1
|
Mora-Lagos B, Reyes ME, Lobos-Gonzalez L, Del Campo M, Buchegger K, Zanella L, Riquelme I, Ili CG, Brebi P. Maraviroc/cisplatin combination inhibits gastric cancer tumoroid growth and improves mice survival. Biol Res 2025; 58:4. [PMID: 39827154 PMCID: PMC11748569 DOI: 10.1186/s40659-024-00581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a significant cancer-related cause of death worldwide. GC's most used chemotherapeutic regimen is based on platinum drugs such as cisplatin (CDDP). However, CDDP chemoresistance reduces the survival rate of advanced GC. The immune C-C chemokine receptor type 5 (CCR5) have been proposed as a pivotal factor in cancer progression since its blockade has been linked with antineoplastic effects on tumor cell proliferation; nevertheless, its role in the chemoresistance of GC has not been elucidated. This study aimed to determine the effects induced by the CCR5 using Maraviroc (MVC), a highly selective CCR5 antagonist, on CDDP-resistant AGS cells (AGS R-CDDP), tumoroids (3D tumor spheroids), and animal models. RESULTS The combined CDDP and MVC treatment reduced cell viability and inhibited tumoroid formation in AGS R-CDDP cells. The effects of the MVC/CDDP combination on apoptosis and cell cycle progression were correlated with the increase in CDDP (dose-dependent). The mRNA levels of C-C Motif Chemokine Ligand 5 (CCL5), the main ligand for CCR5, decreased significantly in cells treated with the MVC/CDDP combination. MVC in the MVC/CDDP combination improved the survival rate and biochemical parameters of CDDP-treated mice by reducing the side effects of CDDP alone. CONCLUSIONS This finding suggests that MVC/CDDP combination could be a potential complementary therapy for GC.
Collapse
Affiliation(s)
- Bárbara Mora-Lagos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - María Elena Reyes
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Lorena Lobos-Gonzalez
- Centro de Medicina Regenerativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Advanced Center for Chronic Diseases, ACCDiS, Santiago, Chile
- Laboratorio de comunicaciones celulares, Instituto de Ciencias Biomédicas, iCBM, Universidad de Chile, Santiago, Chile
| | - Matías Del Campo
- Centro de Medicina Regenerativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Advanced Center for Chronic Diseases, ACCDiS, Santiago, Chile
| | - Kurt Buchegger
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Biomedical Research Consortium-Chile (BMRC), Santiago, Chile
| | - Louise Zanella
- Doctorado en Ciencias Médicas, Universidad de La Frontera, Temuco, Chile
- Núcleo Milenio de Sociomedicina, Santiago, Chile
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Carmen Gloria Ili
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Biomedical Research Consortium-Chile (BMRC), Santiago, Chile.
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Biomedical Research Consortium-Chile (BMRC), Santiago, Chile.
| |
Collapse
|
2
|
Wilson AL, Moffitt LR, Doran BR, Basri B, Do J, Jobling TW, Plebanski M, Stephens AN, Bilandzic M. Leader cells promote immunosuppression to drive ovarian cancer progression in vivo. Cell Rep 2024; 43:114979. [PMID: 39541210 DOI: 10.1016/j.celrep.2024.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/10/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Over 75% of patients with ovarian cancer present with late-stage disease, often accompanied by extensive metastasis. The metastatic cascade is driven by a sub-population of transcriptionally plastic cells known as "leader cells" (LCs), which play a critical role in collective invasion yet remain poorly understood. LCs are marked by the expression of keratin-14 (KRT14), which determines their migratory and invasive capacity in ovarian cancer. This study demonstrates that KRT14+ LCs promote tumor progression through immunosuppression and immune privilege in vivo. In the ID8 syngeneic epithelial ovarian cancer mouse model, tumor-specific loss of KRT14+ LCs impairs tumor progression and metastatic spread without affecting cellular proliferation. Immune profiling shows reduced immunosuppressive regulatory T cells (Tregs) and M2 macrophages and improved CD8+ T cell/Treg ratios in LC knockout (LCKO) mice. Conversely, forced LC overexpression accelerates metastasis and increases the secretion of immunosuppressive chemokines, such as CCL22 and CCL5, highlighting the role of KRT14+ LCs in immune suppression and metastatic progression.
Collapse
Affiliation(s)
- Amy L Wilson
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Laura R Moffitt
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Brittany R Doran
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Bashira Basri
- Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jennie Do
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Thomas W Jobling
- Monash Medical Centre, Department of Gynecology Oncology, Monash Health, 823-865 Centre Rd, Bentleigh East, VIC 3165, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Andrew N Stephens
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Provenzano L, Gwee YX, Conca V, Lonardi S, Bozzarelli S, Tamburini E, Passardi A, Zaniboni A, Tosi F, Aprile G, Nasca V, Boccaccino A, Ambrosini M, Vetere G, Carullo M, Guaglio M, Battaglia L, Zhao JJ, Chia DKA, Yong WP, Tan P, So J, Kim G, Shabbir A, Ong CAJ, Casella F, Cremolini C, Bencivenga M, Sundar R, Pietrantonio F. Unveiling the prognostic significance of malignant ascites in advanced gastrointestinal cancers: a marker of peritoneal carcinomatosis burden. Ther Adv Med Oncol 2024; 16:17588359241289517. [PMID: 39502404 PMCID: PMC11536604 DOI: 10.1177/17588359241289517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Background Ascites is common in advanced gastrointestinal cancers with peritoneal metastases (PM) and negatively impacts patient survival. No study to date has specifically evaluated the relationship between ascites, PM and survival outcomes in metastatic colorectal cancer (mCRC) and metastatic gastric cancer (mGC). Objectives This study aims to investigate and elucidate the relationship between malignant ascites, PM and survival outcomes in both mCRC and mGC patients. Design This is a retrospective analysis of prospectively collected clinical trial data of mCRC and mGC patients with PM. Methods We performed two pooled analyses, firstly of two Italian randomized trials enrolling patients with mCRC eligible for systemic therapy (TRIBE2; VALENTINO), and secondly of gastric cancer and peritoneal metastasis (GCPM) patients who underwent bi-directional therapeutic treatment comprising systemic and peritoneal-directed therapies. Results Of 900 mCRC patients, 39 (4.3%) had PM with malignant ascites. Compared to the group without PM, median progression-free and overall survival were significantly inferior in the ascites group (hazard ratio (HR) for progression-free survival (PFS) 1.68, 95% confidence interval (CI): 1.21-2.35, p = 0.007; HR for overall survival (OS) 2.14, 95% CI: 1.57-3.01, p < 0.001), but not in the group of PM without ascites (HR for PFS 1.10, 95% CI: 0.91 - 1.34; HR for OS 1.04, 95% CI: 0.84 - 1.30). Of 170 patients with GCPM, those with ascites had higher median Peritoneal Cancer Index scores (23 vs 9, p < 0.001). Median OS was significantly inferior among those with ascites compared to those without (13.0 vs 21.0 months, HR 1.71, 95% CI: 1.16-2.52, p = 0.007). Conclusion Ascites identifies a subgroup of patients with PM and poor outcomes, for whom tailored research are needed.
Collapse
Affiliation(s)
- Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Yong Xiang Gwee
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
| | - Veronica Conca
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Sara Lonardi
- Medical Oncology 3 Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Silvia Bozzarelli
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ‘Dino Amadori’, Meldola, Italy
| | - Alberto Zaniboni
- Unity of Oncology, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Federica Tosi
- Department of Hematology, Oncology and Molecular Oncology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8, Vicenza, Italy
| | - Vincenzo Nasca
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Boccaccino
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Margherita Ambrosini
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Marcello Guaglio
- Colorectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luigi Battaglia
- Colorectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Joseph Jonathan Zhao
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
| | - Daryl Kai Ann Chia
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jimmy So
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Guowei Kim
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Asim Shabbir
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
- Unity of Oncology, University Hospital of Pisa, Pisa, Italy
| | - Maria Bencivenga
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, Dentistry, Pediatrics and Gynaecology, Upper GI Surgery Unit, University of Verona, Verona, Italy
| | - Raghav Sundar
- Department of Haematology–Oncology, National University Cancer Institute, 1E Kent Ridge Road, Singapore 119228, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.Venezian, 1, Milan 20133, Italy
| |
Collapse
|
4
|
Szeőcs D, Vida B, Petővári G, Póliska S, Janka E, Sipos A, Uray K, Sebestyén A, Krasznai Z, Bai P. Cell-free ascites from ovarian cancer patients induces Warburg metabolism and cell proliferation through TGFβ-ERK signaling. GeroScience 2024; 46:3581-3597. [PMID: 38196068 PMCID: PMC11226691 DOI: 10.1007/s11357-023-01056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024] Open
Abstract
Ascites plays a key role in supporting the metastatic potential of ovarian cancer cells. Shear stress and carry-over of cancer cells by ascites flow support carcinogenesis and metastasis formation. In addition, soluble factors may participate in the procarcinogenic effects of ascites in ovarian cancer. This study aimed to determine the biological effects of cell-free ascites on carcinogenesis in ovarian cancer cells. Cell-free ascites from ovarian cancer patients (ASC) non-selectively induced cell proliferation in multiple models of ovarian cancer and untransformed primary human dermal fibroblasts. Furthermore, ASC induced a Warburg-type rearrangement of cellular metabolism in A2780 ovarian cancer cells characterized by increases in cellular oxygen consumption and glycolytic flux; increases in glycolytic flux were dominant. ASC induced mitochondrial uncoupling and fundamentally reduced fatty acid oxidation. Ascites-elicited effects were uniform among ascites specimens. ASC-elicited transcriptomic changes in A2780 ovarian cancer cells included induction of the TGFβ-ERK/MEK pathway, which plays a key role in inducing cell proliferation and oncometabolism. ASC-induced gene expression changes, as well as the overexpression of members of the TGFβ signaling system, were associated with poor survival in ovarian cancer patients. We provided evidence that the activation of the autocrine/paracrine of TGFβ signaling system may be present in bladder urothelial carcinoma and stomach adenocarcinoma. Database analysis suggests that the TGFβ system may feed forward bladder urothelial carcinoma and stomach adenocarcinoma. Soluble components of ASC support the progression of ovarian cancer. These results suggest that reducing ascites production may play an essential role in the treatment of ovarian cancer by inhibiting the progression and reducing the severity of the disease.
Collapse
Affiliation(s)
- Dóra Szeőcs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary
| | - Beáta Vida
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Gábor Petővári
- Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary, 4032
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary
| | - Anna Sebestyén
- Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zoárd Krasznai
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032.
- Center of Excellence, The Hungarian Academy of Sciences, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, Debrecen, Hungary, 4032.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary, 4032.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary, 4032.
| |
Collapse
|
5
|
Kaur K, Sanghu J, Memarzadeh S, Jewett A. Exploring the Potential of Natural Killer Cell-Based Immunotherapy in Targeting High-Grade Serous Ovarian Carcinomas. Vaccines (Basel) 2024; 12:677. [PMID: 38932405 PMCID: PMC11209217 DOI: 10.3390/vaccines12060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
High-grade serous ovarian cancers (HGSOCs) likely consist of poorly differentiated stem-like cells (PDSLCs) and differentiated tumor cells. Conventional therapeutics are incapable of completely eradicating PDSLCs, contributing to disease progression and tumor relapse. Primary NK cells are known to effectively lyse PDSLCs, but they exhibit low or minimal cytotoxic potential against well-differentiated tumors. We have introduced and discussed the characteristics of super-charged NK (sNK) cells in this review. sNK cells, in comparison to primary NK cells, exhibit a significantly higher capability for the direct killing of both PDSLCs and well-differentiated tumors. In addition, sNK cells secrete significantly higher levels of cytokines, especially those known to induce the differentiation of tumors. In addition, we propose that a combination of sNK and chemotherapy could be one of the most effective strategies to eliminate the heterogeneous population of ovarian tumors; sNK cells can lyse both PDSLCs and well-differentiated tumors, induce the differentiation of PDSLCs, and could be used in combination with chemotherapy to target both well-differentiated and NK-induced differentiated tumors.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - Jashan Sanghu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.); (S.M.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.); (S.M.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- The Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
- The Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Wu Z, Jiao M, Shu C, Zhang S, Wang J, Pu J, Zhu J, Zeng Y, Zhu Y, Liu Z. Integrin αVβ1-activated PYK2 promotes the progression of non-small-cell lung cancer via the STAT3-VGF axis. Cell Commun Signal 2024; 22:313. [PMID: 38844957 PMCID: PMC11157819 DOI: 10.1186/s12964-024-01639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer and is the leading cause of cancer-related deaths globally. Although various treatment strategies have been introduced, the 5-year survival rate of patients with NSCLC is only 20-30%. Thus, it remains necessary to study the pathogenesis of NSCLC and develop new therapeutic drugs. Notably, PYK2 has been implicated in the progression of many tumors, including NSCLC, but its detailed mechanism remains unclear. In this study, we aimed to elucidate the mechanisms through which PYK2 promotes NSCLC progression. METHODS The mRNA and protein levels of various molecules were measured using qRT-PCR, western blot (WB), and immunohistochemistry (IHC), respectively. We established stable PYK2 knockdown and overexpression cell lines, and CCK-8, EdU, and clonogenic assays; wound healing, transwell migration, and Matrigel invasion assays; and flow cytometry were employed to assess the phenotypes of tumor cells. Protein interactions were evaluated with co-immunoprecipitation (co-IP), immunofluorescence (IF)-based colocalization, and nucleocytoplasmic separation assays. RNA sequencing was performed to explore the transcriptional regulation mediated by PYK2. Secreted VGF levels were examined using ELISA. Dual-luciferase reporter system was used to detect transcriptional regulation site. PF4618433 (PYK2 inhibitor) and Stattic (STAT3 inhibitor) were used for rescue experiments. A public database was mined to analyze the effect of these molecules on NSCLC prognosis. To investigate the role of PYK2 in vivo, mouse xenograft models of lung carcinoma were established and examined. RESULTS The protein level of PYK2 was higher in human NSCLC tumors than in the adjacent normal tissue, and higher PYK2 expression was associated with poorer prognosis. PYK2 knockdown inhibited the proliferation and motility of tumor cells and caused G1-S arrest and cyclinD1 downregulation in A549 and H460 cells. Meanwhile, PYK2 overexpression had the opposite effect in H1299 cells. The siRNA-induced inhibition of integrins alpha V and beta 1 led to the downregulation of p-PYK2(Tyr402). Activated PYK2 could bind to STAT3 and enhance its phosphorylation at Tyr705, regulating the nuclear accumulation of p-STAT3(Tyr705). This further promoted the expression of VGF, as confirmed by RNA sequencing in a PYK2-overexpressing H1299 cell line and validated by rescue experiments. Two sites in promoter region of VGF gene were confirmed as binding sites of STAT3 by Dual-luciferase assay. Data from the TGCA database showed that VGF was related to the poor prognosis of NSCLC. IHC revealed higher p-PYK2(Tyr402) and VGF expression in lung tumors than in adjacent normal tissues. Moreover, both proteins showed higher levels in advanced TNM stages than earlier ones. A positive linear correlation existed between the IHC score of p-PYK2(Tyr402) and VGF. Knockdown of VGF inhibited tumor progression and reversed the tumor promoting effect of PYK2 overexpression in NSCLC cells. Finally, the mouse model exhibited enhanced tumor growth when PYK2 was overexpressed, while the inhibitors PF4618433 and Stattic could attenuate this effect. CONCLUSIONS The Integrin αVβ1-PYK2-STAT3-VGF axis promotes NSCLC development, and the PYK2 inhibitor PF4618433 and STAT3 inhibitor Stattic can reverse the pro-tumorigenic effect of high PYK2 expression in mouse models. Our findings provide insights into NSCLC progression and could guide potential therapeutic strategies against NSCLC with high PYK2 expression levels.
Collapse
Affiliation(s)
- Zhengyan Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215000, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215000, China
- Department of Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Min Jiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215000, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215000, China
| | - Chenying Shu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Saiqun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215000, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215000, China
| | - Jiajia Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215000, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215000, China
| | - Jianhong Pu
- Department of Health Management Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Geriatric Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215000, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215000, China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215000, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215000, China
| | - Yehan Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215000, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215000, China.
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215000, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
7
|
Dadgar N, Sherry C, Zimmerman J, Park H, Lewis C, Donnenberg A, Zaidi AH, Fan Y, Xiao K, Bartlett D, Donnenberg V, Wagner PL. Targeting interleukin-6 as a treatment approach for peritoneal carcinomatosis. J Transl Med 2024; 22:402. [PMID: 38689325 PMCID: PMC11061933 DOI: 10.1186/s12967-024-05205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging potential therapeutic target. This review article provides a comprehensive overview of the current understanding of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and appendiceal cancer, and mesothelioma.
Collapse
Affiliation(s)
- Neda Dadgar
- Translational Hematology & Oncology Research, Enterprise Cancer Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Christopher Sherry
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Jenna Zimmerman
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Hyun Park
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Catherine Lewis
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Albert Donnenberg
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Yong Fan
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15224, USA
| | - David Bartlett
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Vera Donnenberg
- University of Pittsburgh School of MedicineDepartment of Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Patrick L Wagner
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
8
|
Liu W, Wang L, Zhang J, Cheng K, Zheng W, Ma Z. CC Chemokine 2 Promotes Ovarian Cancer Progression through the MEK/ERK/MAP3K19 Signaling Pathway. Int J Mol Sci 2023; 24:10652. [PMID: 37445830 DOI: 10.3390/ijms241310652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer is a gynecological tumor with an incidence rate lower than those of other gynecological tumor types and the second-highest death rate. CC chemokine 2 (CCL2) is a multifunctional factor associated with the progression of numerous cancers. However, the effect of CCL2 on ovarian cancer progression is unclear. Here, we found that exogenous CCL2 and the overexpression of CCL2 promoted the proliferation and metastasis of ovarian cancer cells. On the other hand, CCL2 knockdown via CRISPR/Cas9 inhibited ovarian cancer cell proliferation, migration, and invasion. The present study demonstrated that mitogen-activated protein three kinase 19 (MAP3K19) was the key CCL2 target for regulating ovarian cancer progression through transcriptome sequencing. Additionally, MAP3K19 knockout inhibited ovarian cancer cell proliferation, migration, and invasion. Furthermore, CCL2 increased MAP3K19 expression by activating the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. The present study showed the correlation between CCL2 and ovarian cancer, suggesting that CCL2 may be a novel target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiajia Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Kun Cheng
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenming Zheng
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
10
|
Zhang Z, Xie Z, Lin J, Sun Z, Li Z, Yu W, Zeng Y, Ye G, Li J, Ye F, Su Z, Che Y, Xu P, Zeng C, Wang P, Wu Y, Shen H. The m6A methyltransferase METTL16 negatively regulates MCP1 expression in mesenchymal stem cells during monocyte recruitment. JCI Insight 2023; 8:162436. [PMID: 36795489 PMCID: PMC10070103 DOI: 10.1172/jci.insight.162436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess strong immunoregulatory functions, one aspect of which is recruiting monocytes from peripheral vessels to local tissue by secreting monocyte chemoattractant protein 1 (MCP1). However, the regulatory mechanisms of MCP1 secretion in MSCs are still unclear. Recently, the N6-methyladenosine (m6A) modification was reported to be involved in the functional regulation of MSCs. In this study, we demonstrated that methyltransferase-like 16 (METTL16) negatively regulated MCP1 expression in MSCs through the m6A modification. Specifically, the expression of METTL16 in MSCs decreased gradually and was negatively correlated with the expression of MCP1 after coculture with monocytes. Knocking down METTL16 markedly enhanced MCP1 expression and the ability to recruit monocytes. Mechanistically, knocking down METTL16 decreased MCP1 mRNA degradation, which was mediated by the m6A reader YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2). We further revealed that YTHDF2 specifically recognized m6A sites on MCP1 mRNA in the CDS region and thus negatively regulated MCP1 expression. Moreover, an in vivo assay showed that MSCs transfected with METTL16 siRNA showed greater ability to recruit monocytes. These findings reveal a potential mechanism by which the m6A methylase METTL16 regulates MCP1 expression through YTHDF2-mediated mRNA degradation and suggest a potential strategy to manipulate MCP1 expression in MSCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Feng Ye
- Department of Orthopedics, and
| | | | | | | | - Chenying Zeng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | |
Collapse
|
11
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
12
|
Guan C, Zhou X, Li H, Ma X, Zhuang J. NF-κB inhibitors gifted by nature: The anticancer promise of polyphenol compounds. Biomed Pharmacother 2022; 156:113951. [DOI: 10.1016/j.biopha.2022.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
13
|
Zhang JJ, Liu W, Xing GZ, Xiang L, Zheng WM, Ma ZL. Role of CC-chemokine ligand 2 in gynecological cancer. Cancer Cell Int 2022; 22:361. [PMCID: PMC9675065 DOI: 10.1186/s12935-022-02763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Gynecological cancer is one of the most severe diseases that threaten the lives and health of women worldwide. Its incidence rate increases with each passing year and becomes more prevalent among young people. The prognosis of gynecological cancer remains poor despite significant advances in surgical removal and systemic chemotherapy. Several chemokines play a role in the progression of gynecologic cancers. CCL2 (CC-chemokine ligand 2), also termed MCP-1 (monocyte chemotactic protein 1), plays a significant physiological role in monocyte cell migration and the inflammatory response. Recent studies have demonstrated that CCL2 plays a pro-tumorigenic function in the tumor microenvironment. According to previous studies, CCL2 plays a significant role in the occurrence and development of gynecological cancers. Furthermore, recent studies noted that CCL2 could be a potential diagnostic biomarker and prognostic predictor. The purpose of this paper is to review the role of CCL2 in the occurrence and development of gynecological cancers and to discuss the potential therapeutic strategy of CCL2 for gynecological cancers, with a primary focus on breast cancer, ovarian cancer, cervical cancer, and endometrial cancer.
Collapse
Affiliation(s)
- Jia-Jia Zhang
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Wei Liu
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Guo-Zhen Xing
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Li Xiang
- grid.207374.50000 0001 2189 3846Henan Provincial People’s Hospital/People’s Hospital of Zhengzhou University, 7 Weiwu Road, Jinshui District, Zhengzhou, 450000 China
| | - Wen-Ming Zheng
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Zhen-Ling Ma
- grid.108266.b0000 0004 1803 0494College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| |
Collapse
|
14
|
Hoarau-Véchot J, Blot-Dupin M, Pauly L, Touboul C, Rafii S, Rafii A, Pasquier J. Akt-Activated Endothelium Increases Cancer Cell Proliferation and Resistance to Treatment in Ovarian Cancer Cell Organoids. Int J Mol Sci 2022; 23:ijms232214173. [PMID: 36430649 PMCID: PMC9694384 DOI: 10.3390/ijms232214173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease characterized by its late diagnosis (FIGO stages III and IV) and the importance of abdominal metastases often observed at diagnosis. Detached ovarian cancer cells (OCCs) float in ascites and form multicellular spheroids. Here, we developed endothelial cell (EC)-based 3D spheroids to better represent in vivo conditions. When co-cultured in 3D conditions, ECs and OCCs formed organized tumor angiospheres with a core of ECs surrounded by proliferating OCCs. We established that Akt and Notch3/Jagged1 pathways played a role in angiosphere formation and peritoneum invasion. In patients' ascites we found angiosphere-like structures and demonstrated in patients' specimens that tumoral EC displayed Akt activation, which supports the importance of Akt activation in ECs in OC. Additionally, we demonstrated the importance of FGF2, Pentraxin 3 (PTX3), PD-ECGF and TIMP-1 in angiosphere organization. Finally, we confirmed the role of Notch3/Jagged1 in OCC-EC crosstalk relating to OCC proliferation and during peritoneal invasion. Our results support the use of multicellular spheroids to better model tumoral and stromal interaction. Such models could help decipher the complex pathways playing critical roles in metastasis spread and predict tumor response to chemotherapy or anti-angiogenic treatment.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Morgane Blot-Dupin
- Faculté de Médecine de Créteil UPEC—Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France
| | - Léa Pauly
- Faculté de Médecine de Créteil UPEC—Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France
| | - Cyril Touboul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), UMR_S 938, Centre de Recherche Saint-Antoine, Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, Sorbonne Université, 75012 Paris, France
- Department of Obstetrics and Gynecology, Hôpital Tenon, Assistance Publique Des Hôpitaux de Paris, GRC-6 UPMC, Université Pierre et Marie Curie, 75005 Paris, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Arash Rafii
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jennifer Pasquier
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
- Correspondence:
| |
Collapse
|
15
|
Gwee YX, Chia DKA, So J, Ceelen W, Yong WP, Tan P, Ong CAJ, Sundar R. Integration of Genomic Biology Into Therapeutic Strategies of Gastric Cancer Peritoneal Metastasis. J Clin Oncol 2022; 40:2830. [PMID: 35649219 PMCID: PMC9390822 DOI: 10.1200/jco.21.02745] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
The peritoneum is a common site of metastasis in advanced gastric cancer (GC). Diagnostic laparoscopy is now routinely performed as part of disease staging, leading to an earlier diagnosis of synchronous peritoneal metastasis (PM). The biology of GCPM is unique and aggressive, leading to a dismal prognosis. These tumors tend to be resistant to traditional systemic therapy, and yet, this remains the current standard-of-care recommended by most international clinical guidelines. As this is an area of unmet clinical need, several translational studies and clinical trials have focused on addressing this specific disease state. Advances in genomic sequencing and molecular profiling have revealed several promising therapeutic targets and elucidated novel biology, particularly on the role of the surrounding tumor microenvironment in GCPM. Peritoneal-specific clinical trials are being designed with a combination of locoregional therapeutic strategies with systemic therapy. In this review, we summarize the new knowledge of cancer biology, advances in surgical techniques, and emergence of novel therapies as an integrated strategy emerges to address GCPM as a distinct clinical entity.
Collapse
Affiliation(s)
- Yong Xiang Gwee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Daryl Kai Ann Chia
- University Surgical Cluster, National University Health System, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore
| | - Jimmy So
- University Surgical Cluster, National University Health System, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), National Cancer Centre Singapore, Singapore
- Division of Surgery and Surgical Oncology, Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Singapore General Hospital, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore
| |
Collapse
|
16
|
Zhang Z, Zhou X, Guo J, Zhang F, Qian Y, Wang G, Duan M, Wang Y, Zhao H, Yang Z, Liu Z, Jiang X. TA-MSCs, TA-MSCs-EVs, MIF: their crosstalk in immunosuppressive tumor microenvironment. J Transl Med 2022; 20:320. [PMID: 35842634 PMCID: PMC9287873 DOI: 10.1186/s12967-022-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.
Collapse
Affiliation(s)
- Zhenghou Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuai Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiping Qian
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Zhou H, Tian J, Sun H, Fu J, Lin N, Yuan D, Zhou L, Xia M, Sun L. Systematic Identification of Genomic Markers for Guiding Iron Oxide Nanoparticles in Cervical Cancer Based on Translational Bioinformatics. Int J Nanomedicine 2022; 17:2823-2841. [PMID: 35791307 PMCID: PMC9250777 DOI: 10.2147/ijn.s361483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Magnetic iron oxide nanoparticle (MNP) drug delivery system is a novel promising therapeutic option for cancer treatment. Material issues such as fabrication and functionalized modification have been investigated; however, pharmacologic mechanisms of bare MNPs inside cancer cells remain obscure. This study aimed to explore a systems pharmacology approach to understand the reaction of the whole cell to MNPs and suggest drug selection in MNP delivery systems to exert synergetic or additive anti-cancer effects. Methods HeLa and SiHa cell lines were used to estimate the properties of bare MNPs in cervical cancer through 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and enzyme activity assays and cellular fluorescence imaging. A systems pharmacology approach was utilized by combining bioinformatics data mining with clinical data analysis and without a predefined hypothesis. Key genes of the MNP onco-pharmacologic mechanism in cervical cancer were identified and further validated through transcriptome analysis with quantitative reverse transcription PCR (qRT-PCR). Results Low cytotoxic activity and cell internalization of MNP in HeLa and SiHa cells were observed. Lysosomal function was found to be impaired after MNP treatment. Protein tyrosine kinase 2 beta (PTK2B), liprin-alpha-4 (PPFIA4), mothers against decapentaplegic homolog 7 (SMAD7), and interleukin (IL) 1B were identified as key genes relevant for MNP pharmacology, clinical features, somatic mutation, and immune infiltration. The four key genes also exhibited significant correlations with the lysosome gene set. The qRT-PCR results showed significant alterations in the expression of the four key genes after MNP treatment in HeLa and SiHa cells. Conclusion Our research suggests that treatment of bare MNPs in HeLa and SiHa cells induced significant expression changes in PTK2B, PPFIA4, SMAD7, and IL1B, which play crucial roles in cervical cancer development and progression. Interactions of the key genes with specific anti-cancer drugs must be considered in the rational design of MNP drug delivery systems.
Collapse
Affiliation(s)
- Haohan Zhou
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China.,Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, People's Republic of China
| | - Jiayi Tian
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Hongyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Nan Lin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Danni Yuan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Li Zhou
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Meihui Xia
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
18
|
Gao L, Yang WY, Qi H, Sun CJ, Qin XM, Du GH. Unveiling the anti-senescence effects and senescence-associated secretory phenotype (SASP) inhibitory mechanisms of Scutellaria baicalensis Georgi in low glucose-induced astrocytes based on boolean network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153990. [PMID: 35202958 DOI: 10.1016/j.phymed.2022.153990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Astrocytes senescence has been demonstrated in the aging brain and Alzheimer's disease (AD). Moreover, lower glucose metabolism has been confirmed in the early stage of AD. However, whether low glucose could induce astrocytes senescence remain ambiguous. Studies have shown that the ethanol extracts of Scutellaria baicalensis Georgi (SGE) exert neuroprotective and anti-aging effects, while whether SGE could delay astrocytes senescence was unclear. PURPOSE This study investigated the anti-senescence effect of SGE in low glucose-induced T98G cells and primary astrocytes, and explored the possible mechanisms based on boolean network. METHODS The neuroprotective effects of SGE in low glucose-induced T98G cells were evaluated by measurement of cell viability, LDH, ROS and ATP. The anti-senescence effects of SGE were investigated by detection of senescence-associated β-galactosidase (SA-β-Gal), senescence-associated secretory phenotype (SASP), cell cycle and senescence-related markers. The possible mechanisms of SGE in delaying astrocytes senescence were discovered through integrating transcriptomics with boolean network, and validation experiments were further performed. RESULTS Our results revealed that low glucose could induce astrocytes senescence, and SGE could delay astrocytes senescence by decreasing the staining rate of SA-β-gal, reducing secretions of SASP factors (IL-6, CXCL1, MMP-1), alleviating cell cycle arrest in G0/G1 phase, decreasing the formation of punctate DNA foci and down-regulating the expression of p16INK4A, p21 and γH2A.X. Transcriptomics and further verification results showed that SGE could markedly inhibit the mRNA expression levels of SASP factors (CXCL10, CXCL2, CCL2, IL-6, CXCR4, CCR7). Moreover, C-X-C motif chemokine 10 (CXCL10) was predicted to be the key SASP factor affecting the network stability by using boolean network. Further experiments validated that SGE could markedly reduce CXCL10 level, decrease the secretion of IL-6 and inhibit cell migration in CXCL10 induced primary astrocytes. CONCLUSION In summary, our research unmasks that the anti-senescence effects of SGE were highly correlated with the suppression of SASP secretions, and CXCL10 mediated the SASP inhibition effect of SGE in low glucose-induced astrocytes. Our study highlights that the delay of astrocytes senescence and the inhibition of SASP might be a new mechanism of SGE for alleviating neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Wu-Yan Yang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Chang-Jun Sun
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
19
|
Bose S, Saha P, Chatterjee B, Srivastava AK. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: potential pharmacological targets for cancer therapy. Semin Cancer Biol 2022; 86:568-579. [DOI: 10.1016/j.semcancer.2022.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
|
20
|
Bouras E, Karhunen V, Gill D, Huang J, Haycock PC, Gunter MJ, Johansson M, Brennan P, Key T, Lewis SJ, Martin RM, Murphy N, Platz EA, Travis R, Yarmolinsky J, Zuber V, Martin P, Katsoulis M, Freisling H, Nøst TH, Schulze MB, Dossus L, Hung RJ, Amos CI, Ahola-Olli A, Palaniswamy S, Männikkö M, Auvinen J, Herzig KH, Keinänen-Kiukaanniemi S, Lehtimäki T, Salomaa V, Raitakari O, Salmi M, Jalkanen S, Jarvelin MR, Dehghan A, Tsilidis KK. Circulating inflammatory cytokines and risk of five cancers: a Mendelian randomization analysis. BMC Med 2022; 20:3. [PMID: 35012533 PMCID: PMC8750876 DOI: 10.1186/s12916-021-02193-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Epidemiological and experimental evidence has linked chronic inflammation to cancer aetiology. It is unclear whether associations for specific inflammatory biomarkers are causal or due to bias. In order to examine whether altered genetically predicted concentration of circulating cytokines are associated with cancer development, we performed a two-sample Mendelian randomisation (MR) analysis. METHODS Up to 31,112 individuals of European descent were included in genome-wide association study (GWAS) meta-analyses of 47 circulating cytokines. Single nucleotide polymorphisms (SNPs) robustly associated with the cytokines, located in or close to their coding gene (cis), were used as instrumental variables. Inverse-variance weighted MR was used as the primary analysis, and the MR assumptions were evaluated in sensitivity and colocalization analyses and a false discovery rate (FDR) correction for multiple comparisons was applied. Corresponding germline GWAS summary data for five cancer outcomes (breast, endometrial, lung, ovarian, and prostate), and their subtypes were selected from the largest cancer-specific GWASs available (cases ranging from 12,906 for endometrial to 133,384 for breast cancer). RESULTS There was evidence of inverse associations of macrophage migration inhibitory factor with breast cancer (OR per SD = 0.88, 95% CI 0.83 to 0.94), interleukin-1 receptor antagonist with endometrial cancer (0.86, 0.80 to 0.93), interleukin-18 with lung cancer (0.87, 0.81 to 0.93), and beta-chemokine-RANTES with ovarian cancer (0.70, 0.57 to 0.85) and positive associations of monokine induced by gamma interferon with endometrial cancer (3.73, 1.86 to 7.47) and cutaneous T-cell attracting chemokine with lung cancer (1.51, 1.22 to 1.87). These associations were similar in sensitivity analyses and supported in colocalization analyses. CONCLUSIONS Our study adds to current knowledge on the role of specific inflammatory biomarker pathways in cancer aetiology. Further validation is needed to assess the potential of these cytokines as pharmacological or lifestyle targets for cancer prevention.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK
- Clinical Pharmacology and Therapeutics Section, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mattias Johansson
- Genomics Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Paul Brennan
- Genomics Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Tim Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sarah J Lewis
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ruth Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Michail Katsoulis
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, Arctic University of Norway, Tromsø, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nutehtal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Laure Dossus
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute of Sinai Health System, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | | | - Ari Ahola-Olli
- The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Saranya Palaniswamy
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
| | - Minna Männikkö
- Northern Finland Birth Cohorts, Infrastructure for Population Studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, London, W2 1PG, UK.
| |
Collapse
|
21
|
Heydarian M, Mohammadtaghizadeh M, Shojaei M, Babazadeh M, Abbasian S, Amrovani M. The effect of COVID-19 derived cytokine storm on cancer cells progression: double-edged sword. Mol Biol Rep 2022; 49:605-615. [PMID: 34657251 PMCID: PMC8520341 DOI: 10.1007/s11033-021-06800-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/01/2021] [Indexed: 10/29/2022]
Abstract
OBJECTIVE Severe acute respiratory syndrome coronavirus 2 (SARS-COV2) was first detected in Wuhan, China in December, 2019. The emerging virus causes a respiratory illness, that can trigger a cytokine storm in the body. METHOD Cytokine storm in patient's body is associated with severe forms of disease. It is one of the main complications of coronavirus disease-2019 (COVID-19), in which immune cells play a major role. Studies have shown immune cells in the tumor environment can be effective to induce resistance to chemotherapy in cancer patients. RESULT Therefore, considering the role of immune cells to induce cytokine storm in COVID-19 patients, and their role to cause resistance to chemotherapy, they are effective on disease progression and creation of severe form of disease. CONCLUSION By examining the signaling pathways and inducing resistance to chemotherapy in tumor cells and the cells affect them, it is possible to prevent the occurrence of severe forms of the disease in cancer patients with COVID-19; it is applicable using target therapy and other subsequent treatment strategies.
Collapse
Affiliation(s)
| | | | - Mahboobeh Shojaei
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Marziyeh Babazadeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
22
|
Microglial Cytokines Induce Invasiveness and Proliferation of Human Glioblastoma through Pyk2 and FAK Activation. Cancers (Basel) 2021; 13:cancers13246160. [PMID: 34944779 PMCID: PMC8699228 DOI: 10.3390/cancers13246160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Microglia infiltrate most gliomas and have been demonstrated to promote tumor growth, invasion, and treatment resistance. To develop improved treatment methods, that take into consideration the supporting role of microglia in tumor progression, the functional and mechanistic pathways of glioma–microglia interactions need to be identified and experimentally dissected. Our recent studies and literature reports revealed the overexpression of Pyk2 and FAK in glioblastomas. Pyk2 and FAK signaling pathways have been shown to regulate migration and proliferation in glioma cells, including microglia-promoted glioma cell migration. However, the specific factors released by microglia that modulate Pyk2 and FAK to promote glioma invasiveness and proliferation are poorly understood. The aim of this study was to identify key microglia-derived signaling molecules that induce the activation of Pyk2- and FAK-dependent glioma cell proliferation and invasiveness. Abstract Glioblastoma is the most aggressive brain tumor in adults. Multiple lines of evidence suggest that microglia create a microenvironment favoring glioma invasion and proliferation. Our previous studies and literature reports indicated the involvement of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) in glioma cell proliferation and invasion, stimulated by tumor-infiltrating microglia. However, the specific microglia-released factors that modulate Pyk2 and FAK signaling in glioma cells are unknown. In this study, 20 human glioblastoma specimens were evaluated with the use of RT-PCR and western blotting. A Pierson correlation test demonstrated a correlation (0.6–1.0) between the gene expression levels for platelet-derived growth factor β(PDGFβ), stromal-derived factor 1α (SDF-1α), IL-6, IL-8, and epidermal growth factor (EGF) in tumor-purified microglia and levels of p-Pyk2 (Y579/Y580) and p-FAK(Y925) in glioma cells. siRNA knockdown against Pyk2 or FAK in three primary glioblastoma cell lines, developed from the investigated specimens, in combination with the cytokine receptor inhibitors gefitinib (1 μM), DMPQ (200 nM), and burixafor (1 μM) identified EGF, PDGFβ, and SDF-1α as key extracellular factors in the Pyk2- and FAK-dependent activation of invadopodia formation and the migration of glioma cells. EGF and IL-6 were identified as regulators of the Pyk2- and FAK-dependent activation of cell viability and mitosis.
Collapse
|
23
|
Wang J, Uddin MN, Hao JP, Chen R, Xiang YX, Xiong DQ, Wu Y. Identification of Potential Novel Prognosis-Related Genes Through Transcriptome Sequencing, Bioinformatics Analysis, and Clinical Validation in Acute Myeloid Leukemia. Front Genet 2021; 12:723001. [PMID: 34777462 PMCID: PMC8585857 DOI: 10.3389/fgene.2021.723001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Acute Myeloid Leukemia (AML) is a complex and heterogeneous hematologic malignancy. However, the function of prognosis-related signature genes in AML remains unclear. Methods: In the current study, transcriptome sequencing was performed on 15 clinical samples, differentially expressed RNAs were identified using R software. The potential interactions network was constructed by using the common genes between target genes of differentially expressed miRNAs with transcriptome sequencing results. Functional and pathway enrichment analysis was performed to identify candidate gene-mediated aberrant signaling pathways. Hub genes were identified by the cytohubba plugin in Cytoscape software, which then expanded the potential interactions regulatory module for hub genes. TCGA-LAML clinical data were used for the prognostic analysis of the hub genes in the regulatory network, and GVSA analysis was used to identify the immune signature of prognosis-related hub genes. qRT-PCR was used to verify the expression of hub genes in independent clinical samples. Results: We obtained 1,610 differentially expressed lncRNAs, 233 differentially expressed miRNAs, and 2,217 differentially expressed mRNAs from transcriptome sequencing. The potential interactions network is constructed by 12 lncRNAs, 25 miRNAs, and 692 mRNAs. Subsequently, a sub-network including 15 miRNAs as well as 12 lncRNAs was created based on the expanded regulatory modules of 25 key genes. The prognostic analysis results show that CCL5 and lncRNA UCA1 was a significant impact on the prognosis of AML. Besides, we found three potential interactions networks such as lncRNA UCA1/hsa-miR-16-5p/COL4A5, lncRNA UCA1/hsa-miR-16-5p/SPARC, and lncRNA SNORA27/hsa-miR-17-5p/CCL5 may play an important role in AML. Furthermore, the evaluation of the immune infiltration shows that CCL5 is positively correlated with various immune signatures, and lncRNA UCA1 is negatively correlated with the immune signatures. Finally, the result of qRT-PCR showed that CCL5 is down-regulated and lncRNA UCA1 is up-regulated in AML samples separately. Conclusions: In conclusion, we propose that CCL5 and lncRNA UCA1 could be recognized biomarkers for predicting survival prognosis based on constructing competing endogenous RNAs in AML, which will provide us novel insight into developing novel prognostic, diagnostic, and therapeutic for AML.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yun-Xia Xiang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dai-Qin Xiong
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
24
|
Singh AJ, Gray JW. Chemokine signaling in cancer-stroma communications. J Cell Commun Signal 2021; 15:361-381. [PMID: 34086259 PMCID: PMC8222467 DOI: 10.1007/s12079-021-00621-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multi-faceted disease in which spontaneous mutation(s) in a cell leads to the growth and development of a malignant new organ that if left undisturbed will grow in size and lead to eventual death of the organism. During this process, multiple cell types are continuously releasing signaling molecules into the microenvironment, which results in a tangled web of communication that both attracts new cell types into and reshapes the tumor microenvironment as a whole. One prominent class of molecules, chemokines, bind to specific receptors and trigger directional, chemotactic movement in the receiving cell. Chemokines and their receptors have been demonstrated to be expressed by almost all cell types in the tumor microenvironment, including epithelial, immune, mesenchymal, endothelial, and other stromal cells. This results in chemokines playing multifaceted roles in facilitating context-dependent intercellular communications. Recent research has started to shed light on these ligands and receptors in a cancer-specific context, including cell-type specificity and drug targetability. In this review, we summarize the latest research with regards to chemokines in facilitating communication between different cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Arun J Singh
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA.
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
25
|
Berrazouane S, Doucet A, Boisvert M, Barabé F, Aoudjit F. VLA-4 Induces Chemoresistance of T Cell Acute Lymphoblastic Leukemia Cells via PYK2-Mediated Drug Efflux. Cancers (Basel) 2021; 13:cancers13143512. [PMID: 34298726 PMCID: PMC8307050 DOI: 10.3390/cancers13143512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Cellular adhesion plays an important role in the development of resistance to chemotherapy (chemoresistance) that represents a major hurdle in the treatment of leukemia and which is a major cause for patient relapse. In this study, we evaluated if cell adhesion to the molecule VCAM-1, which is present in the leukemia microenvironment, can favour the chemoresistance of T acute lymphoblastic leukemia (T-ALL). Our results showed that adhesion of T-ALL cells to VCAM-1 via their receptor VLA-4 induces the resistance of T-ALL cells to doxorubicin by activating the signaling protein PYK2 but not FAK. VLA-4/PYK2 signaling did so by inducing the efflux of doxorubicin. However, adhesion of T-ALL cells to fibronectin via the receptor VLA-5 did not activate PYK2 and had no effect on doxorubicin resistance. These findings suggest that targeting the VLA-4/PYK2 pathway could overcome T-ALL chemoresistance and reduce the risk of patient relapse. Abstract Cell adhesion plays a critical role in the development of chemoresistance, which is a major issue in anti-cancer therapies. In this study, we have examined the role of the VLA-4 integrin, a major adhesion molecule of the immune system, in the chemoresistance of T-ALL cells. We found that attachment of Jurkat and HSB-2 T-ALL cells to VCAM-1, a VLA-4 ligand, inhibits doxorubicin-induced apoptosis. However, their adhesion to fibronectin, which is mainly mediated via VLA-5, had no effect. Even the presence of the chemoattractant SDF1α (Stromal cell-derived factor-1α), which enhances the adhesion of T-ALL cells to fibronectin, did not modify the sensitivity of the cells attached on fibronectin towards doxorubicin-induced apoptosis. Mechanistically, we found that VLA-4 promoted T-ALL chemoresistance by inducing doxorubicin efflux. Our results showed that cell adhesion to both fibronectin and VCAM-1-induced Focal adhesion kinase (FAK) phosphorylation in T-ALL cells. However, only cell adhesion to VCAM-1 led to PYK2 phosphorylation. Inhibition studies indicated that FAK is not involved in doxorubicin efflux and chemoresistance, whereas PYK2 inhibition abrogated both VLA-4-induced doxorubicin efflux and chemoresistance. Together, these results indicate that the VLA-4/PYK2 pathway could participate in T-ALL chemoresistance and its targeting could be beneficial to limit/avoid chemoresistance and patient relapse.
Collapse
Affiliation(s)
- Sofiane Berrazouane
- Division of Immune and Infectious Diseases, CHU de Québec-Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (S.B.); (A.D.); (M.B.); (F.B.)
| | - Alexie Doucet
- Division of Immune and Infectious Diseases, CHU de Québec-Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (S.B.); (A.D.); (M.B.); (F.B.)
| | - Marc Boisvert
- Division of Immune and Infectious Diseases, CHU de Québec-Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (S.B.); (A.D.); (M.B.); (F.B.)
| | - Frédéric Barabé
- Division of Immune and Infectious Diseases, CHU de Québec-Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (S.B.); (A.D.); (M.B.); (F.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Fawzi Aoudjit
- Division of Immune and Infectious Diseases, CHU de Québec-Université Laval Research Center, Québec City, QC G1V 4G2, Canada; (S.B.); (A.D.); (M.B.); (F.B.)
- Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 46071)
| |
Collapse
|
26
|
Brook B, Harbeson DJ, Shannon CP, Cai B, He D, Ben-Othman R, Francis F, Huang J, Varankovich N, Liu A, Bao W, Bjerregaard-Andersen M, Schaltz-Buchholzer F, Sanca L, Golding CN, Larsen KL, Levy O, Kampmann B, Tan R, Charles A, Wynn JL, Shann F, Aaby P, Benn CS, Tebbutt SJ, Kollmann TR, Amenyogbe N. BCG vaccination-induced emergency granulopoiesis provides rapid protection from neonatal sepsis. Sci Transl Med 2021; 12:12/542/eaax4517. [PMID: 32376769 DOI: 10.1126/scitranslmed.aax4517] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Death from sepsis in the neonatal period remains a serious threat for millions. Within 3 days of administration, bacille Calmette-Guérin (BCG) vaccination can reduce mortality from neonatal sepsis in human newborns, but the underlying mechanism for this rapid protection is unknown. We found that BCG was also protective in a mouse model of neonatal polymicrobial sepsis, where it induced granulocyte colony-stimulating factor (G-CSF) within hours of administration. This was necessary and sufficient to drive emergency granulopoiesis (EG), resulting in a marked increase in neutrophils. This increase in neutrophils was directly and quantitatively responsible for protection from sepsis. Rapid induction of EG after BCG administration also occurred in three independent cohorts of human neonates.
Collapse
Affiliation(s)
- Byron Brook
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Danny J Harbeson
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Casey P Shannon
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Daniel He
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada.,PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Joe Huang
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Natallia Varankovich
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Aaron Liu
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Winnie Bao
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Morten Bjerregaard-Andersen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Frederik Schaltz-Buchholzer
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Lilica Sanca
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christian N Golding
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Kristina Lindberg Larsen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, P.O. Box 273, Banjul, The Gambia.,Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | - Rusung Tan
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - Adrian Charles
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - James L Wynn
- Department of Paediatrics and Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, P.O. Box 100296, Gainesville, FL 32610-0296, USA
| | - Frank Shann
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter Aaby
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christine S Benn
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Scott J Tebbutt
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.,Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada.,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| |
Collapse
|
27
|
Chen C, Lv Y. The biological behavior of drug-resistantovarian cancer cells and changes in the CA125 and HE4 levels after CIK interventions. Am J Transl Res 2021; 13:2976-2982. [PMID: 34017464 PMCID: PMC8129276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study aimed to investigate the biological behavior of drug-resistant ovarian cancer cells and changes in the cancer antigen 125 (CA125) and human epididymal protein 4 (HE4) levels after the application of cytokine-induced killer (CIK) intervention. METHODS Drug-resistant ovarian cancer cells (namely SKVCR) were treated with CIK at different concentrations to observe the changes in the cell survival and cell morphology and the CA125, HE4, cytokine transforming growth factor-α (TGF-α), and tumor necrosis factor-α (TNF-α) levels in the cell lines before and after intervention. RESULTS With an increase in the CIK concentration, the survival rate of the SKVCR cell lines showed a decreasing trend. Under a constant CIK concentration, the survival rate of the SKVCR cell lines gradually decreased over time but become stable at 72 h. Before the CIK intervention, the SKVCR cells were full and rounded in shape, but after the CIK intervention, there was remarkable cell shrinkage and an increase in apoptotic cells. Compared with before the CIK intervention, the CA125 and HE4 levels were significantly decreased, but the TGF-α and TNF-α levels were increased (P<0.05). CONCLUSION After the CIK intervention in the drug-resistant ovarian cancer cells, the cell survival rate decreases with an increase in the CIK concentration or an extension of the intervention time, and the cell morphology will be significantly improved, and the CA125, HE4, and other related cytokine levels will also change significantly, suggesting that CIK can kill drug-resistant ovarian cancer cells.
Collapse
Affiliation(s)
- Chenchen Chen
- Department of Gynecology, Affiliated Hospital of Jining Medical University Jining 272000, Shandong Province, China
| | - Yanhua Lv
- Department of Gynecology, Affiliated Hospital of Jining Medical University Jining 272000, Shandong Province, China
| |
Collapse
|
28
|
Casagrande N, Borghese C, Agostini F, Durante C, Mazzucato M, Colombatti A, Aldinucci D. In Ovarian Cancer Multicellular Spheroids, Platelet Releasate Promotes Growth, Expansion of ALDH+ and CD133+ Cancer Stem Cells, and Protection against the Cytotoxic Effects of Cisplatin, Carboplatin and Paclitaxel. Int J Mol Sci 2021; 22:ijms22063019. [PMID: 33809553 PMCID: PMC7999151 DOI: 10.3390/ijms22063019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
A high platelet count is associated with a poor prognosis in ovarian cancer (OvCa). Despite good clinical responses with platinating agents in combination with taxanes, numerous OvCa patients relapse due to chemotherapy resistance. Here, we report that treatment of OvCa cells A2780, OVCAR5 and MDAH with releasate from activated platelets (PR) promoted multicellular tumor spheroid (MCTS) formation. These OvCa-MCTSs had increased percentages of CD133+ and aldehyde dehydrogenase (ALDH)+ cells, bona fide markers of OvCa cancer stem cells (CSCs). PR increased OVCAR5- and MDAH-MCTS viability and decreased the cytotoxic and pro-apoptotic effects of paclitaxel, cisplatin and carboplatin. PR increased the volume of spontaneously formed OVCAR8-MCTSs and counteracted their size reduction due to cisplatin, carboplatin and paclitaxel treatment. PR promoted the survival of ALDH+ and CD133+ OvCa cells during cisplatin, carboplatin and paclitaxel treatment. In conclusion, molecules and growth factors released by activated platelets (EGF, PDGF, TGF-β, IGF and CCL5) may protect tumor cells from chemotherapy by promoting the expansion of ALDH+ and CD133+ OvCa-CSCs, favoring drug resistance and tumor relapse.
Collapse
Affiliation(s)
- Naike Casagrande
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (N.C.); (C.B.); (A.C.)
| | - Cinzia Borghese
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (N.C.); (C.B.); (A.C.)
| | - Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.A.); (C.D.); (M.M.)
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.A.); (C.D.); (M.M.)
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (F.A.); (C.D.); (M.M.)
| | - Alfonso Colombatti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (N.C.); (C.B.); (A.C.)
| | - Donatella Aldinucci
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (N.C.); (C.B.); (A.C.)
- Correspondence:
| |
Collapse
|
29
|
Xue D, Zheng Y, Wen J, Han J, Tuo H, Liu Y, Peng Y. Role of chemokines in hepatocellular carcinoma (Review). Oncol Rep 2021; 45:809-823. [PMID: 33650640 PMCID: PMC7859922 DOI: 10.3892/or.2020.7906] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges for the treatment of HCC is the prevention or management of recurrence and metastasis of HCC. It has been found that chemokines and their receptors serve a pivotal role in HCC progression. In the present review, the literature on the multifactorial roles of exosomes in HCC from PubMed, Cochrane library and Embase were obtained, with a specific focus on the functions and mechanisms of chemokines in HCC. To date, >50 chemokines have been found, which can be divided into four families: CXC, CX3C, CC and XC, according to the different positions of the conserved N‑terminal cysteine residues. Chemokines are involved in the inflammatory response, tumor immune response, proliferation, invasion and metastasis via modulation of various signaling pathways. Thus, chemokines and their receptors directly or indirectly shape the tumor cell microenvironment, and regulate the biological behavior of the tumor. In addition, the potential application of chemokines in chemotaxis of exosomes as drug vehicles is discussed. Exosomes containing chemokines or expressing receptors for chemokines may improve chemotaxis to HCC and may thus be exploited for targeted drug delivery.
Collapse
Affiliation(s)
- Dongdong Xue
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Ya Zheng
- Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Junye Wen
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Jingzhao Han
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yifan Liu
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| | - Yanhui Peng
- Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, Shanghai 200065, P.R. China
| |
Collapse
|
30
|
Huang SL, Chang TC, Chao CCK, Sun NK. TLR4/IL-6/IRF1 signaling regulates androgen receptor expression: A potential therapeutic target to overcome taxol resistance in ovarian cancer. Biochem Pharmacol 2021; 186:114456. [PMID: 33556340 DOI: 10.1016/j.bcp.2021.114456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Ovarian cancer is poorly treatable due, at least in part, to induced drug resistance to taxol- and cisplatin-based chemotherapy. Recent studies showed that ectopic overexpression of toll-like receptor 4 (TLR4) in ovarian cancer cells leads to upregulation of the androgen receptor (AR) and transactivation of taxol resistance genes, thereby causing chemoresistance. In the present study, we examined the signaling pathways involving TLR4 and interleukin 6 (IL-6) that enhance AR expression. Based on transcriptomic analysis, we show that IL-6 functions as a hub gene among the upregulated genes in taxol-treated TLR4-overexpressing ovarian cancer cells. Both the TLR4 activator taxol and IL-6 can induce AKT phosphorylation, whereas TLR4 knockdown or inhibition of the IL-6 signal transducer GP130 abrogates AKT activation. Furthermore, expression of AR and IL-6 is downregulated in TLR4-knockdown, taxol-resistant cells. In addition, TLR4 knockdown inhibits GP130 and IL-6 receptor alpha (IL6Rα) activities, indicating that TLR4 plays a critical role in IL-6 signaling. On the other hand, nuclear translocation of AR is induced by IL-6 treatment, whereas knockdown of endogenous IL-6 reduces AR and TLR4 expression in taxol-resistant ovarian cancer cells. These results indicate that TLR4 and IL-6 play a crucial role in AR gene regulation and function. We also identify interferon regulatory factor 1 (IRF1) as a downstream target of IL-6 signaling and as a regulator of AR expression. Moreover, analysis of clinical samples indicates that high IL-6 expression correlates with poor progression-free survival in ovarian cancer patients treated with taxol. Overall, our findings indicate that the TLR4/IL-6/IRF1 signaling axis represents a potential therapeutic target to overcome AR-based taxol resistance in ovarian cancer.
Collapse
Affiliation(s)
- Shang-Lang Huang
- Division of Biomedical Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC.
| | - Ting-Chang Chang
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital Linkou Medical Centre, Taoyuan, Taiwan, ROC.
| | - Chuck C K Chao
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital Linkou Medical Centre, Taoyuan, Taiwan, ROC; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
| | - Nian-Kang Sun
- Division of Biomedical Sciences, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital Linkou Medical Centre, Taoyuan, Taiwan, ROC.
| |
Collapse
|
31
|
Amirghasemi F, Adjei-Sowah E, Pockaj BA, Nikkhah M. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers. Ann Biomed Eng 2021; 49:1943-1972. [PMID: 33403451 DOI: 10.1007/s10439-020-02704-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
The burden of cancer continues to increase in society and negatively impacts the lives of numerous patients. Due to the high cost of current treatment strategies, there is a crucial unmet need to develop inexpensive preclinical platforms to accelerate the process of anti-cancer drug discovery to improve outcomes in cancer patients, most especially in female patients. Many current methods employ expensive animal models which not only present ethical concerns but also do not often accurately predict human physiology and the outcomes of anti-cancer drug responsiveness. Conventional treatment approaches for cancer generally include systemic therapy after a surgical procedure. Although this treatment technique is effective, the outcome is not always positive due to various complex factors such as intratumor heterogeneity and confounding factors within the tumor microenvironment (TME). Patients who develop metastatic disease still have poor prognosis. To that end, recent efforts have attempted to use 3D microengineered platforms to enhance the predictive power and efficacy of anti-cancer drug screening, ultimately to develop personalized therapies. Fascinating features of microengineered assays, such as microfluidics, have led to the advancement in the development of the tumor-on-chip technology platforms, which have shown tremendous potential for meaningful and physiologically relevant anti-cancer drug discovery and screening. Three dimensional microscale models provide unprecedented ability to unveil the biological complexities of cancer and shed light into the mechanism of anti-cancer drug resistance in a timely and resource efficient manner. In this review, we discuss recent advances in the development of microengineered tumor models for anti-cancer drug discovery and screening in female-related cancers. We specifically focus on female-related cancers to draw attention to the various approaches being taken to improve the survival rate of women diagnosed with cancers caused by sex disparities. We also briefly discuss other cancer types like colon adenocarcinomas and glioblastoma due to their high rate of occurrence in females, as well as the high likelihood of sex-biased mutations which complicate current treatment strategies for women. We highlight recent advances in the development of 3D microscale platforms including 3D tumor spheroids, microfluidic platforms as well as bioprinted models, and discuss how they have been utilized to address major challenges in the process of drug discovery, such as chemoresistance, intratumor heterogeneity, drug toxicity, etc. We also present the potential of these platform technologies for use in high-throughput drug screening approaches as a replacements of conventional assays. Within each section, we will provide our perspectives on advantages of the discussed platform technologies.
Collapse
Affiliation(s)
- Farbod Amirghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - Emmanuela Adjei-Sowah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA
| | - Barbara A Pockaj
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287-9709, USA. .,Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
32
|
Feng X, Ma BF, Liu B, Ding P, Wei JH, Cheng P, Li SY, Chen DX, Sun ZJ, Li Z. The Involvement of the Chemokine RANTES in Regulating Luminal Acidification in Rat Epididymis. Front Immunol 2020; 11:583274. [PMID: 33072131 PMCID: PMC7544837 DOI: 10.3389/fimmu.2020.583274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 12/03/2022] Open
Abstract
Background A complex interplay between different cell types in the epithelium leads to activation of the luminal acidifying capacity of the epididymis, a process that is crucial for sperm maturation and storage. Basal cells sense the luminal angiotensin II (ANG II) and stimulate proton secretion in clear cells through nitric oxide (NO). Our previous study has shown the chemokine regulated upon activation normal T-cell expressed and secreted (RANTES) was expressed in the F4/80 positive macrophages of human epididymis. The objective of this study was to explore the involvement of RANTES in regulating the luminal acidification in the rat epididymis. Methods The role of RANTES was investigated by in vivo perfusion with recombinant RANTES, Met-RANTES, and PBS of different pH values. Furthermore, rats vasectomy was performed to alter the epididymal luminal pH. RIA was used to measure the tissue homogenate ANG II concentration. Real time-PCR and western blot were employed to examine the expression levels of AGTR2, RANTES, CCR1, CCR5, and iNOS in epididymis. Results RANTES was restricted to the basal macrophages of epididymal ducts and co-localized with its receptors CCR1 and CCR5. Both V-ATPase and iNOS were up-regulated in the cauda epididymis after perfused with recombinant RANTES, while the antagonist Met-RANTES perfusion led to a complete abrogation of the increased expression of V-ATPase in the apical membrane of clear cells and iNOS in macrophages. Upon alkaline perfusion, RANTES expression was significantly increased and the apical accumulation of V-ATPase in the clear cells was induced in the cauda epididymis. The luminal pH in the cauda epididymis increased after vasectomy. The concentration of the ANG II and the expression levels of AGTR2, RANTES, CCR1, CCR5, and iNOS dropped in the cauda epididymis following vasectomy. Conclusion Upon the activation of basal cells, RANTES might induce the NO release from macrophages by interacting with its receptors, which increases proton secretion by adjacent clear cells. Thus, RANTES is possible to participate in the crosstalk among basal cells, macrophages and clear cells for the fine control of an optimum acidic luminal environment that is critical for male fertility.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Bin-Fang Ma
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Bo Liu
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Peng Ding
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Jin-Hua Wei
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Pang Cheng
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Sheng-Yu Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Dong-Xu Chen
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Jian Sun
- The General Hospital of Northern Theater Command, Shenyang, China
| | - Zhen Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Scrodentoids H and I, a Pair of Natural Epimerides from Scrophularia dentata, Inhibit Inflammation through JNK-STAT3 Axis in THP-1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1842347. [PMID: 32802115 PMCID: PMC7403932 DOI: 10.1155/2020/1842347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
Background Scrophularia dentata is an important medicinal plant and used for the treatment of exanthema and fever in Traditional Tibetan Medicine. Scrodentoids H and I (SHI), a pair of epimerides of C19-norditerpenoids isolated from Scrophularia dentata, could transfer to each other in room temperature and were firstly reported in our previous work. Here, we first reported the anti-inflammatory effects of SHI on LPS-induced inflammation. Purpose To evaluate the anti-inflammatory property of SHI, we investigated the effects of SHI on LPS-activated THP-1 cells. Methods THP-1 human macrophages were pretreated with SHI and stimulated with LPS. Proinflammatory cytokines IL-1β and IL-6 were measured by RT-PCR and enzyme-linked immunosorbent assays (ELISA). The mechanism of action involving phosphorylation of ERK, JNK, P38, and STAT3 was measured by western Blot. The NF-κB promoter activity was evaluated by Dual-Luciferase Reporter Assay System in TNF-α stimulated 293T cells. Results SHI dose-dependently reduced the production of proinflammatory cytokines IL-1β and IL-6. The ability of SHI to reduce production of cytokines is associated with phosphorylation depress of JNK and STAT3 rather than p38, ERK, and NF-κB promoter. Conclusions Our experimental results indicated that anti-inflammatory effects of SHI exhibit attenuation of LPS-induced inflammation and inhibit activation through JNK/STAT3 pathway in macrophages. These results suggest that SHI might have a potential in treating inflammatory disease.
Collapse
|
34
|
Crestani A, Benoit L, Touboul C, Pasquier J. Hyperthermic intraperitoneal chemotherapy (HIPEC): Should we look closer at the microenvironment? Gynecol Oncol 2020; 159:285-294. [PMID: 32732012 DOI: 10.1016/j.ygyno.2020.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
The age of cancer as an isolated single-cell concept is now behind us. It is now established that epithelial ovarian cancer, like other cancers, interacts with the healthy bystander cells to influence them and takes advantage of their nutritional, immunological, disseminating and other capacities. This interaction has become a therapeutic target, as shown by the numerous studies on this subject. Intraperitoneal chemo-hyperthermia has been part of the therapeutic armamentarium for some time yet its efficiency in ovarian cancer has only been recently proven in a randomized controlled trial. However, its therapeutic performance is not revolutionary and epithelial ovarian cancer maintains a high mortality. In this review, we studied the impact of HIPEC on the microenvironment and vice versa to determine whether it could be the key to this lukewarm efficacy. We began by exploring the modalities of HIPEC and establishing the reasons that make this treatment topical. Then, we examined its impact on each element of the tumor environment to obtain a global view of the resistance mechanisms at work in HIPEC.
Collapse
Affiliation(s)
- Adrien Crestani
- INSERM UMRS 938, Centre de recherche Saint Antoine, Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, Sorbonne Université, F-75012 Paris, France; Service de chirurgie gynécologique, hôpital Tenon, 4, rue de la Chine, 75012 Paris, France.
| | - Louise Benoit
- INSERM UMRS 938, Centre de recherche Saint Antoine, Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, Sorbonne Université, F-75012 Paris, France; Service de chirurgie gynécologique, hôpital Tenon, 4, rue de la Chine, 75012 Paris, France
| | - Cyril Touboul
- INSERM UMRS 938, Centre de recherche Saint Antoine, Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, Sorbonne Université, F-75012 Paris, France; Service de chirurgie gynécologique, hôpital Tenon, 4, rue de la Chine, 75012 Paris, France
| | - Jennifer Pasquier
- INSERM UMRS 938, Centre de recherche Saint Antoine, Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, Sorbonne Université, F-75012 Paris, France; Department of Genetic Medicine, Weill Cornell Medicine, Qatar
| |
Collapse
|
35
|
Zhu Y, Zhang G, Li M, Ma L, Huang J, Qiu L. Ultrasound-Augmented Phase Transition Nanobubbles for Targeted Treatment of Paclitaxel-Resistant Cancer. Bioconjug Chem 2020; 31:2008-2020. [PMID: 32628454 DOI: 10.1021/acs.bioconjchem.0c00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yi Zhu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Ultrasound, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Guonan Zhang
- Department of Gynecological Oncology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Meiying Li
- Department of Biochemistry & Molecular Biology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Lang Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianming Huang
- Department of Biochemistry & Molecular Biology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
36
|
The CCL5/CCR5 Axis in Cancer Progression. Cancers (Basel) 2020; 12:cancers12071765. [PMID: 32630699 PMCID: PMC7407580 DOI: 10.3390/cancers12071765] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor cells can “hijack” chemokine networks to support tumor progression. In this context, the C-C chemokine ligand 5/C-C chemokine receptor type 5 (CCL5/CCR5) axis is gaining increasing attention, since abnormal expression and activity of CCL5 and its receptor CCR5 have been found in hematological malignancies and solid tumors. Numerous preclinical in vitro and in vivo studies have shown a key role of the CCL5/CCR5 axis in cancer, and thus provided the rationale for clinical trials using the repurposed drug maraviroc, a CCR5 antagonist used to treat HIV/AIDS. This review summarizes current knowledge on the role of the CCL5/CCR5 axis in cancer. First, it describes the involvement of the CCL5/CCR5 axis in cancer progression, including autocrine and paracrine tumor growth, ECM (extracellular matrix) remodeling and migration, cancer stem cell expansion, DNA damage repair, metabolic reprogramming, and angiogenesis. Then, it focuses on individual hematological and solid tumors in which CCL5 and CCR5 have been studied preclinically. Finally, it discusses clinical trials of strategies to counteract the CCL5/CCR5 axis in different cancers using maraviroc or therapeutic monoclonal antibodies.
Collapse
|
37
|
Reyes ME, de La Fuente M, Hermoso M, Ili CG, Brebi P. Role of CC Chemokines Subfamily in the Platinum Drugs Resistance Promotion in Cancer. Front Immunol 2020; 11:901. [PMID: 32499779 PMCID: PMC7243460 DOI: 10.3389/fimmu.2020.00901] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a significant medical issue, being one of the main causes of mortality around the world. The therapies for this pathology depend on the stage in which the cancer is found, but it is usually diagnosed at an advanced stage in which the treatment is chemotherapy. Platinum drugs are among the most commonly used in therapy, unfortunately, one of the main obstacles to this treatment is the development of chemoresistance, which is the ability of cancer cells to evade the effects of drugs. Although some molecular mechanisms involved in resistance to platinum drugs are described, elucidation is still required of others. Secretion of inflammatory mediators such as cytokines and chemokines, by tumor microenvironment components or tumor cells, show direct influence on proliferation, metastasis and progression of cancer and are related to chemoresistance and poor prognosis. In this review, the general mechanisms associated with resistance to platinum drugs, inflammation on cancer development and chemoresistance in various types of cancer will be approached with special emphasis on the current history of CC chemokines subfamily-mediated chemoresistance.
Collapse
Affiliation(s)
- Maria E. Reyes
- Laboratorio de Biología Integrativa (LIBi), Centro de Excelencia en Medicina Traslacional-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de la Frontera, Temuco, Chile
| | - Marjorie de La Fuente
- Laboratorio de Inmunidad Innata, Programa de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Dirección Académica, Clínica Las Condes, Santiago, Chile
| | - Marcela Hermoso
- Laboratorio de Inmunidad Innata, Programa de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen G. Ili
- Laboratorio de Biología Integrativa (LIBi), Centro de Excelencia en Medicina Traslacional-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de la Frontera, Temuco, Chile
| | - Priscilla Brebi
- Laboratorio de Biología Integrativa (LIBi), Centro de Excelencia en Medicina Traslacional-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de la Frontera, Temuco, Chile
| |
Collapse
|
38
|
Ford CE, Werner B, Hacker NF, Warton K. The untapped potential of ascites in ovarian cancer research and treatment. Br J Cancer 2020; 123:9-16. [PMID: 32382112 PMCID: PMC7341795 DOI: 10.1038/s41416-020-0875-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/06/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
The build-up of fluid in the peritoneal cavity-ascites-is a hallmark of ovarian cancer, the most lethal of all gynaecological malignancies. This remarkable fluid, which contains a variety of cellular and acellular components, is known to contribute to patient morbidity and mortality by facilitating metastasis and contributing to chemoresistance, but remains largely under-researched. In this review, we will critically analyse the evidence associating ascites with metastasis and chemoresistance in ovarian cancer and provide an update on research in the field. We will argue the case for ascites as a unique and accessible substrate for tracking tumour progression and for translational research that will enhance our understanding of this cancer and lead to improvements in patient outcomes.
Collapse
Affiliation(s)
- Caroline Elizabeth Ford
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.
| | - Bonnita Werner
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Kristina Warton
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
39
|
Bequignon E, Mangin D, Bécaud J, Pasquier J, Angely C, Bottier M, Escudier E, Isabey D, Filoche M, Louis B, Papon JF, Coste A. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Transl Med 2020; 18:136. [PMID: 32209102 PMCID: PMC7092549 DOI: 10.1186/s12967-020-02309-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by an alteration in airway epithelial cell functions including barrier function, wound repair mechanisms, mucociliary clearance. The mechanisms leading to epithelial cell dysfunction in nasal polyps (NPs) remain poorly understood. Our hypothesis was that among the inflammatory cytokines involved in NPs, IL-6 could alter epithelial repair mechanisms and mucociliary clearance. The aim of this study was to evaluate the in vitro effects of IL-6 on epithelial repair mechanisms in a wound repair model and on ciliary beating in primary cultures of Human Nasal Epithelial Cells (HNEC). Methods Primary cultures of HNEC taken from 38 patients during surgical procedures for CRSwNP were used in an in vitro model of wound healing. Effects of increasing concentrations of IL-6 (1 ng/mL, 10 ng/mL, and 100 ng/mL) and other ILs (IL-5, IL-9, IL-10) on wound closure kinetics were compared to cultures without IL-modulation. After wound closure, the differentiation process was characterized under basal conditions and after IL supplementation using cytokeratin-14, MUC5AC, and βIV tubulin as immunomarkers of basal, mucus, and ciliated cells, respectively. The ciliated edges of primary cultures were analyzed on IL-6 modulation by digital high-speed video-microscopy to measure: ciliary beating frequency (CBF), ciliary length, relative ciliary density, metachronal wavelength and the ciliary beating efficiency index. Results Our results showed that: (i) IL-6 accelerated airway wound repair in vitro, with a dose–response effect whereas no effect was observed after other ILs-stimulation. After 24 h, 79% of wounded wells with IL6-100 were fully repaired, vs 46% in the IL6-10 group, 28% in the IL6-1 group and 15% in the control group; (ii) specific migration analyses of closed wound at late repair stage (Day 12) showed IL-6 had the highest migration compared with other ILs (iii) The study of the IL-6 effect on ciliary function showed that CBF and metachronal wave increased but without significant modifications of ciliary density, length of cilia and efficiency index. Conclusion The up-regulated epithelial cell proliferation observed in polyps could be induced by IL-6 in the case of prior epithelial damage. IL-6 could be a major cytokine in NP physiopathology.
Collapse
Affiliation(s)
- Emilie Bequignon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France. .,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France. .,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France. .,CNRS ERL 7000, 94010, Créteil, France.
| | - David Mangin
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Justine Bécaud
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jennifer Pasquier
- Nice Breast Institute, 06000, Nice, France.,Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christelle Angely
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Mathieu Bottier
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Estelle Escudier
- Inserm U933, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Service de génétique et d'embryologie médicale, AP-HP Hôpital Armand-Trousseau, Paris, France
| | - Daniel Isabey
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Marcel Filoche
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Bruno Louis
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jean-François Papon
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France.,Faculté de Médecine, Université Paris-Sud, 94275, Le Kremlin-Bicêtre, France
| | - André Coste
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| |
Collapse
|
40
|
Waldeck S, Rassner M, Keye P, Follo M, Herchenbach D, Endres C, Charlet A, Andrieux G, Salzer U, Boerries M, Duyster J, von Bubnoff N. CCL5 mediates target-kinase independent resistance to FLT3 inhibitors in FLT3-ITD-positive AML. Mol Oncol 2020; 14:779-794. [PMID: 31955503 PMCID: PMC7138400 DOI: 10.1002/1878-0261.12640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/04/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
FLT3‐ITD tyrosine kinase inhibitors (TKI) show limited clinical activity in acute myeloid leukemia (AML) due to emerging resistance. TKI resistance is mediated by secondary FLT3‐ITD mutations only in a minority of cases. We hypothesize that the cytokine CCL5 protects AML cells from TKI‐mediated cell death and contributes to treatment resistance. We generated PKC412‐ and sorafenib‐resistant MOLM‐13 cell lines as an in vitro model to study TKI resistance in AML. Increased CCL5 levels were detected in supernatants from PKC412‐resistant cell lines compared to TKI‐sensitive cells. Moreover, CCL5 treatment of TKI‐sensitive cells induced resistance to PKC412. In resistant cell lines with high CCL5 release, we observed a significant downregulation of the CCL5‐receptor CCR5 and CXCR4. In these cell lines, TKI resistance could be partly overcome by addition of the CXCR4‐receptor antagonist plerixafor. Microarray and intracellular flow cytometry analyses revealed increased p‐Akt or p‐Stat5 levels in PKC412‐resistant cell lines releasing high amounts of CCL5. Treatment with the CXCR4 antagonist plerixafor, αCCL5, or CCR5‐targeting siRNA led to a decrease of p‐Akt‐positive cells. Transient transfection of sensitive MOLM‐13 cells with a CCL5‐encoding vector mediated resistance against PKC412 and led to an increase in p‐Akt‐positive and p‐Stat5‐positive cells. Isolated AML blasts from patients treated with PKC412 revealed that CCL5 transcript levels increase significantly at relapse. Taken together, our findings indicate that CCL5 mediates resistance to FLT3‐TKIs in FLT3‐ITD‐mutated AML and could possibly serve as a biomarker to predict drug resistance.
Collapse
Affiliation(s)
- Silvia Waldeck
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Rassner
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Philip Keye
- Department of Ophthalmology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Marie Follo
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Dieter Herchenbach
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Cornelia Endres
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne Charlet
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Geoffroy Andrieux
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Ulrich Salzer
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hematology and Oncology, Medical Center, University of Schleswig Holstein, Lübeck, Germany
| |
Collapse
|
41
|
Pasquier J, Ghiabi P, Chouchane L, Razzouk K, Rafii S, Rafii A. Angiocrine endothelium: from physiology to cancer. J Transl Med 2020; 18:52. [PMID: 32014047 PMCID: PMC6998193 DOI: 10.1186/s12967-020-02244-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
The concept of cancer as a cell-autonomous disease has been challenged by the wealth of knowledge gathered in the past decades on the importance of tumor microenvironment (TM) in cancer progression and metastasis. The significance of endothelial cells (ECs) in this scenario was initially attributed to their role in vasculogenesis and angiogenesis that is critical for tumor initiation and growth. Nevertheless, the identification of endothelial-derived angiocrine factors illustrated an alternative non-angiogenic function of ECs contributing to both physiological and pathological tissue development. Gene expression profiling studies have demonstrated distinctive expression patterns in tumor-associated endothelial cells that imply a bilateral crosstalk between tumor and its endothelium. Recently, some of the molecular determinants of this reciprocal interaction have been identified which are considered as potential targets for developing novel anti-angiocrine therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer Pasquier
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France.
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar.
| | - Pegah Ghiabi
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
- Laboratory of Genetic Medicine and Immunology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kais Razzouk
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Arash Rafii
- Nice Breast Institute, 57 bld de la Californie, 06000, Nice, France
- Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
42
|
Mora-Lagos B, Cartas-Espinel I, Riquelme I, Parker AC, Piccolo SR, Viscarra T, Reyes ME, Zanella L, Buchegger K, Ili C, Brebi P. Functional and transcriptomic characterization of cisplatin-resistant AGS and MKN-28 gastric cancer cell lines. PLoS One 2020; 15:e0228331. [PMID: 31990955 PMCID: PMC6986722 DOI: 10.1371/journal.pone.0228331] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a significant cancer-related cause of death worldwide. The most used chemotherapeutic regimen in GC is based on platinum drugs such as cisplatin (CDDP). However, CDDP resistance reduces advanced GC survival. In vitro drug-resistant cell model would help in the understanding of molecular mechanisms underlying this drug-resistance phenomenon. The aim of this study was to characterize new models of CDDP-resistant GC cell lines (AGS R-CDDP and MKN-28 R-CDDP) obtained through a stepwise increasing drug doses method, in order to understand the molecular mechanisms underlying chemoresistance as well as identify new therapeutic targets for the treatment of GC. Cell viability assays, cell death assays and the expression of resistance molecular markers confirmed that AGS R-CDDP and MKN-28 R-CDDP are reliable CDDP-resistant models. RNA-seq and bioinformatics analyses identified a total of 189 DEGs, including 178 up-regulated genes and 11 down-regulated genes, associated mainly to molecular functions involved in CDDP-resistance. DEGs were enriched in 23 metabolic pathways, among which the most enriched was the inflammation mediated by chemokine and cytokine signaling pathway. Finally, the higher mRNA expression of SERPINA1, BTC and CCL5, three up-regulated DEGs associated to CDDP resistance found by RNA-seq analysis was confirmed. In summary, this study showed that AGS R-CDDP and MKN-28 R-CDDP are reliable models of CDDP resistance because resemble many of resistant phenotype in GC, being also useful to assess potential therapeutic targets for the treatment of gastric cancers resistant to CDDP. In addition, we identified several DEGs associated with molecular functions such as binding, catalytic activity, transcription regulator activity and transporter activity, as well as signaling pathways associated with inflammation process, which could be involved in the development of CDDP resistance in GC. Further studies are necessary to clarify the role of inflammatory processes in GC resistant to CDDP and these models could be useful for these purposes.
Collapse
Affiliation(s)
- Barbara Mora-Lagos
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
- Dirección de Investigación, Vicerrectoría de Investigación y Postgrado, Universidad Autónoma de Chile, Temuco, Chile
| | - Irene Cartas-Espinel
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
| | - Ismael Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Alyssa C. Parker
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, Utah, United States of America
| | - Tamara Viscarra
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
| | - María Elena Reyes
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
| | - Louise Zanella
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
| | - Kurt Buchegger
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
- Department of Basic Sciences, School of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Carmen Ili
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
- * E-mail: (CI); (PB)
| | - Priscilla Brebi
- Laboratory of Integrative Biology (LIBi), Scientific and Technological Bioresource Nucleus- Center for Excellence in Translational Medicine (BIOREN-CEMT), Universidad de La Frontera, Temuco, Chile
- * E-mail: (CI); (PB)
| |
Collapse
|
43
|
Targeting INHBA in Ovarian Cancer Cells Suppresses Cancer Xenograft Growth by Attenuating Stromal Fibroblast Activation. DISEASE MARKERS 2019; 2019:7275289. [PMID: 31827640 PMCID: PMC6885285 DOI: 10.1155/2019/7275289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023]
Abstract
INHBA-encoded inhibin β A is a member of the transforming growth factor-β (TGF-β) superfamily. INHBA has been reported to be implicated in the progression of multiple types of cancer including ovarian cancer (OC). However, the mechanisms by which INHBA affects OC progression are not well-characterized. The aim of our study was to explore the prognostic value of INHBA for different stages and grades of OC and to identify the possible mechanisms by which INHBA promotes OC progression. Our results demonstrated that INHBA was specifically expressed in OC epithelium, and higher expression was associated with higher risk of mortality in patients with advanced and higher-grade serous OC (SOC). In addition, knockdown of INHBA in cancer cells impaired cancer xenograft growth through reducing OC stromal fibroblast activation in vivo. Further results confirmed that Smad2 signaling pathway was involved in INHBA-induced stromal fibroblast activation, and inhibiting this pathway could effectively reverse activation of stromal fibroblasts. In summary, our results showed that blocking INHBA in cancer cells may be a potential therapeutic strategy to inhibit SOC progression.
Collapse
|
44
|
Zhang G, Wang H, Zhu K, Yang Y, Li J, Jiang H, Liu Z. Investigation of candidate molecular biomarkers for expression profile analysis of the Gene expression omnibus (GEO) in acute lymphocytic leukemia (ALL). Biomed Pharmacother 2019; 120:109530. [PMID: 31606621 DOI: 10.1016/j.biopha.2019.109530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023] Open
Abstract
Much progress has been made in understanding the mechanism of acute lymphocytic leukemia (ALL). However, for adult ALL, there is still a lack of an effective treatment. In the present study, we first used the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) between ALL cell lines and Hodgkin and non-Hodgkin cell lines. Then, the GEO database was also used to detect the DEGs in acute lymphoblastic leukemia (Reh) cells transfected with a normal control or a constitutively active variant of the IkB kinase β. Finally, we found that three key DEGs (CCL5, FSCN1, and HS3ST1) are involved in proliferation and apoptosis according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) pathway analyses. Finally, we determined that all three target genes that participate in proliferation and apoptosis are regulated via the NF-kB signaling pathway.
Collapse
Affiliation(s)
- Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongtao Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ke Zhu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia Li
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huinan Jiang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
45
|
Laplagne C, Domagala M, Le Naour A, Quemerais C, Hamel D, Fournié JJ, Couderc B, Bousquet C, Ferrand A, Poupot M. Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. Int J Mol Sci 2019; 20:E4719. [PMID: 31547627 PMCID: PMC6801830 DOI: 10.3390/ijms20194719] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor bulk is composed of a highly heterogeneous population of cancer cells, as well as a large variety of resident and infiltrating host cells, extracellular matrix proteins, and secreted proteins, collectively known as the tumor microenvironment (TME). The TME is essential for driving tumor development by promoting cancer cell survival, migration, metastasis, chemoresistance, and the ability to evade the immune system responses. Therapeutically targeting tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), regulatory T-cells (T-regs), and mesenchymal stromal/stem cells (MSCs) is likely to have an impact in cancer treatment. In this review, we focus on describing the normal physiological functions of each of these cell types and their behavior in the cancer setting. Relying on the specific surface markers and secreted molecules in this context, we review the potential targeting of these cells inducing their depletion, reprogramming, or differentiation, or inhibiting their pro-tumor functions or recruitment. Different approaches were developed for this targeting, namely, immunotherapies, vaccines, small interfering RNA, or small molecules.
Collapse
Affiliation(s)
- Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Augustin Le Naour
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Christophe Quemerais
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Dimitri Hamel
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Bettina Couderc
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut Claudius Regaud, IUCT-Oncopole, 31000 Toulouse, France.
| | - Corinne Bousquet
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| | - Audrey Ferrand
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- Institut de Recherche en Santé Digestive, Inserm U1220, INRA, ENVT, 31024 Toulouse, France.
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France.
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France.
- ERL 5294 CNRS, 31037 Toulouse, France.
| |
Collapse
|
46
|
Yasui H, Kajiyama H, Tamauchi S, Suzuki S, Peng Y, Yoshikawa N, Sugiyama M, Nakamura K, Kikkawa F. CCL2 secreted from cancer-associated mesothelial cells promotes peritoneal metastasis of ovarian cancer cells through the P38-MAPK pathway. Clin Exp Metastasis 2019; 37:145-158. [PMID: 31541326 DOI: 10.1007/s10585-019-09993-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
Epithelial ovarian cancer (EOC) is considered to secrete various factors in order to promote peritoneal dissemination through cell-to-cell interaction between cancer and mesothelial cells. We previously revealed that TGF-β secreted from EOC induces normal human peritoneal mesothelial cells (HPMCs) to differentiate into cancer-associated mesothelial cells (CAMCs). However, the relationship between tumor cells and CAMCs in EOC is still unclear. We hypothesized that CAMCs also secrete chemokines that attract cancer cells and induce peritoneal dissemination of EOC. We examined chemokines secreted from HPMCs and CAMCs by human chemokine array, and revealed that conditioned medium of CAMCs (CAMCs-CM) included many types of chemokines. The signals of CCL2 were the highest compared with other chemokines. The secretion and relative expression of CCL2 were significantly higher in CAMCs. Recombinant CCL2 promoted trans-mesothelial migration of HPMCs and the migration and invasion by EOC cells. In addition, CCL2 secreted from CAMCs promoted invasion of EOC cells. Furthermore, the neutralizing antibody of CCL2 reduced invasion by EOC. Clinical outcomes of patients whose tissue expressed higher CCR2 were significantly poorer than in patients whose tissue expression was lower. CCL2 activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In addition, CAMCs-CM activated the p38 MAPK pathway. Phosphorylation of p38 MAPK reduced with the presence of neutralizing antibody of CCL2. In conclusion, these data indicate CCL2 in CAMCs-CM promoted the malignant potential of EOC. CCL2 plays a crucial role in the tumor microenvironment of EOC.
Collapse
Affiliation(s)
- Hiroaki Yasui
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, BMC C13, 22184, Lund, Sweden
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yang Peng
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mai Sugiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
47
|
Targeting NF-κB-mediated inflammatory pathways in cisplatin-resistant NSCLC. Lung Cancer 2019; 135:217-227. [PMID: 31446998 DOI: 10.1016/j.lungcan.2019.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The majority of patients with non-small cell lung cancer (NSCLC) present with advanced stage disease, at which time chemotherapy is usually the most common treatment option. While somewhat effective, patients treated with platinum-based regimens will eventually develop resistance, with others presenting with intrinsic resistance. Multiple pathways have been implicated in chemo-resistance, however the critical underlying mechanisms have yet to be elucidated. The aim of this project was to determine the role of inflammatory mediators in cisplatin-resistance in NSCLC. MATERIALS AND METHODS Inflammatory mediator, NF-κB, and its associated pathways were investigated in an isogenic model of cisplatin-resistant NSCLC using age-matched parental (PT) and corresponding cisplatin-resistant (CisR) sublines. Pathways were assessed using mass spectrometry, western blot analysis and qRT-PCR. The cisplatin sensitizing potential of an NF-κB small molecule inhibitor, DHMEQ, was also assessed by means of viability assays and western blot analysis. RESULTS Proteomic analysis identified dysregulated NF-κB responsive targets in CisR cells when compared to PT cells, with increased NF-κB expression identified in four out of the five NSCLC sub-types examined (CisR versus PT). DHMEQ treatment resulted in reduced NF-κB expression in the presence of cisplatin, and re-sensitized CisR cells to the cytotoxic effects of the drug. CONCLUSION This study identified NF-ĸB as a potential therapeutic target in cisplatin-resistant NSCLC. Furthermore, inhibition of NF-ĸB using DHMEQ re-sensitized chemo-resistant cells to cisplatin treatment.
Collapse
|
48
|
Hoarau-Véchot J, Touboul C, Halabi N, Blot-Dupin M, Lis R, Abi Khalil C, Rafii S, Rafii A, Pasquier J. Akt-activated endothelium promotes ovarian cancer proliferation through notch activation. J Transl Med 2019; 17:194. [PMID: 31182109 PMCID: PMC6558713 DOI: 10.1186/s12967-019-1942-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background One main challenge in ovarian cancer rests on the presence of a relapse and an important metastatic disease, despite extensive surgical debulking and chemotherapy. The difficulty in containing metastatic cancer is partly due to the heterotypic interaction of tumor and its microenvironment. In this context, evidence suggests that endothelial cells (EC) play an important role in ovarian tumor growth and chemoresistance. Here, we studied the role of tumor endothelium on ovarian cancer cells (OCCs). Methods We evaluated the effect of activated endothelial cells on ovarian cancer cell proliferation and resistance to chemotherapy and investigated the survival pathways activated by endothelial co-culture. Results The co-culture between OCCs and E4+ECs, induced an increase of OCCs proliferation both in vitro and in vivo. This co-culture induced an increase of Notch receptors expression on OCC surface and an increase of Jagged 1 expression on E4+ECs surface and activation of survival pathways leading to chemoresistance by E4+ECs. Conclusion The targeting of aberrant NOTCH signaling could constitute a strategy to disrupt the pro-tumoral endothelial niche.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar.,Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar
| | - Cyril Touboul
- INSERM U955, Equipe 7, Créteil, France.,Faculté de Médecine de Créteil UPEC-Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Najeeb Halabi
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Morgane Blot-Dupin
- Faculté de Médecine de Créteil UPEC-Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000, Créteil, France
| | - Raphael Lis
- Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Charbel Abi Khalil
- Epigenetics Cardiovascular Laboratory, Department of Genetic Medicine, Weill Cornell Medicine-Qatar, PO box 24144, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medicine, New York City, NY, USA. .,Department of Gynecologic Oncology, Hospital Foch, Surresnes, France. .,Department of Genetic Medicine and Obstetrics and Gynecology, Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Qatar-Foundation, PO: 24144, Doha, Qatar.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar. .,INSERM U955, Equipe 7, Créteil, France.
| |
Collapse
|
49
|
Beta1 integrin blockade overcomes doxorubicin resistance in human T-cell acute lymphoblastic leukemia. Cell Death Dis 2019; 10:357. [PMID: 31043590 PMCID: PMC6494825 DOI: 10.1038/s41419-019-1593-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Growing evidence indicates that cell adhesion to extracellular matrix (ECM) plays an important role in cancer chemoresistance. Leukemic T cells express several adhesion receptors of the β1 integrin subfamily with which they interact with ECM. However, the role of β1 integrins in chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL) is still ill defined. In this study, we demonstrate that interactions of human T-ALL cell lines and primary blasts with three-dimensional matrices including Matrigel and collagen type I gel promote their resistance to doxorubicin via β1 integrin. The blockade of β1 integrin with a specific neutralizing antibody sensitized xenografted CEM leukemic cells to doxorubicin, diminished the leukemic burden in the bone marrow and resulted in the extension of animal survival. Mechanistically, Matrigel/β1 integrin interaction enhanced T-ALL chemoresistance by promoting doxorubicin efflux through the activation of the ABCC1 drug transporter. Finally, our findings showed that Matrigel/β1 interaction enhanced doxorubicin efflux and chemoresistance by activating the FAK-related proline-rich tyrosine kinase 2 (PYK2) as both PYK2 inhibitor and siRNA diminished the effect of Matrigel. Collectively, these results support the role of β1 integrin in T-ALL chemoresistance and suggest that the β1 integrin pathway can constitute a therapeutic target to avoid chemoresistance and relapsed-disease in human T-ALL.
Collapse
|
50
|
Piché A. Malignant peritoneal effusion acting as a tumor environment in ovarian cancer progression: Impact and significance. World J Clin Oncol 2018; 9:167-171. [PMID: 30622924 PMCID: PMC6314862 DOI: 10.5306/wjco.v9.i8.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023] Open
Abstract
Until recently, ovarian cancer research has mainly focused on the tumor cells themselves ignoring for the most part the surrounding tumor environment which includes malignant peritoneal effusions. However, one of the major conceptual advances in oncology over the last few years has been the appreciation that cancer progression cannot be explained by aberrations in cancer cells themselves and is strongly influenced by the surrounding tumor environment. The mechanisms of ovarian cancer progression differ from that of other solid tumors because ovarian cancer cells primarily disseminate within the peritoneal cavity. Malignant peritoneal effusion accumulates in the peritoneal cavity during ovarian cancer progression. These exudative fluids act as a unique tumor environment providing a framework that orchestrates cellular and molecular changes contributing to aggressiveness and disease progression. The composition of ascites, which includes cellular and acellular components, constantly adapts during the course of the disease in response to various cellular cues originating from both tumor and stromal cells. The tumor environment that represents peritoneal effusions closely constitute an ecosystem, with specific cell types and signaling molecules increasing and decreasing during the course of the disease progression creating a single complex network. Although recent advances aiming to understand the ovarian tumor environment have focused one at a time on components, the net impact of the whole environment cannot be understood simply from its parts or outside is environmental context.
Collapse
Affiliation(s)
- Alain Piché
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke QC J1H 5N4, Canada
| |
Collapse
|