1
|
Dreyer LW, Eklund A, Rognes ME, Malm J, Qvarlander S, Støverud KH, Mardal KA, Vinje V. Modeling CSF circulation and the glymphatic system during infusion using subject specific intracranial pressures and brain geometries. Fluids Barriers CNS 2024; 21:82. [PMID: 39407250 PMCID: PMC11481529 DOI: 10.1186/s12987-024-00582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Infusion testing is an established method for assessing CSF resistance in patients with idiopathic normal pressure hydrocephalus (iNPH). To what extent the increased resistance is related to the glymphatic system is an open question. Here we introduce a computational model that includes the glymphatic system and enables us to determine the importance of (1) brain geometry, (2) intracranial pressure, and (3) physiological parameters on the outcome of and response to an infusion test. METHODS We implemented a seven-compartment multiple network porous medium model with subject specific geometries from MR images using the finite element library FEniCS. The model consists of the arterial, capillary and venous blood vessels, their corresponding perivascular spaces, and the extracellular space (ECS). Both subject specific brain geometries and subject specific infusion tests were used in the modeling of both healthy adults and iNPH patients. Furthermore, we performed a systematic study of the effect of variations in model parameters. RESULTS Both the iNPH group and the control group reached a similar steady state solution when subject specific geometries under identical boundary conditions was used in simulation. The difference in terms of average fluid pressure and velocity between the iNPH and control groups, was found to be less than 6% during all stages of infusion in all compartments. With subject specific boundary conditions, the largest computed difference was a 75% greater fluid speed in the arterial perivascular space (PVS) in the iNPH group compared to the control group. Changes to material parameters changed fluid speeds by several orders of magnitude in some scenarios. A considerable amount of the CSF pass through the glymphatic pathway in our models during infusion, i.e., 28% and 38% in the healthy and iNPH patients, respectively. CONCLUSIONS Using computational models, we have found the relative importance of subject specific geometries to be less important than individual differences in resistance as measured with infusion tests and model parameters such as permeability, in determining the computed pressure and flow during infusion. Model parameters are uncertain, but certain variations have large impact on the simulation results. The computations resulted in a considerable amount of the infused volume passing through the brain either through the perivascular spaces or the extracellular space.
Collapse
Affiliation(s)
- Lars Willas Dreyer
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Anders Eklund
- Department of Diagnostics and Intervention, Biomedical engineering and radiation physics, Umeå University, Umeå, Sweden
| | - Marie E Rognes
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway
- KG Jebsen Center for Brain Fluid Research, Oslo, Norway
| | - Jan Malm
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Sara Qvarlander
- Department of Diagnostics and Intervention, Biomedical engineering and radiation physics, Umeå University, Umeå, Sweden
| | - Karen-Helene Støverud
- Department of Diagnostics and Intervention, Biomedical engineering and radiation physics, Umeå University, Umeå, Sweden
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Kent-Andre Mardal
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway.
- Department of Mathematics, University of Oslo, Oslo, Norway.
- Expert Analytics AS, Oslo, Norway.
- KG Jebsen Center for Brain Fluid Research, Oslo, Norway.
| | - Vegard Vinje
- Department of Scientific Computing and Numerical Analysis, Simula Research Laboratory, Oslo, Norway
- Expert Analytics AS, Oslo, Norway
- BI Norwegian Business School, Oslo, Norway
| |
Collapse
|
2
|
Quirk K, Boster KAS, Tithof J, Kelley DH. A brain-wide solute transport model of the glymphatic system. J R Soc Interface 2024; 21:20240369. [PMID: 39439312 PMCID: PMC11496954 DOI: 10.1098/rsif.2024.0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Brain waste is largely cleared via diffusion and advection in cerebrospinal fluid (CSF). CSF flows through a pathway referred to as the glymphatic system, which is also being targeted for delivering drugs to the brain. Despite the importance of solute transport, no brain-wide models for predicting clearance and delivery through perivascular pathways and adjacent parenchyma existed. We devised such a model by upgrading an existing model of CSF flow in the mouse brain to additionally solve advection-diffusion equations, thereby estimating solute transport. We simulated steady-state transport of 3 kDa dextran injected proximal to the perivascular space (PVS) of the middle cerebral artery, mimicking in vivo experiments. We performed a sensitivity analysis of 11 biological properties of PVSs and brain parenchyma by repeatedly simulating solute transport with varying parameter values. Parameter combinations that led to a large total pressure gradient, poor CSF perfusion or a steep solute gradient were deemed unrealistic. Solute concentrations in parenchyma were most sensitive to changes in pial PVS size, as this parameter linearly affects volume flow rates. We also found that realistic transport requires both highly permeable penetrating PVSs and high-resistance parenchyma. This study highlights the potential of brain-wide models to provide insights into solute transport processes.
Collapse
Affiliation(s)
- Keelin Quirk
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN55455, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY14627, USA
| |
Collapse
|
3
|
Gan Y, Thomas JH, Kelley DH. Gaps in the wall of a perivascular space act as valves to produce a directed flow of cerebrospinal fluid: a hoop-stress model. J R Soc Interface 2024; 21:20230659. [PMID: 38565158 PMCID: PMC10987236 DOI: 10.1098/rsif.2023.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) is an important part of the brain's system for clearing metabolic waste. Astrocyte endfeet bound the PVSs of penetrating arteries, separating them from brain extracellular space. Gaps between astrocyte endfeet might provide a low-resistance pathway for fluid transport across the wall. Recent studies suggest that the astrocyte endfeet function as valves that rectify the CSF flow, producing the net flow observed in pial PVSs by changing the size of the gaps in response to pressure changes. In this study, we quantify this rectification based on three features of the PVSs: the quasi-circular geometry, the deformable endfoot wall, and the pressure oscillation inside. We provide an analytical model, based on the thin-shell hoop-stress approximation, and predict a pumping efficiency of about 0.4, which would contribute significantly to the observed flow. When we add the flow resistance of the extracellular space (ECS) to the model, we find an increased net flow during sleep, due to the known increase in ECS porosity (decreased flow resistance) compared to that in the awake state. We corroborate our analytical model with three-dimensional fluid-solid interaction simulations.
Collapse
Affiliation(s)
- Yiming Gan
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
4
|
Agarwal N, Lewis LD, Hirschler L, Rivera LR, Naganawa S, Levendovszky SR, Ringstad G, Klarica M, Wardlaw J, Iadecola C, Hawkes C, Octavia Carare R, Wells J, Bakker EN, Kurtcuoglu V, Bilston L, Nedergaard M, Mori Y, Stoodley M, Alperin N, de Leon M, van Osch MJ. Current Understanding of the Anatomy, Physiology, and Magnetic Resonance Imaging of Neurofluids: Update From the 2022 "ISMRM Imaging Neurofluids Study group" Workshop in Rome. J Magn Reson Imaging 2024; 59:431-449. [PMID: 37141288 PMCID: PMC10624651 DOI: 10.1002/jmri.28759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three-day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery. Evidence level: 1 Technical Efficacy: Stage 3.
Collapse
Affiliation(s)
- Nivedita Agarwal
- Neuroradiology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo Rivera Rivera
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Geir Ringstad
- Department of Radiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| | - Marijan Klarica
- Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences and UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - Costantino Iadecola
- Department of Pharmacology and Croatian Institute of Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cheryl Hawkes
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | | | - Jack Wells
- UCL Centre for Advanced Biomedical Imaging, University College of London, London, UK
| | - Erik N.T.P. Bakker
- Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Lynne Bilston
- Neuroscience Research Australia and UNSW Medicine, Sydney, Australia
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Marcus Stoodley
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Department of Neurosurgery, Macquarie University Hospital, Sydney, Australia
| | - Noam Alperin
- Department of Radiology and Biomedical Engineering, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mony de Leon
- Weil Cornell Medicine, Department of Radiology, Brain Health Imaging Institute, New York City, New York, USA
| | - Matthias J.P. van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Johnson MJ, Abdelmalik MR, Baidoo FA, Badachhape A, Hughes TJ, Hossain SS. Image-guided subject-specific modeling of glymphatic transport and amyloid deposition. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2023; 417:116449. [PMID: 38249440 PMCID: PMC10798618 DOI: 10.1016/j.cma.2023.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The glymphatic system is a brain-wide system of perivascular networks that facilitate exchange of cerebrospinal fluid (CSF) and interstitial fluid (ISF) to remove waste products from the brain. A greater understanding of the mechanisms for glymphatic transport may provide insight into how amyloid beta (A β ) and tau agglomerates, key biomarkers for Alzheimer's disease and other neurodegenerative diseases, accumulate and drive disease progression. In this study, we develop an image-guided computational model to describe glymphatic transport and A β deposition throughout the brain. A β transport and deposition are modeled using an advection-diffusion equation coupled with an irreversible amyloid accumulation (damage) model. We use immersed isogeometric analysis, stabilized using the streamline upwind Petrov-Galerkin (SUPG) method, where the transport model is constructed using parameters inferred from brain imaging data resulting in a subject-specific model that accounts for anatomical geometry and heterogeneous material properties. Both short-term (30-min) and long-term (12-month) 3D simulations of soluble amyloid transport within a mouse brain model were constructed from diffusion weighted magnetic resonance imaging (DW-MRI) data. In addition to matching short-term patterns of tracer deposition, we found that transport parameters such as CSF flow velocity play a large role in amyloid plaque deposition. The computational tools developed in this work will facilitate investigation of various hypotheses related to glymphatic transport and fundamentally advance our understanding of its role in neurodegeneration, which is crucial for the development of preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Michael J. Johnson
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, Texas 78712, USA
| | - Michael R.A. Abdelmalik
- Department of Mechanical Engineering, Eindhoven University of Technology, Gemini, Building number 15, Groene Loper, 5612 AE Eindhoven, The Netherlands
| | - Frimpong A. Baidoo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, Texas 78712, USA
| | - Andrew Badachhape
- Department of Radiology, Baylor College of Medicine, 701 Fannin Street, Suite 47, Houston, Texas 77030, USA
| | - Thomas J.R. Hughes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, Texas 78712, USA
| | - Shaolie S. Hossain
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th St, Austin, Texas 78712, USA
- Molecular Cardiology Research Laboratories, The Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Li Z, Chen D, Li Z, Fan H, Guo L, Sui B, Ventikos Y. A computational study of fluid transport characteristics in the brain parenchyma of dementia subtypes. J Biomech 2023; 159:111803. [PMID: 37734184 DOI: 10.1016/j.jbiomech.2023.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The cerebral environment is a complex system consisting of parenchymal tissue and multiple fluids. Dementia is a common class of neurodegenerative diseases, caused by structural damages and functional deficits in the cerebral environment. In order to better understand the pathology of dementia from a cerebral fluid transport angle and provide clearer evidence that could help differentiate between dementia subtypes, such as Alzheimer's disease and vascular dementia, we conducted fluid-structure interaction modelling of the brain using a multiple-network poroelasticity model, which considers both neuropathological and cerebrovascular factors. The parenchyma was further subdivided and labelled into parcellations to obtain more localised and detailed data. The numerical results were converted to computed functional images by an in-house workflow. Different cerebral blood flow (CBF) and cerebrospinal fluid (CSF) clearance abnormalities were identified in the modelling results, when comparing Alzheimer's disease and vascular dementia. This paper presents our preliminary results as a proof of concept for a novel clinical diagnostic tool, and paves the way for a larger clinical study.
Collapse
Affiliation(s)
- Zeyan Li
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Duanduan Chen
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhiye Li
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Haojun Fan
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Liwei Guo
- Department of Mechanical Engineering, University College London, London, United Kingdom.
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China.
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom; School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
Gędek A, Koziorowski D, Szlufik S. Assessment of factors influencing glymphatic activity and implications for clinical medicine. Front Neurol 2023; 14:1232304. [PMID: 37767530 PMCID: PMC10520725 DOI: 10.3389/fneur.2023.1232304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The glymphatic system is a highly specialized fluid transport system in the central nervous system. It enables the exchange of the intercellular fluid of the brain, regulation of the movement of this fluid, clearance of unnecessary metabolic products, and, potentially, brain immunity. In this review, based on the latest scientific reports, we present the mechanism of action and function of the glymphatic system and look at the role of factors influencing its activity. Sleep habits, eating patterns, coexisting stress or hypertension, and physical activity can significantly affect glymphatic activity. Modifying them can help to change lives for the better. In the next section of the review, we discuss the connection between the glymphatic system and neurological disorders. Its association with many disease entities suggests that it plays a major role in the physiology of the whole brain, linking many pathophysiological pathways of individual diseases.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Praski Hospital, Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Juste-Lanas Y, Hervas-Raluy S, García-Aznar JM, González-Loyola A. Fluid flow to mimic organ function in 3D in vitro models. APL Bioeng 2023; 7:031501. [PMID: 37547671 PMCID: PMC10404142 DOI: 10.1063/5.0146000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Many different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.
Collapse
Affiliation(s)
| | - Silvia Hervas-Raluy
- Department of Mechanical Engineering, Engineering Research Institute of Aragón (I3A), University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
10
|
Dogan E, Holshue C, Bhusal A, Shukla R, Miri AK. Cell encapsulation in gelatin methacryloyl bioinks impairs microscale diffusion properties. Front Bioeng Biotechnol 2023; 11:1193970. [PMID: 37731769 PMCID: PMC10507472 DOI: 10.3389/fbioe.2023.1193970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 09/22/2023] Open
Abstract
Light-assisted bioprinted gelatin methacryloyl (GelMA) constructs have been used for cell-laden microtissues and organoids. GelMA can be loaded by desired cells, which can regulate the biophysical properties of bioprinted constructs. We study how the degree of methacrylation (MA degree), GelMA mass concentration, and cell density change mass transport properties. We introduce a fluorescent-microscopy-based method of biotransport testing with improved sensitivity compared to the traditional particle tracking methods. The diffusion capacity of GelMA with a higher MA significantly decreased compared to a lower MA. Opposed to a steady range of linear elastic moduli, the diffusion coefficient in GelMA varied when cell densities ranged from 0 to 10 × 106 cells/ml. A comparative study of different cell sizes showed a higher diffusivity coefficient for the case of larger cells. The results of this study can help bioengineers and scientists to better control the biotransport characteristics in light-assisted bioprinted microtissues and organoids.
Collapse
Affiliation(s)
- Elvan Dogan
- Advanced Biofabrication Laboratory, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Christina Holshue
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ, United States
| | - Anant Bhusal
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ, United States
| | - Roshni Shukla
- Advanced Biofabrication Laboratory, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Amir K. Miri
- Advanced Biofabrication Laboratory, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
11
|
Makibatake R, Oda S, Yagi Y, Tatsumi H. Amyloid-β slows cilia movement along the ventricle, impairs fluid flow, and exacerbates its neurotoxicity in explant culture. Sci Rep 2023; 13:13586. [PMID: 37605005 PMCID: PMC10442439 DOI: 10.1038/s41598-023-40742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by extensive and selective death of neurons and deterioration of synapses and circuits in the brain. The Aβ1-42 concentration is higher in an AD brain than in cognitively normal elderly individuals, and Aβ1-42 exhibits neurotoxicity. Brain-derived Aβ is transported into the cerebrospinal fluid (CSF), and CSF flow is driven in part by the beating of cilia and CSF secretion into ventricles. Ventricles are lined with ependyma whose apical surface is covered with motile cilia. Herein, we constructed an experimental system to measure the movement of ependymal cilia and examined the effects of Aβ1-42 to the beating of cilia and neurons. The circadian rhythm of the beating frequency of ependymal cilia was detected using brain wall explant-cultures containing ependymal cilia and neurons; the beating frequency was high at midday and low at midnight. Aβ1-42 decreased the peak frequency of ciliary beating at midday and slightly increased it at midnight. Aβ1-42 exhibited neurotoxicity to neurons on the non-ciliated side of the explant culture, while the neurotoxicity was less evident in neurons on the ciliated side. The neurotoxic effect of Aβ1-42 was diminished when 1 mPa of shear stress was generated using a flow chamber system that mimicked the flow by cilia. These results indicate that Aβ1-42 affects the circadian rhythm of ciliary beating, decreases the medium flow by the cilia-beating, and enhances the neurotoxic action of Aβ1-42 in the brain explant culture.
Collapse
Affiliation(s)
- Ryota Makibatake
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan
| | - Sora Oda
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan
| | - Yoshiki Yagi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan
| | - Hitoshi Tatsumi
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan-shi, Ishikawa, 924-0838, Japan.
| |
Collapse
|
12
|
Vinje V, Zapf B, Ringstad G, Eide PK, Rognes ME, Mardal KA. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS 2023; 20:62. [PMID: 37596635 PMCID: PMC10439559 DOI: 10.1186/s12987-023-00459-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
Whether you are reading, running or sleeping, your brain and its fluid environment continuously interacts to distribute nutrients and clear metabolic waste. Yet, the precise mechanisms for solute transport within the human brain have remained hard to quantify using imaging techniques alone. From multi-modal human brain MRI data sets in sleeping and sleep-deprived subjects, we identify and quantify CSF tracer transport parameters using forward and inverse subject-specific computational modelling. Our findings support the notion that extracellular diffusion alone is not sufficient as a brain-wide tracer transport mechanism. Instead, we show that human MRI observations align well with transport by either by an effective diffusion coefficent 3.5[Formula: see text] that of extracellular diffusion in combination with local clearance rates corresponding to a tracer half-life of up to 5 h, or by extracellular diffusion augmented by advection with brain-wide average flow speeds on the order of 1-9 [Formula: see text]m/min. Reduced advection fully explains reduced tracer clearance after sleep-deprivation, supporting the role of sleep and sleep deprivation on human brain clearance.
Collapse
Affiliation(s)
- Vegard Vinje
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
- Expert Analytics AS, Møllergata 8, 0179, Oslo, Norway
| | - Bastian Zapf
- Department of Mathematics, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sørlandet Hospital, Arendal, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Marie E Rognes
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway
| | - Kent-Andre Mardal
- Simula Research Laboratory, Kristian Augusts gate 23, 0164, Oslo, Norway.
- Department of Mathematics, University of Oslo, Oslo, Norway.
| |
Collapse
|
13
|
Qi Y, Xiong W, Chen Q, Ye Z, Jiang C, He Y, Ye Q. New trends in brain tumor immunity with the opportunities of lymph nodes targeted drug delivery. J Nanobiotechnology 2023; 21:254. [PMID: 37542241 PMCID: PMC10401854 DOI: 10.1186/s12951-023-02011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
Lymph nodes targeted drug delivery is an attractive approach to improve cancer immunotherapy outcomes. Currently, the depth of understanding of afferent and efferent arms in brain immunity reveals the potential clinical applications of lymph node targeted drug delivery in brain tumors, e.g., glioblastoma. In this work, we systematically reviewed the microenvironment of glioblastoma and its structure as a basis for potential immunotherapy, including the glial-lymphatic pathway for substance exchange, the lymphatic drainage pathway from meningeal lymphatic vessels to deep cervical lymph nodes that communicate intra- and extracranial immunity, and the interaction between the blood-brain barrier and effector T cells. Furthermore, the carriers designed for lymph nodes targeted drug delivery were comprehensively summarized. The challenges and opportunities in developing a lymph nodes targeted delivery strategy for glioblastoma using nanotechnology are included at the end.
Collapse
Affiliation(s)
- Yangzhi Qi
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhifei Ye
- Clinical Research Center, The Second Linhai Renmin Hospital, Linhai, 317000, Zhejiang, China
| | - Cailei Jiang
- Institute of Translational and Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430040, Hubei, China
| | - Yan He
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China.
- Institute of Translational and Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430040, Hubei, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, 430000, Hubei, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Ajeeb R, Clegg JR. Intrathecal delivery of Macromolecules: Clinical status and emerging technologies. Adv Drug Deliv Rev 2023; 199:114949. [PMID: 37286086 DOI: 10.1016/j.addr.2023.114949] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The proximity and association of cerebrospinal fluid (CSF) and the intrathecal (IT) space with deep targets in the central nervous system (CNS) parenchyma makes IT injection an attractive route of administration for brain drug delivery. However, the extent to which intrathecally administered macromolecules are effective in treating neurological diseases is a question of both clinical debate and technological interest. We present the biological, chemical, and physical properties of the intrathecal space that are relevant to drug absorption, distribution, metabolism, and elimination from CSF. We then analyze the evolution of IT drug delivery in clinical trials over the last 20 years. Our analysis revealed that the percentage of clinical trials assessing IT delivery for the delivery of biologics (i.e., macromolecules, cells) for treatment of chronic conditions (e.g., neurodegeneration, cancer, and metabolic diseases) has steadily increased. Clinical trials exploring cell or macromolecular delivery within the IT space have not evaluated engineering technologies, such as depots, particles, or other delivery systems. Recent pre-clinical studies have evaluated IT macromolecule delivery in small animals, postulating that delivery efficacy can be assisted by external medical devices, micro- or nanoparticles, bulk biomaterials, and viral vectors. Further studies are necessary to evaluate the extent to which engineering technologies and IT administration improve CNS targeting and therapeutic outcome.
Collapse
Affiliation(s)
- Rana Ajeeb
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, United States
| | - John R Clegg
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
15
|
Raicevic N, Forer JM, Ladrón-de-Guevara A, Du T, Nedergaard M, Kelley DH, Boster K. Sizes and shapes of perivascular spaces surrounding murine pial arteries. Fluids Barriers CNS 2023; 20:56. [PMID: 37461047 PMCID: PMC10351203 DOI: 10.1186/s12987-023-00454-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Flow of cerebrospinal fluid (CSF) through brain perivascular spaces (PVSs) is essential for the clearance of interstitial metabolic waste products whose accumulation and aggregation is a key mechanism of pathogenesis in many diseases. The PVS geometry has important implications for CSF flow as it affects CSF and solute transport rates. Thus, the size and shape of the perivascular spaces are essential parameters for models of CSF transport in the brain and require accurate quantification. METHODS We segmented two-photon images of pial (surface) PVSs and the adjacent arteries and characterized their sizes and shapes of cross sections from 14 PVS segments in 9 mice. Based on the analysis, we propose an idealized model that approximates the cross-sectional size and shape of pial PVSs, closely matching their area ratios and hydraulic resistances. RESULTS The ratio of PVS-to-vessel area varies widely across the cross sections analyzed. The hydraulic resistance per unit length of the PVS scales with the PVS cross-sectional area, and we found a power-law fit that predicts resistance as a function of the area. Three idealized geometric models were compared to PVSs imaged in vivo, and their accuracy in reproducing hydraulic resistances and PVS-to-vessel area ratios were evaluated. The area ratio was obtained across different cross sections, and we found that the distribution peaks for the original PVS and its closest idealized fit (polynomial fit) were 1.12 and 1.21, respectively. The peak of the hydraulic resistance distribution is [Formula: see text] Pa s/m[Formula: see text] and [Formula: see text] Pa s/m[Formula: see text] for the segmentation and its closest idealized fit, respectively. CONCLUSIONS PVS hydraulic resistance can be reasonably predicted as a function of the PVS area. The proposed polynomial-based fit most closely captures the shape of the PVS with respect to area ratio and hydraulic resistance. Idealized PVS shapes are convenient for modeling, which can be used to better understand how anatomical variations affect clearance and drug transport.
Collapse
Affiliation(s)
- Nikola Raicevic
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| | - Jarod M Forer
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, USA
| | - Ting Du
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
- School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Maiken Nedergaard
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| | - Kimberly Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, USA.
| |
Collapse
|
16
|
Rey JA, Farid UM, Najjoum CM, Brown A, Magdoom KN, Mareci TH, Sarntinoranont M. Perivascular network segmentations derived from high-field MRI and their implications for perivascular and parenchymal mass transport in the rat brain. Sci Rep 2023; 13:9205. [PMID: 37280246 DOI: 10.1038/s41598-023-34850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
A custom segmentation workflow was applied to ex vivo high-field MR images of rat brains acquired following in vivo intraventricular contrast agent infusion to generate maps of the perivascular spaces (PVS). The resulting perivascular network segmentations enabled analysis of perivascular connections to the ventricles, parenchymal solute clearance, and dispersive solute transport within PVS. Numerous perivascular connections between the brain surface and the ventricles suggest the ventricles integrate into a PVS-mediated clearance system and raise the possibility of cerebrospinal fluid (CSF) return from the subarachnoid space to the ventricles via PVS. Assuming rapid solute exchange between the PVS and CSF spaces primarily by advection, the extensive perivascular network decreased the mean clearance distance from parenchyma to the nearest CSF compartment resulting in an over 21-fold reduction in the estimated diffusive clearance time scale, irrespective of solute diffusivity. This corresponds to an estimated diffusive clearance time scale under 10 min for amyloid-beta which suggests that the widespread distribution of PVS may render diffusion an effective parenchymal clearance mechanism. Additional analysis of oscillatory solute dispersion within PVS indicates that advection rather than dispersion is likely the primary transport mechanism for dissolved compounds greater than 66 kDa in the long (> 2 mm) perivascular segments identified here, although dispersion may be significant for smaller compounds in shorter perivascular segments.
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA
| | - Uzair M Farid
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA
| | - Christopher M Najjoum
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA
| | - Alec Brown
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Kulam Najmudeen Magdoom
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA
| | - Thomas H Mareci
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
17
|
Winkelman MA, Dai G. Bioengineered perfused human brain microvascular networks enhance neural progenitor cell survival, neurogenesis, and maturation. SCIENCE ADVANCES 2023; 9:eaaz9499. [PMID: 37163593 PMCID: PMC10171804 DOI: 10.1126/sciadv.aaz9499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/10/2023] [Indexed: 05/12/2023]
Abstract
Neural progenitor cells (NPCs) have the capability to self-renew and differentiate into neurons and glial cells. In the adult brain, NPCs are found near brain microvascular networks (BMVNs) in specialized microenvironments called the neurovascular niche (NVN). Although several in vitro NVN models have been previously reported, most do not properly recapitulate the intimate cellular interactions between NPCs and perfused brain microvessels. Here, we developed perfused BMVNs composed of primary human brain endothelial cells, pericytes, and astrocytes within microfluidic devices. When induced pluripotent stem cell-derived NPCs were introduced into BMVNs, we found that NPC survival, neurogenesis, and maturation were enhanced. The application of flow during BMVN coculture was also beneficial for neuron differentiation. Collectively, our work highlighted the important role of BMVNs and flow in NPC self-renewal and neurogenesis, as well as demonstrated our model's potential to study the biological and physical interactions of human NVN in vitro.
Collapse
Affiliation(s)
- Max A. Winkelman
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
18
|
Raicevic N, Forer JM, Ladrón-de-Guevara A, Du T, Nedergaard M, Kelley DH, Boster K. Sizes and Shapes of Perivascular Spaces Surrounding Murine Pial Arteries. RESEARCH SQUARE 2023:rs.3.rs-2587250. [PMID: 36824982 PMCID: PMC9949243 DOI: 10.21203/rs.3.rs-2587250/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background: Flow of cerebrospinal fluid (CSF) through brain perivascular spaces (PVSs) is essential for the clearance of interstitial metabolic waste products whose accumulation and aggregation is a key mechanism of pathogenesis in many diseases. The PVS geometry has important implications for CSF flow as it affects CSF and solute transport rates. Thus, the size and shape of the perivascular spaces are essential parameters for models of CSF transport in the brain and require accurate quantification. Methods: We segmented two-photon images of pial (surface) PVSs and the adjacent arteries and characterized their sizes and shapes of thousands of cross sections from 14 PVS segments in 9 mice. Based on the analysis, we propose an idealized model that approximates the cross-sectional size and shape of pial PVSs, closely matching their area ratios and hydraulic resistances. Results: PVS size only approximately scales with vessel size, and the ratio of PVS-to-vessel area varies widely across the thousands of cross sections analyzed. The hydraulic resistance per unit length of the PVS scales with the PVS cross-sectional area, and we found a power-law fit that predicts resistance as a function of the area. Three idealized geometric models were compared to PVSs imaged in vivo, and their accuracy in reproducing hydraulic resistances and PVS-to-vessel area ratios were evaluated. The area ratio was obtained across thousands of different cross sections, and we found that the distribution peaks for the original PVS and its closest idealized fit (polynomial fit) were 1.12 and 1.21, respectively. The peak of the hydraulic resistance distribution is 1.73 x 10 15 Pa-s/m 5 and 1.44 x 10 15 Pa-s/m 5 for the segmentation and its closest idealized fit, respectively. Conclusions: Brief summary and potential implicationsPVS hydraulic resistance can be reasonably predicted as a function of the PVS area. The proposed polynomial-based fit most closely captures the shape of the PVS with respect to area ratio and hydraulic resistance. Idealized PVS shapes are convenient for modeling, which can be used to better understand how anatomical variations affect clearance and drug delivery transport.
Collapse
Affiliation(s)
- Nikola Raicevic
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| | - Jarod M. Forer
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, USA
| | - Ting Du
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
- School of Pharmacy, China Medical University, China
| | - Maiken Nedergaard
- Center for Translational Neuromedicine and Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| | - Kimberly Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, USA
| |
Collapse
|
19
|
Bah TM, Siler DA, Ibrahim AH, Cetas JS, Alkayed NJ. Fluid dynamics in aging-related dementias. Neurobiol Dis 2023; 177:105986. [PMID: 36603747 DOI: 10.1016/j.nbd.2022.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023] Open
Abstract
Recent human and animal model experimental studies revealed novel pathways for fluid movement, immune cell trafficking and metabolic waste clearance in CNS. These studies raise the intriguing possibility that the newly discovered pathways, including the glymphatic system, lymphatic meningeal vessels and skull-brain communication channels, are impaired in aging and neurovascular and neurodegenerative diseases associated with dementia, including Alzheimer's disease (AD) and AD-related dementia. We provide an overview of the glymphatic and dural meningeal lymphatic systems, review current methods and approaches used to study glymphatic flow in humans and animals, and discuss current evidence and controversies related to its role in CNS flow homeostasis under physiological and pathophysiological conditions. Non-invasive imaging approaches are needed to fully understand the mechanisms and pathways driving fluid movement in CNS and their roles across lifespan including healthy aging and aging-related dementia.
Collapse
Affiliation(s)
- Thierno M Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Dominic A Siler
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Aseel H Ibrahim
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Justin S Cetas
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
20
|
Tønnesen J, Hrabĕtová S, Soria FN. Local diffusion in the extracellular space of the brain. Neurobiol Dis 2023; 177:105981. [PMID: 36581229 DOI: 10.1016/j.nbd.2022.105981] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022] Open
Abstract
The brain extracellular space (ECS) is a vast interstitial reticulum of extreme morphological complexity, composed of narrow gaps separated by local expansions, enabling interconnected highways between neural cells. Constituting on average 20% of brain volume, the ECS is key for intercellular communication, and understanding its diffusional properties is of paramount importance for understanding the brain. Within the ECS, neuroactive substances travel predominantly by diffusion, spreading through the interstitial fluid and the extracellular matrix scaffold after being focally released. The nanoscale dimensions of the ECS render it unresolvable by conventional live tissue compatible imaging methods, and historically diffusion of tracers has been used to indirectly infer its structure. Novel nanoscopic imaging techniques now show that the ECS is a highly dynamic compartment, and that diffusivity in the ECS is more heterogeneous than anticipated, with great variability across brain regions and physiological states. Diffusion is defined primarily by the local ECS geometry, and secondarily by the viscosity of the interstitial fluid, including the obstructive and binding properties of the extracellular matrix. ECS volume fraction and tortuosity both strongly determine diffusivity, and each can be independently regulated e.g. through alterations in glial morphology and the extracellular matrix composition. Here we aim to provide an overview of our current understanding of the ECS and its diffusional properties. We highlight emerging technological advances to respectively interrogate and model diffusion through the ECS, and point out how these may contribute in resolving the remaining enigmas of the ECS.
Collapse
Affiliation(s)
- Jan Tønnesen
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sabina Hrabĕtová
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Federico N Soria
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
21
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
22
|
Wang L, Wang J, Chen Q, Li Q, Mendieta JB, Li Z. How getting twisted in scaffold design can promote bone regeneration: A fluid-structure interaction evaluation. J Biomech 2022; 145:111359. [PMID: 36334321 DOI: 10.1016/j.jbiomech.2022.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/02/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Bone tissue engineering (BTE) uses engineering principles to repair large bone defects, which requires effective mass transport ability of scaffolds to support cellular activities during bone regeneration. Since the implanted BTE scaffolds keep deforming under physiological loading which influences the fluid flow and mass transport within the scaffold and surrounding tissue, thus, scaffold design needs to consider the mass transport behavior under the physiological loading. This work proposed a novel twist scaffold, and its mass transport efficiency under physiological loading conditions was evaluated by a fluid-structure interaction analysis. The results showed that compared to the non-twist scaffold, the twist scaffold could form a rotating flow under the physiological loading, which enhanced the mass transport and generated more appropriate wall shear stress (WSS) to promote bone regeneration. This highlighted the better mass transport efficiency of the twist scaffold. Therefore, getting twist may be a promising design strategy for future BTE scaffolds, and the fluid-structure interaction approach may be a more reliable method for bone regeneration studies in either in vivo or in vitro systems.
Collapse
Affiliation(s)
- Luping Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiaqiu Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Qiang Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qiwei Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jessica Benitez Mendieta
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Zhiyong Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
23
|
Changes in interstitial fluid flow, mass transport and the bone cell response in microgravity and normogravity. Bone Res 2022; 10:65. [PMID: 36411278 PMCID: PMC9678891 DOI: 10.1038/s41413-022-00234-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In recent years, our scientific interest in spaceflight has grown exponentially and resulted in a thriving area of research, with hundreds of astronauts spending months of their time in space. A recent shift toward pursuing territories farther afield, aiming at near-Earth asteroids, the Moon, and Mars combined with the anticipated availability of commercial flights to space in the near future, warrants continued understanding of the human physiological processes and response mechanisms when in this extreme environment. Acute skeletal loss, more severe than any bone loss seen on Earth, has significant implications for deep space exploration, and it remains elusive as to why there is such a magnitude of difference between bone loss on Earth and loss in microgravity. The removal of gravity eliminates a critical primary mechano-stimulus, and when combined with exposure to both galactic and solar cosmic radiation, healthy human tissue function can be negatively affected. An additional effect found in microgravity, and one with limited insight, involves changes in dynamic fluid flow. Fluids provide the most fundamental way to transport chemical and biochemical elements within our bodies and apply an essential mechano-stimulus to cells. Furthermore, the cell cytoplasm is not a simple liquid, and fluid transport phenomena together with viscoelastic deformation of the cytoskeleton play key roles in cell function. In microgravity, flow behavior changes drastically, and the impact on cells within the porous system of bone and the influence of an expanding level of adiposity are not well understood. This review explores the role of interstitial fluid motion and solute transport in porous bone under two different conditions: normogravity and microgravity.
Collapse
|
24
|
Role of the glymphatic system in idiopathic intracranial hypertension. Clin Neurol Neurosurg 2022; 222:107446. [DOI: 10.1016/j.clineuro.2022.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
|
25
|
Cancel LM, Silas D, Bikson M, Tarbell JM. Direct current stimulation modulates gene expression in isolated astrocytes with implications for glia-mediated plasticity. Sci Rep 2022; 12:17964. [PMID: 36289296 PMCID: PMC9606293 DOI: 10.1038/s41598-022-22394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/13/2022] [Indexed: 01/24/2023] Open
Abstract
While the applications of transcranial direct current stimulation (tDCS) across brain disease and cognition are diverse, they rely on changes in brain function outlasting stimulation. The cellular mechanisms of DCS leading to brain plasticity have been studied, but the role of astrocytes remains unaddressed. We previously predicted that during tDCS current is concentrated across the blood brain-barrier. This will amplify exposure of endothelial cells (ECs) that form blood vessels and of astrocytes that wrap around them. The objective of this study was to investigate the effect of tDCS on the gene expression by astrocytes or ECs. DCS (0.1 or 1 mA, 10 min) was applied to monolayers of mouse brain ECs or human astrocytes. Gene expression of a set of neuroactive genes were measured using RT-qPCR. Expression was assessed immediately or 1 h after DCS. Because we previously showed that DCS can produce electroosmotic flow and fluid shear stress known to influence EC and astrocyte function, we compared three interventions: pressure-driven flow across the monolayer alone, pressure-driven flow plus DCS, and DCS alone with flow blocked. We show that DCS can directly modulate gene expression in astrocytes (notably FOS and BDNF), independent of but synergistic with pressure-driven flow gene expression. In ECs, pressure-driven flow activates genes expression with no evidence of further contribution from DCS. In ECs, DCS alone produced mixed effects including an upregulation of FGF9 and downregulation of NTF3. We propose a new adjunct mechanism for tDCS based on glial meditated plasticity.
Collapse
Affiliation(s)
- Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 404C, 160 Convent Ave, New York, NY, 10031, USA
| | - Dharia Silas
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 404C, 160 Convent Ave, New York, NY, 10031, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 404C, 160 Convent Ave, New York, NY, 10031, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 404C, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
26
|
Glymphatic System Dysfunction and Sleep Disturbance May Contribute to the Pathogenesis and Progression of Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms232112928. [PMID: 36361716 PMCID: PMC9656009 DOI: 10.3390/ijms232112928] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Parkinson’s disease (PD) is a multisystem alpha-synucleinopathic neurodegenerative disease and the most prevalent neurodegenerative disorder after Alzheimer’s disease with a high incidence rate in the elderly population. PD is highly multifactorial in etiology and has complex and wide-ranging pathogenic mechanisms. Environmental exposures and genetic predisposition are prominent risk factors. However, current evidence suggests that an intimate link may exist between the risk factor of sleep disturbance and PD pathogenesis. PD is characterized by the pathological hallmarks of alpha-synuclein aggregations and dopaminergic neuron degeneration in the substantia nigra. The loss of dopamine-producing neurons results in both motor and non-motor symptoms, most commonly, bradykinesia, tremor, rigidity, psychiatric disorders, sleep disorders and gastrointestinal problems. Factors that may exacerbate alpha-synuclein accumulation and dopamine neuron loss include neuroinflammation and glymphatic system impairment. Extracellular alpha-synuclein can induce an inflammatory response which can lead to neural cell death and inhibition of neurogenesis. The glymphatic system functions most optimally to remove extracellular brain solutes during sleep and therefore sleep disruption may be a crucial progression factor as well as a risk factor. This literature review interprets and analyses data from experimental and epidemiological studies to determine the recent advances in establishing a relationship between glymphatic system dysfunction, sleep disturbance, and PD pathogenesis and progression. This review addresses current limitations surrounding the ability to affirm a causal link between improved glymphatic clearance by increased sleep quality in PD prevention and management. Furthermore, this review proposes potential therapeutic approaches that could utilize the protective mechanism of sleep, to promote glymphatic clearance that therefore may reduce disease progression as well as symptom severity in PD patients.
Collapse
|
27
|
Bohr T, Hjorth PG, Holst SC, Hrabětová S, Kiviniemi V, Lilius T, Lundgaard I, Mardal KA, Martens EA, Mori Y, Nägerl UV, Nicholson C, Tannenbaum A, Thomas JH, Tithof J, Benveniste H, Iliff JJ, Kelley DH, Nedergaard M. The glymphatic system: Current understanding and modeling. iScience 2022; 25:104987. [PMID: 36093063 PMCID: PMC9460186 DOI: 10.1016/j.isci.2022.104987] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We review theoretical and numerical models of the glymphatic system, which circulates cerebrospinal fluid and interstitial fluid around the brain, facilitating solute transport. Models enable hypothesis development and predictions of transport, with clinical applications including drug delivery, stroke, cardiac arrest, and neurodegenerative disorders like Alzheimer's disease. We sort existing models into broad categories by anatomical function: Perivascular flow, transport in brain parenchyma, interfaces to perivascular spaces, efflux routes, and links to neuronal activity. Needs and opportunities for future work are highlighted wherever possible; new models, expanded models, and novel experiments to inform models could all have tremendous value for advancing the field.
Collapse
Affiliation(s)
- Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Poul G. Hjorth
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kgs. Lyngby, Denmark
| | - Sebastian C. Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabina Hrabětová
- Department of Cell Biology and The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging, Department of Diagnostic Radiology, MRC, Oulu University Hospital, Oulu, Finland
- Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuomas Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Kent-Andre Mardal
- Department of Mathematics, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Oslo, Norway
| | | | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - U. Valentin Nägerl
- Instítut Interdisciplinaire de Neurosciences, Université de Bordeaux / CNRS UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex France
| | - Charles Nicholson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allen Tannenbaum
- Departments of Computer Science/ Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey J. Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, 14642 NY, USA
| |
Collapse
|
28
|
Investigating molecular transport in the human brain from MRI with physics-informed neural networks. Sci Rep 2022; 12:15475. [PMID: 36104360 PMCID: PMC9474534 DOI: 10.1038/s41598-022-19157-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, a plethora of methods combining neural networks and partial differential equations have been developed. A widely known example are physics-informed neural networks, which solve problems involving partial differential equations by training a neural network. We apply physics-informed neural networks and the finite element method to estimate the diffusion coefficient governing the long term spread of molecules in the human brain from magnetic resonance images. Synthetic testcases are created to demonstrate that the standard formulation of the physics-informed neural network faces challenges with noisy measurements in our application. Our numerical results demonstrate that the residual of the partial differential equation after training needs to be small for accurate parameter recovery. To achieve this, we tune the weights and the norms used in the loss function and use residual based adaptive refinement of training points. We find that the diffusion coefficient estimated from magnetic resonance images with physics-informed neural networks becomes consistent with results from a finite element based approach when the residuum after training becomes small. The observations presented here are an important first step towards solving inverse problems on cohorts of patients in a semi-automated fashion with physics-informed neural networks.
Collapse
|
29
|
Plá V, Bork P, Harnpramukkul A, Olveda G, Ladrón-de-Guevara A, Giannetto MJ, Hussain R, Wang W, Kelley DH, Hablitz LM, Nedergaard M. A real-time in vivo clearance assay for quantification of glymphatic efflux. Cell Rep 2022; 40:111320. [PMID: 36103828 DOI: 10.1016/j.celrep.2022.111320] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/05/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022] Open
Abstract
Glymphatic fluid transport eliminates metabolic waste from the brain including amyloid-β, yet the methodology for studying efflux remains rudimentary. Here, we develop a method to evaluate glymphatic real-time clearance. Efflux of Direct Blue 53 (DB53, also T-1824 or Evans Blue) injected into the striatum is quantified by imaging the DB53 signal in the vascular compartment, where it is retained due to its high affinity to albumin. The DB53 signal is detectable as early as 15 min after injection and the efflux kinetics are sharply reduced in mice lacking the water channel aquaporin 4 (AQP4). Pharmacokinetic modeling reveal that DB53 efflux is consistent with the existence of two efflux paths, one with fast kinetics (T1/2 = 50 min) and another with slow kinetics (T1/2 = 240 min), in wild-type mice. This in vivo methodology will aid in defining the physiological variables that drive efflux, as well as the impact of brain states or disorders on clearance kinetics.
Collapse
Affiliation(s)
- Virginia Plá
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Bork
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Aurakoch Harnpramukkul
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Genaro Olveda
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wei Wang
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
30
|
Hornkjøl M, Valnes LM, Ringstad G, Rognes ME, Eide PK, Mardal KA, Vinje V. CSF circulation and dispersion yield rapid clearance from intracranial compartments. Front Bioeng Biotechnol 2022; 10:932469. [PMID: 36172015 PMCID: PMC9510842 DOI: 10.3389/fbioe.2022.932469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, we used a computational model to estimate the clearance of a tracer driven by the circulation of cerebrospinal fluid (CSF) produced in the choroid plexus (CP) located within the lateral ventricles. CSF was assumed to exit the subarachnoid space (SAS) via different outflow routes such as the parasagittal dura, cribriform plate, and/or meningeal lymphatics. We also modelled a reverse case where fluid was produced within the spinal canal and absorbed in the choroid plexus in line with observations on certain iNPH patients. No directional interstitial fluid flow was assumed within the brain parenchyma. Tracers were injected into the foramen magnum. The models demonstrate that convection in the subarachnoid space yields rapid clearance from both the SAS and the brain interstitial fluid and can speed up intracranial clearance from years, as would be the case for purely diffusive transport, to days.
Collapse
Affiliation(s)
- Martin Hornkjøl
- Department of Mathematics, University of Oslo, Blindern, Norway
- *Correspondence: Martin Hornkjøl,
| | - Lars Magnus Valnes
- Department of Neurosurgery, Oslo University Hospital–Rikshospitalet, Oslo, Norway
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| | - Marie E. Rognes
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Per-Kristian Eide
- Department of Neurosurgery, Oslo University Hospital–Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kent-André Mardal
- Department of Mathematics, University of Oslo, Blindern, Norway
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Vegard Vinje
- Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| |
Collapse
|
31
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
32
|
Perra E, Hayward N, Pritzker KPH, Nieminen HJ. An ultrasonically actuated needle promotes the transport of nanoparticles and fluids. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:251. [PMID: 35931509 DOI: 10.1121/10.0012190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Non-invasive therapeutic ultrasound (US) methods, such as high-intensity focused ultrasound (HIFU), have limited access to tissue targets shadowed by bones or presence of gas. This study demonstrates that an ultrasonically actuated medical needle can be used to translate nanoparticles and fluids under the action of nonlinear phenomena, potentially overcoming some limitations of HIFU. A simulation study was first conducted to study the delivery of a tracer with an ultrasonically actuated needle (33 kHz) inside a porous medium acting as a model for soft tissue. The model was then validated experimentally in different concentrations of agarose gel showing a close match with the experimental results, when diluted soot nanoparticles (diameter < 150 nm) were employed as delivered entity. An additional simulation study demonstrated a threefold increase in the volume covered by the delivered agent in liver under a constant injection rate, when compared to without US. This method, if developed to its full potential, could serve as a cost effective way to improve safety and efficacy of drug therapies by maximizing the concentration of delivered entities within, e.g., a small lesion, while minimizing exposure outside the lesion.
Collapse
Affiliation(s)
- Emanuele Perra
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland
| | - Nick Hayward
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland
| | - Kenneth P H Pritzker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Heikki J Nieminen
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
33
|
Boster KAS, Tithof J, Cook DD, Thomas JH, Kelley DH. Sensitivity analysis on a network model of glymphatic flow. J R Soc Interface 2022; 19:20220257. [PMID: 35642425 PMCID: PMC9156905 DOI: 10.1098/rsif.2022.0257] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Intracranial cerebrospinal and interstitial fluid (ISF) flow and solute transport have important clinical implications, but limited in vivo access to the brain interior leaves gaping holes in human understanding of the nature of these neurophysiological phenomena. Models can address some gaps, but only insofar as model inputs are accurate. We perform a sensitivity analysis using a Monte Carlo approach on a lumped-parameter network model of cerebrospinal and ISF in perivascular and extracellular spaces in the murine brain. We place bounds on model predictions given the uncertainty in input parameters. Péclet numbers for transport in penetrating perivascular spaces (PVSs) and within the parenchyma are separated by at least two orders of magnitude. Low permeability in penetrating PVSs requires unrealistically large driving pressure and/or results in poor perfusion and are deemed unlikely. The model is most sensitive to the permeability of penetrating PVSs, a parameter whose value is largely unknown, highlighting an important direction for future experiments. Until the value of the permeability of penetrating PVSs is more accurately measured, the uncertainty of any model that includes flow in penetrating PVSs is so large that absolute numbers have little meaning and practical application is limited.
Collapse
Affiliation(s)
- Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas D. Cook
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
34
|
Tithof J, Boster KA, Bork PA, Nedergaard M, Thomas JH, Kelley DH. A network model of glymphatic flow under different experimentally-motivated parametric scenarios. iScience 2022; 25:104258. [PMID: 35521514 PMCID: PMC9062681 DOI: 10.1016/j.isci.2022.104258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/08/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Flow of cerebrospinal fluid (CSF) through perivascular spaces (PVSs) in the brain delivers nutrients, clears metabolic waste, and causes edema formation. Brain-wide imaging cannot resolve PVSs, and high-resolution methods cannot access deep tissue. However, theoretical models provide valuable insight. We model the CSF pathway as a network of hydraulic resistances, using published parameter values. A few parameters (permeability of PVSs and the parenchyma, and dimensions of PVSs and astrocyte endfoot gaps) have wide uncertainties, so we focus on the limits of their ranges by analyzing different parametric scenarios. We identify low-resistance PVSs and high-resistance parenchyma as the only scenario that satisfies three essential criteria: that the flow be driven by a small pressure drop, exhibit good CSF perfusion throughout the cortex, and exhibit a substantial increase in flow during sleep. Our results point to the most important parameters, such as astrocyte endfoot gap dimensions, to be measured in future experiments. We model the CSF pathway as a network of hydraulic resistances Predictions are bracketed by analyzing parametric scenarios for unknown parameters Low-resistance PVSs and high-resistance parenchyma produce realistic flows Astrocyte endfoot gap size is among the important parameters to be measured
Collapse
Affiliation(s)
- Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis 55455, MN, USA
- Corresponding author
| | - Kimberly A.S. Boster
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| | - Peter A.R. Bork
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester 14642, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, 235 Hopeman Building, Rochester 14627, NY, USA
| |
Collapse
|
35
|
Kedarasetti RT, Drew PJ, Costanzo F. Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model. Fluids Barriers CNS 2022; 19:34. [PMID: 35570287 PMCID: PMC9107702 DOI: 10.1186/s12987-022-00326-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/29/2022] [Indexed: 01/26/2023] Open
Abstract
The movement of fluid into, through, and out of the brain plays an important role in clearing metabolic waste. However, there is controversy regarding the mechanisms driving fluid movement in the fluid-filled paravascular spaces (PVS), and whether the movement of metabolic waste in the brain extracellular space (ECS) is primarily driven by diffusion or convection. The dilation of penetrating arterioles in the brain in response to increases in neural activity (neurovascular coupling) is an attractive candidate for driving fluid circulation, as it drives deformation of the brain tissue and of the PVS around arteries, resulting in fluid movement. We simulated the effects of vasodilation on fluid movement into and out of the brain ECS using a novel poroelastic model of brain tissue. We found that arteriolar dilations could drive convective flow through the ECS radially outward from the arteriole, and that this flow is sensitive to the dynamics of the dilation. Simulations of sleep-like conditions, with larger vasodilations and increased extracellular volume in the brain showed enhanced movement of fluid from the PVS into the ECS. Our simulations suggest that both sensory-evoked and sleep-related arteriolar dilations can drive convective flow of cerebrospinal fluid not just in the PVS, but also into the ECS through the PVS around arterioles.
Collapse
Affiliation(s)
- Ravi Teja Kedarasetti
- grid.29857.310000 0001 2097 4281Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Patrick J. Drew
- grid.29857.310000 0001 2097 4281Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Center for Neural Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Neurosurgery, Pennsylvania State University, University Park, PA USA
| | - Francesco Costanzo
- grid.29857.310000 0001 2097 4281Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Center for Neural Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA ,grid.29857.310000 0001 2097 4281Department of Mathematics, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
36
|
Thomas JH. Theoretical analysis of wake/sleep changes in brain solute transport suggests a flow of interstitial fluid. Fluids Barriers CNS 2022; 19:30. [PMID: 35418142 PMCID: PMC9009049 DOI: 10.1186/s12987-022-00325-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
Clearance of protein waste products from the brain is accomplished by a combination of advection and diffusion in cerebrospinal fluid (CSF) and interstitial fluid (ISF). In the glymphatic model, there is a flow of ISF in the interstitial space, and both advection and diffusion occur there. Such a flow of ISF would be slow and difficult to detect directly, and its existence has proved controversial. Waste clearance has been shown to occur mainly during sleep, during which the volume of the interstitial space increases substantially due to ISF emitted from astrocytes. Here I show that this volume increase of the interstitial space, by itself, should lead to a slight reduction of diffusive transport, due to dilution of the waste solute, but to a significant increase in flow rate and advective transport, due to lowered hydraulic resistance. Thus, a flow of ISF together with the observed volume increase of the interstitial space might provide an important mechanism contributing to the enhanced clearance during sleep.
Collapse
Affiliation(s)
- John H Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
37
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
38
|
Perivascular pumping in the mouse brain: Improved boundary conditions reconcile theory, simulation, and experiment. J Theor Biol 2022; 542:111103. [PMID: 35339513 DOI: 10.1016/j.jtbi.2022.111103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 01/24/2023]
Abstract
Cerebrospinal fluid (CSF) flows through the perivascular spaces (PVSs) surrounding cerebral arteries. Revealing the mechanisms driving that flow could bring improved understanding of brain waste transport and insights for disorders including Alzheimer's disease and stroke. In vivo velocity measurements of CSF in surface PVSs in mice have been used to argue that flow is driven primarily by the pulsatile motion of artery walls - perivascular pumping. However, fluid dynamics theory and simulation have predicted that perivascular pumping produces flows differing from in vivo observations starkly, particularly in the phase and relative amplitude of flow oscillation. We show that coupling theoretical and simulated flows to more realistic end boundary conditions, using resistance and compliance values measured in mice instead of using periodic boundaries, results in velocities that match observations more closely in phase and relative amplitude of oscillation, while preserving the existing agreement in mean flow speed. This quantitative agreement among theory, simulation, and in vivo measurement further supports the idea that perivascular pumping is an important CSF driver in physiological conditions.
Collapse
|
39
|
Zhang J, Zhao H, Xue Y, Liu Y, Fan G, Wang H, Dong Q, Cao W. Impaired Glymphatic Transport Kinetics Following Induced Acute Ischemic Brain Edema in a Mouse pMCAO Model. Front Neurol 2022; 13:860255. [PMID: 35370910 PMCID: PMC8970176 DOI: 10.3389/fneur.2022.860255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cerebral edema forms immediately after blood flow interruption in ischemic stroke, which largely increased the death and disability. The glymphatic (glial-lymphatic) pathway is a major regulator of the brain liquid dynamics and homeostasis. This study aimed to investigate the transport kinetics of the glymphatic system after the appearance of ischemic edema. Methods In this study, a coated filament was attached to the left middle cerebral artery (MCA) of mice to establish a mouse model of permanent middle cerebral artery occlusion with an intact blood-brain barrier (BBB). The glymphatic function was then quantified using contrast-enhanced MRI (11.7T) by employing an injection of gadobenate dimeglumine (BOPTA-Gd) into the cisterna magna of mice. We then evaluated the expression and polarization of aquaporin-4 (AQP4) as a proxy for the physiological state of the glymphatic system. Results Our results revealed a positive correlation between the signal intensity in T1-weighted images and the corresponding apparent diffusion coefficient (ADC) values in the cortex, striatum, and periventricular zone, suggesting that impaired glymphatic transport kinetics in these regions is correlated to the cytotoxic edema induced by the occlusion of MCA. Furthermore, the increased depolarization of AQP4 in the parenchyma perivascular space (PVS) was consistent with glymphatic failure following the induced early cerebral ischemic edema. Conclusions Glymphatic transport kinetics were suppressed between the onset of cytotoxic edema and the disruption of the BBB, which correlated with the diminishing ADC values that vary based on edema progression, and is associated with depolarization of AQP4 in the parenchyma PVSs.
Collapse
Affiliation(s)
- Jianying Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongchen Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiqi Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Guohang Fan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - He Wang
- The Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- *Correspondence: He Wang
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Qiang Dong
| | - Wenjie Cao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Wenjie Cao
| |
Collapse
|
40
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
41
|
Lu S, Brusic A, Gaillard F. Arachnoid Membranes: Crawling Back into Radiologic Consciousness. AJNR Am J Neuroradiol 2022; 43:167-175. [PMID: 34711549 PMCID: PMC8985673 DOI: 10.3174/ajnr.a7309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/29/2021] [Indexed: 02/03/2023]
Abstract
The arachnoid membranes are projections of connective tissue in the subarachnoid space that connect the arachnoid mater to the pia mater. These are underappreciated and largely unrecognized by most neuroradiologists despite being found to be increasingly important in the pathogenesis, imaging, and treatment of communicating hydrocephalus. This review aims to provide neuroradiologists with an overview of the history, embryology, histology, anatomy, and normal imaging appearance of these membranes, as well as some examples of their clinical importance.
Collapse
Affiliation(s)
- S. Lu
- From the Department of Radiology (S.L., A.B., F.G.), Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - A. Brusic
- From the Department of Radiology (S.L., A.B., F.G.), Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - F. Gaillard
- From the Department of Radiology (S.L., A.B., F.G.), Royal Melbourne Hospital, Parkville, Victoria, Australia,Faculty of Medicine, Dentistry, and Health Sciences (F.G.), University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
42
|
Schreder HE, Liu J, Kelley DH, Thomas JH, Boster KAS. A hydraulic resistance model for interstitial fluid flow in the brain. J R Soc Interface 2022; 19:20210812. [PMID: 35078335 PMCID: PMC8790357 DOI: 10.1098/rsif.2021.0812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/21/2021] [Indexed: 01/28/2023] Open
Abstract
Metabolic wastes may be cleared from the brain by the flow of interstitial fluid (ISF) through extracellular spaces in the parenchyma, as proposed in the glymphatic model. Owing to the difficulty of obtaining experimental measurements, fluid-dynamic models are employed to better understand parenchymal flow. Here we use an analytical solution for Darcy flow in a porous medium with line sources (representing penetrating arterioles) and line sinks (representing ascending venules) to model the flow and calculate the hydraulic resistance as a function of parenchymal permeability and ISF viscosity for various arrangements of the vessels. We calculate how the resistance varies with experimentally determined arrangements of arterioles and venules in mouse and primate brains. Based on experimental measurements of the relative numbers of arterioles and venules and their spacing, we propose idealized configurations for mouse and primate brains, consisting of regularly repeating patterns of arterioles and venules with even spacing. We explore how the number of vessels, vessel density, arteriole-to-venule ratio, and arteriole and venule distribution affect the hydraulic resistance. Quantifying how the geometry affects the resistance of brain parenchyma could help future modelling efforts characterize and predict brain waste clearance, with relevance to diseases such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Helena E. Schreder
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Jia Liu
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Kimberly A. S. Boster
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
43
|
Ray LA, Pike M, Simon M, Iliff JJ, Heys JJ. Quantitative analysis of macroscopic solute transport in the murine brain. Fluids Barriers CNS 2021; 18:55. [PMID: 34876169 PMCID: PMC8650464 DOI: 10.1186/s12987-021-00290-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Understanding molecular transport in the brain is critical to care and prevention of neurological disease and injury. A key question is whether transport occurs primarily by diffusion, or also by convection or dispersion. Dynamic contrast-enhanced (DCE-MRI) experiments have long reported solute transport in the brain that appears to be faster than diffusion alone, but this transport rate has not been quantified to a physically relevant value that can be compared to known diffusive rates of tracers. METHODS In this work, DCE-MRI experimental data is analyzed using subject-specific finite-element models to quantify transport in different anatomical regions across the whole mouse brain. The set of regional effective diffusivities ([Formula: see text]), a transport parameter combining all mechanisms of transport, that best represent the experimental data are determined and compared to apparent diffusivity ([Formula: see text]), the known rate of diffusion through brain tissue, to draw conclusions about dominant transport mechanisms in each region. RESULTS In the perivascular regions of major arteries, [Formula: see text] for gadoteridol (550 Da) was over 10,000 times greater than [Formula: see text]. In the brain tissue, constituting interstitial space and the perivascular space of smaller blood vessels, [Formula: see text] was 10-25 times greater than [Formula: see text]. CONCLUSIONS The analysis concludes that convection is present throughout the brain. Convection is dominant in the perivascular space of major surface and branching arteries (Pe > 1000) and significant to large molecules (> 1 kDa) in the combined interstitial space and perivascular space of smaller vessels (not resolved by DCE-MRI). Importantly, this work supports perivascular convection along penetrating blood vessels.
Collapse
Affiliation(s)
- Lori A Ray
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA
| | - Martin Pike
- Advanced Imaging Research Center, Oregon Health and Sciences University, Portland, USA
| | - Matthew Simon
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, USA
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, USA
- Denali Therapeutics, San Francisco, USA
| | - Jeffrey J Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, USA
| | - Jeffrey J Heys
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, USA.
| |
Collapse
|
44
|
Yatsushiro S, Sunohara S, Tokushima T, Takizawa K, Matsumae M, Atsumi H, Horie T, Kajihara N, Kuroda K. Characterization of Cardiac- and Respiratory-driven Cerebrospinal Fluid Motions Using a Correlation Mapping Technique Based on Asynchronous Two-dimensional Phase Contrast MR Imaging. Magn Reson Med Sci 2021; 20:385-395. [PMID: 33551384 PMCID: PMC8922357 DOI: 10.2463/mrms.mp.2020-0085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The cardiac- and respiratory-driven components of cerebrospinal fluid (CSF) motion characteristics and bulk flow are not yet completely understood. Therefore, the present study aimed to characterize cardiac- and respiratory-driven CSF motions in the intracranial space using delay time, CSF velocity waveform correlation, and displacement. METHODS Asynchronous two-dimensional phase-contrast at 3T was applied to measure the CSF velocity in the inferior-superior direction in a sagittal slice at the midline (N = 12) and an axial slice at the foramen magnum (N = 8). Volunteers were instructed to engage in six-second respiratory cycles. The calculated delay time and correlation coefficients of the cardiac- and respiratory-driven velocity waveforms, separated in the frequency domain, were applied to evaluate the propagation of the CSF motion. The cardiac- and respiratory-driven components of the CSF displacement and motion volume were calculated during diastole and systole, and during inhalation and exhalation, respectively. The cardiac- and respiratory-driven components of the velocity, correlation, displacement, and motion volume were compared using an independent two-sample t-test. RESULTS The ratio of the cardiac-driven CSF velocity to the sum of the cardiac- and respiratory-driven CSF velocities was higher than the equivalent respiratory-driven ratio for all cases (P < 0.01). Delay time and correlation maps demonstrated that the cardiac-driven CSF motion propagated more extensively than the respiratory-driven CSF motion. The correlation coefficient of the cardiac-driven motion was significantly higher in the prepontine (P < 0.01), the aqueduct, and the fourth ventricle (P < 0.05). The respiratory-driven displacement and motion volume were significantly greater than the cardiac-driven equivalents for all observations (P < 0.01). CONCLUSION The correlation mapping technique characterized the cardiac- and respiratory-driven CSF velocities and their propagation properties in the intracranial space. Based on these findings, cardiac-driven CSF velocity is greater than respiratory-induced velocity, but the respiratory-driven velocity might displace farther.
Collapse
Affiliation(s)
- Satoshi Yatsushiro
- Department of Human and Information Science, School of Information Science and Technology, Tokai University.,BioView, Inc
| | | | - Tetsuya Tokushima
- Course of Electrical and Electronic Engineering, Graduate School of Engineering, Tokai University
| | - Ken Takizawa
- Department of Neurosurgery, School of Medicine, Tokai University
| | | | - Hideki Atsumi
- Department of Neurosurgery, School of Medicine, Tokai University
| | - Tomohiko Horie
- Department of Radiological Technology, Tokai University Hospital
| | - Nao Kajihara
- Department of Radiological Technology, Tokai University Hospital
| | - Kagayaki Kuroda
- Department of Human and Information Science, School of Information Science and Technology, Tokai University.,Course of Electrical and Electronic Engineering, Graduate School of Engineering, Tokai University
| |
Collapse
|
45
|
Recent advancements and future submissions of silica core-shell nanoparticles. Int J Pharm 2021; 609:121173. [PMID: 34627997 DOI: 10.1016/j.ijpharm.2021.121173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022]
Abstract
The core-shell silica-based nanoparticles (CSNPs) possess outstanding properties for developing next-generation therapeutics. CSNPs provide greater surface area owing to their mesoporous structure, which offers a high opportunity for surface modification. This review highlights the potential of core-shell silica-based nanoparticle (CSNP) based injectable nanotherapeutics (INT); its role in drug delivery, biomedical imaging, light-triggered phototherapy, Plasmonic enhancers, gene delivery, magnetic hyperthermia, immunotherapy, and potential as next-generation theragnostic. Specifically, the conceptual crosstalk on modern synthetic strategies, biodistribution profiles with a mechanistic view on the therapeutics loading and release modeling are dealt in detail. The manuscript also converses the challenges associated with CSNPs, regulatory hurdles, and their current market position.
Collapse
|
46
|
McDonald SJ, Shultz SR, Agoston DV. The Known Unknowns: An Overview of the State of Blood-Based Protein Biomarkers of Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2652-2666. [PMID: 33906422 DOI: 10.1089/neu.2021.0011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blood-based protein biomarkers have revolutionized several fields of medicine by enabling molecular level diagnosis, as well as monitoring disease progression and treatment efficacy. Traumatic brain injury (TBI) so far has benefitted only moderately from using protein biomarkers to improve injury outcome. Because of its complexity and dynamic nature, TBI, especially its most prevalent mild form (mild TBI; mTBI), presents unique challenges toward protein biomarker discovery and validation given that blood is frequently obtained and processed outside of the clinical laboratory (e.g., athletic fields, battlefield) under variable conditions. As it stands, the field of mTBI blood biomarkers faces a number of outstanding questions. Do elevated blood levels of currently used biomarkers-ubiquitin carboxy-terminal hydrolase L1, glial fibrillary acidic protein, neurofilament light chain, and tau/p-tau-truly mirror the extent of parenchymal damage? Do these different proteins represent distinct injury mechanisms? Is the blood-brain barrier a "brick wall"? What is the relationship between intra- versus extracranial values? Does prolonged elevation of blood levels reflect de novo release or extended protein half-lives? Does biological sex affect the pathobiological responses after mTBI and thus blood levels of protein biomarkers? At the practical level, it is unknown how pre-analytical variables-sample collection, preparation, handling, and stability-affect the quality and reliability of biomarker data. The ever-increasing sensitivity of assay systems and lack of quality control of samples, combined with the almost complete reliance on antibody-based assay platforms, represent important unsolved issues given that false-negative results can lead to false clinical decision making and adverse outcomes. This article serves as a commentary on the state of mTBI biomarkers and the landscape of significant challenges. We highlight and discusses several biological and methodological "known unknowns" and close with some practical recommendations.
Collapse
Affiliation(s)
- Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Hier DB, Obafemi-Ajayi T, Thimgan MS, Olbricht GR, Azizi S, Allen B, Hadi BA, Wunsch DC. Blood biomarkers for mild traumatic brain injury: a selective review of unresolved issues. Biomark Res 2021; 9:70. [PMID: 34530937 PMCID: PMC8447604 DOI: 10.1186/s40364-021-00325-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023] Open
Abstract
Background The use of blood biomarkers after mild traumatic brain injury (mTBI) has been widely studied. We have identified eight unresolved issues related to the use of five commonly investigated blood biomarkers: neurofilament light chain, ubiquitin carboxy-terminal hydrolase-L1, tau, S100B, and glial acidic fibrillary protein. We conducted a focused literature review of unresolved issues in three areas: mode of entry into and exit from the blood, kinetics of blood biomarkers in the blood, and predictive capacity of the blood biomarkers after mTBI. Findings Although a disruption of the blood brain barrier has been demonstrated in mild and severe traumatic brain injury, biomarkers can enter the blood through pathways that do not require a breach in this barrier. A definitive accounting for the pathways that biomarkers follow from the brain to the blood after mTBI has not been performed. Although preliminary investigations of blood biomarkers kinetics after TBI are available, our current knowledge is incomplete and definitive studies are needed. Optimal sampling times for biomarkers after mTBI have not been established. Kinetic models of blood biomarkers can be informative, but more precise estimates of kinetic parameters are needed. Confounding factors for blood biomarker levels have been identified, but corrections for these factors are not routinely made. Little evidence has emerged to date to suggest that blood biomarker levels correlate with clinical measures of mTBI severity. The significance of elevated biomarker levels thirty or more days following mTBI is uncertain. Blood biomarkers have shown a modest but not definitive ability to distinguish concussed from non-concussed subjects, to detect sub-concussive hits to the head, and to predict recovery from mTBI. Blood biomarkers have performed best at distinguishing CT scan positive from CT scan negative subjects after mTBI.
Collapse
Affiliation(s)
- Daniel B Hier
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.
| | - Tayo Obafemi-Ajayi
- Cooperative Engineering Program, Missouri State University, Springfield, MO 65897, United States
| | - Matthew S Thimgan
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Gayla R Olbricht
- Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409, United States
| | - Sima Azizi
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Blaine Allen
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Bassam A Hadi
- Department of Surgery, Mercy Hospital, St. Louis MO, Missouri, MO 63141, United States
| | - Donald C Wunsch
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA.,National Science Foundation, ECCS Division, Virginia, 22314, USA
| |
Collapse
|
48
|
Wafford KA. Aberrant waste disposal in neurodegeneration: why improved sleep could be the solution. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100025. [PMID: 36324713 PMCID: PMC9616228 DOI: 10.1016/j.cccb.2021.100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/16/2023]
Abstract
Sleep takes up a large percentage of our lives and the full functions of this state are still not understood. However, over the last 10 years a new and important function has emerged as a mediator of brain clearance. Removal of toxic metabolites and proteins from the brain parenchyma generated during waking activity and high levels of synaptic processing is critical to normal brain function and only enabled during deep sleep. Understanding of this process is revealing how impaired sleep contributes an important and likely causative role in the accumulation and aggregation of aberrant proteins such as β-amyloid and phosphorylated tau, as well as inflammation and neuronal damage. We are also beginning to understand how brain slow-wave activity interacts with vascular function allowing the flow of CSF and interstitial fluid to drain into the body's lymphatic system. New methodology is enabling visualization of this process in both animals and humans and is revealing how these processes break down during ageing and disease. With this understanding we can begin to envisage novel therapeutic approaches to the treatment of neurodegeneration, and how reversing sleep impairment in the correct manner may provide a way to slow these processes and improve brain function.
Collapse
Key Words
- AQP4, aquaporin-4
- Alzheimer's disease
- Amyloid
- Aquaporin-4
- Astrocyte
- Aβ, beta amyloid
- BOLD, blood-oxygen level dependent imaging
- CAA, cerebral amyloid angiopathy
- CSF, Cerebrospinal fluid
- Clearance
- EEG, electroencephalography
- EMG, electromyography
- Glymphatic
- ISF, interstitial fluid
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- NOS, nitric oxide synthase
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PET, positron emission tomography
- REM, rapid-eye movement
- SWA, slow wave activity
- SWS, slow-wave sleep
- Slow-wave sleep
- iNPH, idiopathic normal pressure hydrocephalus
Collapse
|
49
|
Zosen D, Hadera MG, Lumor JS, Andersen JM, Paulsen RE. Chicken embryo as animal model to study drug distribution to the developing brain. J Pharmacol Toxicol Methods 2021; 112:107105. [PMID: 34284116 DOI: 10.1016/j.vascn.2021.107105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Rodent models are routinely used to assess the safety and developmental toxicity of pharmaceuticals, along with analysis of their distribution. These models require sacrifice of parent females, have challenges in the estimation of the number of embryos and stage of development, and are expensive and time-consuming. In this study, we used fertilized chicken eggs as an alternative model to address drug distribution to the developing brain of two antiepileptic drugs, valproic acid (VPA) and lamotrigine (LTG) at two developmental stages. METHODS VPA or LTG was injected into the allantois of the egg on embryonic day 13 (E13) or E16. Whole chicken brains were harvested at time-points of 5 min to 24 h and the concentrations of the drugs determined using GC/MS and LC-MS/MS, for VPA and LTG, respectively. RESULTS VPA and LTG had distinct absorption and elimination phases and were found in the brain as early as 5-15 min after injection. Both drugs reached the brain in clinically relevant concentrations, with Cmax 10-30% of the calculated concentration assuming uniform distribution throughout the egg. LTG concentrations were higher when injected at E13 compared to E16. CONCLUSION The chicken embryo model may be a suitable alternative animal model for preclinical drug distribution studies. It enables to easily approach antenatal development on an individual level, with a precise number of experimental animals, high reproducibility and low time and cost. Knowledge of the concentrations reaching the brain at different developmental stages with different drugs is important for the planning and interpretation of neurodevelopmental toxicity studies.
Collapse
Affiliation(s)
- Denis Zosen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Mussie Ghezu Hadera
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Josephine Sena Lumor
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jannike Mørch Andersen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway; Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
50
|
Kaur J, Fahmy LM, Davoodi-Bojd E, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Waste Clearance in the Brain. Front Neuroanat 2021; 15:665803. [PMID: 34305538 PMCID: PMC8292771 DOI: 10.3389/fnana.2021.665803] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Waste clearance (WC) is an essential process for brain homeostasis, which is required for the proper and healthy functioning of all cerebrovascular and parenchymal brain cells. This review features our current understanding of brain WC, both within and external to the brain parenchyma. We describe the interplay of the blood-brain barrier (BBB), interstitial fluid (ISF), and perivascular spaces within the brain parenchyma for brain WC directly into the blood and/or cerebrospinal fluid (CSF). We also discuss the relevant role of the CSF and its exit routes in mediating WC. Recent discoveries of the glymphatic system and meningeal lymphatic vessels, and their relevance to brain WC are highlighted. Controversies related to brain WC research and potential future directions are presented.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Lara M. Fahmy
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Radiology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| |
Collapse
|