and Children Health Hospital, Handan 056001, China
| | - Xuefeng Shi
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Lu Cao
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Zerui Gong
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xupeng Zhang
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiaohan Yan
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key, Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key, Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Teyton A, Sun Y, Molitor J, Chen JC, Sacks D, Avila C, Chiu V, Slezak J, Getahun D, Wu J, Benmarhnia T. Examining the Relationship Between Extreme Temperature, Microclimate Indicators, and Gestational Diabetes Mellitus in Pregnant Women Living in Southern California. Environ Epidemiol 2023; 7:e252. [PMID: 37304340 PMCID: PMC10256373 DOI: 10.1097/ee9.0000000000000252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/26/2023] [Indexed: 06/13/2023] Open
Abstract
Few studies have assessed extreme temperatures' impact on gestational diabetes mellitus (GDM). We examined the relation between GDM risk with weekly exposure to extreme high and low temperatures during the first 24 weeks of gestation and assessed potential effect modification by microclimate indicators. Methods We utilized 2008-2018 data for pregnant women from Kaiser Permanente Southern California electronic health records. GDM screening occurred between 24 and 28 gestational weeks for most women using the Carpenter-Coustan criteria or the International Association of Diabetes and Pregnancy Study Groups criteria. Daily maximum, minimum, and mean temperature data were linked to participants' residential address. We utilized distributed lag models, which assessed the lag from the first to the corresponding week, with logistic regression models to examine the exposure-lag-response associations between the 12 weekly extreme temperature exposures and GDM risk. We used the relative risk due to interaction (RERI) to estimate the additive modification of microclimate indicators on the relation between extreme temperature and GDM risk. Results GDM risks increased with extreme low temperature during gestational weeks 20--24 and with extreme high temperature at weeks 11-16. Microclimate indicators modified the influence of extreme temperatures on GDM risk. For example, there were positive RERIs for high-temperature extremes and less greenness, and a negative RERI for low-temperature extremes and increased impervious surface percentage. Discussion Susceptibility windows to extreme temperatures during pregnancy were observed. Modifiable microclimate indicators were identified that may attenuate temperature exposures during these windows, which could in turn reduce the health burden from GDM.
Collapse
Affiliation(s)
- Anais Teyton
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California
- School of Public Health, San Diego State University, La Jolla, California
| | - Yi Sun
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, California
| | - John Molitor
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Jiu-Chiuan Chen
- Departments of Population & Public Health Sciences and Neurology, University of Southern California, Los Angeles, California
| | - David Sacks
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California
- Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Chantal Avila
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Vicki Chiu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Jeff Slezak
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Darios Getahun
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, California
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| |
Collapse
|
12
|
Liang W, Zhu H, Xu J, Zhao Z, Zhou L, Zhu Q, Cai J, Ji L. Ambient air pollution and gestational diabetes mellitus: An updated systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114802. [PMID: 36934545 DOI: 10.1016/j.ecoenv.2023.114802] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE We aimed to evaluate the relationship between the composition of particulate matter (PM) and gestational diabetes mellitus (GDM) by a comprehensively review of epidemiological studies. METHODS We systematically identified cohort studies related to air pollution and GDM risk before February 8, 2023 from six databases (PubMed, Embase, Web of Science Core Collection, China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform and Chongqing VIP Chinese Science and Technology Periodical databases). We calculated the relative risk (RR) and its 95% confidence intervals (CIs) to assess the overall effect by using a random effects model. RESULTS This meta-analysis of 31 eligible cohort studies showed that exposure to PM2.5, PM10, SO2, and NO2 was associated with a significantly increased risk of GDM, especially in preconception and first trimester. Analysis of the components of PM2.5 found that the risk of GDM was strongly linked to black carbon (BC) and nitrates (NO3-). Specifically, BC exposure in the second trimester and NO3- exposure in the first trimester elevated the risk of GDM, with the RR of 1.128 (1.032-1.231) and 1.128 (1.032-1.231), respectively. The stratified analysis showed stronger correlations of GDM risk with higher levels of pollutants in Asia, except for PM2.5 and BC, which suggested that the specific composition of particulate pollutants had a greater effect on the exposure-outcome association than the concentration. CONCLUSIONS Our study found that ambient air pollutant is a critical factor for GDM and further studies on specific particulate matter components should be considered in the future.
Collapse
Affiliation(s)
- Weiqi Liang
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Hui Zhu
- Department of Internal Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Jin Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China; Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Zhijia Zhao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Liming Zhou
- Center for Reproductive Medicine, Ningbo Women and Children's Hospital, Ningbo, China
| | - Qiong Zhu
- Department of Pediatrics, Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Jie Cai
- Center for Reproductive Medicine, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Lindan Ji
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China; Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, China.
| |
Collapse
|
13
|
Yang Y, Ma X, Pang W, Jiang C. Causal Associations of PM2.5 and GDM: A Two-Sample Mendelian Randomization Study. TOXICS 2023; 11:171. [PMID: 36851046 PMCID: PMC9961059 DOI: 10.3390/toxics11020171] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological studies have linked particulate matter (PM2.5) to gestational diabetes mellitus (GDM). However, the causality of this association has not been established; Mendelian randomization was carried out using summary data from genome-wide association studies (GWAS). For the analysis of the causal relationship between PM2.5 and GDM, the inverse variance weighted (IVW) method was used. The exposure data came from a GWAS dataset of IEU analysis of the United Kingdom Biobank phenotypes consisting of 423,796 European participants. The FinnGen consortium provided the GDM data, which included 6033 cases and 123,000 controls. We also performed multivariate MR (MVMR), adjusting for body mass index (BMI) and smoking. As a result, we found that each standard deviation increase in PM2.5 is associated with a 73.6% increase in the risk of GDM (OR: 1.736; 95%CI: 1.226-2.457). Multivariable MR analysis showed that the effect of PM2.5 on GDM remained after accounting for BMI and smoking. Our results demonstrate a causal relationship between PM2.5 and GDM.
Collapse
Affiliation(s)
- Yi Yang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Guilin Medical University, Guilin 541199, China
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xianli Ma
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Guilin Medical University, Guilin 541199, China
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, Guilin Medical University, Guilin 541199, China
| | - Caina Jiang
- Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Guilin Medical University, Guilin 541199, China
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
14
|
Xu R, Li Z, Qian N, Qian Y, Wang Z, Peng J, Zhu X, Guo C, Li X, Xu Q, Wei Y. Air pollution exposure and the risk of macrosomia: Identifying specific susceptible months. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160203. [PMID: 36403833 DOI: 10.1016/j.scitotenv.2022.160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Birth weight is an important indicator of future growth and development for newborns. Few studies investigated the potential effects of air pollutants on macrosomia and their susceptible windows. We included 38,971 singleton full-term births from Beijing HaiDian Maternal and Child Health Hospital between 2014 and 2018, and assessed the associations of air pollutants exposure during preconception and pregnancy with macrosomia as well as the corresponding susceptible windows. The concentrations of air pollutants (PM2.5, PM10, SO2, NO2, CO and O3) for participants were calculated by the data from the nearest monitoring stations. Distributed lag models (DLM) incorporating logistic regression models were used to estimate the associations between air pollutants exposure during the 3 months before conception and pregnancy period and the risk of macrosomia, identifying susceptible windows of air pollutants. Weighted quantile sum (WQS) regression was applied to estimate the joint effect of air pollutants. A 10 μg/m3 increase in PM2.5 exposure from 3rd to 8th gestational month was positively associated with the risk of macrosomia, with the strongest effect in the 6th month (OR = 1.010, 95 % CI: 1.002-1.019). For a 10 μg/m3 increase in SO2, the windows of significant exposure were from the 1st preconception month to the 3rd gestational month, with the strongest effect in the 2nd month (OR = 1.030, 95 % CI: 1.010-1.049). We also observed the significant positive associations were in the 5th-8th gestational months for PM10, the 8th-9th gestational months for NO2 and the 3rd-7th gestational months for CO respectively. WQS regression also indicated a positive association between co-exposure to air pollutants and macrosomia. Our results suggest air pollution exposure is associated with increased risk of macrosomia. The windows of exposure for susceptibility to the risk of macrosomia vary between air pollutants. The susceptible exposure windows were middle and late pregnancy for PM, CO and NO2, while for SO2, early pregnancy is the window of vulnerability. Our findings provide the evidence that air pollution exposure is an independent risk factor for macrosomia and a basis for targeted environment policy.
Collapse
Affiliation(s)
- Rongrong Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Nianfeng Qian
- Hai Dian Maternal & Child Health Hospital, Beijing, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jianhao Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaojing Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, China.
| |
Collapse
|
15
|
Laine MK, Kautiainen H, Anttila P, Gissler M, Pennanen P, Eriksson JG. Early pregnancy particulate matter exposure, pre-pregnancy adiposity and risk of gestational diabetes mellitus in Finnish primiparous women: An observational cohort study. Prim Care Diabetes 2023; 17:79-84. [PMID: 36464621 DOI: 10.1016/j.pcd.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
AIMS To evaluate the association between the exposure of particulate matter with an aerodynamic diameter of ≤ 2.5μm (PM2.5) and with an aerodynamic diameter of ≤ 10μm (PM10) over the first trimester and the risk of gestational diabetes mellitus (GDM), and to assess whether maternal pre-pregnancy body mass index (BMI) modified the GDM risk. METHODS All Finnish primiparous women without previously diagnosed diabetes who delivered between 2009 and 2015 in the city of Vantaa, Finland, composed the study cohort (N = 6189). Diagnosis of GDM was based on a standard 75 g 2-hour oral glucose tolerance test. The average daily concentration of PM2.5 and PM10 over the first trimester was calculated individually for each woman. The relationship between exposure of PM2.5 and PM10 and GDM was analyzed with logistic models. RESULTS No association was observed between the average daily concentrations of PM2.5 and PM10 over the first trimester and the GDM risk. When simultaneously taking BMI and PM10 into account both mean daily PM10 concentration (p = 0.047) and pre-pregnancy BMI (p = 0.016) increased GDM risk independently and an interaction (p = 0.013) was observed between PM10 concentration and pre-pregnancy BMI. CONCLUSIONS Even globally low PM10 exposure level together with elevated maternal pre-pregnancy BMI seems to increase the GDM risk.
Collapse
Affiliation(s)
- Merja K Laine
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland.
| | - Hannu Kautiainen
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland.
| | - Pia Anttila
- Finnish Meteorological Institute, Helsinki, Finland.
| | - Mika Gissler
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland; Karolinska Institute, Stockholm, Sweden.
| | | | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; National University Singapore, Yong Loo Lin School of Medicine, Department of Obstetrics and Gynecology, Singapore, Singapore; Singapore Institute for Clinical Sciences (SCIS), Agency for Science, Technology and Research (A⁎STAR), Singapore.
| |
Collapse
|
16
|
Ren Z, Yuan J, Luo Y, Wang J, Li Y. Association of air pollution and fine particulate matter (PM2.5) exposure with gestational diabetes: a systematic review and meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:23. [PMID: 36760250 PMCID: PMC9906206 DOI: 10.21037/atm-22-6306] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/16/2023]
Abstract
Background The association between air pollution (AP) and gestational diabetes mellitus (GDM), especially between different pollutants and GDM, remains controversial and debatable. Hence, we conducted this systematic review and meta-analysis to provide comprehensive evidence-based support for the association between AP and GDM. Methods The databases of the Cochrane Library, Embase, PubMed, and Web of Science were searched from inception to 1 April 2022, in combination with manual retrieval. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of case-control studies and cohort studies, while the Joana Brigg's Institute (JBI) critical appraisal checklist was used for the quality assessment of cross-sectional studies. Results We identified 35 epidemiological studies (including 33 cohort studies, 1 cross-sectional study, and 1 case-control study) covering 6,939,725 pregnant women, of whom 865,460 were GDM patients. The NOS score of all included case-control studies and cohort studies was higher than six, and one of the included cross-sectional studies was rated as high quality according to the JBI assessment. Meta-analysis showed that fine particulate matter and air pollutants [PM2.5, odds ratio (OR) =1.06, 95% confidence interval (CI): 1.05-1.08, Z =7.76, P<0.001; PM10, OR =1.06, 95% CI: 1.01-1.11, Z =2.62, P=0.009; sulfur dioxide (SO2), OR =1.18, 95% CI: 1.10-1.26, Z = 4.69, P<0.001; nitric oxide (NO), OR =1.04, 95% CI: 1.03-1.06,Z =3.33, P=0.001; nitrogen oxides (NOX), OR =1.07, 95% CI: 1.04-1.11, Z =3.93, P<0.001; black carbon (BC), OR =1.08, 95% CI: 1.06-1.10, Z =7.58, P<0.001] was associated with GDM. Furthermore, no significant association was observed between O3, CO, and nitrogen dioxide (NO2) exposure and GDM. Conclusions Exposure to PM2.5, PM10, SO2, NO, NOX, and BC significantly increases the risk of GDM. AP is a remediable environmental trigger that can be prevented by human interventions, such as lowering AP levels or limiting human exposure to air pollutants. The government should strengthen the supervision of air quality and make air quality information more transparent. Besides, living conditions are crucial during pregnancy. Living in a place with more green areas is recommended, and indoor air purification should also be enhanced.
Collapse
Affiliation(s)
- Zhonglian Ren
- Department of Obstetrics and Gynecology, Chengdu Shuangliu District Maternal and Child Health Hospital, Chengdu, China
| | - Jiaying Yuan
- Science and education section, Chengdu Shuangliu District Maternal and Child Health Hospital, Chengdu, China
| | - Ya Luo
- Department of Obstetrics and Gynecology, Chengdu Shuangliu District Maternal and Child Health Hospital, Chengdu, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Chengdu Shuangliu District Maternal and Child Health Hospital, Chengdu, China
| | - Yanqin Li
- Department of Obstetrics and Gynecology, Chengdu Shuangliu District Maternal and Child Health Hospital, Chengdu, China
| |
Collapse
|
17
|
Liu W, Zhang Q, Liu W, Qiu C. Association between air pollution exposure and gestational diabetes mellitus in pregnant women: a retrospective cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2891-2903. [PMID: 35941503 DOI: 10.1007/s11356-022-22379-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The global prevalence of gestational diabetes mellitus (GDM) is increasing annually, and previous research reports on the relationship between exposure to air pollutants and GDM are not completely consistent. We investigated the association between air pollutant exposure and GDM in pregnant women in a retrospective cohort study in Guangzhou. We found that in the first trimester, exposure to PM2.5 and CO showed a significant association with GDM. In the second trimester, exposure to PM10 was significantly associated with GDM. In the third trimester, exposure to PM2.5, PM10, NO2, SO2, and CO at IQR4 (odds ratio [OR] = 1.271, 95% confidence interval [CI]: 1.179-1.370; OR = 1.283, 95% CI: 1.191-1.383; OR = 1.230, 95% CI: 1.145-1.322; OR = 1.408, 95% CI: 1.303-1.522; OR = 1.150, 95% CI: 1.067-1.240, respectively) compared with IQR1 was positively associated with GDM. However, exposure to NO2 was negatively associated with GDM in the first and second trimesters, and O3 was negatively associated with GDM in the second and third trimesters. We found that the correlation between air pollutants and GDM in different trimesters of pregnancy was not completely consistent in this retrospective cohort study. During pregnancy, there may be an interaction between air pollutant exposure and other factors, such as pregnant women's age, occupation, anemia status, pregnancy-induced hypertension status, and pregnancy season.
Collapse
Affiliation(s)
- Weiqi Liu
- Department of Clinical Laboratory, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, 510800, People's Republic of China.
| | - Qingui Zhang
- Department of Clinical Laboratory, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, 528000, People's Republic of China
| | - Weiling Liu
- Department of Clinical Laboratory, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, 528000, People's Republic of China
| | - Cuiqing Qiu
- Medical Information Office, The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, Guangzhou, Guangdong, 510800, People's Republic of China
| |
Collapse
|
18
|
Zordão OP, Campolim CM, Yariwake VY, Castro G, Ferreira CKDO, Santos A, Norberto S, Veras MM, Saad MJA, Saldiva PHN, Kim YB, Prada PO. Maternal exposure to air pollution alters energy balance transiently according to gender and changes gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1069243. [PMID: 37082122 PMCID: PMC10112381 DOI: 10.3389/fendo.2023.1069243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/07/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction The timing of maternal exposure to air pollution is crucial to define metabolic changes in the offspring. Here we aimed to determine the most critical period of maternal exposure to particulate matter (PM2.5) that impairs offspring's energy metabolism and gut microbiota composition. Methods Unexposed female and male C57BL/6J mice were mated. PM2.5 or filtered air (FA) exposure occurred only in gestation (PM2.5/FA) or lactation (FA/PM2.5). We studied the offspring of both genders. Results PM2.5 exposure during gestation increased body weight (BW) at birth and from weaning to young in male adulthood. Leptin levels, food intake, Agrp, and Npy levels in the hypothalamus were also increased in young male offspring. Ikbke, Tnf increased in male PM2.5/FA. Males from FA/PM2.5 group were protected from these phenotypes showing higher O2 consumption and Ucp1 in the brown adipose tissue. In female offspring, we did not see changes in BW at weaning. However, adult females from PM2.5/FA displayed higher BW and leptin levels, despite increased energy expenditure and thermogenesis. This group showed a slight increase in food intake. In female offspring from FA/PM2.5, BW, and leptin levels were elevated. This group displayed higher energy expenditure and a mild increase in food intake. To determine if maternal exposure to PM2.5 could affect the offspring's gut microbiota, we analyzed alpha diversity by Shannon and Simpson indexes and beta diversity by the Linear Discriminant Analysis (LDA) in offspring at 30 weeks. Unlike males, exposure during gestation led to higher adiposity and leptin maintenance in female offspring at this age. Gestation exposure was associated with decreased alpha diversity in the gut microbiota in both genders. Discussion Our data support that exposure to air pollution during gestation is more harmful to metabolism than exposure during lactation. Male offspring had an unfavorable metabolic phenotype at a young age. However, at an older age, only females kept more adiposity. Ultimately, our data highlight the importance of controlling air pollution, especially during gestation.
Collapse
Affiliation(s)
- Olivia Pizetta Zordão
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Clara Machado Campolim
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Victor Yuji Yariwake
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Gisele Castro
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Andrey Santos
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sónia Norberto
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mariana Matera Veras
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Environmental and Experimental Pathology, Department of Pathology, University of Sao Paulo School of Medicine, Sao Paulo, SP, Brazil
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Patricia Oliveira Prada
- Department of Internal Medicine, School of Medical Science, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- School of Applied Sciences, State University of Campinas (UNICAMP), Limeira, SP, Brazil
- *Correspondence: Patricia Oliveira Prada, ;
| |
Collapse
|
19
|
Zheng Y, Bian J, Hart J, Laden F, Soo-Tung Wen T, Zhao J, Qin H, Hu H. PM 2.5 Constituents and Onset of Gestational Diabetes Mellitus: Identifying Susceptible Exposure Windows. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 291:119409. [PMID: 37151750 PMCID: PMC10162772 DOI: 10.1016/j.atmosenv.2022.119409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fine particulate matter (PM2.5) has been linked to gestational diabetes mellitus (GDM). However, PM2.5 is a complex mixture with large spatiotemporal heterogeneities, and women with early-onset GDM (i.e., diagnosed before 24th gestation week) have distinct maternal characteristics and a higher risk of worse health outcomes compared with those with late-onset GDM (i.e., diagnosed in or after 24th gestation week). We aimed to examine differential impacts of PM2.5 and its constituents on early- vs. late-onset GDM, and to identify corresponding susceptible exposure windows. We leveraged statewide linked electronic health records and birth records data in Florida in 2012-2017. Exposures to PM2.5 and its constituents (i.e., sulfate [SO4 2-], ammonium [NH4 +], nitrate [NO3 -], organic matter [OM], black carbon [BC], mineral dust [DUST], and sea-salt [SS]) were spatiotemporally linked to pregnant women based on their residential histories. Cox proportional hazards models and multinomial logistic regression were used to examine the associations of PM2.5 and its constituents with GDM and its onsets. Distributed non-linear lag models were implemented to identify susceptible exposure windows. Exposures to PM2.5, SO4 2-, NH4 +, and BC were statistically significantly associated with higher hazards of GDM. Exposures to PM2.5 during weeks 1-12 of gestation were positively associated with GDM. Associations of early-onset GDM with PM2.5 in the 1st and 2nd trimesters, SO4 2- in the 1st and 2nd trimesters, and NO3 - in the preconception and 1st trimester were considerably stronger than observations for late-onset GDM. Our findings suggest there are differential associations of PM2.5 and its constituents with early- vs. late-onset GDM, with different susceptible exposure windows. This study helps better understand the impacts of air pollution on GDM accounting for its physiological heterogeneity.
Collapse
Affiliation(s)
- Yi Zheng
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jaime Hart
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Francine Laden
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tony Soo-Tung Wen
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Huaizhen Qin
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hui Hu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Zhou X, Li C, Cheng H, Xie J, Li F, Wang L, Ding R. Association between ambient air pollution exposure during pregnancy and gestational diabetes mellitus: a meta-analysis of cohort studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68615-68635. [PMID: 35543789 DOI: 10.1007/s11356-022-20594-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Numerous studies have evaluated the association between air pollution and gestational diabetes mellitus (GDM), but the findings were inconsistent. This meta-analysis aimed to provide higher grade evidence on the association of air pollution with GDM based on previous studies. PubMed, Web of science, China National Knowledge Infrastructure (CNKI), and Wanfang Data Knowledge Service Platform (Wanfang) were searched comprehensively up to September 2021. Totally, 20 eligible cohort studies were finally included, for which the pooled RR and 95% CIs were estimated. Stratified analyses by study regions and units of pollutant increase were conducted for further investigation. Sensitivity analyses were also performed to assess the robustness. The finding showed that PM2.5, PM10, NO2, and SO2 exposure increased the risk of GDM, while O3 exposure reduced GDM risk. Specifically, PM2.5 exposure in the first and second trimesters, NO2 and SO2 exposure in the first trimester significantly increased the risk of GDM, with the RR ranging from 1.015 to 1.032. In addition, the elevation of GDM risk induced by PM2.5, PM10, and O3 exposure was more pronounced in Asian subjects than in American subjects. The meta-analysis provides high-quality evidence on the effect of maternal air pollution exposure on GDM in each exposure period.
Collapse
Affiliation(s)
- Xinyu Zhou
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Han Cheng
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Junyi Xie
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feng Li
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lishan Wang
- First School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
21
|
Eberle C, Stichling S. Environmental health influences in pregnancy and risk of gestational diabetes mellitus: a systematic review. BMC Public Health 2022; 22:1572. [PMID: 35982427 PMCID: PMC9389831 DOI: 10.1186/s12889-022-13965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications globally. Environmental risk factors may lead to increased glucose levels and GDM, which in turn may affect not only the health of the mother but assuming hypotheses of "fetal programming", also the health of the offspring. In addition to traditional GDM risk factors, the evidence is growing that environmental influences might affect the development of GDM. We conducted a systematic review analyzing the association between several environmental health risk factors in pregnancy, including climate factors, chemicals and metals, and GDM. Methods We performed a systematic literature search in Medline (PubMed), EMBASE, CINAHL, Cochrane Library and Web of Science Core Collection databases for research articles published until March 2021. Epidemiological human and animal model studies that examined GDM as an outcome and / or glycemic outcomes and at least one environmental risk factor for GDM were included. Results Of n = 91 studies, we classified n = 28 air pollution, n = 18 persistent organic pollutants (POP), n = 11 arsenic, n = 9 phthalate n = 8 bisphenol A (BPA), n = 8 seasonality, n = 6 cadmium and n = 5 ambient temperature studies. In total, we identified two animal model studies. Whilst we found clear evidence for an association between GDM and air pollution, ambient temperature, season, cadmium, arsenic, POPs and phthalates, the findings regarding phenols were rather inconsistent. There were clear associations between adverse glycemic outcomes and air pollution, ambient temperature, season, POPs, phenols, and phthalates. Findings regarding cadmium and arsenic were heterogeneous (n = 2 publications in each case). Conclusions Environmental risk factors are important to consider in the management and prevention of GDM. In view of mechanisms of fetal programming, the environmental risk factors investigated may impair the health of mother and offspring in the short and long term. Further research is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13965-5.
Collapse
Affiliation(s)
- Claudia Eberle
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany.
| | - Stefanie Stichling
- Medicine With Specialization in Internal Medicine and General Medicine, Hochschule Fulda, University of Applied Sciences, Leipziger Strasse 123, 36037, Fulda, Germany
| |
Collapse
|
22
|
Yan M, Liu N, Fan Y, Ma L, Guan T. Associations of pregnancy complications with ambient air pollution in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113727. [PMID: 35679731 DOI: 10.1016/j.ecoenv.2022.113727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gestational hypertension (GH), preeclampsia (PE), and gestational diabetes mellitus (GDM) are common pregnancy complications and can result in maternal and prenatal morbidity and mortality. Air pollution exposure could adversely impact pregnancy complications; however, evidence remains limited in China, where ambient air pollution is relatively severe. OBJECTIVE This study aims to examine the associations of GH, PE, and GDM with exposure to six air pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) during pregnancy. METHODS Leveraging a multicenter birth cohort study among pregnant women in 24 hospitals from 15 provinces in China, we obtained data for maternal characteristics and pregnancy outcomes. We generated ambient concentrations of the six air pollutants using a combination of chemical transport model simulations with monitoring data. We used multivariable logistic regression models to estimate the effects on pregnancy complications from exposure to six air pollutants in each trimester and the entire pregnancy. RESULTS Among the total 3754 pregnant women in this study, the prevalences of GH, GDM, and PE were 2.6 %, 11.2 %, and 0.7 %, respectively. GH risk increased 11.9 % (95 % CI, -8.5 %, 36.8 %) and 13.8 % (1.4 %, 27.8 %) per 10 μg/m3 increases in PM2.5 and PM10 in the entire pregnancy, respectively. PM2.5 and PM10 exposures in the first trimester were significantly associated with an increased risk of GDM. Exposure to O3, SO2, NO2, and CO in early pregnancy could be associated with GDM risk. Geographic region and season of conception may influence the associations of GH and PE with air pollution. CONCLUSIONS Ambient particulate matter pollution adversely affects GH, GDM, and PE among Chinese pregnant women. Since most regions of China still suffer from hazardous levels of air pollution, our findings indicate importance of better protecting pregnant women from the risk of air pollution.
Collapse
Affiliation(s)
- Meilin Yan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, China
| | - Nana Liu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Yunfei Fan
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China.
| | - Tianjia Guan
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10073, China.
| |
Collapse
|
23
|
Veras M, Waked D, Saldiva P. Safe in the womb? Effects of air pollution to the unborn child and neonates. J Pediatr (Rio J) 2022; 98 Suppl 1:S27-S31. [PMID: 34740534 PMCID: PMC9510928 DOI: 10.1016/j.jped.2021.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE In this brief review, the authors focus on the effects of gestational exposures to urban air pollution on fetal development and neonatal outcomes. SOURCE OF DATA In this review the authors used PubMed, Web of Science and SciELO research platforms, analyzing papers from the last 30 years. SUMMARY OF THE FINDINGS Epidemiological and experimental evidence agree that gestational exposure to air pollution in urban increases the risks for low birth weight, preterm birth, congenital malformation, intrauterine growth restriction, and neonatal mortality. Furthermore, exposures are associated with increased risks for preeclampsia, hypertension, gestational diabetes. CONCLUSIONS Therefore, it is time for greater involvement and engagement of the health sector in the discussion of public policies that may affect the quality of the environment, and that directly or indirectly impact the health of those who were not yet born.
Collapse
Affiliation(s)
- Mariana Veras
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Laboratório de Patologia Ambiental e Experimental (LIM05), São Paulo, SP, Brazil.
| | - Dunia Waked
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Laboratório de Patologia Ambiental e Experimental (LIM05), São Paulo, SP, Brazil
| | - Paulo Saldiva
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Laboratório de Patologia Ambiental e Experimental (LIM05), São Paulo, SP, Brazil
| |
Collapse
|
24
|
Amegah AK, Sewor C, Obeng AA, Coker ES, Eliason S. Vitamin D intake modifies the association of household air pollution exposure with maternal disorders of pregnancy. INDOOR AIR 2022; 32:e12963. [PMID: 34837417 DOI: 10.1111/ina.12963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/07/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
To date, only three studies have investigated the association of household air pollution (HAP) exposure with pregnancy disorders. The ameliorating role of diet and nutrition in the association has never been explored. We conducted a cross-sectional study among 799 mothers who had recently given singleton birth in the Cape Coast Metropolis, Ghana. Structured questionnaire and semi-quantitative food frequency questionnaire were used to assess HAP exposure (from use of biomass fuels for cooking and garbage burning at home) and vitamin D (vitD) intake, respectively. Multivariable binary logistic regression was used to investigate the association between HAP exposure and pregnancy disorders. HAP exposure due to cooking with biomass fuels and garbage burning at home was associated with two fold (AOR = 2.15; 95% confidence interval [CI]: 1.05, 4.43) and six fold (AOR = 6.35; 95% CI: 2.43, 16.58) increased odds of hypertensive disorders of pregnancy (HDP). For gestational diabetes (GDM), the increased odds were two folds for both exposures but the 95% CI included the null value. Stove stacking was also associated with two folds increased odds of GDM (AOR = 1.83; 95% CI: 0.91, 3.68). In stratified analysis, the odds of HDP and GDM associated with biomass fuels use decreased with increasing vitD intake. All the interaction p values were, however, greater than 0.05. We provide the first evidence on the ameliorating role of vitD intake on the effect of HAP exposure on pregnancy disorders. In LMICs where solid fuel use and garbage burning at home is widespread, health workers should advise mothers during antenatal care visits to increase intake of vitamin D rich foods.
Collapse
Affiliation(s)
- Adeladza K Amegah
- Public Health Research Group, Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Christian Sewor
- Public Health Research Group, Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Akua A Obeng
- Public Health Research Group, Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric S Coker
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Sebastian Eliason
- Department of Community Medicine, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
25
|
Sun Y, Li X, Benmarhnia T, Chen JC, Avila C, Sacks DA, Chiu V, Slezak J, Molitor J, Getahun D, Wu J. Exposure to air pollutant mixture and gestational diabetes mellitus in Southern California: Results from electronic health record data of a large pregnancy cohort. ENVIRONMENT INTERNATIONAL 2022; 158:106888. [PMID: 34563749 PMCID: PMC9022440 DOI: 10.1016/j.envint.2021.106888] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Epidemiological findings are inconsistent regarding the associations between air pollution exposure during pregnancy and gestational diabetes mellitus (GDM). Several limitations exist in previous studies, including potential outcome and exposure misclassification, unassessed confounding, and lack of simultaneous consideration of air pollution mixtures and particulate matter (PM) constituents. OBJECTIVES To assess the association between GDM and maternal residential exposure to air pollution, and the joint effect of the mixture of air pollutants and PM constituents. METHODS Detailed clinical data were obtained for 395,927 pregnancies in southern California (2008-2018) from Kaiser Permanente Southern California (KPSC) electronic health records. GDM diagnosis was based on KPSC laboratory tests. Monthly average concentrations of fine particulate matter < 2.5 μm (PM2.5), <10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3) were estimated using kriging interpolation of Environmental Protection Agency's routine monitoring station data, while PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black carbon) were estimated using a fine-resolution geoscience-derived model. A multilevel logistic regression was used to fit single-pollutant models; quantile g-computation approach was applied to estimate the joint effect of air pollution and PM component mixtures. Main analyses adjusted for maternal age, race/ethnicity, education, median family household income, pre-pregnancy BMI, smoking during pregnancy, insurance type, season of conception and year of delivery. RESULTS The incidence of GDM was 10.9% in the study population. In single-pollutant models, we observed an increased odds for GDM associated with exposures to PM2.5, PM10, NO2 and PM2.5 constituents. The association was strongest for NO2 [adjusted odds ratio (OR) per interquartile range: 1.176, 95% confidence interval (CI): 1.147-1.205)]. In multi-pollutant models, increased ORs for GDM in association with one quartile increase in air pollution mixtures were found for both kriging-based regional air pollutants (NO2, PM2.5, and PM10, OR = 1.095, 95% CI: 1.082-1.108) and PM2.5 constituents (i.e., sulfate, nitrate, ammonium, organic matter and black carbon, OR = 1.258, 95% CI: 1.206-1.314); NO2 (78%) and black carbon (48%) contributed the most to the overall mixture effects among all krigged air pollutants and all PM2.5 constituents, respectively. The risk of GDM associated with air pollution exposure were significantly higher among Hispanic mothers, and overweight/obese mothers. CONCLUSION This study found that exposure to a mixture of ambient PM2.5, PM10, NO2, and PM2.5 chemical constituents was associated with an increased risk of GDM. NO2 and black carbon PM2.5 contributed most to GDM risk.
Collapse
Affiliation(s)
- Yi Sun
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Xia Li
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Tarik Benmarhnia
- Herbert Wertheim School of Public Health and Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0725, CA La Jolla 92093, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chantal Avila
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - David A Sacks
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA; Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Vicki Chiu
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jeff Slezak
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - John Molitor
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Darios Getahun
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA; Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA.
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA.
| |
Collapse
|
26
|
Yan YH, Chien CC, Wang P, Lu MC, Wei YC, Wang JS, Wang JS. Association of exposure to air pollutants with gestational diabetes mellitus in Chiayi City, Taiwan. Front Endocrinol (Lausanne) 2022; 13:1097270. [PMID: 36726471 PMCID: PMC9885121 DOI: 10.3389/fendo.2022.1097270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/30/2022] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION We investigated the associations of exposure to particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) and several gaseous pollutants with risk of gestational diabetes mellitus (GDM) in Taiwan. METHODS We retrospectively identified pregnant women who underwent a two-step approach to screen for GDM between 2006 and 2014. Information on concentrations of air pollutants (including PM2.5, sulfur dioxide [SO2], nitrogen oxides [NOx], and ozone [O3]) were collected from a single fixed-site monitoring station. We conducted logistic regression analyses to determine the associations between exposure to air pollutants and risk of GDM. RESULTS A total of 11210 women were analyzed, and 705 were diagnosed with GDM. Exposure to PM2.5 during the second trimester was associated with a nearly 50% higher risk of GDM (odds ratio [OR] 1.47, 95% CI 0.96 to 2.24, p=0.077). The associations were consistent in the two-pollutant model (PM2.5 + SO2 [OR 1.73, p=0.038], PM2.5 + NOx [OR 1.52, p=0.064], PM2.5 + O3 [OR 1.96, p=0.015]), and were more prominent in women with age <30 years and body mass index <25 kg/m2 (interaction p values <0.01). DISCUSSION Exposure to PM2.5 was associated with risk of GDM, especially in women who were younger or had a normal body mass index.
Collapse
Affiliation(s)
- Yuan-Horng Yan
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Endocrinology and Metabolism, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Panchalli Wang
- Department of Obstetrics and Gynecology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Mei-Chun Lu
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Jyh-Seng Wang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jun-Sing Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- *Correspondence: Jun-Sing Wang,
| |
Collapse
|
27
|
Rammah A, Whitworth KW, Amos CI, Estarlich M, Guxens M, Ibarluzea J, Iñiguez C, Subiza-Pérez M, Vrijheid M, Symanski E. Air Pollution, Residential Greenness and Metabolic Dysfunction during Early Pregnancy in the INfancia y Medio Ambiente (INMA) Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179354. [PMID: 34501944 PMCID: PMC8430971 DOI: 10.3390/ijerph18179354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022]
Abstract
Despite extensive study, the role of air pollution in gestational diabetes remains unclear, and there is limited evidence of the beneficial impact of residential greenness on metabolic dysfunction during pregnancy. We used data from mothers in the Spanish INfancia y Medio Ambiente (INMA) Project from 2003–2008. We obtained spatiotemporally resolved estimates of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) exposures in early pregnancy and estimated residential greenness using satellite-based Normal Difference Vegetation Index (NDVI) within 100, 300 and 500 m buffers surrounding the mother’s residence. We applied logistic regression models to evaluate associations between each of the three exposures of interest and (a) glucose intolerance and (b) abnormal lipid levels. We found limited evidence of associations between increases in PM2.5 and NO2 exposures and the metabolic outcomes. Though not statistically significant, high PM2.5 exposure (≥25 µg/m3) was associated with increased odds of glucose intolerance (OR = 1.16, 95% CI: 0.82, 1.63) and high cholesterol (OR = 1.14, 95% CI: 0.90, 1.44). High NO2 exposure (≥39.8 µg/m3) was inversely associated with odds of high triglycerides (OR = 0.70, 95% CI: 0.45, 1.08). Whereas NDVI was not associated with glucose intolerance, odds of high triglycerides were increased, although the results were highly imprecise. Results were unchanged when the air pollutant variables were included in the regression models. Given the equivocal findings in our study, additional investigations are needed to assess effects of air pollution and residential greenness on metabolic dysfunction during pregnancy.
Collapse
Affiliation(s)
- Amal Rammah
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; (A.R.); (K.W.W.)
| | - Kristina W. Whitworth
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; (A.R.); (K.W.W.)
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Christopher I. Amos
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Institute of Clinical and Translational Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.E.); (M.G.); (J.I.); (C.I.); (M.S.-P.); (M.V.)
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Universitat Jaume I-Universitat de València, 46010 Valencia, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.E.); (M.G.); (J.I.); (C.I.); (M.S.-P.); (M.V.)
- ISGlobal, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
- Department of Child and Adolescent Psychiatry, Erasmus University Medical Center (Erasmus MC), 3015 Rotterdam, The Netherlands
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.E.); (M.G.); (J.I.); (C.I.); (M.S.-P.); (M.V.)
- Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, 20014 San Sebastian, Spain
- Faculty of Psychology, University of the Basque Country UPV/EHU, 20018 San Sebastian, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastián, Spain
| | - Carmen Iñiguez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.E.); (M.G.); (J.I.); (C.I.); (M.S.-P.); (M.V.)
- Department of Statistics and Operational Research, University of Valencia, 46010 Valencia, Spain
| | - Mikel Subiza-Pérez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.E.); (M.G.); (J.I.); (C.I.); (M.S.-P.); (M.V.)
- Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, 20014 San Sebastian, Spain
- Department of Clinical and Health Psychology and Research Methods, University of the Basque Country UPV/EHU, 20018 San Sebastián, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.E.); (M.G.); (J.I.); (C.I.); (M.S.-P.); (M.V.)
- ISGlobal, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Pompeu Fabra University, 08003 Barcelona, Spain
| | - Elaine Symanski
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; (A.R.); (K.W.W.)
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|
28
|
Li J, Xiao X, Wang P, Meng X, Zhou Y, Shi H, Yin C, Zhang Y. PM 2.5 exposure and maternal glucose metabolism in early pregnancy: Associations and potential mediation of 25-hydroxyvitamin D. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112645. [PMID: 34416639 DOI: 10.1016/j.ecoenv.2021.112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Gestational diabetes mellitus (GDM) has become a new global epidemic with a rapidly increasing prevalence. Previous studies have suggested that air pollution is associated with GDM risk, but the results are inconsistent, and mechanistic studies are limited. Based on a hospital-based cohort, a total of 6374 participants were included in this study. Individual daily PM2.5 exposure at a 1-km resolution was predicted using a full-spatiotemporal-coverage model. The results of multiple linear regression showed that glycated hemoglobin (HbA1c) was significantly associated with PM2.5 both in the 1-month preconception and in the first trimester of pregnancy. Additionally, HbA1c decreased 0.437% (95% CI: -0.629, -0.244) as the serum 25-hydroxyvitamin D (25(OH)D) increased by one interquartile range (IQR) (9.2 ng/ml). An IQR increase in PM2.5 exposure was also negatively associated with serum 25(OH)D (estimated change% and 95% CI: -7.249 (-9.054, -5.408) in the 1-month preconception and - 13.069 (-15.111, -10.979) in the first trimester of pregnancy). Mediation analysis showed that serum 25(OH)D status mediated the association between HbA1c and PM2.5 exposure both in the preconception and in the first trimester (mediated percent: 2.00% and 4.05% (Sobel p<0.001), respectively). The result suggested a vicious cycle among PM2.5 exposure, lower serum VD status and a higher HbA1c. More studies are warranted since the protective effect of 25(OH)D against glucose disorders associated with air pollution in this study was limited.
Collapse
Affiliation(s)
- Jialin Li
- Global Health Institute, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xia Meng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Global Health Institute, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Chuanmin Yin
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200032, China.
| | - Yunhui Zhang
- Global Health Institute, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Zheng Y, Wen X, Bian J, Lipkind H, Hu H. Associations between the chemical composition of PM 2.5 and gestational diabetes mellitus. ENVIRONMENTAL RESEARCH 2021; 198:110470. [PMID: 33217440 DOI: 10.1016/j.envres.2020.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) is a complex mixture of fine particulates with large spatiotemporal heterogeneities in chemical compositions. While PM2.5 has been associated with gestational diabetes mellitus (GDM), little is known about the relationship between specific chemical components of PM2.5 and GDM. We examined the associations between GDM and pregnancy exposures to PM2.5 and its compositions, including sulfate (SO42-), ammonium (NH4+), nitrate (NO3-), organic matter (OM), black carbon (BC), mineral dust (DUST), and sea-salt (SS), and to identify critical windows of exposure. METHODS We used data from the 2005-2015 Florida Vital Statistics Birth Records. A well-validated geoscience-derived model was used to estimate women's pregnancy exposures to PM2.5 and its compositions. Distributed lag models were used to examine the associations and to identify the critical windows of exposure. RESULTS A total of 2,078,669 women were included. In single-pollutant models, after controlling for potential confounders, positive associations between PM2.5 and GDM were observed during the second trimester of pregnancy. We found positive associations between SO42-, NH4+, NO3-, OM and BC, with largest effect sizes observed in the 21-24 weeks of pregnancy. Negative associations were observed for DUST and SS. Consistent results for NH4+, OM, DUST and SS were observed in the multi-pollutant models. CONCLUSIONS Exposures to PM2.5 and its compositions (mainly NH4+, OM) during the second trimester are positively associated with GDM, especially for exposures during the 21-24 weeks of pregnancy. Further studies are needed to confirm the findings and examine the underlying mechanisms.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Xiaoxiao Wen
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Heather Lipkind
- Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, Yale University, New Haven, CT, USA
| | - Hui Hu
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Wang VA, James-Todd T, Hacker MR, O’Brien KE, Wylie BJ, Hauser R, Williams PL, Bellavia A, Quinn M, McElrath TF, Papatheodorou S. Ambient PM gross β-activity and glucose levels during pregnancy. Environ Health 2021; 20:70. [PMID: 34126994 PMCID: PMC8204493 DOI: 10.1186/s12940-021-00744-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/02/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Exposure to ionizing radiation has been associated with insulin resistance and type 2 diabetes. In light of recent work showing an association between ambient particulate matter (PM) gross β-activity and gestational diabetes mellitus (GDM) among pregnant women, we examined pregnancy glucose levels in relation to PM gross β-activity to better understand this pathway. METHODS Our study included 103 participants receiving prenatal care at Beth Israel Deaconess Medical Center in Boston, MA. PM gross β-activity was obtained from US Environmental Protection Agency's RadNet program monitors, and blood glucose levels were obtained from the non-fasting glucose challenge test performed clinically as the first step of the 2-step GDM screening test. For each exposure window we examined (i.e., moving average same-day, one-week, first-trimester, and second-trimester PM gross β-activity), we fitted generalized additive models and adjusted for clinical characteristics, socio-demographic factors, temporal variables, and PM with an aerodynamic diameter ≤ 2.5 μm (PM2.5). Subgroup analyses by maternal age and by body mass index were also conducted. RESULTS An interquartile range increase in average PM gross β-activity during the second trimester of pregnancy was associated with an increase of 17.5 (95% CI: 0.8, 34.3) mg/dL in glucose concentration. Associations were stronger among younger and overweight/obese participants. Our findings also suggest that the highest compared to the lowest quartile of one-week exposure was associated with 17.0 (95% CI: - 4.0, 38.0) mg/dL higher glucose levels. No associations of glucose were observed with PM gross β-activity during same-day and first-trimester exposure windows. PM2.5 was not associated with glucose levels during any exposure window in our data. CONCLUSIONS Exposure to higher levels of ambient PM gross β-activity was associated with higher blood glucose levels in pregnant patients, with implications for how this novel environmental factor could impact pregnancy health.
Collapse
Affiliation(s)
- Veronica A. Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Michele R. Hacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Karen E. O’Brien
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Blair J. Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Paige L. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Marlee Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Stefania Papatheodorou
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
- Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Kresge Bldg, Boston, MA 02115 USA
| |
Collapse
|
31
|
Kim JH, Choi YY, Yoo SI, Kang DR. Association between ambient air pollution and high-risk pregnancy: A 2015-2018 national population-based cohort study in Korea. ENVIRONMENTAL RESEARCH 2021; 197:110965. [PMID: 33722528 DOI: 10.1016/j.envres.2021.110965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Several studies have indicated that prenatal exposure to ambient air pollution is associated with an increased risk of gestational diabetes mellitus, hypertensive disorder during pregnancy, preterm birth, and stillbirth. However, no previous study has focused on the association between the number of pregnancy complications and exposure to ambient air pollution. OBJECTIVES To investigate the association between prenatal exposure to ambient air pollutants and the number of pregnancy complications in high-risk pregnancies. METHODS We collected data on gestational diabetes mellitus, hypertensive disorder during pregnancy, preterm birth, and stillbirth from the National Health Information Databases, provided by the Korean National Health Insurance Service.R To assess individual-level exposure to air pollutants, a spatial prediction model and area-averaging approach were used. RESULTS From 2015 to 2018, data of 789,595 high-risk pregnancies were analyzed. The ratio of gestational diabetes mellitus in the country was the highest, followed by preterm birth, hypertensive disorder during pregnancy, and stillbirth. Approximately 71.7% of pregnant women (566,143) presented with one pregnancy complication in identical pregnancies, 27.5% (216,714) presented with two, and 0.9% (6738) presented with three or more. Multiple logistic regression models with adjustments for age, residence, and income variables indicated that the risk of having two or more pregnancy complications was positively associated with the exposure to higher levels of PM10 (odds ratio [OR], 1.11; 95% confidence interval [CI], 1.09-1.12) and PM2.5 (OR, 1.14; 95% CI, 1.12-1.15). The highest quartile presented higher odds of two or more pregnancy complications compared with the lower three quartiles of PM10, PM2.5, CO, NO2, and SO2 exposures (p < 0.001). CONCLUSION The results indicate that the risk of pregnancy complications is positively associated with the exposure to the high concentrations of PM10, PM2.5, CO, NO2, and SO2.
Collapse
Affiliation(s)
- Ju Hee Kim
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Yoon Young Choi
- Artificial Intelligence Big Data Medical Center, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea
| | - Soo-In Yoo
- Department of Nursing, College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae Ryong Kang
- Department of Precision Medicine, Wonju College of Medicine, Yonsei University, Wonju, 26426, Republic of Korea.
| |
Collapse
|
32
|
Huang Y, Kioumourtzoglou MA, Mittleman MA, Ross Z, Williams MA, Friedman AM, Schwartz J, Wapner RJ, Ananth CV. Air Pollution and Risk of Placental Abruption: A Study of Births in New York City, 2008-2014. Am J Epidemiol 2021; 190:1021-1033. [PMID: 33295612 DOI: 10.1093/aje/kwaa259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
We evaluated the associations of exposure to fine particulate matter (particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) at concentrations of <12 μg/m3, 12-14 μg/m3, and ≥15 μg/m3) and nitrogen dioxide (at concentrations of <26 parts per billion (ppb), 26-29 ppb, and ≥30 ppb) with placental abruption in a prospective cohort study of 685,908 pregnancies in New York, New York (2008-2014). In copollutant analyses, these associations were examined using distributed-lag nonlinear models based on Cox models. The prevalence of abruption was 0.9% (n = 6,025). Compared with a PM2.5 concentration less than 12 μg/m3, women exposed to PM2.5 levels of ≥15 μg/m3 in the third trimester had a higher rate of abruption (hazard ratio (HR) = 1.68, 95% confidence interval (CI): 1.41, 2.00). Compared with a nitrogen dioxide concentration less than 26 ppb, women exposed to nitrogen dioxide levels of 26-29 ppb (HR = 1.11, 95% CI: 1.02, 1.20) and ≥30 ppb (HR = 1.06, 95% CI: 0.96, 1.24) in the first trimester had higher rates of abruption. Compared with both PM2.5 and nitrogen dioxide levels less than the 95th percentile in the third trimester, rates of abruption were increased with both PM2.5 and nitrogen dioxide ≥95th percentile (HR = 1.44, 95% CI: 1.15, 1.80) and PM2.5 ≥95th percentile and nitrogen dioxide <95th percentile (HR = 1.43 95% CI: 1.23, 1.66). Increased levels of PM2.5 exposure in the third trimester and nitrogen dioxide exposure in the first trimester are associated with elevated rates of placental abruption, suggesting that these exposures may be important triggers of premature placental separation through different pathways.
Collapse
|
33
|
Hu Q, Wang D, Yue D, Xu C, Hu B, Cheng P, Zhai Y, Mai H, Li P, Gong J, Zeng X, Jiang T, Mai D, Fu S, Guo L, Lin W. Association of ambient particle pollution with gestational diabetes mellitus and fasting blood glucose levels in pregnant women from two Chinese birth cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143176. [PMID: 33158526 DOI: 10.1016/j.scitotenv.2020.143176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/21/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fasting blood glucose may capture the adverse effects of air pollution on pregnant women better than the incidence of gestational diabetes mellitus (GDM), but evidence on the association between air pollution and maternal glucose concentrations is limited. OBJECTIVE To investigate the associations between air pollutants, GDM and fasting blood glucose during pregnancy. METHODS We recruited 2326 pregnant women from two birth cohorts located in Guangzhou and Heshan, the Pearl River Delta region (PRD), China. PM10, PM2.5 and black carbon (BC) exposure concentrations in the first and second trimesters of pregnancy were collected at fixed-site monitoring stations for each cohort. Multiple logistic regressions were employed to estimate the associations between particle pollution and GDM. Mixed-effects models were used to evaluate the associations of air pollutants with blood glucose levels. Restricted cubic spline functions were fitted to visualize the concentration-response relationships. Distributed lag non-linear models were used to estimate week-specific lag effects of particle pollution exposure on GDM and blood glucose. Unconstrained distributed lag models with lags of 0-3 weeks were used to examine potential cumulative effects. RESULTS We observed positive and significant associations of PM10, PM2.5 and BC exposure with fasting glucose, particularly in the second trimester. PM10, PM2.5 and BC were strongly correlated and displayed similar cumulative (lag 0-3 weeks) associations with fasting blood glucose. Exposure to particle pollution was not associated with 1-h or 2-h blood glucose. Models estimating the association between air pollutants and GDM were consistent with statistical insignificance. CONCLUSIONS Based on the results of the present study, exposure to air pollution during pregnancy exerts cumulative, adverse effects on fasting glucose levels. This study provides preliminary support for the use of blood glucose levels to explore the potential health impact of air pollution on pregnant women.
Collapse
Affiliation(s)
- Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Duo Wang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, Guangdong, China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Bo Hu
- Department of Clinical Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Peng Cheng
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuhong Zhai
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, Guangdong, China
| | - Huiying Mai
- Department of Obstetrics and Gynecology, Heshan Maternal and Child Health Hospital, Heshan, 529700 Jiangmen, Guangdong, China
| | - Ping Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Jiao Gong
- Department of Clinical Laboratory, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Xiaoling Zeng
- Department of Obstetrics and Gynecology, Heshan Maternal and Child Health Hospital, Heshan, 529700 Jiangmen, Guangdong, China
| | - Tingwu Jiang
- Department of Clinical Laboratory, Heshan Maternal and Child Health Hospital, Heshan, 529700 Jiangmen, Guangdong, China
| | - Dejian Mai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shaojie Fu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Lihua Guo
- Department of Obstetrics and Gynecology, Heshan Maternal and Child Health Hospital, Heshan, 529700 Jiangmen, Guangdong, China
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
34
|
Zhang H, Zhao Y. Ambient air pollution exposure during pregnancy and gestational diabetes mellitus in Shenyang, China: a prospective cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7806-7814. [PMID: 33037545 DOI: 10.1007/s11356-020-11143-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The prevalence of gestational diabetes mellitus (GDM) is increasing worldwide. Reports of the association between air pollution exposure and GDM have been inconsistent in previous studies. We conducted a cohort study to investigate the associations between air pollution exposure and GDM in the city of Shenyang in Northeast China for the first time. We studied interactions with different air pollutant exposures and conducted a stratified analysis according to folic acid intake, age, body mass index (BMI), primiparity, and sleep quality. We found significant associations between prenatal exposure to NOx and SO2 and the development of GDM during the second trimester: the largest effect on GDM was exposure to SO2 (odds ratio (OR): 1.77, 95% confidence interval (CI): 1.23-2.56) in the largest quartile compared with the lowest quartile. Significant interactions between age, BMI, parity, sleep quality, and air pollution exposures were observed; stratified analysis showed stronger associations between GDM and high air pollutant exposure in pregnant women with older age, larger BMI, poorer sleep quality, and more parity. We found that air pollution exposure during the second trimester was significantly associated with GDM in a prospective birth cohort study in Northeast China. SO2, oxynitride (NOX, NO2, NO), CO, and O3 all showed a linear trend effect on GDM. Interactions between prenatal air pollution exposure and other factors, such as age at pregnancy, BMI before pregnancy, primiparity, folic acid intake, and sleep quality, during the second trimester might exist.
Collapse
Affiliation(s)
- Hehua Zhang
- Clinical Reserch Center, Shengjing Hospital of China Medical University, Huaxiang Road No. 39, Tiexi District, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Sanhao Street, No. 36, Heping District, China.
| |
Collapse
|
35
|
Papatheodorou S, Yao W, Vieira CLZ, Li L, Wylie BJ, Schwartz J, Koutrakis P. Residential radon exposure and hypertensive disorders of pregnancy in Massachusetts, USA: A cohort study. ENVIRONMENT INTERNATIONAL 2021; 146:106285. [PMID: 33395935 DOI: 10.1016/j.envint.2020.106285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Exposure to ionizing radiation has been associated with hypertension, but the relationship between residential radon exposure and hypertensive disorders of pregnancy (HDP) has not been examined. METHODS We used the Massachusetts Birth Registry of Vital Records from 2001 to 2015 including women with a singleton pregnancy without prior hypertension. The binary outcome (HDP) included gestational hypertension and pre-eclampsia cases and was assessed using birth certificate data. We obtained 141,665 basement radon measurements from Spruce Environmental Technologies, Inc. and modeled the monthly zip code basement radon level. We used a logistic regression model adjusted for sociodemographic covariates, maternal comorbidities, PM2.5, season, temperature, and relative humidity. We examined effect modification by maternal age, race, and maternal education as an indicator of socio-economic status. RESULTS Of 975,528 women, 3.7% (36,530) of them developed HDP. Zip code level radon ranged from 22 to 333 mBq/m3. An interquartile range (IQR) increase in zip code radon level throughout pregnancy was associated with a 15% increase in the odds of HDP (95% CI 13% to 18%). In women less than 20 years old, an IQR increase in zip code level radon was associated with 38% increase in the odds of HDP (95% CI 24% to 50%), while the effect was smaller in older women. There was no effect modification by maternal race or education. CONCLUSIONS In this cohort, higher levels of residential radon are associated with increased odds of HDP. After stratifying by age, this effect was stronger in participants younger than 20 years old. Since the burden of hypertensive disorders of pregnancy is increasing and affects women's future cardiovascular health, identification of modifiable risk factors is of great importance.
Collapse
Affiliation(s)
| | - Weiyu Yao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carolina L Z Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Longxiang Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Maternal-Fetal Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joel Schwartz
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
36
|
Najafi ML, Zarei M, Gohari A, Haghighi L, Heydari H, Miri M. Preconception air pollution exposure and glucose tolerance in healthy pregnant women in a middle-income country. Environ Health 2020; 19:131. [PMID: 33298083 PMCID: PMC7727159 DOI: 10.1186/s12940-020-00682-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/01/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Preconception exposure to air pollution has been associated with glucose tolerance during pregnancy. However, the evidence in low and middle-income countries (LMICs) is under debate yet. Therefore, this study aimed to assess the relationship between exposure to ambient particulate matter (PM) and traffic indicators with glucose tolerance in healthy pregnant women in Sabzevar, Iran (2019). METHODS Two-hundred and fifty healthy pregnant women with singleton pregnancies and 24-26 weeks of gestations participated in our study. Land use regression (LUR) models were applied to estimate the annual mean of PM1, PM2.5 and PM10 at the residential address. Traffic indicators, including proximity of women to major roads as well as total streets length in 100, 300 and 500 m buffers around the home were calculated using the street map of Sabzevar. The oral glucose tolerance test (OGTT) was used to assess glucose tolerance during pregnancy. Multiple linear regression adjusted for relevant covariates was used to estimate the association of fasting blood glucose (FBG), 1-h and 2-h post-load glucose with PMs and traffic indicators. RESULTS Exposure to PM1, PM2.5 and PM10 was significantly associated with higher FBG concentration. Higher total streets length in a 100 m buffer was associated with higher FBG and 1-h glucose concentrations. An interquartile range (IQR) increase in proximity to major roads was associated with a decrease of - 3.29 mg/dL (95% confidence interval (CI): - 4.35, - 2.23, P-value < 0.01) in FBG level and - 3.65 mg/dL (95% CI, - 7.01, - 0.28, P-value = 0.03) decrease in 1-h post-load glucose. CONCLUSION We found that higher preconception exposure to air pollution was associated with higher FBG and 1-h glucose concentrations during pregnancy.
Collapse
Affiliation(s)
- Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Zarei
- Department of Physical Education and Sport Science, Faculty of Human Science, University of Neyshabur, Neyshabur, Iran
| | - Ali Gohari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Leyla Haghighi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hafez Heydari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Mohammad Miri
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, PO Box 319, Sabzevar, Iran.
| |
Collapse
|
37
|
Ye B, Zhong C, Li Q, Xu S, Zhang Y, Zhang X, Chen X, Huang L, Wang H, Zhang Z, Huang J, Sun G, Xiong G, Yang X, Hao L, Yang N, Wei S. The Associations of Ambient Fine Particulate Matter Exposure During Pregnancy With Blood Glucose Levels and Gestational Diabetes Mellitus Risk: A Prospective Cohort Study in Wuhan, China. Am J Epidemiol 2020; 189:1306-1315. [PMID: 32286614 DOI: 10.1093/aje/kwaa056] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Investigators in previous studies have drawn inconsistent conclusions regarding the relationship between relatively low exposure to fine particulate matter (particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5)) and risk of gestational diabetes mellitus (GDM), while the association between high PM2.5 exposure and GDM risk has not been well studied. We investigated the association of high PM2.5 exposure during pregnancy with blood glucose levels and GDM risk in Chinese women. The present study was conducted from August 2013 to May 2016 among 3,967 pregnant women in the Tongji Maternal and Child Health Cohort in Wuhan, China. PM2.5 exposure during pregnancy for each participant was estimated by means of land-use regression models. An interquartile-range increase in PM2.5 exposure (33.84 μg/m3 for trimester 1 and 33.23 μg/m3 for trimester 2) was associated with 36% (95% confidence interval (CI): 1.15, 1.61) and 23% (95% CI: 1.01, 1.50) increased odds of GDM during trimester 1 and trimester 2, respectively. An interquartile-range increment of PM2.5 exposure during trimester 1 increased 1-hour and 2-hour blood glucose levels by 1.40% (95% CI: 0.42, 2.37) and 1.82% (95% CI: 0.98, 2.66), respectively. The same increment of PM2.5 exposure during trimester 2 increased fasting glucose level by 0.85% (95% CI: 0.41, 1.29). Our findings suggest that high PM2.5 exposure during pregnancy increases blood glucose levels and GDM risk in Chinese women.
Collapse
|
38
|
Lin Q, Zhang S, Liang Y, Wang C, Wang C, Wu X, Luo C, Ruan Z, Acharya BK, Lin H, Guo X, Yang Y. Ambient air pollution exposure associated with glucose homeostasis during pregnancy and gestational diabetes mellitus. ENVIRONMENTAL RESEARCH 2020; 190:109990. [PMID: 32739627 DOI: 10.1016/j.envres.2020.109990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND To investigate the effects of air pollution exposure during pregnancy on the indicators of glucose homeostasis and gestational diabetes mellitus (GDM). METHODS We conducted a birth cohort study in Foshan, China during 2015-2019. Oral glucose tolerance test (OGTT) was administered to each participant during pregnancy. GDM was defined according to the International Association of Diabetes and Pregnancy Study Groups criteria (IADPSG). Air pollutant (fine particulate matter (PM2.5), particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfate dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3)) concentrations from the air monitoring stations in Foshan were used to estimate individual air pollutant exposure during the first two trimesters. Linear and logistic regression models were employed to estimate the associations between air pollution exposure during the first two trimesters and OGTT glucose levels and GDM. RESULTS Of 12,842 pregnant women, 3055 (23.8%) had GDM. A 10 μg/m3 increase in PM2.5, PM10 and SO2 during trimester 1, trimester 2 and two trimesters were associated with 0.07 mmol/L to 0.29 mmol/L increment in OGTT-fasting glucose levels in single-pollutant model. A 10 μg/m3 increase in NO2 and O3 during two trimesters were associated with 0.15 mmol/L and 0.12 mmol/L decrease in OGTT-fasting glucose in single-pollutant model. However, no significant or weaker effects of O3 during two trimesters on OGTT-fasting glucose were observed in two-pollutant models. Moreover, exposure to PM2.5, PM10 and SO2 were associated with increased risk of GDM in both single- and two-pollutant models. CONCLUSIONS Our study suggests PM2.5, PM10 and SO2 exposure during the first two trimesters might increase the risk of GDM.
Collapse
Affiliation(s)
- Qingmei Lin
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Liang
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Changke Wang
- National Climate Center, China Meteorological Administration, Beijing, China
| | - Xueli Wu
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Caihong Luo
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Zengliang Ruan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bipin Kumar Acharya
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Guo
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China.
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Rammah A, Whitworth KW, Symanski E. Particle air pollution and gestational diabetes mellitus in Houston, Texas. ENVIRONMENTAL RESEARCH 2020; 190:109988. [PMID: 32745750 DOI: 10.1016/j.envres.2020.109988] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND There is mixed evidence implicating prenatal exposure to particulate matter <2.5 μm in aerodynamic diameter (PM2.5) in the risk of gestational diabetes mellitus (GDM) and only one study has examined exposure to PM2.5 constituents, which vary with location because of different emission sources. METHODS We conducted a retrospective cohort study of singleton live births in Harris County, Texas from 2008 to 2013. With data from the Texas Commission on Environmental Quality (TCEQ), we spatially interpolated maternal exposures to total and speciated PM2.5, nitrogen dioxide (NO2) and ozone (O3) over the 12-week preconception period and trimesters 1 and 2. We estimated odds ratios (OR) and 95% confidence intervals (CI) for the association between pre-conception and pregnancy exposures to total and speciated PM2.5 and odds of GDM, adjusted for temperature and maternal covariates. We also evaluated confounding from NO2 and O3 exposures in multi-pollutant models. RESULTS An interquartile range (IQR) increase in total PM2.5 exposure was associated with elevated odds for developing GDM over the preconception (adjusted OR = 1.09, 95% CI: 1.06, 1.12), first trimester (OR = 1.13, 95% CI: 1.10, 1.17) and second trimester (OR = 1.13, 95% CI: 1.09, 1.17) periods. Effect estimates increased with adjustment for NO2 and O3. We observed modest increases in odds of GDM for IQR increases in first trimester ammonium ion PM2.5 (OR = 1.03, 95% CI: 1.00, 1.05) and sulfate PM2.5 (OR = 1.03, 95% CI: 1.00, 1.05) exposures, as well as preconception Cr PM2.5 exposures (OR = 1.05, 95% CI: 1.02, 1.07). CONCLUSION Exposures to PM2.5, before and during pregnancy were associated with elevated odds of GDM. Mitigating air pollution exposures may reduce the risk of GDM and its long-term implications for maternal and child health.
Collapse
Affiliation(s)
- Amal Rammah
- Center for Precision Environmental Health, Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Kristina W Whitworth
- Center for Precision Environmental Health, Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Elaine Symanski
- Center for Precision Environmental Health, Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
40
|
Qu Y, Yang B, Lin S, Bloom MS, Nie Z, Ou Y, Mai J, Wu Y, Gao X, Dong G, Liu X. Associations of greenness with gestational diabetes mellitus: The Guangdong Registry of Congenital Heart Disease (GRCHD) study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115127. [PMID: 32650202 DOI: 10.1016/j.envpol.2020.115127] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Gestational diabetes mellitus (GDM) is associated with adverse short- and long-term health outcomes among mothers and their offspring. GDM affects 0.6%-15% of pregnancies worldwide and its incidence is increasing. However, intervention strategies are lacking for GDM. Previous studies indicated a protective association between greenspace and type 2 diabetes mellitus (T2DM), while few studies have explored the association between greenness and GDM. This study aimed to investigate the association between residential greenness and GDM among women from 40 clinical centers in Guangdong province, south China. The study population comprised 5237 pregnant mothers of fetuses and infants without birth defects, from 2004 to 2016. There were n = 157 diagnosed with GDM according to World Health Organization criteria. We estimated residential greenness using the Normalized Difference Vegetation Index (NDVI), derived from satellite imagery using a spatial-statistical model. Associations between greenness during pregnancy and GDM were assessed by confounder-adjusted random effects log-binomial regression models, with participating centers as the random effect. One interquartile increments of NDVI250m, NDVI500m and NDVI1000m were associated with 13% (RR = 0.87, 95%CI: 0.87-0.87), 8% (RR = 0.92, 95%CI: 0.91-0.92) and 3% (RR = 0.97, 95%CI: 0.97-0.97) lower risks for GDM, respectively. However, NDVI3000m was not significantly associated with GDM (RR = 0.96, 95%CI: 0.78-1.19). The risk for GDM decreased monotonically with greater NDVI. The protective effect of greenness on GDM was stronger among women with lower socioeconomic status and in environments with a lower level air pollutants. Our results suggest that greenness might provide an effective intervention to decrease GDM. Greenness and residential proximity to greenspace should be considered in community planning to improve maternal health outcomes.
Collapse
Affiliation(s)
- Yanji Qu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Boyi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY, 12144, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY, 12144, USA
| | - Michael S Bloom
- Department of Environmental Health Sciences, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY, 12144, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, One University Place, Rensselaer, Albany, NY, 12144, USA
| | - Zhiqiang Nie
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yanqiu Ou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Jinzhuang Mai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yong Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xiangmin Gao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xiaoqing Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
41
|
Prenatal exposure to ambient air pollution and adverse pregnancy outcomes in Ahvaz, Iran: a generalized additive model. Int Arch Occup Environ Health 2020; 94:309-324. [PMID: 32936369 DOI: 10.1007/s00420-020-01577-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/01/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE There is some evidence about the short-term effects of air pollutants on adverse pregnancy outcomes. The aim of this study was to determine the association between air pollutants and spontaneous abortion, stillbirth, gestational hypertension, preeclampsia, gestational diabetes and macrosomia in Ahvaz, which is one of the most polluted cities in the Middle East. METHODS Data on adverse pregnancy outcomes and air pollutants including ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), particles with a diameter of less than 10 µm (PM10) and particles with a diameter less than 2.5 µm (PM2.5) were inquired from the Health Department of Ahvaz Jundishapur University of Medical Sciences and the Environmental Protection Agency of Khuzestan Province for the years 2008-2018. A time series analysis using the generalized additive model (GAM) with up to 6-day lags was used. RESULTS The results showed that the SO2 pollutant on 0, 1, 3, 4, and 6-day lags and PM10 on lag 0 had direct and significant associations with spontaneous abortion. NO, NO2 and CO on 0-6-day lags, and O3 on 6-day lags showed direct and significant associations with preeclampsia. NO and NO2 pollutants showed significant and direct associations with gestational diabetes, during 0- and 6-day lags. NO on 0-, 3- and 4-day lags, CO in all 0-6-day lags and PM2.5 on 1-, 3-, 5-, and 6-day lags showed direct and significant associations with macrosomia. None of the pollutants showed significant associations with stillbirth or gestational hypertension. CONCLUSIONS The results of this study suggest that some air pollutants are associated with spontaneous abortion, preeclampsia, gestational diabetes and macrosomia. This study further emphasizes the need to control ambient air pollution.
Collapse
|
42
|
Papatheodorou S, Gold DR, Blomberg AJ, Hacker M, Wylie BJ, Requia WJ, Oken E, Fleisch AF, Schwartz JD, Koutrakis P. Ambient particle radioactivity and gestational diabetes: A cohort study of more than 1 million pregnant women in Massachusetts, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139340. [PMID: 32464573 PMCID: PMC7472683 DOI: 10.1016/j.scitotenv.2020.139340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Exposure to ionizing radiation increases the risk of chronic metabolic disorders such as insulin resistance and type 2 diabetes. Internal ionizing radiation from inhaled radioactive aerosol may contribute to the associations between fine particulate matter (PM2.5) and gestational diabetes mellitus (GDM). METHODS We used the Massachusetts Registry of Vital Records to study 1,061,937 pregnant women from 2001 to 2015 with a singleton pregnancy without pre-existing diabetes. Gross β activity measured by seven monitors of the U.S. Environmental Protection Agency's RadNet monitoring network was utilized to represent ambient particle radioactivity (PR). We obtained GDM status from birth certificates and used logistic regression analyses adjusted for socio-demographics, maternal comorbidities, PM2.5, temperature and relative humidity. We also examined effect modification by smoking habits. RESULTS Ambient particle radioactivity exposure during first and second trimester of pregnancy was associated with higher odds of GDM (OR: 1.18 (95% CI 1.10 to 1.22). Controlling for PM2.5 did not substantially change the effects of PR on GDM. In women that reported being former or current smokers, the association between PR and GDM was null. In the full cohort, the overall effect of PM2.5 on GDM without adjusting for PR was not significant. CONCLUSION This is the first population-based study to examine the association between particle radioactivity and gestational diabetes mellitus - one of the most common pregnancy-related diseases with lifelong effects for the mother and the fetus. This finding has important public health policy implications because it enhances our understanding about the toxicity of PR, a modifiable risk factor, which to date, has been considered only as an indoor and occupational air quality risk.
Collapse
Affiliation(s)
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Boston, MA 02115, USA
| | - Annelise J Blomberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michele Hacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Blair J Wylie
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Weeberb J Requia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA; Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Abby F Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME, USA; Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME, USA
| | - Joel D Schwartz
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
43
|
Yu G, Ao J, Cai J, Luo Z, Martin R, Donkelaar AV, Kan H, Zhang J. Fine particular matter and its constituents in air pollution and gestational diabetes mellitus. ENVIRONMENT INTERNATIONAL 2020; 142:105880. [PMID: 32593838 DOI: 10.1016/j.envint.2020.105880] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Ambient air pollution has been linked to the development of gestational diabetes mellitus (GDM). However, previous studies provided inconsistent findings and no study has examined the effects of complex chemical constituents of the particular matter on GDM, especially in developing countries. Therefore, we aim to investigate the associations of exposure to PM2.5 (particular matter ≤ 2.5 μm) and its constituents with GDM, and to identify susceptible exposure window in a large survey in China. METHODS The China Labor and Delivery Survey was a cross-sectional investigation conducted in 24 provinces in China between 2015 and 2016. A random sample of all deliveries in each participating hospital was selected and detailed obstetric and newborn information was extracted from medical records. Average concentrations of PM2.5 and six constituents (organic matter, black carbon, sulfate, nitrate, ammonium and soil dust) were estimated (1 km × 1 km) using a combined geoscience-statistical model. GDM was diagnosed based on an oral glucose tolerance test (OGTT) between 24 to 28 weeks of gestation and according to IADPSG criteria. Generalized linear mixed models were used to adjust for potential confounders. RESULTS A total of 54,517 subjects from 55 hospitals were included. The incidence of GDM was 10.8%. An interquartile range (IQR) increase in PM2.5 exposure in the 2nd trimester of pregnancy was associated with an increased GDM risk in the single pollutant model, [adjusted odds ratio (aOR) = 1.11 and 95% confidence interval (CI): 1.01-1.22]. Exposure to organic matter (aOR = 1.14; 95%CI: 1.05-1.23), black carbon (aOR = 1.15; 95%CI: 1.07-1.25) and nitrate (aOR = 1.13; 95%CI: 1.02-1.24) during 2nd trimester were associated with increased risks of GDM. Associations between constituents and GDM were robust after controlling for total PM2.5 mass and accounting for multi-collinearity. CONCLUSIONS Exposure to PM2.5 in 2nd trimester of pregnancy was associated with an increased risk of GDM. Organic matter, black carbon and nitrate may be the main culprits for the association.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Jing Cai
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhongcheng Luo
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China
| | - Randall Martin
- Department of Physics and Atmospheric Science, Dalhousie University, 6300 Coburg Road, Halifax, Nova Scotia B3H 3J5, Canada
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, 6300 Coburg Road, Halifax, Nova Scotia B3H 3J5, Canada
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai 200032, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200092, China; School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
44
|
Melody S, Wills K, Knibbs LD, Ford J, Venn A, Johnston F. Adverse birth outcomes in Victoria, Australia in association with maternal exposure to low levels of ambient air pollution. ENVIRONMENTAL RESEARCH 2020; 188:109784. [PMID: 32574853 DOI: 10.1016/j.envres.2020.109784] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The relationship between maternal exposure to air pollution and birth outcomes is not well characterised where ambient air pollution is relatively low. OBJECTIVES We aimed to explore the association between maternal exposure to ambient nitrogen dioxide (NO2) and fine particulate matter (PM2.5) and a range of birth outcomes in Victoria, Australia. Secondary aims were to explore whether obstetric conditions, such as gestational diabetes mellitus (GDM) and hypertensive disorders of pregnancy, were effect modifiers in observed relationships. METHODS We included all singleton births occurring in Victoria, Australia from 1st March 2012 to 31st December 2015 using routinely collected government data. Outcomes included birth weight, small for gestational age (SGA), term low birth weight (tLBW), large for gestational age (LGA), and spontaneous preterm birth (sPTB). We estimated exposure to annual ambient NO2 and PM2.5 concentrations, assigned to maternal residence at time of birth. Confounders included maternal, meteorological and temporal variables. Multivariable linear regression and log-binomial regression were used for continuous and dichotomous outcomes, respectively. RESULTS There were 285,594 births during the study period. Average NO2 exposure was 6.0 parts per billion (ppb, median 5.6; interquartile range (IQR) 3.9) and PM2.5 was 6.9 μg/m3 (median 7.1, IQR 1.3). IQR increases in ambient NO2 and PM2.5 were associated with fetal growth restriction, including decrements in birth weight (NO2 β -22.8 g; 95%CI -26.0, -19.7; PM2.5 β -14.8 g; 95%CI -17.4, -12.2) and increased risk of SGA (NO2 RR 1.08; 95%CI 1.06, 1.10; PM2.5 RR 1.05; 95%CI 1.04, 1.07) and tLBW (NO2 RR 1.06; 95%CI 1.01, 1.10; PM2.5 RR 1.04; 95%CI 1.03, 1.08). Women with GDM and hypertensive disorders of pregnancy had greater decrements in birth weight in association with pollutant exposure. DISCUSSION In this exploratory study using an annual metric of exposure, maternal exposure to low-level ambient air pollution was associated with fetal growth restriction, which carries substantial public health implications.
Collapse
Affiliation(s)
- Shannon Melody
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.
| | - Karen Wills
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, Queensland, Australia
| | - Jane Ford
- Clinical and Population Perinatal Health Research, Kolling Institute, Northern Sydney Local Health District, Australia
| | - Alison Venn
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Fay Johnston
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| |
Collapse
|
45
|
Zhang M, Wang X, Yang X, Dong T, Hu W, Guan Q, Tun HM, Chen Y, Chen R, Sun Z, Chen T, Xia Y. Increased risk of gestational diabetes mellitus in women with higher prepregnancy ambient PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138982. [PMID: 32388108 DOI: 10.1016/j.scitotenv.2020.138982] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Air pollution is a serious environmental problem in China. This study was designed to investigate whether exposure to particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM2.5) before pregnancy is associated with gestational diabetes mellitus (GDM) and fasting glucose in China. METHODS We recruited subjects and collected clinical data from the Nanjing Maternity and Child Health Care Hospital from July 2016 to October 2017. A series of validated land-use regression (LUR) models were built to assess individual exposure to PM2.5 in a 1 × 1 km area at both work and home addresses following a time-weighted pattern. Multiple linear regression and logistic regression analyses were performed to examine the association between PM2.5 exposure and GDM and fasting glucose. RESULTS In total, 11,639 of 16,995 women were included in the final analysis. Among the 11,639 women, 2776 (23.85%) had GDM. Individual exposure to PM2.5 within three months before pregnancy ranged from 21.58 to 85.92 μg/m3. Positive associations were observed among the interquartile ranges (IQRs) of exposure to PM2.5 within three months before pregnancy and GDM (OR = 2.61, 95% CI: 1.40-4.93, p < .01) as well as fasting glucose levels (β = 0.57, 95% CI: 0.45-0.68, p < .01). The diabetogenic effects of PM2.5 gradually increased from the first month before pregnancy, peaked in the second month and then gradually decreased until the third month when the week-specific exposure were analyzed to identify the sensitive time window. CONCLUSION Our study confirmed that higher exposure to PM2.5 within three months before pregnancy is significantly associated with increased risk of GDM and elevated fasting glucose levels, reflecting the importance of preconceptional environmental exposure in the development of maternal GDM.
Collapse
Affiliation(s)
- Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hein M Tun
- HKU-Pasteur Research Pole, School of Public Health, Li KaShing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yi Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, China
| | - Rui Chen
- School of Public Health, Capital Medical University, China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, China
| | - Ting Chen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
46
|
Prenatal Fine Particulate Matter (PM 2.5) Exposure and Pregnancy Outcomes-Analysis of Term Pregnancies in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165820. [PMID: 32796752 PMCID: PMC7459454 DOI: 10.3390/ijerph17165820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023]
Abstract
Air pollution is currently one of the greatest threats to global health. Polish cities are among the most heavily polluted in Europe. Due to air pollution 43,100 people die prematurely in Poland every year. However, these data do not take into account the health consequences of air pollution for unborn children. Thus, the aim of this study was to evaluate the effects of the fine particulate matter air pollution (less than 2.5 μm in diameter) on pregnancy outcomes. An analysis of pregnant women and their children was made using a questionnaire survey from a nationwide study conducted in 2017. Questionnaires from 1095 pregnant women and data from their medical records were collected. An analysis of air pollution in Poland was conducted using the air quality database maintained by the Chief Inspectorate for Environmental Protection in Poland. A higher concentration of PM2.5 was associated with a decrease in birth weight and a higher risk of low birthweight (i.e., <2500 g). We also observed lower APGAR scores. Thus, all possible efforts to reduce air pollution are critically needed.
Collapse
|
47
|
Alemayehu YA, Asfaw SL, Terfie TA. Exposure to urban particulate matter and its association with human health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27491-27506. [PMID: 32410189 DOI: 10.1007/s11356-020-09132-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Human health and environmental risks are increasing following air pollution associated with vehicular and industrial emissions in which particulate matter is a constituent. The purpose of this review was to assess studies on the health effects and mortality induced by particles published for the last 15 years. The literature survey indicated the existence of strong positive associations between fine and ultrafine particles' exposure and cardiovascular, hypertension, obesity and type 2 diabetes mellitus, cancer health risks, and mortality. Its exposure is also associated with increased odds of hypertensive and diabetes disorders of pregnancy and premature deaths. The ever increasing hospital admission and mortality due to heart failure, diabetes, hypertension, and cancer could be due to long-term exposure to particles in different countries. Therefore, its effect should be communicated for legal and scientific actions to minimize emissions mainly from traffic sources.
Collapse
Affiliation(s)
| | - Seyoum Leta Asfaw
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tadesse Alemu Terfie
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
48
|
Kang J, Liao J, Xu S, Xia W, Li Y, Chen S, Lu B. Associations of exposure to fine particulate matter during pregnancy with maternal blood glucose levels and gestational diabetes mellitus: Potential effect modification by ABO blood group. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110673. [PMID: 32361495 DOI: 10.1016/j.ecoenv.2020.110673] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Previous studies have examined the relationships between prenatal fine particulate matter (PM2.5) exposure and gestational diabetes mellitus (GDM), but the results were inconsistent. Furthermore, the possible effect modification by ABO blood group has not been explored. OBJECTIVES To assess the associations of PM2.5 exposures during pregnancy with maternal glucose levels as well as GDM, and further to evaluate the potential effect modification by ABO blood group. METHODS Between January 2013 and January 2015, 4783 pregnant women were enrolled in our study based on a birth cohort in Wuhan. Daily PM2.5 exposure levels for each woman during pregnancy were estimated using a spatial-temporal land-use regression model. Linear regressions with general estimating equations (GEE) were performed to assess the associations between trimester-specific PM2.5 exposures and maternal glucose levels. Modified Poisson regressions with GEE analyses were used to evaluate the impacts of PM2.5 exposures during each trimester on the risk of GDM. The associations of PM2.5 exposure during the whole study period with glucose levels and GDM were estimated using multiple linear regression model and modified Poisson regression model, respectively. We conducted a stratified analysis to explore the potential effect modification by ABO blood group. RESULTS Among all the 4783 participants, 394 (8.24%) had GDM. Exposure to PM2.5 was found to be positively associated with elevated fasting glucose level during the whole study period [0.382 mg/dL, 95% confidence interval (CI): 0.179-0.586, per 10 μg/m3 increase in PM2.5], the first trimester (0.154 mg/dL ,95% CI: 0.017-0.291) and the second trimester (0.541 mg/dL, 95% CI: 0.390-0.692). No statistically significant results were observed between PM2.5 and 1-h and 2-h glucose levels during any study period. Increased risks of GDM for each 10 μg/m3 increase in PM2.5 levels were observed during the whole study period [relative risk (RR): 1.120, 95% CI: 1.021-1.228] and the first trimester (RR: 1.074, 95% CI: 1.012-1.141), but not the second trimester (RR: 1.035, 95% CI: 0.969-1.106). Stratified analysis indicated that the associations of PM2.5 exposures with GDM were more pronounced among pregnant women with blood group A, but no significant effect modifications were observed. CONCLUSION Our study enriched epidemiological evidence linking PM2.5 exposures during pregnancy to elevated maternal glucose levels and increased risk of GDM. More importantly, we first highlighted that the impact of PM2.5 on GDM might be greater among pregnant women with blood group A.
Collapse
Affiliation(s)
- Jiawei Kang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jiaqiang Liao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Siyi Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Bin Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
49
|
Zhang H, Wang Q, He S, Wu K, Ren M, Dong H, Di J, Yu Z, Huang C. Ambient air pollution and gestational diabetes mellitus: A review of evidence from biological mechanisms to population epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137349. [PMID: 32114225 DOI: 10.1016/j.scitotenv.2020.137349] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 05/26/2023]
Abstract
Gestational diabetes mellitus (GDM) is a serious complication of pregnancy that could cause adverse health effects on both mothers and fetuses, and its prevalence has been increasing worldwide. Experimental and epidemiological studies suggest that air pollution may be an important risk factor of GDM, but conclusions are inconsistent. To provide a comprehensive overview of ambient air pollution on GDM, we summarized existing evidence concerning biological linkages between maternal exposure to air pollutants and GDM based on mechanism studies. We also performed a quantitative meta-analysis based on human epidemiological studies by searching English databases (Pubmed, Web of Science and Embase) and Chinese databases (Wanfang, CNKI). As a result, the limited mechanism studies indicated that β-cell dysfunction, neurohormonal disturbance, inflammation, oxidative stress, imbalance of gut microbiome and insulin resistance may be involved in air pollution-GDM relationship, but few studies were performed to explore the direct biological linkage. Additionally, a total of 13 epidemiological studies were included in the meta-analysis, and the air pollutants considered included PM2.5, PM10, SO2, NO2 and O3. Most studies were retrospective and mainly conducted in developed regions. The results of meta-analysis indicated that maternal first trimester exposure to SO2 increased the risk of GDM (standardized odds ratio (OR) = 1.392, 95% confidence intervals (CI): 1.010, 1.773), while pre-pregnancy O3 exposure was inversely associated with GDM risk (standardized OR = 0.981, 95% CI: 0.977, 0.985). No significant effects were observed for PM2.5, PM10 and NO2. In conclusion, additional mechanism studies on the molecular level are needed to provide persuasive rationale underlying the air pollution-GDM relationship. Moreover, other important risk factors of GDM, including maternal lifestyle and road traffic noise exposure that may modify the air pollution-GDM relationship should be considered in future epidemiological studies. More prospective cohort studies are also warranted in developing countries with high levels of air pollution.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Simin He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaipu Wu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Ren
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haotian Dong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiangli Di
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Cunrui Huang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai 200030, China.
| |
Collapse
|
50
|
Yao M, Liu Y, Jin D, Yin W, Ma S, Tao R, Tao F, Zhu P. Relationship betweentemporal distribution of air pollution exposure and glucose homeostasis during pregnancy. ENVIRONMENTAL RESEARCH 2020; 185:109456. [PMID: 32278159 DOI: 10.1016/j.envres.2020.109456] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mounting evidence has demonstrated that air pollution exposure is associated with the increased prevalence of gestational diabetes mellitus (GDM). However, the long-term exposure effect and the time window of the maximum effect of these air pollutants on GDM and glucose homeostasis during pregnancy are unclear. METHODS We conducted this study on 5427 nondiabetic pregnant women who were admitted from three hospitals in Hefei City, China, between 2015 and 2018. The data regarding the average exposure to particulate matter (PM), sulfur dioxide (SO2), and ozone (O3) were estimated in a fixed monitoring station in Hefei. We used logistic regression and multiple linear regression to assess the effects of air pollutants on GDM and glucose homeostasis. RESULTS Of the 5427 participants, 1119 (20.6%) had GDM. We found prepregnancy exposure to air pollutants was associated with the risk of GDM in the single pollutant model [odds and 95% confidence interval (CI) of GDM for an interquartile range (IQR) increase was 1.24 (1.06-1.45) for PM2.5, 1.42 (1.26-1.59) for PM10, 1.21 (1.10-1.33) for SO2 and1.19 (1.08-1.31) for O3]. The risk of GDM before pregnancy was higher with long-term exposure to high-concentration pollutants compared with the risk in pregnant women who were not exposed to high-concentration pollutants (χ2 = 41.52, p for trend <0.0001); the ORs and 95% CI values for the exposure times of 1, 2, and 3 months were 1.28 (0.96-1.72), 1.52 (1.06-2.19), and 1.69 (1.11-2.57), respectively. The results showed a positive effect of exposure to higher-concentration air pollutants 1 year before pregnancy on glucose homeostasis during pregnancy. The time windows of the maximum effect of PM2.5, PM10, SO2, and O3 on GDM were different. The time windows of the maximum effect of PM2.5, PM10, and SO2 were 6 months, 5 months, and 1 month before the last menstrual period (LMP) and 3 months after the LMP, respectively. The time windows of the maximum effect of air pollution on glucose homeostasis indicators from the 2-h 75-g oral glucose tolerance test were similar to the abovementioned results. CONCLUSIONS Prepregnancy long-term air pollution exposure was associated with a higher risk of developing GDM by affecting glucose metabolism. The time window of the maximum effect of PM on GDM and glucose metabolism indicators was observed earlier than that of SO2 and O3.
Collapse
Affiliation(s)
- Mengnan Yao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China.
| | - Yang Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Dan Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Wanjun Yin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Shuangshuang Ma
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Ruixue Tao
- Department of Gynecology and Obstetrics, Hefei First People's Hospital, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China.
| |
Collapse
|