1
|
Zhou LY, Liu ZG, Sun YQ, Li YZ, Teng ZQ, Liu CM. Preserving blood-retinal barrier integrity: a path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:13. [PMID: 40172766 PMCID: PMC11965071 DOI: 10.1186/s13619-025-00228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/25/2025] [Accepted: 03/09/2025] [Indexed: 04/04/2025]
Abstract
Retinal ganglion cells (RGCs) are the visual gateway of the brain, with their axons converging to form the optic nerve, making them the most vulnerable target in diseases such as glaucoma and traumatic optic neuropathy (TON). In both diseases, the disruption of the blood-retinal barrier(BRB) is considered an important mechanism that accelerates RGC degeneration and hinders axon regeneration. The BRB consists of the inner blood-retinal barrier (iBRB) and the outer blood-retinal barrier (oBRB), which are maintained by endothelial cells(ECs), pericytes(PCs), and retinal pigment epithelial (RPE), respectively. Their functions include regulating nutrient exchange, oxidative stress, and the immune microenvironment. However, in glaucoma and TON, the structural and functional integrity of the BRB is severely damaged due to mechanical stress, inflammatory reactions, and metabolic disorders. Emerging evidence highlights that BRB disruption leads to heightened vascular permeability, immune cell infiltration, and sustained chronic inflammation, creating a hostile microenvironment for RGC survival. Furthermore, the dynamic interplay and imbalance among ECs, PCs, and glial cells within the neurovascular unit (NVU) are pivotal drivers of BRB destruction, exacerbating RGC apoptosis and limiting optic nerve regeneration. The intricate molecular and cellular mechanisms underlying these processes underscore the BRB's critical role in glaucoma and TON pathophysiology while offering a compelling foundation for therapeutic strategies targeting BRB repair and stabilization. This review provides crucial insights and lays a robust groundwork for advancing research on neural regeneration and innovative optic nerve protective strategies.
Collapse
Affiliation(s)
- Lai-Yang Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhen-Gang Liu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yong-Quan Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yan-Zhong Li
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
2
|
Zhang L, Duolikun M, Chen H, Wang Z, Li X, Xiao H, Dong Y, Chen H, Liu F, Fan S, Lin J, Chen L. Genome-wide KAS-Seq mapping of leukocytes in ischemia-reperfusion model reveals IL7R as a potential therapeutic target for ischemia-reperfusion injury. Sci Rep 2025; 15:6165. [PMID: 39979392 PMCID: PMC11842730 DOI: 10.1038/s41598-025-90457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Ischemia-reperfusion injury (IRI) is one of the leading causes of mortality and disability worldwide. Owing to its complex pathogenesis, there is still a lack of effective therapeutic targets in clinical practice, and exploring the mechanism and targets of IRI is still a major clinical challenge. This study aimed to explore the genetic alterations in leukocytes in peripheral blood after ischemia-reperfusion, aiming to discover new biomarkers and potential therapeutic targets. KAS-Seq (Kethoxal-assisted single-strand DNA sequencing) was used to obtain gene expression profiles of circulating leukocytes in a porcine ischemia-reperfusion model at 24, 48, and 72 h post-ischemia‒reperfusion. This method integrated genes that exhibited regular changes over time. In this study, we thoroughly analyzed the dynamic changes in gene expression post-IRI, revealing significant enrichment in key signaling pathways that regulate immune responses and T-cell activation over time. Our identification of the interleukin-7 receptor (IL7R) was particularly striking, as it plays a crucial molecular role in IRI. Additionally, using database mining technology, we confirmed the close relationship between IL7R and IRI, explored the interaction between interferon-γ (IFNG) and IL7R in T-cell activation, and clarified their joint influence on ischemia-reperfusion injury. Using KAS-Seq analysis of leukocytes from peripheral blood, we successfully delineated the temporal patterns of gene expression and changes in signal transduction pathways in porcine models of ischemia-reperfusion. Subsequent in-depth analysis identified IL7R as a potential novel therapeutic target for IRI. The pivotal role of this gene in modulating immune responses provides innovative avenues for the development of IRI treatments.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Peking University Third Hospital Cancer Center, Beijing, 100191, China
| | - Maimaitiyasen Duolikun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570100, China
| | - Hangyu Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China
- Peking University Third Hospital Cancer Center, Beijing, 100191, China
| | - Zihao Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xuehui Li
- School of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Hong Xiao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570100, China
| | - Yuchao Dong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Haoyu Chen
- School of Graduate, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Fengyong Liu
- Department of Interventional Radiology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jian Lin
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Beijing, 100191, China.
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570100, China.
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Beijing, 100191, China.
| |
Collapse
|
3
|
Hu T, Meng S, Liu C, Fang W, Xia Z, Hu Y, Luo J, Xia X. LCN2 deficiency mitigates the neuroinflammatory damage following acute glaucoma. Theranostics 2025; 15:2967-2990. [PMID: 40083945 PMCID: PMC11898297 DOI: 10.7150/thno.104752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: Acute high intraocular pressure (IOP) induces retinal ischemia/reperfusion (RI/R) that further initiates neuroinflammatory responses. This event can cause retinal tissue damage and neuronal death, ultimately resulting in irreversible blindness worldwide that lacks effective therapies, validated treatment targets and underlying mechanisms. We sought to explore the potential mechanisms on the causal link between the neuroinflammatory response and neurodegeneration following acute high IOP. Methods: A rat model of RI/R induced by acute high IOP was used to investigate the spatiotemporal profiles of blood-retinal barrier (BRB) disruption, peripheral immune cell infiltration, and innate immune cell response following acute glaucomatous injury. RNA sequencing and in vivo transfection with adeno-associated virus (AAV) were used to explore the pathogenic mechanisms of acute high IOP-induced neuroinflammation. Results: Disruption of the inner BRB and infiltration of macrophages and lymphocytes occurred during the early stage after acute high IOP. These events were accompanied by an innate immune response. RNA sequencing revealed that Lipocalin-2 (Lcn2) was one of the most significantly up-regulated inflammation-related genes. Lcn2 knockdown ameliorated inner BRB disruption, peripheral immune cell infiltration, and innate immune cell response, resulting in neuroprotective effects. Furthermore, we found that acute glaucomatous injury triggers high expression of LCN2 in the peripheral serum, which is strongly associated with the severity of the neuroinflammatory response in the retina. Conclusions: A "neuroinflammatory cascade" characterized by breakdown of inner BRB, peripheral immune cell infiltration, and innate immune cell response occurs during the initial stage following glaucomatous injury. We also identified a novel mechanism for LCN2 in acute high IOP-induced neuroinflammation. LCN2 has the potential to serve as a candidate biomarker for predicting the severity of the neuroinflammatory response following acute glaucoma, which may provide new evidence to retinal repair strategies for better visual function recovery at intervention time points and new targets.
Collapse
Affiliation(s)
- Tu Hu
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Shuhan Meng
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Can Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China 410013
| | - Weizhou Fang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Zhaohua Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Yiqun Hu
- Xiangya Medical School, Central South University, Changsha, Hunan, China 410013
| | - Jia Luo
- The First Clinical college, Changsha Medical University, Changsha, Hunan, China 410203
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 410008
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| |
Collapse
|
4
|
Li J, Li H, Wei C, Chen C, Zheng Z. Astragalus polysaccharide attenuates retinal ischemia reperfusion-induced microglial activation through sortilin-related vacuolar protein sorting 10 domain containing receptor 2/laminin subunit alpha 1 upregulation. Cytojournal 2025; 22:2. [PMID: 39958884 PMCID: PMC11829307 DOI: 10.25259/cytojournal_131_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/29/2024] [Indexed: 02/18/2025] Open
Abstract
Objective Microglial activation is a hallmark of pathogenic retinal conditions such as retinal ischemia-reperfusion (RIR). While sortilin-related vacuolar protein sorting 10 domain containing receptor 2 (Sorcs2) and laminin subunit alpha 1 (Lama1) have been implicated in neuroinflammatory processes, their roles in regulating microglial activation in RIR are not reported. The current work studied the potential of Sorcs2 and Lama1 as negative regulators of microglial activation in RIR and assessed the therapeutic potential of Astragalus polysaccharide (AP). Material and Methods Transcriptome profiling was conducted in retinal specimens of RIR group 72 h after RIR induction. Oxygen-glucose deprivation/reperfusion (OGD/R) in rat microglial cells was employed as the cellular induction model of RIR. The functional role of Sorcs2 and Lama1 in dictating microglial activation was investigated in vitro and in vivo using lentivirus-based gene expression. Further, the potential effect of AP on RIR-mediated microglial activation was investigated. Results Sorcs2 and Lama1 were identified as two downregulated genes in retinal samples following RIR. OGD/R induction triggered pro-inflammatory microglial activation and induced the downregulation of Sorcs2 and Lama1. Sorcs2 or Lama1 overexpression hindered OGD/R-induced microglial activation in vitro and attenuated inflammatory expansion of microglia cells in RIR-induced rat retinal samples. AP treatment was able to neutralize the oxidative stress, promote the expression of Sorcs2 and Lama1, and suppress microglial activation. Conclusion Our findings pinpoint Sorcs2 and Lama1 as negative regulators of microglial activation in RIR. AP could be employed as an antioxidant to attenuate microglial activation and ameliorate the inflammatory damages in RIR.
Collapse
Affiliation(s)
- Juanjuan Li
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| | - Hua Li
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| | - Chunling Wei
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| | - Chen Chen
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| | - Zhikun Zheng
- Department of Ophthalmologic, The Affiliated Hospital of Yunnan University (Second People’s Hospital of Yunnan Province, Yunnan Eye Hospital), Kunming, Yunnan, China
| |
Collapse
|
5
|
Chen F, Wang Q, Li Y, Li F, Zhang L, Gu X. TGF-β1-induced apoptosis in retinal endothelial cells is implicated in retinal vein occlusion. Exp Eye Res 2025; 250:110168. [PMID: 39577604 DOI: 10.1016/j.exer.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Retinal vein occlusion (RVO) is a serious vascular condition that impairs vision due to retinal endothelial cell injury and apoptosis. This study aimed to identify key molecular pathways and therapeutic targets involved in RVO pathogenesis. Transcriptomic analysis of the retinal tissues from a mouse RVO model was performed to identify differentially expressed genes and co-expression modules associated with RVO. Protein-protein interaction network analysis pinpointed putative hub genes. In vitro experiments using human retinal microvascular endothelial cells (HRMECs) validated the involvement of identified genes/pathways in apoptosis induced by oxygen-glucose deprivation/reperfusion (OGD/R) and UV exposure. Gene expression was assessed by RT-qPCR, while protein levels and phosphorylation were measured by ELISA and Western blotting. Apoptosis was evaluated using flow cytometry, and reactive oxygen species (ROS) were quantified using a fluorescence-based assay. A total of 392 genes were identified as putatively involved in RVO-associated apoptosis, enriched in MAPK, TGF-β and other signaling pathways. Among top hub genes, TGF-β1 emerged as a central regulator whose expression and signaling (pSmad2/3) increased after OGD/R induction or UV exposure in HRMECs. TGF-β1-induced HRMEC apoptosis was mediated by p38/JNK activation. Similar effects were observed for OGD/R and UV triggering TGF-β1-dependent p38/JNK signaling and apoptosis. Pharmacological inhibition of TGF-β signaling attenuated the apoptotic and oxidative stress responses induced by OGD/R and UV exposure. This study elucidates TGF-β1 as a crucial mediator of retinal endothelial injury through p38/JNK-induced apoptosis, suggesting TGF-β1 pathway inhibition as a potential therapeutic strategy for RVO.
Collapse
Affiliation(s)
- Fengyu Chen
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Yunnan Province Clinical Center for Hematologic Disease, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China; Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qi Wang
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Yunnan Province Clinical Center for Hematologic Disease, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China; Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yujin Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Yunnan Province Clinical Center for Hematologic Disease, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China; Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fen Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Yunnan Province Clinical Center for Hematologic Disease, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China; Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lin Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Yunnan Province Clinical Center for Hematologic Disease, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China; Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xuezhong Gu
- Department of Hematology, The First People's Hospital of Yunnan Province, Yunnan Province Clinical Research Center for Hematologic Disease, Yunnan Province Clinical Center for Hematologic Disease, Yunnan Provincial Clinical Medical Center for Blood Diseases and Thrombosis Prevention and Treatment, Kunming, Yunnan, China; Department of Hematology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Antonetti DA, Lin CM, Shanmugam S, Hager H, Cao M, Liu X, Dreffs A, Habash A, Abcouwer SF. Diabetes Renders Photoreceptors Susceptible to Retinal Ischemia-Reperfusion Injury. Invest Ophthalmol Vis Sci 2024; 65:46. [PMID: 39570639 PMCID: PMC11585066 DOI: 10.1167/iovs.65.13.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Purpose Studies have suggested that photoreceptors (PR) are altered by diabetes, contributing to diabetic retinopathy (DR) pathology. Here, we explored the effect of diabetes on retinal ischemic injury. Methods Retinal ischemia-reperfusion (IR) injury was caused by elevation of intraocular pressure in 10-week-old BKS db/db type 2 diabetes mellitus (T2DM) mice or C57BL/6J mice at 4 or 12 weeks after streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM), and respective nondiabetic controls. Retinal neurodegeneration was evaluated by retinal layer thinning, TUNEL staining, and neuron loss. Vascular permeability was evaluated as retinal accumulation of circulating fluorescent albumin. The effects of pretreatment with a sodium-glucose co-transporter (SGLT1/2) inhibitor, phlorizin, were examined. Results Nondiabetic control mice exhibited no significant outer retinal layer thinning or PR loss after IR injury. In contrast, db/db mice exhibited significant outer retina thinning (49%, P < 0.0001), loss of PR nuclei (45%, P < 0.05) and inner segment (IS) length decline (45%, P < 0.0001). STZ-induced diabetic mice at 4 weeks showed progressive thinning of the outer retina (55%, by 14 days, P < 0.0001) and 4.3-fold greater number of TUNEL+ cells in the outer nuclear layer (ONL) than injured retinas of control mice (P < 0.0001). After 12 weeks of diabetes, the retinas exhibited similar outer layer thinning and PR loss after IR. Diabetes also delayed restoration of the blood-retinal barrier after IR injury. Phlorizin reduced outer retinal layer thinning from 49% to 3% (P < 0.0001). Conclusions Diabetes caused PR to become highly susceptible to IR injury. The ability of phlorizin pretreatment to block outer retinal thinning after IR suggests that the effects of diabetes on PR are readily reversible.
Collapse
Affiliation(s)
- David A. Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Manjing Cao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuwen Liu
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Alyssa Dreffs
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Adam Habash
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan, Michigan Medicine, Kellogg Eye Center, Ann Arbor, Michigan, United States
| |
Collapse
|
7
|
Du E, Jia X, Li X, Zhang B, Zhai Y, Qin F. Neuroprotective effect of ciclopirox olamine in retinal ischemia/reperfusion injury. BMC Mol Cell Biol 2024; 25:22. [PMID: 39385121 PMCID: PMC11465616 DOI: 10.1186/s12860-024-00520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024] Open
Abstract
Retinal ischemia-reperfusion (IR) injury is a basic pathological procedure in clinic and associated with various ischemic retinal diseases, including glaucoma, diabetic retinopathy, retinal vascular occlusion, etc. The purpose of this work is to investigate the effect of ciclopirox olamine (CPX) on retinal IR injury and further explore the underlying mechanism. In vitro assay exhibited that CPX exhibited significant neuroprotection against oxygen glucose deprivation (OGD) and oxidative stress-induced injuries in 661W photoreceptor cells. OGD injury showed a proinflammatory phenotype characterized by significantly increased production of cytokines (IL-6, IL-23 and TNF-α), while CPX significantly inhibited their secretion. In addition, the in vivo experiment demonstrated that CPX significantly preserved the normal thickness of the retina. Therefore, we suggest that CPX is identified in our research as a prospective therapeutic agent for retinal IR injury.
Collapse
Affiliation(s)
- Enming Du
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaolin Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Beibei Zhang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yaping Zhai
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Fangyuan Qin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
8
|
Wang Y, Li Y, Feng J, Wang C, Wan Y, Lv B, Li Y, Xie H, Chen T, Wang F, Li Z, Yang A, Xiao X. Transcriptional responses in a mouse model of silicone wire embolization induced acute retinal artery ischemia and reperfusion. eLife 2024; 13:RP98949. [PMID: 39382568 PMCID: PMC11464005 DOI: 10.7554/elife.98949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Acute retinal ischemia and ischemia-reperfusion injury are the primary causes of retinal neural cell death and vision loss in retinal artery occlusion (RAO). The absence of an accurate mouse model for simulating the retinal ischemic process has hindered progress in developing neuroprotective agents for RAO. We developed a unilateral pterygopalatine ophthalmic artery occlusion (UPOAO) mouse model using silicone wire embolization combined with carotid artery ligation. The survival of retinal ganglion cells and visual function were evaluated to determine the duration of ischemia. Immunofluorescence staining, optical coherence tomography, and haematoxylin and eosin staining were utilized to assess changes in major neural cell classes and retinal structure degeneration at two reperfusion durations. Transcriptomics was employed to investigate alterations in the pathological process of UPOAO following ischemia and reperfusion, highlighting transcriptomic differences between UPOAO and other retinal ischemia-reperfusion models. The UPOAO model successfully replicated the acute interruption of retinal blood supply observed in RAO. 60 min of Ischemia led to significant loss of major retinal neural cells and visual function impairment. Notable thinning of the inner retinal layer, especially the ganglion cell layer, was evident post-UPOAO. Temporal transcriptome analysis revealed various pathophysiological processes related to immune cell migration, oxidative stress, and immune inflammation during the non-reperfusion and reperfusion periods. A pronounced increase in microglia within the retina and peripheral leukocytes accessing the retina was observed during reperfusion periods. Comparison of differentially expressed genes (DEGs) between the UPOAO and high intraocular pressure models revealed specific enrichments in lipid and steroid metabolism-related genes in the UPOAO model. The UPOAO model emerges as a novel tool for screening pathogenic genes and promoting further therapeutic research in RAO.
Collapse
Affiliation(s)
- Yuedan Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Jiaqing Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Chuansen Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Yuwei Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Bingyang Lv
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Yinming Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Hao Xie
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Faxi Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Ziyue Li
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Anhuai Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan UniversityWuhanChina
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
9
|
Yamaguchi M, Nakao S, Arima M, Little K, Singh A, Wada I, Kaizu Y, Zandi S, Garweg JG, Matoba T, Shiraishi W, Yamasaki R, Shibata K, Go Y, Ishibashi T, Uemura A, Stitt AW, Sonoda KH. Heterotypic macrophages/microglia differentially contribute to retinal ischaemia and neovascularisation. Diabetologia 2024; 67:2329-2345. [PMID: 38977459 DOI: 10.1007/s00125-024-06215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is characterised by neuroinflammation that drives neuronal and vascular degenerative pathology, which in many individuals can lead to retinal ischaemia and neovascularisation. Infiltrating macrophages and activated retina-resident microglia have been implicated in the progression of diabetic retinopathy, although the distinct roles of these immune cells remain ill-defined. Our aim was to clarify the distinct roles of macrophages/microglia in the pathogenesis of proliferative ischaemic retinopathies. METHODS Murine oxygen-induced retinopathy is commonly used as a model of ischaemia-induced proliferative diabetic retinopathy (PDR). We evaluated the phenotype macrophages/microglia by immunostaining, quantitative real-time RT-PCR (qRT-PCR), flow cytometry and scRNA-seq analysis. In clinical imaging studies of diabetic retinopathy, we used optical coherence tomography (OCT) and OCT angiography. RESULTS Immunostaining, qRT-PCR and flow cytometry showed expression levels of M1-like macrophages/microglia markers (CD80, CD68 and nitric oxide synthase 2) and M2-like macrophages/microglia markers (CD206, CD163 and macrophage scavenger receptor 1) were upregulated in areas of retinal ischaemia and around neo-vessels, respectively. scRNA-seq analysis of the ischaemic retina revealed distinct ischaemia-related clusters of macrophages/microglia that express M1 markers as well as C-C chemokine receptor 2. Inhibition of Rho-kinase (ROCK) suppressed CCL2 expression and reduced CCR2-positive M1-like macrophages/microglia in areas of ischaemia. Furthermore, the area of retinal ischaemia was reduced by suppressing blood macrophage infiltration not only by ROCK inhibitor and monocyte chemoattractant protein-1 antibody but also by GdCl3. Clinical imaging studies of diabetic retinopathy using OCT indicated potential involvement of macrophages/microglia represented by hyperreflective foci in areas of reduced perfusion. CONCLUSIONS/INTERPRETATION These results collectively indicated that heterotypic macrophages/microglia differentially contribute to retinal ischaemia and neovascularisation in retinal vascular diseases including diabetic retinopathy. This adds important new information that could provide a basis for a more targeted, cell-specific therapeutic approach to prevent progression to sight-threatening PDR.
Collapse
Affiliation(s)
- Muneo Yamaguchi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Ophthalmology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
- Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Karis Little
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Aditi Singh
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Iori Wada
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Kaizu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Souska Zandi
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Justus G Garweg
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Wataru Shiraishi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Shibata
- Department of Biology and Biochemistry, University of Yamaguchi, Ube, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Alan W Stitt
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Ou C, Lin Y, Wen J, Zhang H, Xu Y, Zhang N, Liu Q, Wu Y, Xu J, Wu J. Roflumilast Attenuates Microglial Senescence and Retinal Inflammatory Neurodegeneration Post Retinal Ischemia Reperfusion Injury Through Inhibiting NLRP3 Inflammasome. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 39446353 PMCID: PMC11512574 DOI: 10.1167/iovs.65.12.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose Retinal ischemia-reperfusion (RIR) injury is implicated in various retinal diseases, leading to retinal ganglion cells (RGCs) degeneration. Microglial senescence exacerbates inflammation, contributing to neurodegeneration. This study aimed to investigate the potential therapeutic role of Roflumilast (Roflu) in ameliorating microglial senescence and neuroinflammation following RIR injury. Methods C57BL/6J mice underwent RIR surgery, and Roflu treatment was administered intraperitoneally. BV2 microglial cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) to simulate ischemic conditions in vitro. SA-β-gal staining was used to detect cellular senescence. Quantitative PCR and ELISA were used to examine the levels of senescence-associated secretory phenotype (SASP) factors. Hematoxylin and eosin (H&E) staining was performed on retinal sections to assess retinal morphology and thickness. Surviving RGCs were labeled and quantified in retinal whole-mounts using immunofluorescence (IF). Furthermore, Western blot and IF staining were used to quantify the proteins associated with the cell cycle and NLRP3 inflammasomes. Results Roflu treatment reduced microglial senescence, ROS production, and secretion of pro-inflammatory cytokines in OGD/R-exposed BV2 cells. It also restored cell proliferation capacity and reversed OGD/R-induced cell cycle arrest. In vivo, Roflu alleviated retinal senescence, preserved retinal thickness, and protected against RGCs death in the RIR mouse model. Mechanistically, Roflu inhibited the NLRP3 inflammasome activation and suppressed DNA damage signaling pathway in microglia. Conclusions Roflu exerts neuroprotective effects by mitigating microglial senescence and inflammation via inhibition of the NLRP3 inflammasome in RIR injury. These findings suggest that Roflu may serve as a promising therapeutic strategy for retinal diseases associated with ischemic injury by targeting microglial senescence.
Collapse
Affiliation(s)
- Chunlian Ou
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of General Practice, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Yiwei Lin
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wen
- Department of Ophthalmology, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Hongyang Zhang
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong, China
| | - Naiyuan Zhang
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingzi Wu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wu
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Wan Y, Li J, Pu J, Yang J, Pei C, Qi Y. Role of caspase-11 non-canonical inflammasomes in retinal ischemia/reperfusion injury. Mol Med 2024; 30:159. [PMID: 39333859 PMCID: PMC11429960 DOI: 10.1186/s10020-024-00938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Retinal ischemia/reperfusion (IR) injury is a common pathological process in many ophthalmic diseases. Interleukin-1β (IL-1β) is an important inflammatory factor involved in the pathology of retinal IR injury, but the mechanism by which IL-1β is regulated in such injury remains unclear. Caspase-11 non-canonical inflammasomes can regulate the synthesis and secretion of IL-1β, but its role in retinal IR injury has not been elucidated. This study aimed to evaluate the role of caspase-11 non-canonical inflammasomes in retinal IR injury. METHODS Retinal IR injury was induced in C57BL/6J mice by increasing the intraocular pressure to 110 mmHg for 60 min. The post-injury changes in retinal morphology and function and in IL-1β expression were compared between caspase-11 gene knockout (caspase-11-/-) mice and wild-type (WT) mice. Morphological and functional changes were evaluated using hematoxylin-eosin staining and retinal whole mount staining and using electroretinography (ERG), respectively. IL-1β expression in the retina was measured using enzyme-linked immunosorbent assay (ELISA). The levels of caspase-11-related protein were measured using western blot analysis. The location of caspase-11 in the retina was determined via immunofluorescence staining. Mouse type I astrocytes C8-D1A cells were used to validate the effects of caspase-11 simulation via hypoxia in vitro. Small-interfering RNA targeting caspase-11 was constructed. Cell viability was evaluated using the MTT assay. IL-1β expression in supernatant and cell lysate was measured using ELISA. The levels of caspase-11-related protein were measured using western blot analysis. RESULTS Retinal ganglion cell death and retinal edema were more ameliorated, and the ERG b-wave amplitude was better after retinal IR injury in caspase-11-/- mice than in WT mice. Further, caspase-11-/- mice showed lower protein expressions of IL-1β, cleaved caspase-1, and gasdermin D (GSDMD) in the retina after retinal IR injury. Caspase-11 protein was expressed in retinal glial cells, and caspase-11 knockdown played a protective role against hypoxia in C8-D1A cells. The expression levels of IL-1β, cleaved caspase-1, and GSDMD were inhibited after hypoxia in the si-caspase-11 constructed cells. CONCLUSIONS Retinal IR injury activates caspase-11 non-canonical inflammasomes in glial cells of the retina. This results in increased protein levels of GSDMD and IL-1β and leads to damage in the inner layer of the retina.
Collapse
Affiliation(s)
- Yong Wan
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiayu Li
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jialei Pu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jing Yang
- Department of Health Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yun Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
12
|
Tabatabaei SA, Ebrahimi Z, Soleimani M, Mahdizad Z, Atighechian M, Bazvand F, Mehrabi Bahar M, Mirzaei A, Dehghani S. Vascular changes in the retinal capillary network in fellow eye of the patients with central retinal artery occlusion. Int Ophthalmol 2024; 44:396. [PMID: 39327323 DOI: 10.1007/s10792-024-03304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND We aimed to evaluate the retinal vascular changes in the superficial and deep retinal vascular networks in the fellow eye of patients with central retinal artery occlusion (CRAO) and compare them with controls using optical coherence tomography angiography (OCT-A). METHODS In a cross-sectional study, 27 patients with CRAO and 189 normal controls were included. Ophthalmic examination and OCT-A images were performed on all participants. RESULTS The total vascular density of the superficial capillary network in the 6-mm scan was significantly lower in the fellow eye of patients with CRAO than in the control group (p = 0.02). No significant difference was observed in the FAZ area of the affected eyes and their fellow eyes compared with the controls. Total vascular density at 300 microns around the fovea was lower in the fellow eye compared with the control group (p = 0.034). CONCLUSIONS The retinal vascular network changes in the fellow eyes of patients with CRAO suggest that persistent microvascular changes may be present before the onset of CRAO. This finding indicates that such changes could serve as an early diagnostic window for systemic vascular changes before catastrophic vascular events occur.
Collapse
Affiliation(s)
| | - Zohre Ebrahimi
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, USA
| | - Zahra Mahdizad
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Bazvand
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Mirzaei
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shakiba Dehghani
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ma J, Zhao Y, Cui Y, Lin H. Hypoxia Postconditioning Attenuates Hypoxia-Induced Inflammation and Endothelial Barrier Dysfunction. J Surg Res 2024; 301:413-422. [PMID: 39042975 DOI: 10.1016/j.jss.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION In recent years, a number of studies have demonstrated that hypoxia reoxygenation (HR) induced by ischemia postconditioning (IPC) reduces endothelial barrier dysfunction and inflammation in various models. When HR occurs, the P38 mitogen-activated protein kinase (P38 MAPK) breaks down the endothelial barrier. But no study has clearly clarified the effect of hypoxia postconditioning (HPC) on P38 MAPK in human dermal microvascular endothelial cells. Therefore, we investigated the function of HPC on P38 MAPK during HR in vitro. METHODS Human dermal microvascular endothelial cells were cultured in a hypoxic incubator for 8 h. Then cells were reperfused for 12 h (reoxygenation) or postconditioned by 5 min of reoxygenation and 5 min of re-hypoxia 3 times followed by 11.5 h reoxygenation. SB203580 was used as an inhibitor of P38 MAPK. Cell counting kit-8 assay kits were employed to detect cell activity. The corresponding levels of IL-6, IL-8 and IL-1β were examined via Enzyme-Linked ImmunoSorbent Assay. The endothelial barrier was evaluated using fluorescein isothiocyanate-dextran leakage assay. Western blot was used to detect claudin-5, phosphorylation of P38 MAPK (P-P38 MAPK) and P38 MAPK expression. Claudin-5 localization was studied by immunofluorescence. RESULTS HR induced endothelial barrier hyperpermeability, elevated inflammation levels, and increased the P-P38 MAPK. But HPC reduced cell injury and maintained the integrity of the endothelial barrier while inhibiting P-P38 MAPK and increasing expression of claudin-5. HPC redistributed claudin-5 in a continuous and linear pattern on the cell membrane. CONCLUSIONS HPC protects against HR induced downregulation and redistribution of claudin-5 by inhibiting P-P38 MAPK.
Collapse
Affiliation(s)
- Jiaxing Ma
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yinhua Zhao
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yue Cui
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huang Lin
- Plastic and Reconstructive Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Zhou L, Xu Z, Lu H, Cho H, Xie Y, Lee G, Ri K, Duh EJ. Suppression of inner blood-retinal barrier breakdown and pathogenic Müller glia activation in ischemia retinopathy by myeloid cell depletion. J Neuroinflammation 2024; 21:210. [PMID: 39182142 PMCID: PMC11344463 DOI: 10.1186/s12974-024-03190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Ischemic retinopathies including diabetic retinopathy are major causes of vision loss. Inner blood-retinal barrier (BRB) breakdown with retinal vascular hyperpermeability results in macular edema. Although dysfunction of the neurovascular unit including neurons, glia, and vascular cells is now understood to underlie this process, there is a need for fuller elucidation of the underlying events in BRB dysfunction in ischemic disease, including a systematic analysis of myeloid cells and exploration of cellular cross-talk. We used an approach for microglia depletion with the CSF-1R inhibitor PLX5622 (PLX) in the retinal ischemia-reperfusion (IR) model. Under non-IR conditions, PLX treatment successfully depleted microglia in the retina. PLX suppressed the microglial activation response following IR as well as infiltration of monocyte-derived macrophages. This occurred in association with reduction of retinal expression of chemokines including CCL2 and the inflammatory adhesion molecule ICAM-1. In addition, there was a marked suppression of retinal neuroinflammation with reduction in expression of IL-1b, IL-6, Ptgs2, TNF-a, and Angpt2, a protein that regulates BRB permeability. PLX treatment significantly suppressed inner BRB breakdown following IR, without an appreciable effect on neuronal dysfunction. A translatomic analysis of Müller glial-specific gene expression in vivo using the Ribotag approach demonstrated a strong suppression of Müller cell expression of multiple pro-inflammatory genes following PLX treatment. Co-culture studies of Müller cells and microglia demonstrated that activated microglia directly upregulates Müller cell-expression of these inflammatory genes, indicating Müller cells as a downstream effector of myeloid cells in retinal IR. Co-culture studies of these two cell types with endothelial cells demonstrated the ability of both activated microglia and Müller cells to compromise EC barrier function. Interestingly, quiescent Müller cells enhanced EC barrier function in this co-culture system. Together this demonstrates a pivotal role for myeloid cells in inner BRB breakdown in the setting of ischemia-associated disease and indicates that myeloid cells play a major role in iBRB dysregulation, through direct and indirect effects, while Müller glia participate in amplifying the neuroinflammatory effect of myeloid cells.
Collapse
Affiliation(s)
- Lingli Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhenhua Xu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haining Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongkwan Cho
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yangyiran Xie
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Grace Lee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaoru Ri
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Shah FH, Lee HW. Endothelial and macrophage interactions in the angiogenic niche. Cytokine Growth Factor Rev 2024; 78:64-76. [PMID: 39019663 DOI: 10.1016/j.cytogfr.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The interactions between vascular cells, especially endothelial cells, and macrophages play a pivotal role in maintaining the subtle balance of vascular biology, which is crucial for angiogenesis in both healthy and diseased states. These cells are central to ensuring a harmonious balance between tissue repair and preventing excessive angiogenic activity, which could lead to pathological conditions. Recent advances in sophisticated genetic engineering vivo models and novel sequencing approaches, such as single-cell RNA-sequencing, in immunobiology have significantly enhanced our understanding of the gene expression and behavior of macrophages. These insights offer new perspectives on the role macrophages play not only in development but also across various health conditions. In this review, we explore the complex interactions between multiple types of macrophages and endothelium, focusing on their impact on new blood vessel formation. By understanding these intricate interactions, we aim to provide insights into new methods for managing angiogenesis in various diseases, thereby offering hope for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
16
|
Shahror RA, Shosha E, Morris C, Wild M, Mu S, Csanyi G, Boerma M, Rusch NJ, Fouda AY. Deletion of myeloid HDAC3 promotes efferocytosis to ameliorate retinal ischemic injury. J Neuroinflammation 2024; 21:170. [PMID: 38997746 PMCID: PMC11241909 DOI: 10.1186/s12974-024-03159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Ischemia-induced retinopathy is a hallmark finding of common visual disorders including diabetic retinopathy (DR) and central retinal artery and vein occlusions. Treatments for ischemic retinopathies fail to improve clinical outcomes and the design of new therapies will depend on understanding the underlying disease mechanisms. Histone deacetylases (HDACs) are an enzyme class that removes acetyl groups from histone and non-histone proteins, thereby regulating gene expression and protein function. HDACs have been implicated in retinal neurovascular injury in preclinical studies in which nonspecific HDAC inhibitors mitigated retinal injury. Histone deacetylase 3 (HDAC3) is a class I histone deacetylase isoform that plays a central role in the macrophage inflammatory response. We recently reported that myeloid cells upregulate HDAC3 in a mouse model of retinal ischemia-reperfusion (IR) injury. However, whether this cellular event is an essential contributor to retinal IR injury is unknown. In this study, we explored the role of myeloid HDAC3 in ischemia-induced retinal neurovascular injury by subjecting myeloid-specific HDAC3 knockout (M-HDAC3 KO) and floxed control mice to retinal IR. The M-HDAC3 KO mice were protected from retinal IR injury as shown by the preservation of inner retinal neurons, vascular integrity, and retinal thickness. Electroretinography confirmed that this neurovascular protection translated to improved retinal function. The retinas of M-HDAC3 KO mice also showed less proliferation and infiltration of myeloid cells after injury. Interestingly, myeloid cells lacking HDAC3 more avidly engulfed apoptotic cells in vitro and after retinal IR injury in vivo compared to wild-type myeloid cells, suggesting that HDAC3 hinders the reparative phagocytosis of dead cells, a process known as efferocytosis. Further mechanistic studies indicated that although HDAC3 KO macrophages upregulate the reparative enzyme arginase 1 (A1) that enhances efferocytosis, the inhibitory effect of HDAC3 on efferocytosis is not solely dependent on A1. Finally, treatment of wild-type mice with the HDAC3 inhibitor RGFP966 ameliorated the retinal neurodegeneration and thinning caused by IR injury. Collectively, our data show that HDAC3 deletion enhances macrophage-mediated efferocytosis and protects against retinal IR injury, suggesting that inhibiting myeloid HDAC3 holds promise as a novel therapeutic strategy for preserving retinal integrity after ischemic insult.
Collapse
Affiliation(s)
- Rami A Shahror
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Esraa Shosha
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt
| | - Carol Morris
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Melissa Wild
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Gabor Csanyi
- Department of Pharmacology and Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, Office, AR, 72205, USA.
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt.
| |
Collapse
|
17
|
Dou Y, Fei X, He X, Huan Y, Wei J, Wu X, Lyu W, Fei Z, Li X, Fei F. Homer1a reduces inflammatory response after retinal ischemia/reperfusion injury. Neural Regen Res 2024; 19:1608-1617. [PMID: 38051906 PMCID: PMC10883521 DOI: 10.4103/1673-5374.386490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/25/2023] [Indexed: 12/07/2023] Open
Abstract
Abstract
JOURNAL/nrgr/04.03/01300535-202407000-00042/figure1/v/2023-11-20T171125Z/r/image-tiff
Elevated intraocular pressure (IOP) is one of the causes of retinal ischemia/reperfusion injury, which results in NLRP3 inflammasome activation and leads to visual damage. Homer1a is reported to play a protective role in neuroinflammation in the cerebrum. However, the effects of Homer1a on NLRP3 inflammasomes in retinal ischemia/reperfusion injury caused by elevated IOP remain unknown. In our study, animal models were constructed using C57BL/6J and Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice with elevated IOP-induced retinal ischemia/reperfusion injury. For in vitro experiments, the oxygen-glucose deprivation/reperfusion injury model was constructed with Müller cells. We found that Homer1a overexpression ameliorated the decreases in retinal thickness and Müller cell viability after ischemia/reperfusion injury. Furthermore, Homer1a knockdown promoted NF-κB P65Ser536 activation via caspase-8, NF-κB P65 nuclear translocation, NLRP3 inflammasome formation, and the production and processing of interleukin-1β and interleukin-18. The opposite results were observed with Homer1a overexpression. Finally, the combined administration of Homer1a protein and JSH-23 significantly inhibited the reduction in retinal thickness in Homer1flox/
–/Homer1a+/
–/Nestin-Cre+/
– mice and apoptosis in Müller cells after ischemia/reperfusion injury. Taken together, these studies demonstrate that Homer1a exerts protective effects on retinal tissue and Müller cells via the caspase-8/NF-κB P65/NLRP3 pathway after I/R injury.
Collapse
Affiliation(s)
- Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Weihao Lyu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
18
|
Liu N, Liang H, Hong Y, Lu X, Jin X, Li Y, Tang S, Li Y, Cao W. Gallic acid pretreatment mitigates parathyroid ischemia-reperfusion injury through signaling pathway modulation. Sci Rep 2024; 14:12971. [PMID: 38839854 PMCID: PMC11153493 DOI: 10.1038/s41598-024-63470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Thyroid surgery often results in ischemia-reperfusion injury (IRI) to the parathyroid glands, yet the mechanisms underlying this and how to ameliorate IRI remain incompletely explored. Our study identifies a polyphenolic herbal extract-gallic acid (GA)-with antioxidative properties against IRI. Through flow cytometry and CCK8 assays, we investigate the protective effects of GA pretreatment on a parathyroid IRI model and decode its potential mechanisms via RNA-seq and bioinformatics analysis. Results reveal increased apoptosis, pronounced G1 phase arrest, and significantly reduced cell proliferation in the hypoxia/reoxygenation group compared to the hypoxia group, which GA pretreatment mitigates. RNA-seq and bioinformatics analysis indicate GA's modulation of various signaling pathways, including IL-17, AMPK, MAPK, transient receptor potential channels, cAMP, and Rap1. In summary, GA pretreatment demonstrates potential in protecting parathyroid cells from IRI by influencing various genes and signaling pathways. These findings offer a promising therapeutic strategy for hypoparathyroidism treatment.
Collapse
Affiliation(s)
- Nianqiu Liu
- Departments of Breast Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Hongmin Liang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuan Hong
- Departments of Laboratory, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xiaokai Lu
- Departments of Ultrasound, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, People's Republic of China
| | - Xin Jin
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yuting Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Shiying Tang
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Yihang Li
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China
| | - Weihan Cao
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650000, Yunnan, People's Republic of China.
| |
Collapse
|
19
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
20
|
Zhao C, Ma G, Tao S, Wang M, Chen Z, Fang Y, Shi W. Qi-Ju-Di-Huang-Pill delays the progression of diabetic retinopathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117751. [PMID: 38216102 DOI: 10.1016/j.jep.2024.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi-Ju-Di-Huang-Pill (QJDH pill) is a Chinese decoction. Although it is commonly used to treat eye conditions, such as diabetic retinopathy (DR), its exact mechanism of action is unknown. AIM OF THE STUDY To investigate the specific mechanism by which QJDH pill slows the progression of diabetic retinopathy (DR) based on animal and cellular experiments. MATERIAL AND METHODS The major components of QJDH pill were characterized by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLCMS/MS). C57BL/6J mice were randomly divided into five groups as follows: normal group (control group), model group (STZ group), low-dosage QJDH pill group (QJDH-L group), medium-dosage QJDH pill group (QJDH-M group) and high-dosage QJDH pill group (QJDH-H group). Changes in water intake, urination, food intake, and body mass were monitored weekly, while changes in blood glucose were monitored monthly. Fluorescein fundus angiography (FFA), optical coherence tomography angiography (OCTA), and optical coherence tomography (OCT) were utilized to analyze the changes in fundus imaging indications. Hematoxylin & eosin (H&E) and transmission electron microscopy (TEM) were employed to examine histopathologic and ultrastructural changes in retina. The levels of interleukin-6 (IL-6), interleukin-17 (IL-17), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) in peripheral blood were detected using Enzyme-linked immunosorbent assay (ELISA). The mouse retina apoptotic cells were labeled with green fluorescence via terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (Tunel). The protein levels of Bcl-2-Associated X (Bax), B cell lymphoma 2 (Bcl-2), Caspase-3, PI3K, phosphorylated PI3K (p-PI3K), protein kinase B (AKT) and phosphorylated AKT (p-AKT) were quantified by Western blot (WB). The retinal pigment epithelium (RPE) cells were cultured and classified into five groups as follows: normal glucose group (NG group), high glucose group (HG group), high glucose + QJDH pill group (HG + QJDH group), high glucose + inhibitor group (HG + LY294002 group), and high glucose + inhibitor + QJDH pill group (HG + LY294002 + QJDH group). Cell viability and apoptosis were detected via Cell Counting Kit-8 (CCK8) and then analyzed by flow cytometry. RESULTS In vivo experiments revealed that the QJDH pill effectively reduced blood glucose, symptoms of increased water intake, elevated urination, increased food intake and decreased body mass in DR mice. QJDH pill also slowed the development of a series of fundus imaging signs, such as retinal microangiomas, tortuous dilatation of blood vessels, decreased vascular density, and thinning of retinal thickness, downregulated IL-6, IL-17, TNF-α, and VEGF levels in peripheral blood, and inhibited retinal cell apoptosis by activating the PI3K/AKT signaling pathway. Moreover, in vitro experiments showed that high glucose environment inhibited RPE cell viability and activated RPE cell apoptosis pathway. In contrast, lyophilized powder of QJDH pill increased RPE cell viability, protected RPE cells from high glucose-induced damage, and decreased apoptosis of RPE cells by activating the pi3k pathway. CONCLUSION QJDH pill induces hypoglycemic, anti-inflammatory effects, anti-VEGF and anti-retinal cell apoptosis by activating PI3K/AKT signaling pathway, and thus can protect the retina and slow the DR progression.
Collapse
Affiliation(s)
- Chunlin Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Guangcheng Ma
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Sihan Tao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Mingyue Wang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zhuolin Chen
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Yiming Fang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Wei Shi
- Department of Ophthalmology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
21
|
Feng J, Li Y, Wang C, Wang Y, Wan Y, Zheng M, Chen T, Xiao X. Peripheral blood transcriptomic analysis identifies potential inflammation and immune signatures for central retinal artery occlusion. Sci Rep 2024; 14:7398. [PMID: 38548806 PMCID: PMC10978867 DOI: 10.1038/s41598-024-57052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Central retinal artery occlusion (CRAO) is an acute retinal ischaemic disease, but early diagnosis is challenging due to a lack of biomarkers. Blood samples were collected from CRAO patients and cataract patients. Gene expression profiles were distinct between arterial/venous CRAO blood (A-V group) and venous CRAO/control blood (V-C group) samples. Differentially expressed genes (DEGs) were subjected to GO and KEGG enrichment analyses. Hub genes were identified by Cytoscape and used to predict gene interactions via GeneMANIA. Immune cell infiltration was analysed by CIBERSORT. More than 1400 DEGs were identified in the A-V group and 112 DEGs in the V-C group compared to controls. The DEGs in both groups were enriched in the ribosome pathway, and those in the V-C group were also enriched in antigen processing/MHC pathways. Network analysis identified ribosomal proteins (RPS2 and RPS5) as the core genes of the A-V group and MHC genes (HLA-F) as the core genes of the V-C group. Coexpression networks showed ribosomal involvement in both groups, with additional immune responses in the V-C group. Immune cell analysis indicated increased numbers of neutrophils and T cells. Ribosomal and MHC-related genes were identified as potential CRAO biomarkers, providing research directions for prevention, diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Jiaqing Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Chuansen Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuedan Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuwei Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Mengxue Zheng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Huang G, Zhang S, Liao J, Qin Y, Hong Y, Chen Q, Lin Y, Li Y, Lan L, Hu W, Huang K, Tang F, Tang N, Jiang L, Shen C, Cui L, Zhong H, Li M, Lu P, Shu Q, Wei Y, Xu F. BMX deletion mitigates neuroinflammation induced by retinal ischemia/reperfusion through modulation of the AKT/ERK/STAT3 signaling cascade. Heliyon 2024; 10:e27114. [PMID: 38434304 PMCID: PMC10907772 DOI: 10.1016/j.heliyon.2024.e27114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Aims Retinal ischemia/reperfusion (I/R) injury is implicated in the etiology of various ocular disorders. Prior research has demonstrated that bone marrow tyrosine kinase on chromosome X (BMX) contributes to the advancement of ischemic disease and inflammatory reactions. Consequently, the current investigation aims to evaluate BMX's impact on retinal I/R injury and clarify its implied mechanism of action. Main methods This study utilized male and female systemic BMX knockout (BMX-/-) mice to conduct experiments. The utilization of Western blot assay and immunofluorescence labeling techniques was employed to investigate variations in the expression of protein and tissue localization. Histomorphological changes were observed through H&E staining and SD-OCT examination. Visual function changes were assessed through electrophysiological experiments. Furthermore, apoptosis in the retina was identified using the TUNEL assay, as well as the ELISA technique, which has been utilized to determine the inflammatory factors level. Key findings Our investigation results revealed that the knockdown of BMX did not yield a significant effect on mouse retina. In mice, BMX knockdown mitigated the negative impact of I/R injury on retinal tissue structure and visual function. BMX knockdown effectively reduced apoptosis, suppressed inflammatory responses, and decreased inflammatory factors subsequent to I/R injury. The outcomes of the current investigation revealed that BMX knockdown partially protected the retina through downregulating phosphorylation of AKT/ERK/STAT3 pathway. Significance Our investigation showed that BMX-/- reduces AKT, ERK, and STAT3 phosphorylation, reducing apoptosis and inflammation. Thus, this strategy protected the retina from structural and functional damage after I/R injury.
Collapse
Affiliation(s)
- Guangyi Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Shaoyang Zhang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Jing Liao
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yuanjun Qin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yiyi Hong
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qi Chen
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yunru Lin
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yue Li
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Lin Lan
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wen Hu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Kongqian Huang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Fen Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Ningning Tang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Ling Cui
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Haibin Zhong
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Peng Lu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Qinmeng Shu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Guangzhou, 510060, China
| | - Fan Xu
- Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology &Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| |
Collapse
|
23
|
Chen H, Wu L, Zhang Y, Ding W, Xiaofan Y. Steroid inhibited Serpina3n expression which was positively correlated with the degrees of spinal cord injury. Heliyon 2024; 10:e26649. [PMID: 38449654 PMCID: PMC10915347 DOI: 10.1016/j.heliyon.2024.e26649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Aims The aim of our project was to identify proteins associated with the extent of spinal cord injury (SCI) and subsequent long-term neurological recovery. Methods Through proteomic analysis, we identified proteins that are differentially expressed specifically in the acute phase of injury. We analyzed the concentrations of differentially expressed proteins in serum and the injured spinal cord segment by ELISA. Results Serpina3n protein expression in the injured spinal cord segment was increased 101-fold at 12 h after severe SCI and 89-fold at 12 h after mild SCI, as determined by LC‒MS/MS. In the mild and severe SCI groups, serum Serpina3n levels began to increase at 12 h and peaked at 24 h. At 12 h, 24 h and 3 d after injury, serum Serpina3n protein levels were significantly correlated with the severity of injury (12 h: r = 0.6034, P = 0.008; 24 h: r = 0.7542, P = 0.0003; 3 d: r = 0.862, P < 0.001). Serum Serpina3n levels at 2 h, 24 h and 3 d post injury were significantly correlated with long-term neurological recovery at 28 d after SCI (2 h: r = -0.5781, P = 0.012; 24 h: r = -0.5912, P = 0.0098; 3 d: r = -0.7792, P < 0.0001). Methylprednisolone treatment would decrease the serum Serpina3n levels in mice with mild and severe SCI compared with those in placebo-group mice at 12 h and 24 h after SCI. The serum Serpina3n concentration in the severe SCI group was significantly reduced on the third day after steroid treatment. Conclusion Taken together, these data suggest that serpina3n may be a circulating biomarker of acute SCI and may be closely associated with injury severity and long-term motor function recovery.
Collapse
Affiliation(s)
- Haihong Chen
- Orthopaedic Department, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Liang Wu
- Orthopaedic Department, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Yue Zhang
- Rehabilitation Department, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Wang Ding
- Orthopaedic Department, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Yin Xiaofan
- Orthopaedic Department, Minhang Hospital, Fudan University, Shanghai, 201199, China
| |
Collapse
|
24
|
Shahror RA, Morris CA, Mohammed AA, Wild M, Zaman B, Mitchell CD, Phillips PH, Rusch NJ, Shosha E, Fouda AY. Role of myeloid cells in ischemic retinopathies: recent advances and unanswered questions. J Neuroinflammation 2024; 21:65. [PMID: 38454477 PMCID: PMC10918977 DOI: 10.1186/s12974-024-03058-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Myeloid cells including microglia and macrophages play crucial roles in retinal homeostasis by clearing cellular debris and regulating inflammation. These cells are activated in several blinding ischemic retinal diseases including diabetic retinopathy, where they may exert both beneficial and detrimental effects on neurovascular function and angiogenesis. Myeloid cells impact the progression of retinal pathologies and recent studies suggest that targeting myeloid cells is a promising therapeutic strategy to mitigate diabetic retinopathy and other ischemic retinal diseases. This review summarizes the recent advances in our understanding of the role of microglia and macrophages in retinal diseases and focuses on the effects of myeloid cells on neurovascular injury and angiogenesis in ischemic retinopathies. We highlight gaps in knowledge and advocate for a more detailed understanding of the role of myeloid cells in retinal ischemic injury to fully unlock the potential of targeting myeloid cells as a therapeutic strategy for retinal ischemia.
Collapse
Affiliation(s)
- Rami A Shahror
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Carol A Morris
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Aya A Mohammed
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Melissa Wild
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Bushra Zaman
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Christian D Mitchell
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Paul H Phillips
- Department of Ophthalmology, Harvey & Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
| | - Esraa Shosha
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences (UAMS), 4301 West Markham Street, Slot 611, BIOMED-1, B306, Little Rock, AR, 72205, USA.
- Clinical Pharmacy Department, Cairo University, Cairo, Egypt.
| |
Collapse
|
25
|
He S, Liu C, Ren C, Zhao H, Zhang X. Immunological Landscape of Retinal Ischemia-Reperfusion Injury: Insights into Resident and Peripheral Immune Cell Responses. Aging Dis 2024; 16:AD.2024.0129. [PMID: 38502592 PMCID: PMC11745425 DOI: 10.14336/ad.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Retinal ischemia-reperfusion injury (RIRI) is a complex condition characterized by immune cell-mediated inflammation and consequent neuronal damage. This review delves into the immune response mechanisms in RIRI, particularly emphasizing the roles played by resident and peripheral immune cells. It highlights the pivotal role of microglia, the primary resident immune cells, in exacerbating neuroinflammation and neuronal damage through their activation and subsequent release of pro-inflammatory mediators. Additionally, the review explores the contributions of other glial cell types, such as astrocytes and Müller cells, in modulating the immune response within the retinal environment. The dual role of the complement system in RIRI is also examined, revealing its complex functions in both safeguarding and impairing retinal health. Inflammasomes, triggered by various danger signals, are discussed as crucial contributors to the inflammatory pathways in RIRI, with an emphasis on the involvement of different NOD-like receptor family proteins. The review further analyzes the infiltration and impact of peripheral immune cells like neutrophils, macrophages, and T cells, which migrate to the retina following ischemic injury. Critical to this discussion is the interplay between resident and peripheral immune cells and its implications for RIRI pathophysiology. Finally, the review outlines future research directions, focusing on basic research and the potential for clinical translation to enhance understanding and treatment of RIRI.
Collapse
Affiliation(s)
- Shan He
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
| | - Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China.
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| | - Xuxiang Zhang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Yuan M, He Q, Xiang W, Deng Y, Lin S, Zhang R. Natural compounds efficacy in Ophthalmic Diseases: A new twist impacting ferroptosis. Biomed Pharmacother 2024; 172:116230. [PMID: 38350366 DOI: 10.1016/j.biopha.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Ferroptosis, a distinct form of cell death, is characterized by the iron-mediated oxidation of lipids and is finely controlled by multiple cellular metabolic pathways. These pathways encompass redox balance, iron regulation, mitochondrial function, as well as amino acid, lipid, and sugar metabolism. Additionally, various disease-related signaling pathways also play a role in the regulation of ferroptosis. In recent years, with the introduction of the concept of ferroptosis and the deepening of research on its mechanism, ferroptosis is closely related to various biological conditions of eye diseases, including eye organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanism of ferroptosis, and its latest research progress in ophthalmic diseases and reviews the research on ferroptosis in ocular diseases within the framework of metabolism, active oxygen biology, and iron biology. Key regulators and mechanisms of ferroptosis in ocular diseases introduce important concepts and major open questions in the field of ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs will be made in the regulation mechanism of ferroptosis and the use of ferroptosis to promote the treatment of eye diseases. At the same time, natural compounds may be the direction of new drug development for the potential treatment of ferroptosis in the future. Open up a new way for clinical ophthalmologists to research and prevent diseases.
Collapse
Affiliation(s)
- Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shibin Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Riping Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
27
|
Biber J, Jabri Y, Glänzer S, Dort A, Hoffelner P, Schmidt CQ, Bludau O, Pauly D, Grosche A. Gliosis-dependent expression of complement factor H truncated variants attenuates retinal neurodegeneration following ischemic injury. J Neuroinflammation 2024; 21:56. [PMID: 38388518 PMCID: PMC10885619 DOI: 10.1186/s12974-024-03045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Inherited, age-related, and acute retinal diseases are often exacerbated by an aberrant or excessive activity of the complement system. Consequently, cells not directly affected by an acute event or genetic variants may degenerate, resulting in enhanced visual impairment. The therapeutic potential of supplementation of complement factor H (FH), a key regulator of the complement cascade, is therefore particularly promising in the context of retinal diseases caused by complement activation. In this study, we engineered adeno-associated viruses (AAVs) containing sequences of two truncated human FH variants. The expression of these variants was regulated by the glial fibrillary acidic protein (GFAP) promoter, which is selectively active in gliotic Müller cells. Both FH variants consisted of FH domains 19-20, which were connected to domains 1-4 and 1-7, respectively, by a polyglycine linker. These AAVs were intravitreally injected following ischemic injury of C57BL/6J mouse retinas. We observed transgene expression in gliotic Müller cells and to some extent in astrocytes. The expression correlated directly with damage severity. Interventions resulted in decreased complement activation, accelerated normalization of microglia activity and morphological improvements. Reduced levels of C3 transcripts and C3d protein in conjunction with higher transcript levels of inhibitory regulators like Cfi and Cfh, hinted at attenuated complement activity. This study demonstrates the great potential of complement regulatory gene addition therapy. With further in vivo testing it could be applied to treat a wide range of retinal diseases where no causative therapies are available.
Collapse
Affiliation(s)
- Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Sarah Glänzer
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Aaron Dort
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Patricia Hoffelner
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
- Institute of Pharmacy, Biochemical Pharmacy Group, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Diana Pauly
- Experimental Ophthalmology, University of Marburg, Marburg, Germany.
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Brown RB. Myopia, Sodium Chloride, and Vitreous Fluid Imbalance: A Nutritional Epidemiology Perspective. EPIDEMIOLOGIA 2024; 5:29-40. [PMID: 38390916 PMCID: PMC10885086 DOI: 10.3390/epidemiologia5010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Theories of myopia etiology based on near work and lack of outdoor exposure have had inconsistent support and have not prevented the rising prevalence of global myopia. New scientific theories in the cause and prevention of myopia are needed. Myopia prevalence is low in native people consuming traditional diets lacking in sodium chloride, and nutritional epidemiological evidence supports the association of rising myopia prevalence with dietary sodium intake. East Asian populations have among the highest rates of myopia associated with high dietary sodium. Similar associations of sodium and rising myopia prevalence were observed in the United States in the late 20th century. The present perspective synthesizes nutritional epidemiology evidence with pathophysiological concepts and proposes that axial myopia occurs from increased fluid retention in the vitreous of the eye, induced by dietary sodium chloride intake. Salt disturbs ionic permeability of retinal membranes, increases the osmotic gradient flow of fluid into the vitreous, and stretches ocular tissue during axial elongation. Based on the present nutritional epidemiology evidence, experimental research should investigate the effect of sodium chloride as the cause of myopia, and clinical research should test a very low-salt diet in myopia correction and prevention.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
29
|
Li L, Zuo S, Liu Y, Yang L, Ge S, Ye F, Chai P, Lu L. Single-Cell Transcriptomic Sequencing Reveals Tissue Architecture and Deciphers Pathological Reprogramming During Retinal Ischemia in Macaca fascicularis. Invest Ophthalmol Vis Sci 2024; 65:27. [PMID: 38214685 PMCID: PMC10790672 DOI: 10.1167/iovs.65.1.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
Purpose Acute retinal arterial ischemia diseases (ARAIDs) are ocular emergencies that require immediate intervention within a restricted therapeutic window to prevent blindness. However, the underlying molecular mechanisms contributing to the pathogenesis of ARAIDs remain enigmatic. Herein, we present the single-cell RNA sequencing (scRNA-seq) alterations during ischemia in the primate retina as a preliminary endeavor in understanding the molecular complexities of ARAIDs. Methods An ophthalmic artery occlusion model was established through ophthalmic artery ligation in two Macaca fascicularis. scRNA-seq and bioinformatics analyses were used to detect retinal changes during ischemia, which are further validated by immunofluorescence analysis. Western blot and flow cytometry assays were performed to measure the microglia polarization status. Results The findings of this study reveal notable changes in the retina under acute ischemic conditions. Particularly, retinal ischemia compromised mitochondrial functions of rod photoreceptors, partly leading to the rapid loss of healthy rods. Furthermore, we observed a noteworthy transcriptional alteration in the activation of microglia induced by ischemia. The targeted correction of the proinflammatory cytokine CXCL8 effectively suppresses microglia M1 polarization in retinal ischemia, ultimately reducing the proinflammatory transformation in vitro. In addition, retina ischemia induced the apoptotic inclination of endothelial cells and the heightened interaction with microglia, which signifies the influence of microglia in disrupting the retinal-blood barrier. Conclusions Our research has successfully identified and described the pathologic alterations occurring in several cell types during a short period of ischemia. These observations provide valuable insights for ameliorating retinal damage and promoting the restoration of vision.
Collapse
Affiliation(s)
- Lin Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Sipeng Zuo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Yan Liu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Fuxiang Ye
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Rohilla M, Rishabh, Bansal S, Garg A, Dhiman S, Dhankhar S, Saini M, Chauhan S, Alsubaie N, Batiha GES, Albezrah NKA, Singh TG. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy. Biomed Pharmacother 2023; 169:115881. [PMID: 37989030 DOI: 10.1016/j.biopha.2023.115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Diabetic retinopathy (DR) is a form of retinal microangiopathy that occurs as a result of long-term Diabetes mellitus (DM). Patients with Diabetes mellitus typically suffer from DR as a progression of the disease that may be due to initiation and dysregulation of pathways like the polyol, hexosamine, the AGE/RAGE, and the PKC pathway, which all have negative impacts on eye health and vision. In this review, various databases, including PubMed, Google Scholar, Web of Science, and Science Direct, were scoured for data relevant to the aforementioned title. The three most common therapies for DR today are retinal photocoagulation, anti-vascular endothelial growth factor (VEGF) therapy, and vitrectomy, however, there are a number of drawbacks and limits to these methods. So, it is of critical importance and profound interest to discover treatments that may successfully address the pathogenesis of DR. Curcumin and β-glucogallin are the two potent compounds of natural origin that are already being used in various nutraceutical formulations for several ailments. They have been shown potent antiapoptotic, anti-inflammatory, antioxidant, anticancer, and pro-vascular function benefits in animal experiments. Their parent plant species have been used for generations by practitioners of traditional herbal medicine for the treatment and prevention of various eye ailments. In this review, we will discuss about pathophysiology of Diabetic retinopathy and the therapeutic potentials of curcumin and β-glucogallin one of the principal compounds from Curcuma longa and Emblica officinalis in Diabetic retinopathy.
Collapse
Affiliation(s)
- Manni Rohilla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India
| | - Rishabh
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Seema Bansal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Anjali Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Swami Devi Dyal College of Pharmacy, Golpura Barwala, Panchkula, Haryana 134118, India
| | - Sachin Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Monika Saini
- Swami Vivekanand College of Pharmacy, Ram Nagar, Banur, Punjab 140601, India; M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Nawal Alsubaie
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Nisreen Khalid Aref Albezrah
- Obstetric and Gynecology Department, Medicine College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
31
|
Bapputty R, Sapa H, Masaru M, Gubitosi-Klug RA. Diabetes Modulates Iodothyronine Deiodinase 2 Expression in the Mouse Retina: A Role for Thyroid Hormone in the Pathogenesis of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 38038617 PMCID: PMC10697172 DOI: 10.1167/iovs.64.15.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
Purpose Clinical investigations associate hypothyroidism with an increased risk for microvascular complications, yet the mechanism by which thyroid hormone regulates the development of diabetic retinopathy is not clearly understood. We investigated the role of iodothyronine deiodinase 2 (DIO2) in the pathogenesis of diabetic retinopathy. Methods Retinas from streptozotocin-induced diabetic and nondiabetic mice were evaluated by RNA sequencing, RT-PCR, and immunostaining. Media and cell lysates from mouse retinal microvascular endothelial cells and retinal astrocytes exposed to physiologic (5 mM) and high glucose (25 mM) containing media were assessed by liquid chromatography-tandem mass spectrometry to measure tetraiodothyronine (T4) and tri-iodothyronine (T3) concentrations and by Western blot analysis to determine the relationship of T4/T3 to oxidative stress and inflammatory mediators. Cell death was determined by Trypan Blue exclusion assay. Results At 12 weeks of diabetes duration, retinas from diabetic mice compared with nondiabetic mice demonstrated a significant decrease in Dio2 transcripts and Dio2 gene and protein (P < 0.05) expression. When cultured in the presence of high glucose, both mouse retinal astrocytes and microvascular endothelial cells demonstrated a significant reduction of DIO2 protein compared with cells cultured in physiologic glucose. High glucose inhibited generation of T3, leading to a significantly increased T4/T3 (P < 0.0079). Supplementation of cells with T3, but not T4, prevented the high glucose-induced rise in endothelial nitric oxide synthase, intercellular cell adhesion molecule 1, and endothelial cell death (P < 0.0079). Conclusions Decreased intraretinal T3 owing to diabetes-induced loss of DIO2 may lead to dysfunction and death of cells in the retina, thereby contributing to the pathogenesis of early diabetic retinopathy.
Collapse
Affiliation(s)
- Reena Bapputty
- Department of Pediatrics, Case Western Reserve University School of Medicine/Rainbow Babies and Children's Hospital, Cleveland, Ohio, United States
| | - Hima Sapa
- Department of Nephrology and Hypertension, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Miyagi Masaru
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Rose A. Gubitosi-Klug
- Department of Pediatrics, Case Western Reserve University School of Medicine/Rainbow Babies and Children's Hospital, Cleveland, Ohio, United States
| |
Collapse
|
32
|
Li Y, Cheng ZX, Luo T, Lyu HB. Therapeutic potential of iron chelators in retinal vascular diseases. Int J Ophthalmol 2023; 16:1899-1910. [PMID: 38028518 PMCID: PMC10626364 DOI: 10.18240/ijo.2023.11.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/24/2023] [Indexed: 12/01/2023] Open
Abstract
Iron is one of the necessary metal elements in the human body. There are numerous factors that control the balance of iron metabolism, and its storage and transportation mechanisms are intricate. As one of the most energy-intensive tissues in the body, the retina is susceptible to iron imbalance. The occurrence of iron overload in the retina leads to the generation of a significant quantity of reactive oxygen species. This will aggravate local oxidative stress and inflammatory reactions and even lead to ferroptosis, eventually resulting in retinal dysfunction. The blood-retina-retinal barrier is eventually harmed by oxidative stress and elevated inflammation, which are characteristics of retinal vascular disorders. The pathophysiology of retinal vascular disorders may be significantly influenced by iron. Recently, iron-chelating agents have been found to have antioxidative and anti-inflammatory actions in addition to iron chelating. Therefore, iron neutralization is considered to be a new and potentially useful therapeutic strategy. This article reviews the iron overload in retinal vascular diseases and discusses the therapeutic potential of iron-chelating agents.
Collapse
Affiliation(s)
- Yan Li
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Ophthalmology, the People's Hospital of Jianyang, Chengdu 641400, Sichuan Province, China
| | - Zi-Xuan Cheng
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ting Luo
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Ophthalmology, the People's Hospital of Jianyang, Chengdu 641400, Sichuan Province, China
| | - Hong-Bin Lyu
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
33
|
Rudraraju M, Shan S, Liu F, Tyler J, Caldwell RB, Somanath PR, Narayanan SP. Pharmacological Modulation of β-Catenin Preserves Endothelial Barrier Integrity and Mitigates Retinal Vascular Permeability and Inflammation. J Clin Med 2023; 12:7145. [PMID: 38002758 PMCID: PMC10672253 DOI: 10.3390/jcm12227145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Compromised blood-retinal barrier (BRB) integrity is a significant factor in ocular diseases like uveitis and retinopathies, leading to pathological vascular permeability and retinal edema. Adherens and tight junction (AJ and TJ) dysregulation due to retinal inflammation plays a pivotal role in BRB disruption. We investigated the potential of ICG001, which inhibits β-catenin-mediated transcription, in stabilizing cell junctions and preventing BRB leakage. In vitro studies using human retinal endothelial cells (HRECs) showed that ICG001 treatment improved β-Catenin distribution within AJs post lipopolysaccharide (LPS) treatment and enhanced monolayer barrier resistance. The in vivo experiments involved a mouse model of LPS-induced ocular inflammation. LPS treatment resulted in increased albumin leakage from retinal vessels, elevated vascular endothelial growth factor (VEGF) and Plasmalemmal Vesicle-Associated Protein (PLVAP) expression, as well as microglia and macroglia activation. ICG001 treatment (i.p.) effectively mitigated albumin leakage, reduced VEGF and PLVAP expression, and reduced the number of activated microglia/macrophages. Furthermore, ICG001 treatment suppressed the surge in inflammatory cytokine synthesis induced by LPS. These findings highlight the potential of interventions targeting β-Catenin to enhance cell junction stability and improve compromised barrier integrity in various ocular inflammatory diseases, offering hope for better management and treatment options.
Collapse
Affiliation(s)
- Madhuri Rudraraju
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
| | - Jennifer Tyler
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Ruth B. Caldwell
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, Clinical and Administrative Pharmacy Department, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vision Discovery Institute, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
34
|
Zhang Z, Peng S, Xu T, Liu J, Zhao L, Xu H, Zhang W, Zhu Y, Yang Z. Retinal Microenvironment-Protected Rhein-GFFYE Nanofibers Attenuate Retinal Ischemia-Reperfusion Injury via Inhibiting Oxidative Stress and Regulating Microglial/Macrophage M1/M2 Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302909. [PMID: 37653617 PMCID: PMC10602545 DOI: 10.1002/advs.202302909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Retinal ischemia is involved in the occurrence and development of various eye diseases, including glaucoma, diabetic retinopathy, and central retinal artery occlusion. To the best of our knowledge, few studies have reported self-assembling peptide natural products for the suppression of ocular inflammation and oxidative stress. Herein, a self-assembling peptide GFFYE is designed and synthesized, which can transform the non-hydrophilicity of rhein into an amphiphilic sustained-release therapeutic agent, and rhein-based therapeutic nanofibers (abbreviated as Rh-GFFYE) are constructed for the treatment of retinal ischemia-reperfusion (RIR) injury. Rh-GFFYE significantly ameliorates oxidative stress and inflammation in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia and a rat model of RIR injury. Rh-GFFYE also significantly enhances retinal electrophysiological recovery and exhibits good biocompatibility. Importantly, Rh-GFFYE also promotes the transition of M1-type macrophages to the M2 type, ultimately altering the pro-inflammatory microenvironment. Further investigation of the treatment mechanism indicates that Rh-GFFYE activates the PI3K/AKT/mTOR signaling pathway to reduce oxidative stress and inhibits the NF-κB and STAT3 signaling pathways to affect inflammation and macrophage polarization. In conclusion, the rhein-loaded nanoplatform alleviates RIR injury by modulating the retinal microenvironment. The findings are expected to promote the clinical application of hydrophobic natural products in RIR injury-associated eye diseases.
Collapse
Affiliation(s)
- Zhuhong Zhang
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Shengjun Peng
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Tengyan Xu
- Key Laboratory of Bioactive MaterialsMinistry of EducationState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesCollaborative Innovation Center of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071China
| | - Jia Liu
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Laien Zhao
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Hui Xu
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Wen Zhang
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Yuanying Zhu
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Zhimou Yang
- Key Laboratory of Bioactive MaterialsMinistry of EducationState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesCollaborative Innovation Center of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071China
| |
Collapse
|
35
|
Shosha E, Shahror RA, Morris CA, Xu Z, Lucas R, McGee-Lawrence ME, Rusch NJ, Caldwell RB, Fouda AY. The arginase 1/ornithine decarboxylase pathway suppresses HDAC3 to ameliorate the myeloid cell inflammatory response: implications for retinal ischemic injury. Cell Death Dis 2023; 14:621. [PMID: 37735154 PMCID: PMC10514323 DOI: 10.1038/s41419-023-06147-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
The enzyme arginase 1 (A1) hydrolyzes the amino acid arginine to form L-ornithine and urea. Ornithine is further converted to polyamines by the ornithine decarboxylase (ODC) enzyme. We previously reported that deletion of myeloid A1 in mice exacerbates retinal damage after ischemia/reperfusion (IR) injury. Furthermore, treatment with A1 protects against retinal IR injury in wild-type mice. PEG-A1 also mitigates the exaggerated inflammatory response of A1 knockout (KO) macrophages in vitro. Here, we sought to identify the anti-inflammatory pathway that confers macrophage A1-mediated protection against retinal IR injury. Acute elevation of intraocular pressure was used to induce retinal IR injury in mice. A multiplex cytokine assay revealed a marked increase in the inflammatory cytokines interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) in the retina at day 5 after IR injury. In vitro, blocking the A1/ODC pathway augmented IL-1β and TNF-α production in stimulated macrophages. Furthermore, A1 treatment attenuated the stimulated macrophage metabolic switch to a pro-inflammatory glycolytic phenotype, whereas A1 deletion had the opposite effect. Screening for histone deacetylases (HDACs) which play a role in macrophage inflammatory response showed that A1 deletion or ODC inhibition increased the expression of HDAC3. We further showed the involvement of HDAC3 in the upregulation of TNF-α but not IL-1β in stimulated macrophages deficient in the A1/ODC pathway. Investigating HDAC3 KO macrophages showed a reduced inflammatory response and a less glycolytic phenotype upon stimulation. In vivo, HDAC3 co-localized with microglia/macrophages at day 2 after IR in WT retinas and was further increased in A1-deficient retinas. Collectively, our data provide initial evidence that A1 exerts its anti-inflammatory effect in macrophages via ODC-mediated suppression of HDAC3 and IL-1β. Collectively we propose that interventions that augment the A1/ODC pathway and inhibit HDAC3 may confer therapeutic benefits for the treatment of retinal ischemic diseases.
Collapse
Affiliation(s)
- Esraa Shosha
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rami A Shahror
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Carol A Morris
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | | | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Abdelrahman Y Fouda
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
36
|
Liao J, Peng B, Huang G, Diao C, Qin Y, Hong Y, Lin J, Lin Y, Jiang L, Tang N, Tang F, Liang J, Zhang J, Yan Y, Chen Q, Zhou Z, Shen C, Huang W, Huang K, Lan Q, Cui L, Zhong H, Xu F, Li M, Wei Y, Lu P, Zhang M. Inhibition of NOX4 with GLX351322 alleviates acute ocular hypertension-induced retinal inflammation and injury by suppressing ROS mediated redox-sensitive factors activation. Biomed Pharmacother 2023; 165:115052. [PMID: 37399715 DOI: 10.1016/j.biopha.2023.115052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Reactive oxygen species (ROS) overproduction plays an essential role in the etiology of ischemic/hypoxic retinopathy caused by acute glaucoma. NADPH oxidase (NOX) 4 was discovered as one of the main sources of ROS in glaucoma. However, the role and potential mechanisms of NOX4 in acute glaucoma have not been fully elucidated. Therefore, the current study aims to investigate the NOX4 inhibitor GLX351322 that targets NOX4 inhibition in acute ocular hypertension (AOH)-induced retinal ischemia/hypoxia injury in mice. Herein, NOX4 was highly expressed in AOH retinas, particularly the retinal ganglion cell layer (GCL). Importantly, the NOX4 inhibitor GLX351322 reduced ROS overproduction, inhibited inflammatory factor release, suppressed glial cell activation and hyperplasia, inhibited leukocyte infiltration, reduced retinal cell senescence and apoptosis in damaged areas, reduced retinal degeneration and improved retinal function. This neuroprotective effect is at least partially associated with mediated redox-sensitive factor (HIF-1α, NF-κB, and MAPKs) pathways by NOX4-derived ROS overproduction. These results suggest that inhibition of NOX4 with GLX351322 attenuated AOH-induced retinal inflammation, cellular senescence, and apoptosis by inhibiting the activation of the redox-sensitive factor pathway mediated by ROS overproduction, thereby protecting retinal structure and function. Targeted inhibition of NOX4 is expected to be a new idea in the treatment of acute glaucoma.
Collapse
Affiliation(s)
- Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Biyan Peng
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; School of Basic Medical Science, Guangxi Medical University, Nanning 530021, China
| | - Guangyi Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Chunli Diao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Yuanjun Qin
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Yiyi Hong
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Jiali Lin
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Yunru Lin
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Li Jiang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Ningning Tang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Fen Tang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Jiamin Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; School of Basic Medical Science, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Yumei Yan
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Qi Chen
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Zhou Zhou
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Chaolan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Guangzhou 510060, China
| | - Wei Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Guangzhou 510060, China
| | - Kongqian Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Qianqian Lan
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Ling Cui
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Haibin Zhong
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China
| | - Min Li
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China.
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Guangzhou 510060, China.
| | - Peng Lu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning 530000, Guangxi, China.
| | - Mingyuan Zhang
- Life Science Institute, Guangxi Medical University, Nanning 530021, China; Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China; School of Basic Medical Science, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
37
|
Xiao W, Shahror RA, Morris CA, Caldwell RB, Fouda AY. Multi-color Flow Cytometry Protocol to Characterize Myeloid Cells in Mouse Retina Research. Bio Protoc 2023; 13:e4745. [PMID: 37638294 PMCID: PMC10450788 DOI: 10.21769/bioprotoc.4745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 08/29/2023] Open
Abstract
Myeloid cells, specifically microglia and macrophages, are activated in retinal diseases and can improve or worsen retinopathy outcomes based on their inflammatory phenotype. However, assessing the myeloid cell response after retinal injury in mice remains challenging due to the small tissue size and the challenges of distinguishing microglia from infiltrating macrophages. In this protocol paper, we describe a flow cytometry-based protocol to assess retinal microglia/macrophage and their inflammatory phenotype after injury. The protocol is amenable to the incorporation of other markers of interest to other researchers. Key features This protocol describes a flow cytometry-based method to analyze the myeloid cell response in retinopathy mouse models. The protocol can distinguish between microglia- and monocyte-derived macrophages. It can be modified to incorporate markers of interest. We show representative results from three different retinopathy models, namely ischemia-reperfusion injury, endotoxin-induced uveitis, and oxygen-induced retinopathy.
Collapse
Affiliation(s)
- Wei Xiao
- Vascular Biology Center, Augusta University, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Rami A. Shahror
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Carol A. Morris
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ruth B. Caldwell
- Vascular Biology Center, Augusta University, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Abdelrahman Y. Fouda
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Daruich A, Robert MP, Zola M, Matet A, Bremond-Gignac D. Retinal stroke: research models, targets and experimental drugs. Expert Opin Investig Drugs 2023; 32:755-760. [PMID: 37651742 DOI: 10.1080/13543784.2023.2254688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Retinal artery occlusion (RAO), often caused by a microembolus and resulting in inner retinal ischemia, could be considered as the retinal analog to cerebral stroke. Although several therapeutic targets have been suggested in animal models of retinal ischemia and several potential treatments have been evaluated on small series of patients, central retinal artery occlusion (CRAO) is still rarely treatable in clinical practice. AREAS COVERED Here, we review several animal models of RAO, including increased intraocular pressure, laser, vasoconstriction, embolization and clamp. We also review the pathogenic mechanisms that contribute to cell death cascades during ischemia, and the therapeutic strategies targeting these events. These strategies aim to restore blood flow by fibrinolysis, increase the oxygen or glucose supply, decrease the energy demands, restrict ionic leak fluxes or reduce the detrimental effects of glutamate, calcium and free radicals. The current literature suggests that tPA treatment could be effective for CRAO. EXPERT OPINION Eye care professionals must make a rapid and accurate diagnosis and immediately refer patients with acute retinal stroke to specialized centers. CRAO management should also be facilitated by developing local networks to encourage collaboration among ophthalmologists, retina specialists and stroke neurologists.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Sorbonne Paris Cité University, Paris, France
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
- Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Marta Zola
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Sorbonne Paris Cité University, Paris, France
| | - Alexandre Matet
- Ophthalmology Department, Institut Curie, Paris Cité University, Paris, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
39
|
Canonica J, Foxton R, Garrido MG, Lin CM, Uhles S, Shanmugam S, Antonetti DA, Abcouwer SF, Westenskow PD. Delineating effects of angiopoietin-2 inhibition on vascular permeability and inflammation in models of retinal neovascularization and ischemia/reperfusion. Front Cell Neurosci 2023; 17:1192464. [PMID: 37377777 PMCID: PMC10291265 DOI: 10.3389/fncel.2023.1192464] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Clinical trials demonstrated that co-targeting angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF-A) with faricimab controls anatomic outcomes and maintains vision improvements, with strong durability, through 2 years in patients with neovascular age-related macular degeneration and diabetic macular edema. The mechanism(s) underlying these findings is incompletely understood and the specific role that Ang-2 inhibition plays requires further investigation. Methods We examined the effects of single and dual Ang-2/VEGF-A inhibition in diseased vasculatures of JR5558 mice with spontaneous choroidal neovascularization (CNV) and in mice with retinal ischemia/reperfusion (I/R) injuries. Results In JR5558 mice, Ang-2, VEGF-A, and dual Ang-2/VEGF-A inhibition reduced CNV area after 1 week; only dual Ang-2/VEGF-A inhibition decreased neovascular leakage. Only Ang-2 and dual Ang-2/VEGF-A inhibition maintained reductions after 5 weeks. Dual Ang-2/VEGF-A inhibition reduced macrophage/microglia accumulation around lesions after 1 week. Both Ang-2 and dual Ang-2/VEGF-A inhibition reduced macrophage/microglia accumulation around lesions after 5 weeks. In the retinal I/R injury model, dual Ang-2/VEGF-A inhibition was statistically significantly more effective than Ang-2 or VEGF-A inhibition alone in preventing retinal vascular leakage and neurodegeneration. Discussion These data highlight the role of Ang-2 in dual Ang-2/VEGF-A inhibition and indicate that dual inhibition has complementary anti-inflammatory and neuroprotective effects, suggesting a mechanism for the durability and efficacy of faricimab in clinical trials.
Collapse
Affiliation(s)
- Jérémie Canonica
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Richard Foxton
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Marina Garcia Garrido
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, Ann Arbor, MI, United States
| | - Sabine Uhles
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, Ann Arbor, MI, United States
| | - David A. Antonetti
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, Ann Arbor, MI, United States
| | - Steven F. Abcouwer
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medicine, Ann Arbor, MI, United States
| | - Peter D. Westenskow
- Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
40
|
Zhang F, Lin B, Huang S, Wu P, Zhou M, Zhao J, Hei X, Ke Y, Zhang Y, Huang D. Melatonin Alleviates Retinal Ischemia-Reperfusion Injury by Inhibiting p53-Mediated Ferroptosis. Antioxidants (Basel) 2023; 12:1173. [PMID: 37371903 DOI: 10.3390/antiox12061173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Retinal ischemia-reperfusion (RIR) injury caused by high intraocular pressure (IOP) is an important risk factor contributing to retinal ganglion cell (RGC) death, eventually causing blindness. A key progressive pathological process in the development of RIR is the death of RGCs. However, the detailed mechanisms underlying RGC death caused by RIR have not yet been clearly elucidated, and effective treatments are lacking. Ferroptosis is a recently defined form of programmed cell death that is closely related to organ injury. Melatonin (MT) is a promising neuroprotective agent, but its effects on RIR injury remain unclear. In this study, murine models of acute ocular hypertension and oxygen and glucose deprivation/reoxygenation (OGD/R) model were adopted to simulate retinal ischemia. MT alleviated retinal damage and RGC death in RIR mice, significantly attenuating RIR-induced ferroptosis. Furthermore, MT reduced the expression of p53, a master regulator of ferroptosis pathways, and the upregulation of p53 promoted ferroptosis and largely abolished the neuroprotective effects of MT. Mechanistically, the overexpression (OE) of p53 suppressed the expression of the solute carrier family 7 member 11 (Slc7a11), which was accompanied by increased 12-lipoxygenase (Alox12) expression, triggering retinal ferroptosis. Moreover, MT-ameliorated apoptosis, neuroinflammation and microglial activation were observed. In summary, MT conferred neuroprotection against RIR injury by inhibiting p53-mediated ferroptosis. These findings indicate that MT is a retina-specific ferroptosis inhibitor and a promising therapeutic agent for retinal neuroprotection.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Siyu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Pengsen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Min Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiangqing Hei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yu Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yiting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
41
|
Li J, Chen C, Zhang L, Ren Y, Li H. PDGFRB upregulation contributes to retinal damages in the rat model of retinal ischemia-reperfusion. Biochem Biophys Res Commun 2023; 663:113-121. [PMID: 37121121 DOI: 10.1016/j.bbrc.2023.03.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023]
Abstract
Retinal ischemic disease is a major type of retinal diseases causing vision loss. Identifying the molecular mechanisms mediating the retinal ischemia-reperfusion (RIR) is the key to targeted intervention. In this study, we performed RNA-seq analysis of the retinal tissues of a retinal ischemia-reperfusion model of Sprague-Dawley (SD) rats, followed by differential gene expression analysis, gene ontology (GO) enrichment analysis, and protein-protein interaction (PPI) analysis. After studying we found that: The major biological processes affected after RIR was the regulation of vascular development. PPI analysis unveiled a regulatory module in which Platelet Derived Growth Factor Receptor Beta (PDGFRB) was upregulated. In the RIR cell model of human retinal microvascular endothelial cells (HRCEC) induced by oxygen-glucose deprivation/reperfusion (OGD/R), silencing PDGFRB at least partially rescued the detrimental effect on cell proliferation and in vitro angiogenic ability. In the rat model of RIR, the administration of PDGFR inhibitor alleviated the damages in the retinal microvascular system. Besides, we further demonstrated the protective effect of procyanidin against RIR induced damages in both the cell and animal model by dampening the overexpression of PDGFRB. Together, our data indicate that the upregulation of PDGFRB contributes to RIR-induced damages in retinal microvascular system, which provides a targetable strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Juanjuan Li
- Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), No.176, Qing nian Road, Kunming city, Yunnan Province, 650021, China
| | - Chen Chen
- Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), No.176, Qing nian Road, Kunming city, Yunnan Province, 650021, China
| | - Liwei Zhang
- Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), No.176, Qing nian Road, Kunming city, Yunnan Province, 650021, China
| | - Yuling Ren
- Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), No.176, Qing nian Road, Kunming city, Yunnan Province, 650021, China
| | - Hua Li
- Affiliated Hospital of Yunnan University (Second People's Hospital of Yunnan Province, Yunnan Eye Hospital), No.176, Qing nian Road, Kunming city, Yunnan Province, 650021, China.
| |
Collapse
|
42
|
Shi Y, Liu Y, Wu C, Liu X, Hu W, Yang Z, Li Z, Li Y, Deng C, Wei K, Gu C, Chen X, Su W, Zhuo Y. N,N-Dimethyl-3β-hydroxycholenamide attenuates neuronal death and retinal inflammation in retinal ischemia/reperfusion injury by inhibiting Ninjurin 1. J Neuroinflammation 2023; 20:91. [PMID: 37029422 PMCID: PMC10082498 DOI: 10.1186/s12974-023-02754-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/01/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Retinal ischemia-reperfusion (RIR) injury refers to an obstruction in the retinal blood supply followed by reperfusion. Although the molecular mechanism underlying the ischemic pathological cascade is not fully understood, neuroinflammation plays a crucial part in the mortality of retinal ganglion cells. METHODS Single-cell RNA sequencing (scRNA-seq), molecular docking, and transfection assay were used to explore the effectiveness and pathogenesis of N,N-dimethyl-3β-hydroxycholenamide (DMHCA)-treated mice with RIR injury and DMHCA-treated microglia after oxygen and glucose deprivation/reoxygenation (OGD/R). RESULTS DMHCA could suppress inflammatory gene expression and attenuate neuronal lesions, restoring the retinal structure in vivo. Using scRNA-seq on the retina of DMHCA-treated mice, we provided novel insights into RIR immunity and demonstrated nerve injury-induced protein 1 (Ninjurin1/Ninj 1) as a promising treatment target for RIR. Moreover, the expression of Ninj1, which was increased in RIR injury and OGD/R-treated microglia, was downregulated in the DMHCA-treated group. DMHCA suppressed the activation of the nuclear factor kappa B (NF-κB) pathways induced by OGD/R, which was undermined by the NF-κB pathway agonist betulinic acid. Overexpressed Ninj1 reversed the anti-inflammatory and anti-apoptotic function of DMHCA. Molecular docking indicated that for Ninj1, DMHCA had a low binding energy of - 6.6 kcal/mol, suggesting highly stable binding. CONCLUSION Ninj1 may play a pivotal role in microglia-mediated inflammation, while DMHCA could be a potential treatment strategy against RIR injury.
Collapse
Affiliation(s)
- Yunhong Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Wenfei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Zhenlan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Yangyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Caibin Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Kun Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Xuhao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No. 7 Jinsui Road, Tianhe District, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
43
|
Whitehead B, Velazquez-Cruz R, Albowaidey A, Zhang N, Karelina K, Weil ZM. Mild Traumatic Brain Injury Induces Time- and Sex-Dependent Cerebrovascular Dysfunction and Stroke Vulnerability. J Neurotrauma 2023; 40:578-591. [PMID: 36322789 PMCID: PMC9986031 DOI: 10.1089/neu.2022.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mild traumatic brain injury (mTBI) produces subtle cerebrovascular impairments that persist over time and promote increased ischemic stroke vulnerability. We recently established a role for vascular impairments in exacerbating stroke outcomes 1 week after TBI, but there is a lack of research regarding long-term impacts of mTBI-induced vascular dysfunction, as well as a significant need to understand how mTBI promotes stroke vulnerability in both males and females. Here, we present data using a mild closed head TBI model and an experimental stroke occurring either 7 or 28 days later in both male and female mice. We report that mTBI induces larger stroke volumes 7 days after injury, however, this increased vulnerability to stroke persists out to 28 days in female but not male mice. Importantly, mTBI-induced changes in blood-brain barrier permeability, intravascular coagulation, angiogenic factors, total vascular area, and glial expression were differentially altered across time and by sex. Taken together, these data suggest that mTBI can result in persistent cerebrovascular dysfunction and increased susceptibility to worsened ischemic outcomes, although these dysfunctions occur differently in male and female mice.
Collapse
Affiliation(s)
- Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Ruth Velazquez-Cruz
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Ali Albowaidey
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Ning Zhang
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary M. Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
44
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
45
|
Fu X, Feng S, Qin H, Yan L, Zheng C, Yao K. Microglia: The breakthrough to treat neovascularization and repair blood-retinal barrier in retinopathy. Front Mol Neurosci 2023; 16:1100254. [PMID: 36756614 PMCID: PMC9899825 DOI: 10.3389/fnmol.2023.1100254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Microglia are the primary resident retinal macrophages that monitor neuronal activity in real-time and facilitate angiogenesis during retinal development. In certain retinal diseases, the activated microglia promote retinal angiogenesis in hypoxia stress through neurovascular coupling and guide neovascularization to avascular areas (e.g., the outer nuclear layer and macula lutea). Furthermore, continuously activated microglia secrete inflammatory factors and expedite the loss of the blood-retinal barrier which causes irreversible damage to the secondary death of neurons. In this review, we support microglia can be a potential cellular therapeutic target in retinopathy. We briefly describe the relevance of microglia to the retinal vasculature and blood-retinal barrier. Then we discuss the signaling pathway related to how microglia move to their destinations and regulate vascular regeneration. We summarize the properties of microglia in different retinal disease models and propose that reducing the number of pro-inflammatory microglial death and conversing microglial phenotypes from pro-inflammatory to anti-inflammatory are feasible for treating retinal neovascularization and the damaged blood-retinal barrier (BRB). Finally, we suppose that the unique properties of microglia may aid in the vascularization of retinal organoids.
Collapse
Affiliation(s)
- Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China,*Correspondence: Kai Yao,
| |
Collapse
|
46
|
Lee D, Nakai A, Miwa Y, Negishi K, Tomita Y, Kurihara T. Pemafibrate prevents choroidal neovascularization in a mouse model of neovascular age-related macular degeneration. PeerJ 2023; 11:e14611. [PMID: 36643635 PMCID: PMC9838199 DOI: 10.7717/peerj.14611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Background Pathological choroidal neovascularization (CNV) is one of the major causes of visual impairment in neovascular age-related macular degeneration (AMD). CNV has been suppressed by using anti-vascular endothelial growth factor (VEGF) antibodies. However, some clinical cases have demonstrated the failure of anti-VEGF therapies. Furthermore, anti-VEGF agents might induce the development of ocular atrophy. Recently, peroxisome proliferator-activated receptor alpha (PPARα) activation using pemafibrate treatment was suggested as one of the promising therapeutic targets in the prevention of ocular ischemia. However, the preventive role of pemafibrate remains unclear in CNV. We aimed to examine the preventive role of pemafibrate on laser-induced pathological CNV. Methods Adult male C57BL/6 mice were orally supplied pemafibrate (0.5 mg/kg) for four days, followed by laser irradiation. Then, pemafibrate was consecutively given to mice with the same condition. CNV was visualized with isolectin-IB4. The eye (retina and/or retinal pigment epithelium [RPE]-choroid), liver, and serum were used for biomolecular analyses. Results We found that pemafibrate administration suppressed CNV volumes. Pemafibrate administration activated PPARα downstream genes in the liver and eye (especially, RPE-choroid). Furthermore, pemafibrate administration elevated serum fibroblast growth factor 21 levels and reduced serum levels of triglycerides. Conclusions Our data suggest a promising pemafibrate therapy for suppressing CNV in AMD.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Ayaka Nakai
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan,Aichi Animal Eye Clinics, Aichi, Japan
| | - Kazuno Negishi
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan,Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, Liao J, Huang W, Xu F, Liang X, Huang J. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res 2022; 73:e12828. [PMID: 36031799 DOI: 10.1111/jpi.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1β-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
48
|
Li Y, Wen Y, Liu X, Li Z, Lin B, Deng C, Yu Z, Zhu Y, Zhao L, Su W, Zhuo Y. Single-cell RNA sequencing reveals a landscape and targeted treatment of ferroptosis in retinal ischemia/reperfusion injury. J Neuroinflammation 2022; 19:261. [PMID: 36289494 PMCID: PMC9597965 DOI: 10.1186/s12974-022-02621-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to establish a complete retinal cell atlas of ischemia-reperfusion injury by single-cell RNA sequencing, and to explore the underlying mechanism of retinal ischemia-reperfusion injury in mice. METHODS Single-cell RNA sequencing was used to evaluate changes in the mouse retinal ischemia reperfusion model. In vivo and in vitro experiments were performed to verify the protective effect of inhibiting ferroptosis in retinal ischemia-reperfusion injury. RESULTS After ischemia-reperfusion injury, retinal cells were significantly reduced, accompanied by the activation of myeloid and a large amount of blood-derived immune cell infiltration. The IFNG, MAPK and NFKB signaling pathways in retinal neuronal cells, together with the TNF signaling pathway in myeloid give rise to a strong inflammatory response in the I/R state. Besides, the expression of genes implicating iron metabolism, oxidative stress and multiple programed cell death pathways have changed in cell subtypes described above. Especially the ferroptosis-related genes and blocking this process could apparently alleviate the inflammatory immune responses and enhance retinal ganglion cells survival. CONCLUSIONS We established a comprehensive landscape of mouse retinal ischemia-reperfusion injury at the single-cell level, revealing the important role of ferroptosis during this injury, and targeted inhibition of ferroptosis can effectively protect retinal structure and function.
Collapse
Affiliation(s)
- Yangyang Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Yuwen Wen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Xiuxing Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Zhuang Li
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Bingying Lin
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Caibin Deng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Ziyu Yu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Yingting Zhu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Ling Zhao
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Wenru Su
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| | - Yehong Zhuo
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060 China
| |
Collapse
|
49
|
Asare-Bediako B, Adu-Agyeiwaah Y, Abad A, Li Calzi S, Floyd JL, Prasad R, DuPont M, Asare-Bediako R, Bustelo XR, Grant MB. Hematopoietic Cells Influence Vascular Development in the Retina. Cells 2022; 11:3207. [PMID: 36291075 PMCID: PMC9601270 DOI: 10.3390/cells11203207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic cells play a crucial role in the adult retina in health and disease. Monocytes, macrophages, microglia and myeloid angiogenic cells (MACs) have all been implicated in retinal pathology. However, the role that hematopoietic cells play in retinal development is understudied. The temporal changes in recruitment of hematopoietic cells into the developing retina and the phenotype of the recruited cells are not well understood. In this study, we used the hematopoietic cell-specific protein Vav1 to track and investigate hematopoietic cells in the developing retina. By flow cytometry and immunohistochemistry, we show that hematopoietic cells are present in the retina as early as P0, and include microglia, monocytes and MACs. Even before the formation of retinal blood vessels, hematopoietic cells localize to the inner retina where they eventually form networks that intimately associate with the developing vasculature. Loss of Vav1 lead to a reduction in the density of medium-sized vessels and an increased inflammatory response in retinal astrocytes. When pups were subjected to oxygen-induced retinopathy, hematopoietic cells maintained a close association with the vasculature and occasionally formed 'frameworks' for the generation of new vessels. Our study provides further evidence for the underappreciated role of hematopoietic cells in retinal vasculogenesis and the formation of a healthy retina.
Collapse
Affiliation(s)
- Bright Asare-Bediako
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Yvonne Adu-Agyeiwaah
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Antonio Abad
- Centro de Investigación del Cáncer de Salamanca, CSIC and University of Salamanca, 37007 Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Jason L. Floyd
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Mariana DuPont
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Richmond Asare-Bediako
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Xose R. Bustelo
- Centro de Investigación del Cáncer de Salamanca, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
50
|
Lee D, Tomita Y, Miwa Y, Shinojima A, Ban N, Yamaguchi S, Nishioka K, Negishi K, Yoshino J, Kurihara T. Nicotinamide Mononucleotide Prevents Retinal Dysfunction in a Mouse Model of Retinal Ischemia/Reperfusion Injury. Int J Mol Sci 2022; 23:ijms231911228. [PMID: 36232528 PMCID: PMC9570481 DOI: 10.3390/ijms231911228] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Retinal ischemia/reperfusion (I/R) injury can cause severe vision impairment. Retinal I/R injury is associated with pathological increases in reactive oxygen species and inflammation, resulting in retinal neuronal cell death. To date, effective therapies have not been developed. Nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD+) intermediate, has been shown to exert neuroprotection for retinal diseases. However, it remains unclear whether NMN can prevent retinal I/R injury. Thus, we aimed to determine whether NMN therapy is useful for retinal I/R injury-induced retinal degeneration. One day after NMN intraperitoneal (IP) injection, adult mice were subjected to retinal I/R injury. Then, the mice were injected with NMN once every day for three days. Electroretinography and immunohistochemistry were used to measure retinal functional alterations and retinal inflammation, respectively. The protective effect of NMN administration was further examined using a retinal cell line, 661W, under CoCl2-induced oxidative stress conditions. NMN IP injection significantly suppressed retinal functional damage, as well as inflammation. NMN treatment showed protective effects against oxidative stress-induced cell death. The antioxidant pathway (Nrf2 and Hmox-1) was activated by NMN treatment. In conclusion, NMN could be a promising preventive neuroprotective drug for ischemic retinopathy.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Aichi Animal Eye Clinic, Nagoya 466-0827, Japan
| | - Ari Shinojima
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Norimitsu Ban
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ken Nishioka
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Yoshino
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence:
| |
Collapse
|