1
|
Hasegawa M, Kunisawa K, Wulaer B, Kubota H, Kurahashi H, Sakata T, Ando H, Fujigaki S, Fujigaki H, Yamamoto Y, Nagai T, Saito K, Nabeshima T, Mouri A. Chronic stress induces behavioural changes through increased kynurenic acid by downregulation of kynurenine-3-monooxygenase with microglial decline. Br J Pharmacol 2024. [PMID: 39658392 DOI: 10.1111/bph.17407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Alterations in tryptophan-kynurenine (TRP-KYN) pathway are implicated in major depressive disorder (MDD). α7 nicotinic acetylcholine (α7nACh) receptor regulates the hypothalamic-pituitary-adrenal (HPA) axis. We have shown that deficiency of kynurenine 3-monooxygenase (KMO) induces depression-like behaviour via kynurenic acid (KYNA; α7nACh antagonist). In this study, we investigated the involvement of the TRP-KYN pathway in stress-induced behavioural changes and the regulation of the HPA axis. EXPERIMENTAL APPROACH Mice were exposed to chronic unpredictable mild stress (CUMS) and subjected to behavioural tests. We measured TRP-KYN metabolites and the expression of their enzymes in the hippocampus. KMO heterozygous mice were used to investigate stress vulnerability. We also evaluated the effect of nicotine (s.c.) on CUMS-induced behavioural changes and an increase in serum corticosterone (CORT) concentration. KEY RESULTS CUMS decreased social interaction time but increased immobility time under tail suspension associated with increased serum corticosterone concentration. CUMS increased KYNA levels via KMO suppression with microglial decline in the hippocampus. Kmo+/- mice were vulnerable to stress: they exhibited social impairment and increased serum corticosterone concentration even after short-term CUMS. Nicotine attenuated CUMS-induced behavioural changes and increased serum corticosterone concentration by inhibiting the increase in corticotropin-releasing hormone. Methyllycaconitine (α7nACh antagonist) inhibited the attenuating effect of nicotine. CONCLUSIONS AND IMPLICATIONS CUMS-induced behavioural changes and the HPA axis dysregulation could be induced by the increased levels of KYNA via KMO suppression. KYNA plays an important role in the pathophysiology of MDD as an α7nACh antagonist. Therefore, α7nACh receptor is an attractive therapeutic target for MDD.
Collapse
Affiliation(s)
- Masaya Hasegawa
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
- International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Bolati Wulaer
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Medical Science, Aichi, Japan
| | - Hisayoshi Kubota
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Hitomi Kurahashi
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Takatoshi Sakata
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Honomi Ando
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Suwako Fujigaki
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Hidetsugu Fujigaki
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Yasuko Yamamoto
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Taku Nagai
- International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
| | - Kuniaki Saito
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Medical Science, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Toshitaka Nabeshima
- International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
- Laboratory of Health and Medical Science Innovation (HMSI), Fujita Health University Graduate School of Medical Science, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
- International Center for Brain Science (ICBS), Fujita Health University, Aichi, Japan
- Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| |
Collapse
|
2
|
González Ibáñez F, VanderZwaag J, Deslauriers J, Tremblay MÈ. Ultrastructural features of psychological stress resilience in the brain: a microglial perspective. Open Biol 2024; 14:240079. [PMID: 39561812 PMCID: PMC11576122 DOI: 10.1098/rsob.240079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Psychological stress is the major risk factor for major depressive disorder. Sustained stress causes changes in behaviour, brain connectivity and in its cells and organelles. Resilience to stress is understood as the ability to recover from stress in a positive way or the resistance to the negative effects of psychological stress. Microglia, the resident immune cells of the brain, are known players of stress susceptibility, but less is known about their role in stress resilience and the cellular changes involved. Ultrastructural analysis has been a useful tool in the study of microglia and their function across contexts of health and disease. Despite increased access to electron microscopy, the interpretation of electron micrographs remains much less accessible. In this review, we will first present microglia and the concepts of psychological stress susceptibility and resilience. Afterwards, we will describe ultrastructural analysis, notably of microglia, as a readout to study the mechanisms underlying psychological stress resilience. Lastly, we will cover nutritional ketosis as a therapeutic intervention that was shown to be effective in promoting psychological stress resilience as well as modifying microglial function and ultrastructure.
Collapse
Affiliation(s)
- Fernando González Ibáñez
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Department of Molecular Medicine, Université Laval, Québec, Québec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology, University of Victoria, Victoria, British Columbia, Canada
- Institute on Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
3
|
Aguilar-Delgadillo A, Cruz-Mendoza F, Luquin-de Andais teh S, Ruvalcaba-Delgadillo Y, Jáuregui-Huerta F. Stress-induced c-fos expression in the medial prefrontal cortex differentially affects the main residing cell phenotypes. Heliyon 2024; 10:e39325. [PMID: 39498004 PMCID: PMC11532284 DOI: 10.1016/j.heliyon.2024.e39325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Stress poses a challenge to the body's equilibrium and triggers a series of responses that enable organisms to adapt to stressful stimuli. The medial prefrontal cortex (mPFC), particularly in acute stress conditions, undergoes significant physiological changes to cope with the demands associated with cellular activation. The proto-oncogene c-fos and its protein product c-Fos have long been utilized to investigate the effects of external factors on the central nervous system (CNS). While c-Fos expression has traditionally been attributed to neurons, emerging evidence suggests its potential expression in glial cells. In this study, our main objective was to explore the expression of c-Fos in glial cells and examine how acute stress influences these activity patterns. We conducted our experiments on male Wistar rats, subjecting them to acute stress and sacrificing them 2 h after the stressor initiation. Using double-labelling fluorescent immunohistochemistry targeting c-Fos, along with markers such as GFAP, Iba-1, Olig2, NG2, and NeuN, we analyzed 35 μm brain slices obtained from the mPFC. Our findings compellingly demonstrate that c-Fos expression extends beyond neurons and is present in astrocytes, oligodendrocytes, microglia, and NG2 cells-the diverse population of glial cells. Moreover, we observed distinct regulation of c-Fos expression in response to stress across different subregions of the mPFC. These results emphasize the importance of considering glial cells and their perspective in studies investigating brain activity, highlighting c-Fos as a response marker in glial cells. By shedding light on the differential regulation of c-Fos expression in response to stress, our study contributes to the understanding of glial cell involvement in stress-related processes. This underscores the significance of including glial cells in investigations of brain activity and expands our knowledge of c-Fos as a potential marker for glial cell responses.
Collapse
Affiliation(s)
| | - Fernando Cruz-Mendoza
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
| | | | | | - Fernando Jáuregui-Huerta
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
4
|
Kuhn AM, Bosis KE, Wohleb ES. Looking Back to Move Forward: Research in Stress, Behavior, and Immune Function. Neuroimmunomodulation 2024; 31:211-229. [PMID: 39369707 DOI: 10.1159/000541592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND From the original studies investigating the effects of adrenal gland secretion to modern high-throughput multidimensional analyses, stress research has been a topic of scientific interest spanning just over a century. SUMMARY The objective of this review was to provide historical context for influential discoveries, surprising findings, and preclinical models in stress-related neuroimmune research. Furthermore, we summarize this work and present a current understanding of the stress pathways and their effects on the immune system and behavior. We focus on recent work demonstrating stress-induced immune changes within the brain and highlight studies investigating stress effects on microglia. Lastly, we conclude with potential areas for future investigation concerning microglia heterogeneity, bone marrow niches, and sex differences. KEY MESSAGES Stress is a phenomenon that ties together not only the central and peripheral nervous system, but the immune system as well. The cumulative effects of stress can enhance or suppress immune function, based on the intensity and duration of the stressor. These stress-induced immune alterations are associated with neurobiological changes, including structural remodeling of neurons and decreased neurogenesis, and these contribute to the development of behavioral and cognitive deficits. As such, research in this field has revealed important insights into neuroimmune communication as well as molecular and cellular mediators of complex behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- Alexander M Kuhn
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly E Bosis
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eric S Wohleb
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Zhang M, Liang C, Chen X, Cai Y, Cui L. Interplay between microglia and environmental risk factors in Alzheimer's disease. Neural Regen Res 2024; 19:1718-1727. [PMID: 38103237 PMCID: PMC10960290 DOI: 10.4103/1673-5374.389745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease, among the most common neurodegenerative disorders, is characterized by progressive cognitive impairment. At present, the Alzheimer's disease main risk remains genetic risks, but major environmental factors are increasingly shown to impact Alzheimer's disease development and progression. Microglia, the most important brain immune cells, play a central role in Alzheimer's disease pathogenesis and are considered environmental and lifestyle "sensors." Factors like environmental pollution and modern lifestyles (e.g., chronic stress, poor dietary habits, sleep, and circadian rhythm disorders) can cause neuroinflammatory responses that lead to cognitive impairment via microglial functioning and phenotypic regulation. However, the specific mechanisms underlying interactions among these factors and microglia in Alzheimer's disease are unclear. Herein, we: discuss the biological effects of air pollution, chronic stress, gut microbiota, sleep patterns, physical exercise, cigarette smoking, and caffeine consumption on microglia; consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer's disease; and present the neuroprotective effects of a healthy lifestyle. Toward intervening and controlling these environmental risk factors at an early Alzheimer's disease stage, understanding the role of microglia in Alzheimer's disease development, and targeting strategies to target microglia, could be essential to future Alzheimer's disease treatments.
Collapse
Affiliation(s)
- Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
6
|
Valenza M, Facchinetti R, Torazza C, Ciarla C, Bronzuoli MR, Balbi M, Bonanno G, Popoli M, Steardo L, Milanese M, Musazzi L, Bonifacino T, Scuderi C. Molecular signatures of astrocytes and microglia maladaptive responses to acute stress are rescued by a single administration of ketamine in a rodent model of PTSD. Transl Psychiatry 2024; 14:209. [PMID: 38796504 PMCID: PMC11127980 DOI: 10.1038/s41398-024-02928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Stress affects the brain and alters its neuroarchitecture and function; these changes can be severe and lead to psychiatric disorders. Recent evidence suggests that astrocytes and microglia play an essential role in the stress response by contributing to the maintenance of cerebral homeostasis. These cells respond rapidly to all stimuli that reach the brain, including stressors. Here, we used a recently validated rodent model of post-traumatic stress disorder in which rats can be categorized as resilient or vulnerable after acute inescapable footshock stress. We then investigated the functional, molecular, and morphological determinants of stress resilience and vulnerability in the prefrontal cortex, focusing on glial and neuronal cells. In addition, we examined the effects of a single subanesthetic dose of ketamine, a fast-acting antidepressant recently approved for the treatment of resistant depression and proposed for other stress-related psychiatric disorders. The present results suggest a prompt glial cell response and activation of the NF-κB pathway after acute stress, leading to an increase in specific cytokines such as IL-18 and TNF-α. This response persists in vulnerable individuals and is accompanied by a significant change in the levels of critical glial proteins such as S100B, CD11b, and CX43, brain trophic factors such as BDNF and FGF2, and proteins related to dendritic arborization and synaptic architecture such as MAP2 and PSD95. Administration of ketamine 24 h after the acute stress event rescued many of the changes observed in vulnerable rats, possibly contributing to support brain homeostasis. Overall, our results suggest that pivotal events, including reactive astrogliosis, changes in brain trophic factors, and neuronal damage are critical determinants of vulnerability to acute traumatic stress and confirm the therapeutic effect of acute ketamine against the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Roberta Facchinetti
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Claudia Ciarla
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Maria Rosanna Bronzuoli
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Maurizio Popoli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Miyanishi K, Hotta-Hirashima N, Miyoshi C, Hayakawa S, Kakizaki M, Kanno S, Ikkyu A, Funato H, Yanagisawa M. Microglia modulate sleep/wakefulness under baseline conditions and under acute social defeat stress in adult mice. Neurosci Res 2024; 202:8-19. [PMID: 38029860 DOI: 10.1016/j.neures.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Although sleep is tightly regulated by multiple neuronal circuits in the brain, nonneuronal cells such as glial cells have been increasingly recognized as crucial sleep regulators. Recent studies have shown that microglia may act to maintain wakefulness. Here, we investigated the possible involvement of microglia in the regulation of sleep quantity and quality under baseline and stress conditions through electroencephalography (EEG)/electromyography (EMG) recordings, and by employing pharmacological methods to eliminate microglial cells in the adult mouse brain. We found that severe microglial depletion induced by the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX5622 (PLX) reversibly decreased the total wake time and the wake episode duration and increased the EEG slow-wave power during wakefulness under baseline conditions. To examine the role of microglia in sleep/wake regulation under mental stress, we used the acute social defeat stress (ASDS) paradigm, an ethological model for psychosocial stress. Sleep analysis under ASDS revealed that microglial depletion exacerbated the stress-induced decrease in the total wake time and increase in anxiety-like behaviors in the open field test. These results demonstrate that microglia actively modulate sleep quantity and architecture under both baseline and stress conditions. Our findings suggest that microglia may potentially provide resilience against acute psychosocial stress by regulating restorative sleep.
Collapse
Affiliation(s)
- Kazuya Miyanishi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Noriko Hotta-Hirashima
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satsuki Hayakawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Miyo Kakizaki
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satomi Kanno
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Aya Ikkyu
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Anatomy, Toho University Graduate School of Medicine, Tokyo 143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
8
|
Dinur E, Goldenberg H, Robinson E, Naggan L, Kozela E, Yirmiya R. A Novel Anti-Inflammatory Formulation Comprising Celecoxib and Cannabidiol Exerts Antidepressant and Anxiolytic Effects. Cannabis Cannabinoid Res 2024; 9:561-580. [PMID: 36520610 DOI: 10.1089/can.2022.0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Ample research shows that anti-inflammatory drugs, particularly celecoxib, exert antidepressant effects, especially in patients with microglia activation. However, substantial cardiovascular adverse effects limit celecoxib's usefulness. Given that cannabidiol (CBD) exerts anti-inflammatory, microglia-suppressive, and antidepressant effects, we hypothesized that it may potentiate the therapeutic effects of celecoxib. Methods: The effects of celecoxib, CBD, and their combination were examined in murine models of antidepressant- and anxiolytic-like behavioral responsiveness, including the forced swim test (FST), elevated plus maze (EPM), lipopolysaccharide (LPS)-induced neuroinflammation, and chronic social defeat stress (CSDS), as well as in microglia cell cultures. Results: Acute administration of a combination of celecoxib plus CBD, at doses that had no effects by themselves (10 and 5 mg/kg, respectively), produced significant antidepressant- and anxiolytic-like effects in the FST and EPM, in male and female mice. In the LPS model, combinations of celecoxib (10 or 20 mg/kg) plus CBD (30 mg/kg) reversed the anxiety-like behavior in the open-field test (OFT) and anhedonia in the sucrose preference test (SPT), with minimal effects of celecoxib or CBD by themselves. In the CSDS paradigm, a combination of celecoxib plus CBD (each at 30 mg/kg) reversed the deficits in the OFT, EPM, social exploration, and SPT, whereas celecoxib or CBD by themselves had partial effects. In BV2 microglia cultures stimulated with LPS or α-synuclein, CBD markedly potentiated the suppressive effects of celecoxib over TNFα (tumor necrosis factor-α) and IL (interleukin)-1β secretion. Conclusions: Combinations of celecoxib plus CBD produce efficacious antidepressant- and anxiolytic-like effects, which may depend on their synergistic microglia-suppressive effects.
Collapse
Affiliation(s)
- Eyal Dinur
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Goldenberg
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Robinson
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Naggan
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ewa Kozela
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Kokkosis AG, Madeira MM, Hage Z, Valais K, Koliatsis D, Resutov E, Tsirka SE. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior. Glia 2024; 72:111-132. [PMID: 37675659 PMCID: PMC10842267 DOI: 10.1002/glia.24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Chronic environmental stress and traumatic social experiences induce maladaptive behavioral changes and is a risk factor for major depressive disorder (MDD) and various anxiety-related psychiatric disorders. Clinical studies and animal models of chronic stress have reported that symptom severity is correlated with innate immune responses and upregulation of neuroinflammatory cytokine signaling in brain areas implicated in mood regulation (mPFC; medial Prefrontal Cortex). Despite increasing evidence implicating impairments of neuroplasticity and synaptic signaling deficits into the pathophysiology of stress-related mental disorders, how microglia may modulate neuronal homeostasis in response to chronic stress has not been defined. Here, using the repeated social defeat stress (RSDS) mouse model we demonstrate that microglial-induced inflammatory responses are regulating neuronal plasticity associated with psychosocial stress. Specifically, we show that chronic stress induces a rapid activation and proliferation of microglia as well as macrophage infiltration in the mPFC, and these processes are spatially related to neuronal activation. Moreover, we report a significant association of microglial inflammatory responses with susceptibility or resilience to chronic stress. In addition, we find that exposure to chronic stress exacerbates phagocytosis of synaptic elements and deficits in neuronal plasticity. Importantly, by utilizing two different CSF1R inhibitors (the brain penetrant PLX5622 and the non-penetrant PLX73086) we highlight a crucial role for microglia (and secondarily macrophages) in catalyzing the pathological manifestations linked to psychosocial stress in the mPFC and the resulting behavioral deficits usually associated with depression.
Collapse
Affiliation(s)
- Alexandros G. Kokkosis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Miguel M. Madeira
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Zachary Hage
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Kimonas Valais
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Dimitris Koliatsis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Emran Resutov
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
10
|
Sharp RC, Guenther DT, Farrer MJ. Experimental procedures for flow cytometry of wild-type mouse brain: a systematic review. Front Immunol 2023; 14:1281705. [PMID: 38022545 PMCID: PMC10646240 DOI: 10.3389/fimmu.2023.1281705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The aim of this study was to systematically review the neuroimmunology literature to determine the average immune cell counts reported by flow cytometry in wild-type (WT) homogenized mouse brains. Background Mouse models of gene dysfunction are widely used to study age-associated neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. The importance of the neuroimmune system in these multifactorial disorders has become increasingly evident, and methods to quantify resident and infiltrating immune cells in the brain, including flow cytometry, are necessary. However, there appears to be no consensus on the best approach to perform flow cytometry or quantify/report immune cell counts. The development of more standardized methods would accelerate neuroimmune discovery and validation by meta-analysis. Methods There has not yet been a systematic review of 'neuroimmunology' by 'flow cytometry' via examination of the PROSPERO registry. A protocol for a systematic review was subsequently based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) using the Studies, Data, Methods, and Outcomes (SDMO) criteria. Literature searches were conducted in the Google Scholar and PubMed databases. From that search, 900 candidate studies were identified, and 437 studies were assessed for eligibility based on formal exclusion criteria. Results Out of the 437 studies reviewed, 58 were eligible for inclusion and comparative analysis. Each study assessed immune cell subsets within homogenized mouse brains and used flow cytometry. Nonetheless, there was considerable variability in the methods, data analysis, reporting, and results. Descriptive statistics have been presented on the study designs and results, including medians with interquartile ranges (IQRs) and overall means with standard deviations (SD) for specific immune cell counts and their relative proportions, within and between studies. A total of 58 studies reported the most abundant immune cells within the brains were TMEM119+ microglia, bulk CD4+ T cells, and bulk CD8+ T cells. Conclusion Experiments to conduct and report flow cytometry data, derived from WT homogenized mouse brains, would benefit from a more standardized approach. While within-study comparisons are valid, the variability in methods of counting of immune cell populations is too broad for meta-analysis. The inclusion of a minimal protocol with more detailed methods, controls, and standards could enable this nascent field to compare results across studies.
Collapse
Affiliation(s)
| | | | - Matthew J. Farrer
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Samuels JD, Lotstein ML, Lehmann ML, Elkahloun AG, Banerjee S, Herkenham M. Chronic social defeat alters brain vascular-associated cell gene expression patterns leading to vascular dysfunction and immune system activation. J Neuroinflammation 2023; 20:154. [PMID: 37380974 DOI: 10.1186/s12974-023-02827-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
Brain vascular integrity is critical for brain health, and its disruption is implicated in many brain pathologies, including psychiatric disorders. Brain-vascular barriers are a complex cellular landscape composed of endothelial, glial, mural, and immune cells. Yet currently, little is known about these brain vascular-associated cells (BVACs) in health and disease. Previously, we demonstrated that 14 days of chronic social defeat (CSD), a mouse paradigm that produces anxiety and depressive-like behaviors, causes cerebrovascular damage in the form of scattered microbleeds. Here, we developed a technique to isolate barrier-related cells from the mouse brain and subjected the isolated cells to single-cell RNA sequencing. Using this isolation technique, we found an enrichment in BVAC populations, including distinct subsets of endothelial and microglial cells. In CSD compared to non-stress, home-cage control, differential gene expression patterns disclosed biological pathways involving vascular dysfunction, vascular healing, and immune system activation. Overall, our work demonstrates a unique technique to study BVAC populations from fresh brain tissue and suggests that neurovascular dysfunction is a key driver of psychosocial stress-induced brain pathology.
Collapse
Affiliation(s)
- Joshua D Samuels
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.
- Neuroscience Graduate Program, Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, 409 Lane Road, MR-4 6154, Charlottesville, VA, 22908, USA.
| | - Madison L Lotstein
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael L Lehmann
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abdel G Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Subhadra Banerjee
- Flow Cytometry Core, Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Sequeira MK, Bolton JL. Stressed Microglia: Neuroendocrine-Neuroimmune Interactions in the Stress Response. Endocrinology 2023; 164:bqad088. [PMID: 37279575 PMCID: PMC11491833 DOI: 10.1210/endocr/bqad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Stressful life experiences are associated with the development of neuropsychiatric disorders like depression. Emerging evidence indicates that microglia, the specialized resident macrophages of the brain, may be a key mediator of the relationship between psychosocial stressor exposure and adaptive or maladaptive responses at the level of synaptic, circuit, and neuroimmune alterations. Here, we review current literature regarding how psychosocial stressor exposure changes microglial structure and function, thereby altering behavioral and brain outcomes, with a particular focus on age- and sex-dependent effects. We argue that additional emphasis should be placed in future research on investigating sex differences and the impacts of stressor exposure during sensitive periods of development, as well as going beyond traditional morphological measurements to interrogate microglial function. The bidirectional relationship between microglia and the stress response, particularly the role of microglia in the neuroendocrine control of stress-related circuits, is also an important area for future investigation. Finally, we discuss emerging themes and future directions that point to the possibility of the development of novel therapeutics for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Jessica L Bolton
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Li Q, Kang X, Liu L, Xiao Y, Xu D, Zhuang H, Liu H, Zhao J, Zou H, Yang J, Zhan X, Li T, Wang X, Liu L. Adult mice with noise-induced hearing loss exhibited temporal ordering memory deficits accompanied by microglia-associated neuroplastic changes in the medial prefrontal cortex. Neurobiol Dis 2023:106181. [PMID: 37271287 DOI: 10.1016/j.nbd.2023.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] Open
Abstract
Acquired peripheral hearing loss in midlife is considered the primary modifiable risk factor for dementia, while the underlying pathological mechanism remains poorly understood. Excessive noise exposure is the most common cause of acquired peripheral hearing loss in modern society. This study was designed to investigate the impact of noise-induced hearing loss (NIHL) on cognition, with a focus on the medial prefrontal cortex (mPFC), a brain region that is involved in both auditory and cognitive processes and is highly affected in patients with cognitive impairment. Adult C57BL/6 J mice were randomly assigned to a control group and seven noise groups: 0HPN, 12HPN, 1DPN, 3DPN, 7DPN, 14DPN, and 28DPN, which were exposed to broadband noise at a 123 dB sound pressure level (SPL) for 2 h and sacrificed immediately (0 h), 12 h, or 1, 3, 7, 14, or 28 days post-noise exposure (HPN, DPN), respectively. Hearing assessment, behavioral tests, and neuromorphological studies in the mPFC were performed in control and 28DPN mice. All experimental animals were included in the time-course analysis of serum corticosterone (CORT) levels and mPFC microglial morphology. The results illustrated that noise exposure induced early-onset transient serum CORT elevation and permanent moderate-to-severe hearing loss in mice. 28DPN mice, in which permanent NIHL has been verified, exhibited impaired performance in temporal order object recognition tasks concomitant with reduced structural complexity of mPFC pyramidal neurons. The time-course immunohistochemical analysis in the mPFC revealed significantly higher morphological microglial activation at 14 and 28 DPN, preceded by a remarkably higher amount of microglial engulfed postsynaptic marker PSD95 at 7 DPN. Additionally, lipid accumulation in microglia was observed in 7DPN, 14DPN and 28DPN mice, suggesting a driving role of lipid handling deficits following excessive phagocytosis of synaptic elements in delayed and sustained microglial abnormalities. These findings provide fundamentally novel information concerning mPFC-related cognitive impairment in mice with NIHL and empirical evidence suggesting the involvement of microglial malfunction in the mPFC neurodegenerative consequences of NIHL.
Collapse
Affiliation(s)
- Qian Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiaomin Kang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Linchen Liu
- Department of Rheumatology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing 210009, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Haiqing Liu
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Jingyi Zhao
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Han Zou
- Medical College, Southeast University, Nanjing 210009, China
| | - Jianing Yang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xindi Zhan
- Medical College, Southeast University, Nanjing 210009, China
| | - Tianxiao Li
- Medical College, Southeast University, Nanjing 210009, China
| | - Xinchen Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
14
|
Afridi R, Suk K. Microglial Responses to Stress-Induced Depression: Causes and Consequences. Cells 2023; 12:1521. [PMID: 37296642 PMCID: PMC10252665 DOI: 10.3390/cells12111521] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic stress is a major risk factor for various psychiatric diseases, including depression; it triggers various cellular and structural changes, resulting in the alteration of neurocircuitry and subsequent development of depression. Accumulating evidence suggests that microglial cells orchestrate stress-induced depression. Preclinical studies of stress-induced depression revealed microglial inflammatory activation in regions of the brain that regulate mood. Although studies have identified several molecules that trigger inflammatory responses in microglia, the pathways that regulate stress-induced microglial activation remain unclear. Understanding the exact triggers that induce microglial inflammatory activation can help find therapeutic targets in order to treat depression. In the current review, we summarize the recent literature on possible sources of microglial inflammatory activation in animal models of chronic stress-induced depression. In addition, we describe how microglial inflammatory signaling affects neuronal health and causes depressive-like behavior in animal models. Finally, we propose ways to target the microglial inflammatory cascade to treat depressive disorders.
Collapse
Affiliation(s)
- Ruqayya Afridi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu 41940, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
15
|
Meng D, Yang M, Zhang H, Zhang L, Song H, Liu Y, Zeng Y, Yang B, Wang X, Chen Y, Liu R. Microglia activation mediates circadian rhythm disruption-induced cognitive impairment in mice. J Neuroimmunol 2023; 379:578102. [PMID: 37196595 DOI: 10.1016/j.jneuroim.2023.578102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and there are no effective treatments for this disease currently. Circadian rhythm disruption (CRD) is a hallmark of modern society that appears to be on the rise. It is well reported that AD is associated with disrupted circadian functioning and CRD can impair cognitive function. However, the cellular mechanisms underlying CRD-associated cognitive decline remain elusive. In this study, we investigated whether microglia are involved in CRD-induced cognitive decline. We established experimental 'jet lag' (phase delay of the light/dark cycles)-induced CRD mouse model and observed significant impairment of spatial learning and memory function in these mice. In the brain, CRD resulted in neuroinflammation, which was characterized by microglia activation and increased pro-inflammatory cytokine production, impairments in neurogenesis and reduction of synaptic proteins in the hippocampus. Interestingly, elimination of microglia with the colony stimulating factor-1 receptor inhibitor PLX3397 prevented CRD-induced neuroinflammation, cognitive decline, impairment of neurogenesis and loss of synaptic proteins. These findings collectively suggest that microglia activation plays a key role in CRD-induced cognitive deficit most likely through neuroinflammation-mediated impairments in adult neurogenesis and synapses.
Collapse
Affiliation(s)
- Dongli Meng
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhe Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiliang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lun Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyue Song
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zeng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
16
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
17
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
18
|
Induced Inflammatory and Oxidative Markers in Cerebral Microvasculature by Mentally Depressive Stress. Mediators Inflamm 2023; 2023:4206316. [PMID: 36852396 PMCID: PMC9966573 DOI: 10.1155/2023/4206316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 11/24/2022] [Indexed: 02/20/2023] Open
Abstract
Background Cerebrovascular disease (CVD) is recognized as the leading cause of permanent disability worldwide. Depressive disorders are associated with increased incidence of CVD. The goal of this study was to establish a chronic restraint stress (CRS) model for mice and examine the effect of stress on cerebrovascular inflammation and oxidative stress responses. Methods A total of forty 6-week-old male C57BL/6J mice were randomly divided into the CRS and control groups. In the CRS group (n = 20), mice were placed in a well-ventilated Plexiglas tube for 6 hours per day for 28 consecutive days. On day 29, open field tests (OFT) and sucrose preference tests (SPT) were performed to assess depressive-like behaviors for the two groups (n = 10/group). Macrophage infiltration into the brain tissue upon stress was analyzed by measuring expression of macrophage marker (CD68) with immunofluorescence in both the CRS and control groups (n = 10/group). Cerebral microvasculature was isolated from the CRS and controls (n = 10/group). mRNA and protein expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), vascular cell adhesion molecule-1 (VCAM-1), and macrophage chemoattractant protein-1 (MCP-1) in the brain vessels were measured by real-time PCR and Western blot (n = 10/group). Reactive oxygen species (ROS), hydrogen peroxide (H2O2), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activities were quantified by ELISA to study the oxidative profile of the brain vessels (n = 10/group). Additionally, mRNA and protein expressions of NOX subunits (gp91phox, p47phox, p67phox, and p22phox) in the cerebrovascular endothelium were analyzed by real-time PCR and Western blot (n = 10/group). Results CRS decreased the total distances (p < 0.05) and the time spent in the center zone in OFT (p < 0.001) and sucrose preference test ratio in SPT (p < 0.01). Positive ratio of CD68+ was increased with CRS in the entire region of the brain (p < 0.001), reflecting increased macrophage infiltration. CRS increased the expression of inflammatory factors and oxidative stress in the cerebral microvasculature, including TNF-α (p < 0.001), IL-1β (p < 0.05), IL-6 (p < 0.05), VCAM-1 (p < 0.01), MCP-1 (p < 0.01), ROS (p < 0.001), and H2O2 (p < 0.001). NADPH oxidase (NOX) was activated by CRS (p < 0.01), and mRNA and protein expressions of NOX subunits (gp91phox, p47phox, p67phox, and p22phox) in brain microvasculature were found to be increased. Conclusions To our knowledge, this is the first study to demonstrate that CRS induces depressive stress and causes inflammatory and oxidative stress responses in the brain microvasculature.
Collapse
|
19
|
Jang DY, Yang B, You MJ, Rim C, Kim HJ, Sung S, Kwon MS. Fluoxetine Decreases Phagocytic Function via REV-ERBα in Microglia. Neurochem Res 2023; 48:196-209. [PMID: 36048349 DOI: 10.1007/s11064-022-03733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
Although fluoxetine (FLX) is a commonly used drug in psychiatric disorders, such as major depressive disorder, anxiety disorder, panic disorder, and obsessive-compulsive disorder, the mechanism by which FLX exerts its therapeutic effect is not completely understood. In this study, we aimed to determine the possible mechanism by which FLX focuses on microglial phagocytosis. FLX reduced phagocytic function in BV2 cells and increased REV-ERBα without affecting other microglia-related genes, such as inflammation and phagocytosis. Although FLX did not change BMAL1 protein levels, it restricted the nucleocytoplasmic transport (NCT) of BMAL1, leading to its cytosolic accumulation. REV-ERBα antagonist SR8278 rescued the decreased phagocytic activity and restricted NCT of BMAL1. We also found that REV-ERBα mediates the effect of FLX via the inhibition of phospho-ERK (pERK). The ERK inhibitor FR180204 was sufficient to reduce phagocytic function in BV2 cells and restrict the NCT of BMAL1. These results were recapitulated in the primary microglia. In conclusion, we propose that FLX decreases phagocytic function and restricts BMAL1 NCT via REV-ERBα. In addition, ERK inhibition mimics the effects of FLX on microglia.
Collapse
Affiliation(s)
- Da-Yoon Jang
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.,Research Competency Milestones Program (RECOMP) of School of Medicine, CHA University, Seongnam-si, South Korea
| | - Bohyun Yang
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Min-Jung You
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Chan Rim
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Hui-Ju Kim
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Soyoung Sung
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, 13488, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
20
|
Gonçalves de Andrade E, González Ibáñez F, Tremblay MÈ. Microglia as a Hub for Suicide Neuropathology: Future Investigation and Prevention Targets. Front Cell Neurosci 2022; 16:839396. [PMID: 35663424 PMCID: PMC9158339 DOI: 10.3389/fncel.2022.839396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Suicide is a complex public health challenge associated worldwide with one death every 40 s. Research advances in the neuropathology of suicidal behaviors (SB) have defined discrete brain changes which may hold the key to suicide prevention. Physiological differences in microglia, the resident immune cells of the brain, are present in post-mortem tissue samples of individuals who died by suicide. Furthermore, microglia are mechanistically implicated in the outcomes of important risk factors for SB, including early-life adversity, stressful life events, and psychiatric disorders. SB risk factors result in inflammatory and oxidative stress activities which could converge to microglial synaptic remodeling affecting susceptibility or resistance to SB. To push further this perspective, in this Review we summarize current areas of opportunity that could untangle the functional participation of microglia in the context of suicide. Our discussion centers around microglial state diversity in respect to morphology, gene and protein expression, as well as function, depending on various factors, namely brain region, age, and sex.
Collapse
Affiliation(s)
- Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
21
|
Distinct phases of adult microglia proliferation: a Myc-mediated early phase and a Tnfaip3-mediated late phase. Cell Discov 2022; 8:34. [PMID: 35411038 PMCID: PMC9001707 DOI: 10.1038/s41421-022-00377-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Microgliosis is a hallmark of many neurological diseases, including Alzheimer’s disease, stroke, seizure, traumatic brain and spinal cord injuries, and peripheral and optic nerve injuries. Recent studies have shown that the newly self-renewed microglia have specific neurological functions. However, the mechanism of adult microglia proliferation remains largely unclear. Here, with single-cell RNA sequencing, flow cytometry, and immunohistochemistry, we demonstrate that the sciatic nerve injury induced two distinct phases of microglia proliferation in mouse spinal cord, each with different gene expression profiles. We demonstrate that the transcription factor Myc was transiently upregulated in spinal cord microglia after nerve injury to mediate an early phase microglia proliferation. On the other hand, we reveal that the tumor-necrosis factor alpha-induced protein 3 (Tnfaip3) was downregulated to mediate the Myc-independent late-phase microglia proliferation. We show that cyclin dependent kinase 1, a kinase with important function in the M phase of the cell cycle, was involved only in the early phase. We reveal that although the early phase was neither necessary nor sufficient for the late phase proliferation, the late-phase suppressed the early phase microglia proliferation in the spinal cord. Finally, we demonstrate that the termination of spinal cord microglia proliferation required both Myc and Tnfaip3 to resume their baseline expression. Thus, we have delineated an interactive signaling network in the proliferation of differentiated microglia.
Collapse
|
22
|
Cathomas F, Holt LM, Parise EM, Liu J, Murrough JW, Casaccia P, Nestler EJ, Russo SJ. Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron 2022; 110:1116-1138. [PMID: 35182484 PMCID: PMC8989648 DOI: 10.1016/j.neuron.2022.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Stress disorders are leading causes of disease burden in the U.S. and worldwide, yet available therapies are fully effective in less than half of all individuals with these disorders. Although to date, much of the focus has been on neuron-intrinsic mechanisms, emerging evidence suggests that chronic stress can affect a wide range of cell types in the brain and periphery, which are linked to maladaptive behavioral outcomes. Here, we synthesize emerging literature and discuss mechanisms of how non-neuronal cells in limbic regions of brain interface at synapses, the neurovascular unit, and other sites of intercellular communication to mediate the deleterious, or adaptive (i.e., pro-resilient), effects of chronic stress in rodent models and in human stress-related disorders. We believe that such an approach may one day allow us to adopt a holistic "whole body" approach to stress disorder research, which could lead to more precise diagnostic tests and personalized treatment strategies. Stress is a major risk factor for many psychiatric disorders. Cathomas et al. review new insight into how non-neuronal cells mediate the deleterious effects, as well as the adaptive, protective effects, of stress in rodent models and human stress-related disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrizia Casaccia
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Gaspar R, Soares-Cunha C, Domingues AV, Coimbra B, Baptista FI, Pinto L, Ambrósio AF, Rodrigues AJ, Gomes CA. The Duration of Stress Determines Sex Specificities in the Vulnerability to Depression and in the Morphologic Remodeling of Neurons and Microglia. Front Behav Neurosci 2022; 16:834821. [PMID: 35330844 PMCID: PMC8940280 DOI: 10.3389/fnbeh.2022.834821] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Stress exposure has been shown to induce a variety of molecular and functional alterations associated with anxiety and depression. Some studies suggest that microglia, the immune cells of the brain, play a significant role in determining neuronal and behavioral responses to chronic stress and also contribute to the development of stress-related psychopathologies. However, little is known about the impact of the duration of stress exposure upon microglia and neurons morphology, particularly considering sex differences. This issue deserves particular investigation, considering that the process of morphologic remodeling of neurons and microglia is usually accompanied by functional changes with behavioral expression. Here, we examine the effects of short and long unpredictable chronic mild stress (uCMS) protocols on behavior, evaluating in parallel microglia and neurons morphology in the dorsal hippocampus (dHIP) and in the nucleus accumbens (NAc), two brain regions involved in the etiology of depression. We report that long-term uCMS induced more behavioral alterations in males, which present anxiety and depression-like phenotypes (anhedonia and helplessness behavior), while females only display anxiety-like behavior. After short-term uCMS, both sexes presented anxiety-like behavior. Microglia cells undergo a process of morphologic adaptation to short-term uCMS, dependent on sex, in the NAc: we observed a hypertrophy in males and an atrophy in females, transient effects that do not persist after long-term uCMS. In the dHIP, the morphologic adaptation of microglia is only observed in females (hypertrophy) and after the protocol of long uCMS. Interestingly, males are more vulnerable to neuronal morphological alterations in a region-specific manner: dendritic atrophy in granule neurons of the dHIP and hypertrophy in the medium spiny neurons of the NAc, both after short- or long-term uCMS. The morphology of neurons in these brain regions were not affected in females. These findings raise the possibility that, by differentially affecting neurons and microglia in dHIP and NAc, chronic stress may contribute for differences in the clinical presentation of stress-related disorders under the control of sex-specific mechanisms.
Collapse
Affiliation(s)
- Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Verónica Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Filipa I. Baptista
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António F. Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s –PT Government Associate Laboratory, Braga/Guimarães, Portugal
- *Correspondence: Ana João Rodrigues,
| | - Catarina A. Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Catarina A. Gomes,
| |
Collapse
|
24
|
Zan GY, Sun X, Wang YJ, Liu R, Wang CY, Du WJ, Guo LB, Chai JR, Li QL, Liu ZQ, Liu JG. Amygdala dynorphin/κ opioid receptor system modulates depressive-like behavior in mice following chronic social defeat stress. Acta Pharmacol Sin 2022; 43:577-587. [PMID: 34035484 PMCID: PMC8888759 DOI: 10.1038/s41401-021-00677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023] Open
Abstract
Major depression disorder is a severe and recurrent neuropsychological disorder characterized by lowered mood and social activity and cognitive impairment. Owing to unclear molecular mechanisms of depression, limited interventions are available in clinic. In this study we investigated the role of dynorphin/κ opioid receptor system in the development of depression. Mice were subjected to chronic social defeat stress for 14 days. Chronic social defeat stress induced significant social avoidance in mice characterized by decreased time duration in the interaction zone and increased time duration in the corner zone. Pre-administration of a κ opioid receptor antagonist norBNI (10 mg/kg, i.p.) could prevent the development of social avoidance induced by chronic social defeat stress. Social avoidance was not observed in κ opioid receptor knockout mice subjected to chronic social defeat stress. We further revealed that social defeat stress activated c-fos and ERK signaling in the amygdala without affecting the NAc, hippocampus and hypothalamus, and ERK activation was blocked by systemic injection of norBNI. Finally, the expression of dynorphin A, the endogenous ligand of κ opioid receptor, was significantly increased in the amygdala following social defeat stress; microinjection of norBNI into the amygdala prevented the development of depressive-like behaviors caused by social defeat stress. The present study demonstrates that upregulated dynorphin/κ opioid receptor system in the amygdala leads to the emergence of depression following chronic social defeat stress, and sheds light on κ opioid receptor antagonists as potential therapeutic agents for the prevention and treatment of depression following chronic stress.
Collapse
Affiliation(s)
- Gui-ying Zan
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China ,grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Sun
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yu-jun Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rui Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Chen-yao Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-jia Du
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liu-bin Guo
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-rui Chai
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing-lin Li
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhi-qiang Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jing-gen Liu
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
25
|
CCR2 monocytes repair cerebrovascular damage caused by chronic social defeat stress. Brain Behav Immun 2022; 101:346-358. [PMID: 35063606 DOI: 10.1016/j.bbi.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Immune surveillance of the brain plays an important role in health and disease. Peripheral leukocytes patrol blood-brain barrier interfaces, and after injury, monocytes cross the cerebrovasculature and follow a pattern of pro- and anti-inflammatory activity leading to tissue repair. We have shown that chronic social defeat (CSD) causes scattered vasculature disruptions. Here, we assessed CCR2+ monocyte trafficking to the vascular injury sites in Ccr2wt/rfp reporter mice both during CSD and one week following CSD cessation. We found that CSD for 14 days induced microhemorrhages where plasma fibrinogen leaked into perivascular spaces, but it did not affect the distribution or density of CCR2rfp+ monocytes in the brain. However, after recovery from CSD, many vascularly adhered CCR2+ cells were detected, and gene expression of the CCR2 chemokine receptor ligands CCL7 and CCL12, but not CCL2, was elevated in endothelial cells. Adhered CCR2+ cells were mostly the non-classical, anti-inflammatory Ly6Clo type, and they phagocytosed fibrinogen in perivascular spaces. In CCR2-deficient Ccr2rfp/rfp mice, fibrinogen levels remained elevated in recovery. Fibrinogen infused intracerebroventricularly induced CCR2+ cells to adhere to the vasculature and phagocytose perivascular fibrinogen in Ccr2wt/rfp but not Ccr2rfp/rfp mice. Depletion of monocytes with clodronate liposomes during CSD recovery prevented fibrinogen clearance and blocked behavioral recovery. We hypothesize that peripheral CCR2+ monocytes are not elevated in the brain on day 14 at the end of CSD and do not contribute to its behavioral effects at that time, but in recovery following cessation of stress, they enter the brain and exert restorative functions mediating vascular repair and normalization of behavior.
Collapse
|
26
|
Abstract
BACKGROUND Recent studies have suggested that microglial activation plays a key role in the pathogenesis of depression. In fact, neuroinflammation is associated with a phenotypic change of microglia, consisting of morphological differences, increased release of cytokines and oxidative stress products, which may contribute to the development and maintenance of depression. Antidepressants, including selective serotonin re-uptake inhibitors and serotonin-norepinephrine reuptake inhibitors, have been shown to act on the immune and oxidative stress mechanisms commonly found to be disrupted in depression. Thus, the inhibition of microglial activation may be one of the mechanisms through which they exert an antidepressant action. AIM This is the first review summarising in vitro and ex vivo studies investigating the effects of different classes of antidepressants on microglia activation, by examining cellular changes and/or via measuring the production of immune and/or oxidative stress signalling molecules, in microglia models of neuroinflammation with either lipopolysaccharide (LPS) or cytokines. A total of 23 studies were identified, 18 using LPS stimulation and 5 using cytokines stimulation. RESULTS Overall, the studies show that antidepressants, such as selective serotonin re-uptake inhibitors, serotonin-norepinephrine reuptake inhibitors, monoamine oxidase inhibitors and tricyclic antidepressants prevented microglial activation, including reduced microglial reactivity and decreased immune and oxidative stress products, in both models. However, specific antidepressants, such as bupropion and agomelatine did not prevent interferon-gamma (IFN-γ)-induced microglial activation; and for other antidepressants, including phenelzine, venlafaxine and sertraline, the results of different studies were inconsistent. CONCLUSIONS Overall, results summarised in this review support the hypothesis that the action of at least certain classes of antidepressants may involve regulation of microglial activation, especially when in presence of increased levels of inflammation.
Collapse
Affiliation(s)
- Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James Everson
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
27
|
Yuan T, Orock A, Greenwood-VanMeerveld B. An enriched environment reduces chronic stress-induced visceral pain through modulating microglial activity in the central nucleus of the amygdala. Am J Physiol Gastrointest Liver Physiol 2022; 322:G223-G233. [PMID: 34877892 PMCID: PMC8793868 DOI: 10.1152/ajpgi.00307.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cognitive behavioral therapy (CBT) improves the quality of life for patients with brain-gut disorders; however, the underlying mechanisms of CBT remain to be explored. Previously, we showed that environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, ameliorates chronic stress-induced visceral hypersensitivity in a rodent model via mechanisms involving altered activity in the central nucleus of amygdala (CeA). In the present study, we investigated whether microglia-mediated synaptic plasticity in the CeA is a potential mechanism underlying the protective effects of EE against stress-induced visceral hypersensitivity. We stereotaxically implanted corticosterone (CORT) micropellets onto the dorsal margin of the CeA shown previously to induce colonic hypersensitivity. Animals were housed in EE cages or standard cages for 14 days after CORT implantation. Visceral sensitivity was assessed via visceromotor behavioral response to colorectal distension. Microglial morphology, microglia-mediated synaptic engulfment, and the expression of synaptic pruning-related signals complement component 1q (C1q), complement component 3 (C3), and C3 receptor (C3R) were measured using immunofluorescence and RNAscope assay. We found that housing CORT implanted rats in EE cages for 14 days attenuated visceral hypersensitivity in both male and female rats as compared with control rats maintained in standard housing. EE reduced CORT-induced microglial remodeling and microglia-mediated synaptic pruning with reduced C1q and CR3, but not C3, expression. Our data suggest that exposure to EE is sufficient to ameliorate stress-induced visceral pain via reducing amygdala microglia-modulated neuronal plasticity.NEW & NOTEWORTHY Clinical studies show that cognitive behavioral therapy (CBT) is effective in ameliorating visceral pain in patient with irritable bowel syndrome (IBS), yet the underlying mechanisms remain unexplored. By using environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, we demonstrated that microglia-mediated synaptic plasticity in the CeA explains, plays a role, at least in part, in the positive effects of EE to reduce visceral hypersensitivity.
Collapse
Affiliation(s)
- Tian Yuan
- 1Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Albert Orock
- 1Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-VanMeerveld
- 1Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma
| |
Collapse
|
28
|
Phytoestrogen genistein modulates neuron-microglia signaling in a mouse model of chronic social defeat stress. Neuropharmacology 2022; 206:108941. [PMID: 34990615 DOI: 10.1016/j.neuropharm.2021.108941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/20/2023]
Abstract
Microglia, resident immune cells in the brain, are shown to mediate the crosstalk between psychological stress and depression. Interestingly, increasing evidence indicates that sex hormones, particularly estrogen, are involved in the regulation of immune system. In this study, we aimed to understand the potential effects of chronic social defeat stress (CSDS) and genistein (GEN), an estrogenic compound of the plant origin, on neuron-microglia interactions in the mouse hippocampus. The time spent in the avoidance zone in the social interaction test was increased by CSDS 1 day after the exposure, while the avoidance behavior returned to control levels 14 days after the CSDS exposure. Similar results were obtained from the elevated plus-maze test. However, the immobility time in the forced swim test was increased by CSDS 14 days after the exposure, and the depression-related behavior was in part alleviated by GEN. The numerical densities of microglia in the hippocampus were increased by CSDS, and they were decreased by GEN. The voxel densities of synaptic structures and synaptic puncta colocalized with microglia were decreased by CSDS, and they were increased by GEN. Neither CSDS nor GEN affected the gene expressions of major pro-inflammatory cytokines. Conversely, the expression levels of genes related to neurotrophic factors were decreased by CSDS, and they were partially reversed by GEN. These findings show that GEN may in part alleviate stress-related symptoms, and the effects of GEN may be associated with the modulation of neuron-microglia signaling via chemokines and neurotrophic factors in the hippocampus.
Collapse
|
29
|
Moraga-Amaro R, Guerrin CGJ, Reali Nazario L, Lima Giacobbo B, J O Dierckx RA, Stehberg J, de Vries EFJ, Doorduin J. A single dose of ketamine cannot prevent protracted stress-induced anhedonia and neuroinflammation in rats. Stress 2022; 25:145-155. [PMID: 35384793 DOI: 10.1080/10253890.2022.2045269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Worldwide, millions of people suffer from treatment-resistant depression. Ketamine, a glutamatergic receptor antagonist, can have a rapid antidepressant effect even in treatment-resistant patients. A proposed mechanism for the antidepressant effect of ketamine is the reduction of neuroinflammation. To further explore this hypothesis, we investigated whether a single dose of ketamine can modulate protracted neuroinflammation in a repeated social defeat (RSD) stress rat model, which resembles features of depression. To this end, male animals exposed to RSD were injected with ketamine (20 mg/kg) or vehicle. A combination of behavioral analyses and PET scans of the inflammatory marker TSPO in the brain were performed. Rats submitted to RSD showed anhedonia-like behavior in the sucrose preference test, decreased weight gain, and increased TSPO levels in the insular and entorhinal cortices, as observed by [11C]-PK11195 PET. Whole brain TSPO levels correlated with corticosterone levels in several brain regions of RSD exposed animals, but not in controls. Ketamine injection 1 day after RSD disrupted the correlation between TSPO levels and serum corticosterone levels, but had no effect on depressive-like symptoms, weight gain or the protracted RSD-induced increase in TSPO expression in male rats. These results suggest that ketamine does not exert its effect on the hypothalamic-pituitary-adrenal axis by modulation of neuroinflammation.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Cyprien G J Guerrin
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Erik F J de Vries
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| |
Collapse
|
30
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
31
|
Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation 2021; 18:258. [PMID: 34742308 PMCID: PMC8571840 DOI: 10.1186/s12974-021-02309-6] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia are emerging as critical regulators of neuronal function and behavior in nearly every area of neuroscience. Initial reports focused on classical immune functions of microglia in pathological contexts, however, immunological concepts from these studies have been applied to describe neuro-immune interactions in the absence of disease, injury, or infection. Indeed, terms such as 'microglia activation' or 'neuroinflammation' are used ubiquitously to describe changes in neuro-immune function in disparate contexts; particularly in stress research, where these terms prompt undue comparisons to pathological conditions. This creates a barrier for investigators new to neuro-immunology and ultimately hinders our understanding of stress effects on microglia. As more studies seek to understand the role of microglia in neurobiology and behavior, it is increasingly important to develop standard methods to study and define microglial phenotype and function. In this review, we summarize primary research on the role of microglia in pathological and physiological contexts. Further, we propose a framework to better describe changes in microglia1 phenotype and function in chronic stress. This approach will enable more precise characterization of microglia in different contexts, which should facilitate development of microglia-directed therapeutics in psychiatric and neurological disease.
Collapse
Affiliation(s)
- Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
32
|
Bravo-Tobar ID, Fernández P, Sáez JC, Dagnino-Subiabre A. Long-term effects of stress resilience: Hippocampal neuroinflammation and behavioral approach in male rats. J Neurosci Res 2021; 99:2493-2510. [PMID: 34184764 DOI: 10.1002/jnr.24902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/07/2021] [Accepted: 05/26/2021] [Indexed: 01/28/2023]
Abstract
Resilience to stress is the ability to quickly adapt to adversity. There is evidence that exposure to prolonged stress triggers neuroinflammation what produces individual differences in stress vulnerability. However, the relationship between stress resilience, neuroinflammation, and depressive-like behaviors remains unknown. The aim of this study was to analyze the long-term effects of social defeat stress (SDS) on neuroinflammation in the hippocampus and depressive-like behaviors. Male rats were subjected to the SDS paradigm. Social interaction was analyzed 1 and 2 weeks after ending the SDS to determine which animals were susceptible or resilient to stress. Neuroinflammation markers glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, and elevated membrane permeability in astrocytes and microglia, as well as depressive-like behaviors in the sucrose preference test and forced swim test were evaluated in all rats. One week after SDS, resilient rats increased their sucrose preference, and time spent in the floating behavior decreased in the forced swim test compared to susceptible rats. Surprisingly, resilient rats became susceptible to stress, and presented neuroinflammation 2 weeks after SDS. These findings suggest that SDS-induced hippocampal neuroinflammation persists in post-stress stages, regardless of whether rats were initially resilient or not. Our study opens a new approach to understanding the neurobiology of stress resilience.
Collapse
Affiliation(s)
- Iván D Bravo-Tobar
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Paola Fernández
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Centre for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
33
|
Picard K, Bisht K, Poggini S, Garofalo S, Golia MT, Basilico B, Abdallah F, Ciano Albanese N, Amrein I, Vernoux N, Sharma K, Hui CW, C Savage J, Limatola C, Ragozzino D, Maggi L, Branchi I, Tremblay MÈ. Microglial-glucocorticoid receptor depletion alters the response of hippocampal microglia and neurons in a chronic unpredictable mild stress paradigm in female mice. Brain Behav Immun 2021; 97:423-439. [PMID: 34343616 DOI: 10.1016/j.bbi.2021.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic psychological stress is one of the most important triggers and environmental risk factors for neuropsychiatric disorders. Chronic stress can influence all organs via the secretion of stress hormones, including glucocorticoids by the adrenal glands, which coordinate the stress response across the body. In the brain, glucocorticoid receptors (GR) are expressed by various cell types including microglia, which are its resident immune cells regulating stress-induced inflammatory processes. To study the roles of microglial GR under normal homeostatic conditions and following chronic stress, we generated a mouse model in which the GR gene is depleted in microglia specifically at adulthood to prevent developmental confounds. We first confirmed that microglia were depleted in GR in our model in males and females among the cingulate cortex and the hippocampus, both stress-sensitive brain regions. Then, cohorts of microglial-GR depleted and wild-type (WT) adult female mice were housed for 3 weeks in a standard or stressful condition, using a chronic unpredictable mild stress (CUMS) paradigm. CUMS induced stress-related behavior in both microglial-GR depleted and WT animals as demonstrated by a decrease of both saccharine preference and progressive ratio breakpoint. Nevertheless, the hippocampal microglial and neural mechanisms underlying the adaptation to stress occurred differently between the two genotypes. Upon CUMS exposure, microglial morphology was altered in the WT controls, without any apparent effect in microglial-GR depleted mice. Furthermore, in the standard environment condition, GR depleted-microglia showed increased expression of pro-inflammatory genes, and genes involved in microglial homeostatic functions (such as Trem2, Cx3cr1 and Mertk). On the contrary, in CUMS condition, GR depleted-microglia showed reduced expression levels of pro-inflammatory genes and increased neuroprotective as well as anti-inflammatory genes compared to WT-microglia. Moreover, in microglial-GR depleted mice, but not in WT mice, CUMS led to a significant reduction of CA1 long-term potentiation and paired-pulse ratio. Lastly, differences in adult hippocampal neurogenesis were observed between the genotypes during normal homeostatic conditions, with microglial-GR deficiency increasing the formation of newborn neurons in the dentate gyrus subgranular zone independently from stress exposure. Together, these findings indicate that, although the deletion of microglial GR did not prevent the animal's ability to respond to stress, it contributed to modulating hippocampal functions in both standard and stressful conditions, notably by shaping the microglial response to chronic stress.
Collapse
Affiliation(s)
- Katherine Picard
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Molecular Medicine Department, Université Laval, Québec City, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kanchan Bisht
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Maria Teresa Golia
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Bernadette Basilico
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy; Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Fatima Abdallah
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Irmgard Amrein
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zurich, Switzerland
| | - Nathalie Vernoux
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Kaushik Sharma
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Chin Wai Hui
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Julie C Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Molecular Medicine Department, Université Laval, Québec City, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; The Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
34
|
von Muecke-Heim IA, Ries C, Urbina L, Deussing JM. P2X7R antagonists in chronic stress-based depression models: a review. Eur Arch Psychiatry Clin Neurosci 2021; 271:1343-1358. [PMID: 34279714 PMCID: PMC8429152 DOI: 10.1007/s00406-021-01306-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Depression affects around 320 million people worldwide. Growing evidence proposes the immune system to be the core interface between psychosocial stress and the neurobiological and behavioural features of depression. Many studies have identified purinergic signalling via the P2X7 receptor (P2X7R) to be of great importance in depression genesis yet only a few have evaluated P2X7R antagonists in chronic stress-based depression models. This review summarizes their findings and analyses their methodology. The four available studies used three to nine weeks of unpredictable, chronic mild stress or unpredictable, chronic stress in male mice or rats. Stress paradigm composition varied moderately, with stimuli being primarily psychophysical rather than psychosocial. Behavioural testing was performed during or after the last week of stress application and resulted in depressive-like behaviours, immune changes (NLRP3 assembly, interleukin-1β level increase, microglia activation) and neuroplasticity impairment. During the second half of each stress paradigm, a P2X7R antagonist (Brilliant Blue G, A-438079, A-804598) was applied. Studies differed with regard to antagonist dosage and application timing. Nonetheless, all treatments attenuated the stress-induced neurobiological changes and depressive-like behaviours. The evidence at hand underpins the importance of P2X7R signalling in chronic stress and depression. However, improvements in study planning and reporting are necessary to minimize experimental bias and increase data purview. To achieve this, we propose adherence to the Research Domain Criteria and the STRANGE framework.
Collapse
Affiliation(s)
- Iven-Alex von Muecke-Heim
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany.
| | - Clemens Ries
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Graduate School of Systemic Neurosciences, University of Munich (LMU), Munich, Germany
| | - Lidia Urbina
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
- Graduate School of Systemic Neurosciences, University of Munich (LMU), Munich, Germany
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
35
|
Yang L, Liu C, Li W, Ma Y, Huo S, Ozathaley A, Ren J, Yuan W, Ni H, Li D, Zhang J, Liu Z. Depression-like behavior associated with E/I imbalance of mPFC and amygdala without TRPC channels in mice of knockout IL-10 from microglia. Brain Behav Immun 2021; 97:68-78. [PMID: 34224823 DOI: 10.1016/j.bbi.2021.06.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 01/17/2023] Open
Abstract
Depression has a growing impact on public health. Accumulating evidence supports an association between depression and increased immune system activity. IL-10 is a key cytokine that inhibits excessive inflammatory responses and is related to the anti-inflammatory and protective functions of the central nervous system (CNS). Cx3cr1CreERIL-10-/- mice were used in our study. We aimed to identify the role of IL-10 in microglia in depression and anxiety-like behavior. We performed a series of behavioral tests on the mice; the Cx3cr1CreERIL-10-/- male mice showed depression- and anxiety-like behavior compared with the littermates. The expression of transient receptor potential canonical 5 (TRPC5) decreased in both the medial prefrontal cortex (mPFC) and amygdala regions. The cytokines IL-1β and IL-6 increased, and IL-10 was decreased by western blotting. The knockout mice showed different trends in the effects of synaptic proteins. In the mPFC, IL-10 knockout induced a decrease in NR2B and synaptophysin; in the amygdala region, there was a significant increase in NR2B and PSD95. IL-10 knockout from microglia induced a decrease in GAD67 and parvalbumin (Pv) in the mPFC, but not in the amygdala. Our results showed enhanced depression and anxiety-like behavior in the Cx3cr1CreER IL-10-/- mice, which could be related to an imbalance in local excitatory and inhibitory transmission, as well as neuroinflammation in the mPFC and amygdala. This imbalance was associated with increased local inflammation. Although many studies have demonstrated the role of TRPC channels in emotional responses, our study showed that TRPC was not involved in this process in Cx3cr1CreERIL-10-/- mice.
Collapse
Affiliation(s)
- Liang Yang
- Medical School, Nankai University, Tianjin, China
| | - Chang Liu
- Medical School, Nankai University, Tianjin, China
| | - Weiya Li
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yunqing Ma
- Medical School, Nankai University, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Shiji Huo
- Medical School, Nankai University, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | | | - Jiling Ren
- Department of Pathogen Biology, Basic Medical School, Tianjin Medical University, Tianjin, China
| | - Wenjian Yuan
- Medical School, Nankai University, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China
| | - Hong Ni
- Medical School, Nankai University, Tianjin, China
| | - Dong Li
- Medical School, Nankai University, Tianjin, China
| | - Jing Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China.
| | - Zhaowei Liu
- Medical School, Nankai University, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin, China.
| |
Collapse
|
36
|
Ge T, Yao X, Zhao H, Yang W, Zou X, Peng F, Li B, Cui R. Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacol Res 2021; 173:105909. [PMID: 34543739 DOI: 10.1016/j.phrs.2021.105909] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, increasing evidence has shown gut microbiota dysbiosis might be implicated in the physiological mechanisms of neuropsychiatric disorders. Altered microbial community composition, diversity and distribution traits have been reported in neuropsychiatric disorders. However, the exact pathways by which the intestinal microbiota contribute to neuropsychiatric disorders remain largely unknown. Given that the onset and progression of neuropsychiatric disorders are characterized with complicated alterations of neuroendocrine and immunology, both of which can be continually affected by gut microbiota via "microbiome-gut-brain axis". Thus, we assess the complicated crosstalk between neuroendocrine and immunological regulation might underlie the mechanisms of gut microbiota associated with neuropsychiatric disorders. In this review, we summarized clinical and preclinical evidence on the role of the gut microbiota in neuropsychiatry disorders, especially in mood disorders and neurodevelopmental disorders. This review may elaborate the potential mechanisms of gut microbiota implicating in neuroendocrine-immune regulation and provide a comprehensive understanding of physiological mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Haisheng Zhao
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiaohan Zou
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Fanzhen Peng
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Che mical Genetic, Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
37
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
38
|
Beneficial effects of running exercise on hippocampal microglia and neuroinflammation in chronic unpredictable stress-induced depression model rats. Transl Psychiatry 2021; 11:461. [PMID: 34489395 PMCID: PMC8421357 DOI: 10.1038/s41398-021-01571-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Running exercise has been shown to relieve symptoms of depression, but the mechanisms underlying the antidepressant effects are unclear. Microglia and concomitant dysregulated neuroinflammation play a pivotal role in the pathogenesis of depression. However, the effects of running exercise on hippocampal neuroinflammation and the number and activation of microglia in depression have not been studied. In this study, rats were subjected to chronic unpredictable stress (CUS) for 5 weeks followed by treadmill running for 6 weeks. The depressive-like symptoms of the rats were assessed with a sucrose preference test (SPT). Immunohistochemistry and stereology were performed to quantify the total number of ionized calcium-binding adapter molecule 1 (Iba1)+ microglia, and immunofluorescence was used to quantify the density of Iba1+/cluster of differentiation 68 (CD68)+ in subregions of the hippocampus. The levels of proinflammatory cytokines in the hippocampus were measured by qRT-PCR and ELISA. The results showed that running exercise reversed the decreased sucrose preference of rats with CUS-induced depression. In addition, CUS increased the number of hippocampal microglia and microglial activation in rats, but running exercise attenuated the CUS-induced increases in the number of microglia in the hippocampus and microglial activation in the dentate gyrus (DG) of the hippocampus. Furthermore, CUS significantly increased the hippocampal levels of inflammatory factors, and the increases in inflammatory factors in the hippocampus were suppressed by running exercise. These results suggest that the antidepressant effects of exercise may be mediated by reducing the number of microglia and inhibiting microglial activation and neuroinflammation in the hippocampus.
Collapse
|
39
|
Yeung SSH, Ho YS, Chang RCC. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp Mol Med 2021; 53:1251-1267. [PMID: 34489558 PMCID: PMC8492689 DOI: 10.1038/s12276-021-00660-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Recent research into meningeal lymphatics has revealed a never-before appreciated role of type II innate lymphoid cells (ILC2s) in modulating neuroinflammation in the central nervous system (CNS). To date, the role of ILC2-mediated inflammation in the periphery has been well studied. However, the exact distribution of ILC2s in the CNS and therefore their putative role in modulating neuroinflammation in neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and major depressive disorder (MDD) remain highly elusive. Here, we review the current evidence of ILC2-mediated modulation of neuroinflammatory cues (i.e., IL-33, IL-25, IL-5, IL-13, IL-10, TNFα, and CXCL16-CXCR6) within the CNS, highlight the distribution of ILC2s in both the periphery and CNS, and discuss some challenges associated with cell type-specific targeting that are important for therapeutics. A comprehensive understanding of the roles of ILC2s in mediating and responding to inflammatory cues may provide valuable insight into potential therapeutic strategies for many dementia-related disorders.
Collapse
Affiliation(s)
- Sherry Sin-Hang Yeung
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Yuen-Shan Ho
- grid.16890.360000 0004 1764 6123School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR China
| | - Raymond Chuen-Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| |
Collapse
|
40
|
Siemsen BM, Landin JD, McFaddin JA, Hooker KN, Chandler LJ, Scofield MD. Chronic intermittent ethanol and lipopolysaccharide exposure differentially alter Iba1-derived microglia morphology in the prelimbic cortex and nucleus accumbens core of male Long-Evans rats. J Neurosci Res 2021; 99:1922-1939. [PMID: 32621337 PMCID: PMC7779701 DOI: 10.1002/jnr.24683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has linked pathological changes associated with chronic alcohol exposure to neuroimmune signaling mediated by microglia. Prior characterization of the microglial structure-function relationship demonstrates that alterations in activity states occur concomitantly with reorganization of cellular architecture. Accordingly, gaining a better understanding of microglial morphological changes associated with ethanol exposure will provide valuable insight into how neuroimmune signaling may contribute to ethanol-induced reshaping of neuronal function. Here we have used Iba1-staining combined with high-resolution confocal imaging and 3D reconstruction to examine microglial structure in the prelimbic (PL) cortex and nucleus accumbens (NAc) in male Long-Evans rats. Rats were either sacrificed at peak withdrawal following 15 days of exposure to chronic intermittent ethanol (CIE) or 24 hr after two consecutive injections of the immune activator lipopolysaccharide (LPS), each separated by 24 hr. LPS exposure resulted in dramatic structural reorganization of microglia in the PL cortex, including increased soma volume, overall cellular volume, and branching complexity. In comparison, CIE exposure was associated with a subtle increase in somatic volume and differential effects on microglia processes, which were largely absent in the NAc. These data reveal that microglial activation following a neuroimmune challenge with LPS or exposure to chronic alcohol exhibits distinct morphometric profiles and brain region-dependent specificity.
Collapse
Affiliation(s)
- Benjamin M. Siemsen
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jon A. McFaddin
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kaylee N. Hooker
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lawrence J. Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
41
|
Afridi R, Suk K. Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front Cell Neurosci 2021; 15:691067. [PMID: 34276311 PMCID: PMC8283257 DOI: 10.3389/fncel.2021.691067] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
The neuroinflammatory basis of depression encompasses the detrimental role of otherwise supportive non-neuronal cells and neuroinflammation in hampering neuronal function, leading to depressive behavior. Animals subjected to different stress paradigms show glial cell activation and a surge in proinflammatory cytokines in various brain regions. The concept of sterile inflammation observed in animal models of depression has intrigued many researchers to determine the possible triggers of central immune cell activation. Notably, microglial activation and subsequent phenotypic polarization in depression have been strongly advocated by the wealth of recent preclinical studies; however, findings from human studies have shown contradictory results. Despite intensive investigation, many research gaps still exist to elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression. In this mini-review, recent progress in understanding neuroinflammatory mechanisms in light of experimental models of depression will be thoroughly discussed. The challenges of mirroring depression in animal and in vitro models will also be highlighted. Furthermore, prospects of targeting neuroinflammation to treat depressive disorder will be covered.
Collapse
Affiliation(s)
- Ruqayya Afridi
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
42
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
43
|
Bekhbat M, Mukhara D, Dozmorov MG, Stansfield JC, Benusa SD, Hyer MM, Rowson SA, Kelly SD, Qin Z, Dupree JL, Tharp GK, Tansey MG, Neigh GN. Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacology 2021; 46:949-958. [PMID: 33558677 PMCID: PMC8115118 DOI: 10.1038/s41386-021-00970-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Adolescent exposure to chronic stress, a risk factor for mood disorders in adulthood, sensitizes the neuroinflammatory response to a subsequent immune challenge. We previously showed that chronic adolescent stress (CAS) in rats led to distinct patterns of neuroimmune priming in adult male and female rats. However, sex differences in the neuroimmune consequences of CAS and their underlying mechanisms are not fully understood. Here we hypothesized that biological sex would dictate differential induction of inflammation-related transcriptomic pathways and immune cell involvement (microglia activation and leukocyte presence) in the hippocampus of male and female rats with a history of CAS. Adolescent rats underwent CAS (six restraint and six social defeat episodes during postnatal days 38-49), and behavioral assessments were conducted in adolescence and adulthood. Neuroimmune measures were obtained following vehicle or a systemic lipopolysaccharide (LPS) challenge in adulthood. CAS led to increased time in the corners of the open field in adolescence. In males, CAS also increased social avoidance. As adults, CAS rats displayed an exaggerated enrichment of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway and chemokine induction following LPS challenge, and increased number of perivascular CD45+ cells in the hippocampus. However, CAS females, but not males, showed exaggerated glucocorticoid receptor (GR) pathway enrichment and increased microglial complexity. These results provide further insight to the mechanisms by which peripheral immune events may influence neuroimmune responses differentially among males and females and further demonstrate the importance of adolescent stress in shaping adult responses.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Deepika Mukhara
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Mikhail G. Dozmorov
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - John C. Stansfield
- grid.417264.20000 0001 2194 2791Center for Clinical and Translational Research, Virginia Commonwealth University Medical Center, Richmond, VA 23298 USA
| | - Savannah D. Benusa
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Molly M. Hyer
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sydney A. Rowson
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Sean D. Kelly
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Zhaohui Qin
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Jeffrey L. Dupree
- grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Gregory K. Tharp
- grid.189967.80000 0001 0941 6502Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322 USA
| | - Malú G. Tansey
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA
| | - Gretchen N. Neigh
- grid.189967.80000 0001 0941 6502Department of Physiology, Emory University, Atlanta, GA 30322 USA ,grid.224260.00000 0004 0458 8737Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298 USA ,grid.189967.80000 0001 0941 6502Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA 30322 USA
| |
Collapse
|
44
|
Cannabinoid receptor 1 signalling modulates stress susceptibility and microglial responses to chronic social defeat stress. Transl Psychiatry 2021; 11:164. [PMID: 33723234 PMCID: PMC7961142 DOI: 10.1038/s41398-021-01283-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Psychosocial stress is one of the main environmental factors contributing to the development of psychiatric disorders. In humans and rodents, chronic stress is associated with elevated inflammatory responses, indicated by increased numbers of circulating myeloid cells and activation of microglia, the brain-resident immune cells. The endocannabinoid system (ECS) regulates neuronal and endocrine stress responses via the cannabinoid receptor 1 (CB1). CB1-deficient mice (Cnr1-/-) are highly sensitive to stress, but if this involves altered inflammatory responses is not known. To test this, we exposed Cnr1+/+ and Cnr1-/- mice to chronic social defeat stress (CSDS). Cnr1-/- mice were extremely sensitive to a standard protocol of CSDS, indicated by an increased mortality rate. Therefore, a mild CSDS protocol was established, which still induced a behavioural phenotype in susceptible Cnr1-/- mice. These mice also showed altered glucocorticoid levels after mild CSDS, suggesting dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Mild CSDS induced weak myelopoiesis in the periphery, but no recruitment of myeloid cells to the brain. In contrast, mild CSDS altered microglial activation marker expression and morphology in Cnr1-/- mice. These microglial changes correlated with the severity of the behavioural phenotype. Furthermore, microglia of Cnr1-/- mice showed increased expression of Fkbp5, an important regulator of glucocorticoid signalling. Overall, the results confirm that CB1 signalling protects the organism from the physical and emotional harm of social stress and implicate endocannabinoid-mediated modulation of microglia in the development of stress-related pathologies.
Collapse
|
45
|
Purves-Tyson TD, Weber-Stadlbauer U, Richetto J, Rothmond DA, Labouesse MA, Polesel M, Robinson K, Shannon Weickert C, Meyer U. Increased levels of midbrain immune-related transcripts in schizophrenia and in murine offspring after maternal immune activation. Mol Psychiatry 2021; 26:849-863. [PMID: 31168068 PMCID: PMC7910216 DOI: 10.1038/s41380-019-0434-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 12/03/2022]
Abstract
The pathophysiology of dopamine dysregulation in schizophrenia involves alterations at the ventral midbrain level. Given that inflammatory mediators such as cytokines influence the functional properties of midbrain dopamine neurons, midbrain inflammation may play a role in schizophrenia by contributing to presynaptic dopamine abnormalities. Thus, we quantified inflammatory markers in dopaminergic areas of the midbrain of people with schizophrenia and matched controls. We also measured these markers in midbrain of mice exposed to maternal immune activation (MIA) during pregnancy, an established risk factor for schizophrenia and other psychiatric disorders. We found diagnostic increases in SERPINA3, TNFα, IL1β, IL6, and IL6ST transcripts in schizophrenia compared with controls (p < 0.02-0.001). The diagnostic differences in these immune markers were accounted for by a subgroup of schizophrenia cases (~ 45%, 13/28) showing high immune status. Consistent with the human cohort, we identified increased expression of immune markers in the midbrain of adult MIA offspring (SERPINA3, TNFα, and IL1β mRNAs, all p ≤ 0.01), which was driven by a subset of MIA offspring (~ 40%, 13/32) with high immune status. There were no diagnostic (human cohort) or group-wise (mouse cohort) differences in cellular markers indexing the density and/or morphology of microglia or astrocytes, but an increase in the transcription of microglial and astrocytic markers in schizophrenia cases and MIA offspring with high inflammation. These data demonstrate that immune-related changes in schizophrenia extend to dopaminergic areas of the midbrain and exist in the absence of changes in microglial cell number, but with putative evidence of microglial and astrocytic activation in the high immune subgroup. MIA may be one of the contributing factors underlying persistent neuroimmune changes in the midbrain of people with schizophrenia.
Collapse
Affiliation(s)
- Tertia D Purves-Tyson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - Marie A Labouesse
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, NYC, 10032, NY, USA
| | | | - Kate Robinson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, 2031, Australia.
- School of Psychiatry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, 13210, New York, USA.
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
- Neuroscience Centre Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
46
|
Gonçalves de Andrade E, Šimončičová E, Carrier M, Vecchiarelli HA, Robert MÈ, Tremblay MÈ. Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic. Front Cell Neurosci 2021; 15:647378. [PMID: 33737867 PMCID: PMC7961561 DOI: 10.3389/fncel.2021.647378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is marked by cardio-respiratory alterations, with increasing reports also indicating neurological and psychiatric symptoms in infected individuals. During COVID-19 pathology, the central nervous system (CNS) is possibly affected by direct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invasion, exaggerated systemic inflammatory responses, or hypoxia. Psychosocial stress imposed by the pandemic further affects the CNS of COVID-19 patients, but also the non-infected population, potentially contributing to the emergence or exacerbation of various neurological or mental health disorders. Microglia are central players of the CNS homeostasis maintenance and inflammatory response that exert their crucial functions in coordination with other CNS cells. During homeostatic challenges to the brain parenchyma, microglia modify their density, morphology, and molecular signature, resulting in the adjustment of their functions. In this review, we discuss how microglia may be involved in the neuroprotective and neurotoxic responses against CNS insults deriving from COVID-19. We examine how these responses may explain, at least partially, the neurological and psychiatric manifestations reported in COVID-19 patients and the general population. Furthermore, we consider how microglia might contribute to increased CNS vulnerability in certain groups, such as aged individuals and people with pre-existing conditions.
Collapse
Affiliation(s)
| | - Eva Šimončičová
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Marie-Ève Robert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Picard K, St-Pierre MK, Vecchiarelli HA, Bordeleau M, Tremblay MÈ. Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochem Int 2021; 145:104987. [PMID: 33587954 DOI: 10.1016/j.neuint.2021.104987] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Microglia, the resident macrophage cells of the central nervous system (CNS), are involved in a myriad of processes required to maintain CNS homeostasis. These cells are dynamic and can adapt their phenotype and functions to the physiological needs of the organism. Microglia rapidly respond to changes occurring in their microenvironment, such as the ones taking place during stress. While stress can be beneficial for the organism to adapt to a situation, it can become highly detrimental when it turns chronic. Microglial response to prolonged stress may lead to an alteration of their beneficial physiological functions, becoming either maladaptive or pro-inflammatory. In this review, we aim to summarize the effects of chronic stress exerted on microglia through the neuroendocrine system and inflammation at adulthood. We also discuss how these effects of chronic stress could contribute to microglial involvement in neuropsychiatric and sleep disorders, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
48
|
Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, Chung CY. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun 2021; 91:519-530. [PMID: 33176182 DOI: 10.1016/j.bbi.2020.11.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical studies examining the potential of anti-inflammatory agents, specifically of minocycline, as a treatment for depression has shown promising results. However, mechanistic insights into the neuroprotective and anti-inflammatory actions of minocycline need to be provided. We evaluated the effect of minocycline on chronic mild stress (CMS) induced depressive-like behavior, and behavioral assays revealed minocycline ameliorate depressive behaviors. Multiple studies suggest a role of microglia in depression, revealing that microglia activation correlates with a decrease in neurogenesis and increased depressive-like behavior. The effect of minocycline on microglia activation in different areas of the dorsal or ventral hippocampus in stressed mice was examined by immunohistochemistry. We observed the increase in the number of activated microglia expressing CD68 after exposure to three weeks of chronic stress, whereas no changes in total microglia number were observed. These changes were observed throughout the DG, CA1 and CA2 regions in dorsal hippocampus but restricted to the DG of the ventral hippocampus. In vitro experiments including western blotting and phagocytosis assay were used to investigate the effect of minocycline on microglia activation. Activation of primary microglia by LPS in vitro causes and ERK1/2 activation, enhancement of iNOS expression and phagocytic activity, and alterations in cellular morphology that are reversed by minocycline exposure, suggesting that minocycline directly acts on microglia to reduce phagocytic potential. Our results suggest the most probable mechanism by which minocycline reverses the pathogenic phagocytic potential of neurotoxic M1 microglia, and reduces the negative phenotypes associated with reduced neurogenesis caused by exposure to chronic stress.
Collapse
Affiliation(s)
- Ben Bassett
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Selvaraj Subramaniyam
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Seth Varney
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hope Pan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ana M D Carneiro
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chang Y Chung
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Division of Natural Science, Duke Kunshan University, Kunshan 215316, China.
| |
Collapse
|
49
|
Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021; 16:2184-2197. [PMID: 33818491 PMCID: PMC8354134 DOI: 10.4103/1673-5374.310608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticotropin-releasing hormone is a critical component of the hypothalamic–pituitary–adrenal axis, which plays a major role in the body’s immune response to stress. Mast cells are both sensors and effectors in the interaction between the nervous and immune systems. As first responders to stress, mast cells can initiate, amplify and prolong neuroimmune responses upon activation. Corticotropin-releasing hormone plays a pivotal role in triggering stress responses and related diseases by acting on its receptors in mast cells. Corticotropin-releasing hormone can stimulate mast cell activation, influence the activation of immune cells by peripheral nerves and modulate neuroimmune interactions. The latest evidence shows that the release of corticotropin-releasing hormone induces the degranulation of mast cells under stress conditions, leading to disruption of the blood-brain barrier, which plays an important role in neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, autism spectrum disorder and amyotrophic lateral sclerosis. Recent studies suggest that stress increases intestinal permeability and disrupts the blood-brain barrier through corticotropin-releasing hormone-mediated activation of mast cells, providing new insight into the complex interplay between the brain and gastrointestinal tract. The neuroimmune target of mast cells is the site at which the corticotropin-releasing hormone directly participates in the inflammatory responses of nerve terminals. In this review, we focus on the neuroimmune connections between corticotropin-releasing hormone and mast cells, with the aim of providing novel potential therapeutic targets for inflammatory, autoimmune and nervous system diseases.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi-Wei Wang
- Department of Anesthesiology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huan-Huan Sha
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hong-Quan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan-Ning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
50
|
Sugama S, Kakinuma Y. Noradrenaline as a key neurotransmitter in modulating microglial activation in stress response. Neurochem Int 2020; 143:104943. [PMID: 33340593 DOI: 10.1016/j.neuint.2020.104943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
State of mind can influence susceptibility and progression of diseases and disorders not only in peripheral organs, but also in the central nervous system (CNS). However, the underlying mechanism how state of mind can affect susceptibility to various illnesses in the CNS is not fully understood. Among a number of candidates responsible for stress-induced neuroimmunomodulation, noradrenaline has recently been shown to play crucial roles in the major immune cells of the brain, microglia. In particular, recent studies have demonstrated that noradrenaline may be a key neurotransmitter in modulating microglial cells, thereby determining different cell conditions and responses ranging from resting to activation state depending on host stress level or whether the host is awake or asleep. For instance, microglia under resting conditions may have constructive roles in surveillance, such as debris clearance, synaptic monitoring, pruning, and remodeling. In contrast, once activated, microglia may become less efficient in surveillance activities, and instead implicated in detrimental roles such as cytokine or superoxide release. It is also likely that glial activation, both astrocytes and microglia, are negatively associated with the clearance of brain waste via the glymphatic system. In this review, we discuss the possible underlying mechanism as well as the roles of stress-induced microglial activation.
Collapse
Affiliation(s)
- Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|