1
|
Xie F, Shen B, Luo Y, Zhou H, Xie Z, Zhu S, Wei X, Chang Z, Zhu Z, Ding C, Jin K, Yang C, Batzu L, Chaudhuri KR, Chan LL, Tan EK, Wang Q. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6. Mol Neurodegener 2024; 19:80. [PMID: 39456006 PMCID: PMC11515224 DOI: 10.1186/s13024-024-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been used to treat various neurological disorders. However, the molecular mechanism underlying the therapeutic effect of rTMS on Parkinson's disease (PD) has not been fully elucidated. Neuroinflammation like regulatory T-cells (Tregs) appears to be a key modulator of disease progression in PD. If rTMS affects the peripheral Tregs in PD remains unknown. METHODS Here, we conducted a prospective clinical study (Chinese ClinicalTrials. gov: ChiCTR 2100051140) involving 54 PD patients who received 10-day rTMS (10 Hz) stimulation on the primary motor cortex (M1) region or sham treatment. Clinical and function assessment as well as flow cytology study were undertaken in 54 PD patients who were consecutively recruited from the department of neurology at Zhujiang hospital between September 2021 and January 2022. Subsequently, we implemented flow cytometry analysis to examine the Tregs population in spleen of MPTP-induced PD mice that received rTMS or sham treatment, along with quantitative proteomic approach reveal novel molecular targets for Parkinson's disease, and finally, the RNA interference method verifies the role of these new molecular targets in the treatment of PD. RESULTS We demonstrated that a 10-day rTMS treatment on the M1 motor cortex significantly improved motor dysfunction in PD patients. The beneficial effects persisted for up to 40 days, and were associated with an increase in peripheral Tregs. There was a positive correlation between Tregs and motor improvements in PD cases. Similarly, a 10-day rTMS treatment on the brains of MPTP-induced PD mice significantly ameliorated motor symptoms. rTMS reversed the downregulation of circulating Tregs and tyrosine hydroxylase neurons in these mice. It also increased anti-inflammatory mediators, deactivated microglia, and decreased inflammatory cytokines. These effects were blocked by administration of a Treg inhibitor anti-CD25 antibody in MPTP-induced PD mice. Quantitative proteomic analysis identified TLR4, TH, Slc6a3 and especially Syt6 as the hub node proteins related to Tregs and rTMS therapy. Lastly, we validated the role of Treg and rTMS-related protein syt6 in MPTP mice using the virus interference method. CONCLUSIONS Our clinical and experimental studies suggest that rTMS improves motor function by modulating the function of Tregs and suppressing toxic neuroinflammation. Hub node proteins (especially Syt6) may be potential therapeutic targets. TRIAL REGISTRATION Chinese ClinicalTrials, ChiCTR2100051140. Registered 15 December 2021, https://www.chictr.org.cn/bin/project/edit?pid=133691.
Collapse
Affiliation(s)
- Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, T. H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Lucia Batzu
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
2
|
Mula A, Yuan X, Lu J. Dendritic cells in Parkinson's disease: Regulatory role and therapeutic potential. Eur J Pharmacol 2024; 976:176690. [PMID: 38815784 DOI: 10.1016/j.ejphar.2024.176690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Parkinson's Disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the presence of Lewy bodies. While the traditional focus has been on neuronal and glial cell dysfunction, recent research has shifted towards understanding the role of the immune system, particularly dendritic cells (DCs), in PD pathogenesis. As pivotal antigen-presenting cells, DCs are traditionally recognized for initiating and regulating immune responses. In PD, DCs contribute to disease progression through the presentation of α-synuclein to T cells, leading to an adaptive immune response against neuronal elements. This review explores the emerging role of DCs in PD, highlighting their potential involvement in antigen presentation and T cell immune response modulation. Understanding the multifaceted functions of DCs could reveal novel insights into PD pathogenesis and open new avenues for therapeutic strategies, potentially altering the course of this devastating disease.
Collapse
Affiliation(s)
- A Mula
- Department of Encephalopathy, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, 150001, PR China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, 150006, PR China; Department of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, PR China
| | - Jinrong Lu
- School of International Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
3
|
Lei J, Aimaier G, Aisha Z, Zhang Y, Ma J. eEF1A1 regulates the expression and alternative splicing of genes associated with Parkinson's disease in U251 cells. Genes Genomics 2024; 46:817-829. [PMID: 38776049 DOI: 10.1007/s13258-024-01516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/12/2023] [Indexed: 06/27/2024]
Abstract
BACKGROUND Eukaryotic elongation factor 1A1 (eEF1A1) is an RNA-binding protein that is associated with PARK2 activity in cells, suggesting a possible role in Parkinson's disease (PD). OBJECTIVE To clear whether eEF1A1 plays a role in PD through transcriptional or posttranscriptional regulation. METHODS The GSE68719 dataset was downloaded from the GEO database, and the RNA-seq data of all brain tissue autopsies were obtained from 29 PD patients and 44 neurologically normal control subjects. To inhibit eEF1A1 from being expressed in U251 cells, siRNA was transfected into those cells, and RNA-seq high-throughput sequencing was used to determine the differentially expressed genes (DEGs) and differentially alternative splicing events (ASEs) resulting from eEF1A1 knockdown. RESULTS eEF1A1 was significantly overexpressed in PD brain tissue in the BA9 area. GO and KEGG enrichment analyses revealed that eEF1A1 knockdown significantly upregulated the expression of the genes CXCL10, NGF, PTX3, IL6, ST6GALNAC3, NUPR1, TNFRSF21, and CXCL2 and upregulated the alternative splicing of the genes ACOT7, DDX10, SHMT2, MYEF2, and NDUFAF5. These genes were enriched in pathways related to PD pathogenesis, such as apoptosis, inflammatory response, and mitochondrial dysfunction. CONCLUSION The results suggesting that eEF1A1 involved in the development of PD by regulating the differential expression and alternative splicing of genes, providing a theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Jing Lei
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Guliqiemu Aimaier
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Zaolaguli Aisha
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China
| | - Jianhua Ma
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Xinshi District, Urumqi, Xinjiang, 830054, P.R. China.
- Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
4
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
5
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
6
|
Hildebrandt F, Mohammed M, Dziedziech A, Bhandage AK, Divne AM, Barrenäs F, Barragan A, Henriksson J, Ankarklev J. scDual-Seq of Toxoplasma gondii-infected mouse BMDCs reveals heterogeneity and differential infection dynamics. Front Immunol 2023; 14:1224591. [PMID: 37575232 PMCID: PMC10415529 DOI: 10.3389/fimmu.2023.1224591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mubasher Mohammed
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexis Dziedziech
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Department of Global Health, Institut Pasteur, Paris, France
| | - Amol K. Bhandage
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna-Maria Divne
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| | - Fredrik Barrenäs
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
| | - Johan Henriksson
- Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden
- Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Olson KE, Abdelmoaty MM, Namminga KL, Lu Y, Obaro H, Santamaria P, Mosley RL, Gendelman HE. An open-label multiyear study of sargramostim-treated Parkinson's disease patients examining drug safety, tolerability, and immune biomarkers from limited case numbers. Transl Neurodegener 2023; 12:26. [PMID: 37217980 PMCID: PMC10201023 DOI: 10.1186/s40035-023-00361-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND The clinical utility and safety of sargramostim has previously been reported in cancer, acute radiation syndrome, autoimmune disease, inflammatory conditions, and Alzheimer's disease. The safety, tolerability, and mechanisms of action in Parkinson's disease (PD) during extended use has not been evaluated. METHODS As a primary goal, safety and tolerability was assessed in five PD patients treated with sargramostim (Leukine®, granulocyte-macrophage colony-stimulating factor) for 33 months. Secondary goals included numbers of CD4+ T cells and monocytes and motor functions. Hematologic, metabolic, immune, and neurological evaluations were assessed during a 5-day on, 2-day off therapeutic regimen given at 3 μg/kg. After 2 years, drug use was discontinued for 3 months. This was then followed by an additional 6 months of treatment. RESULTS Sargramostim-associated adverse events included injection-site reactions, elevated total white cell counts, and bone pain. On drug, blood analyses and metabolic panels revealed no untoward side effects linked to long-term treatment. Unified Parkinson's Disease Rating Scale scores remained stable throughout the study while regulatory T cell number and function were increased. In the initial 6 months of treatment, transcriptomic and proteomic monocyte tests demonstrated autophagy and sirtuin signaling. This finding paralleled anti-inflammatory and antioxidant activities within both the adaptive and innate immune profile arms. CONCLUSIONS Taken together, the data affirmed long-term safety as well as immune and anti-inflammatory responses reflecting clinical stability in PD under the sargramostim treatment. Confirmation in larger patient populations is planned in a future phase II evaluation. TRIAL REGISTRATION ClinicalTrials.gov: NCT03790670, Date of Registration: 01/02/2019, URL: https://clinicaltrials.gov/ct2/show/NCT03790670?cond=leukine+parkinson%27s&draw=2&rank=2 .
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mai M Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Helen Obaro
- Great Plains Center for Clinical and Translational Research, Nebraska Medicine, Omaha, NE, USA
| | - Pamela Santamaria
- Neurology Consultants of Nebraska, PC and Nebraska Medicine, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Immunity orchestrates a bridge in gut-brain axis of neurodegenerative diseases. Ageing Res Rev 2023; 85:101857. [PMID: 36669690 DOI: 10.1016/j.arr.2023.101857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Neurodegenerative diseases, in particular for Alzheimer's disease (AD), Parkinson's disease (PD) and Multiple sclerosis (MS), are a category of diseases with progressive loss of neuronal structure or function (encompassing neuronal death) leading to neuronal dysfunction, whereas the underlying pathogenesis remains to be clarified. As the microbiological ecosystem of the intestinal microbiome serves as the second genome of the human body, it is strongly implicated as an essential element in the initiation and/or progression of neurodegenerative diseases. Nevertheless, the precise underlying principles of how the intestinal microflora impact on neurodegenerative diseases via gut-brain axis by modulating the immune function are still poorly characterized. Consequently, an overview of initiating the development of neurodegenerative diseases and the contribution of intestinal microflora on immune function is discussed in this review.
Collapse
|
9
|
Xu Y, Li Y, Wang C, Han T, Liu H, Sun L, Hong J, Hashimoto M, Wei J. The reciprocal interactions between microglia and T cells in Parkinson's disease: a double-edged sword. J Neuroinflammation 2023; 20:33. [PMID: 36774485 PMCID: PMC9922470 DOI: 10.1186/s12974-023-02723-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
In Parkinson's disease (PD), neurotoxic microglia, Th1 cells, and Th17 cells are overactivated. Overactivation of these immune cells exacerbates the disease process and leads to the pathological development of pro-inflammatory cytokines, chemokines, and contact-killing compounds, causing the loss of dopaminergic neurons. So far, we have mainly focused on the role of the specific class of immune cells in PD while neglecting the impact of interactions among immune cells on the disease. Therefore, this review demonstrates the reciprocal interplays between microglia and T cells and the associated subpopulations through cytokine and chemokine production that impair and/or protect the pathological process of PD. Furthermore, potential targets and models of PD neuroinflammation are highlighted to provide the new ideas/directions for future research.
Collapse
Affiliation(s)
- Yuxiang Xu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004 China
| | - Yongjie Li
- grid.414360.40000 0004 0605 7104Department of Rehabilitation Medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guizhou Provincial Orthopedics Hospital, Guiyang, China
| | - Changqing Wang
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Tingting Han
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Haixuan Liu
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Lin Sun
- grid.256922.80000 0000 9139 560XHenan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004 Henan China
| | - Jun Hong
- grid.256922.80000 0000 9139 560XInstitute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Makoto Hashimoto
- grid.272456.00000 0000 9343 3630Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506 Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004, China. .,Henan International Joint Laboratory for Nuclear Protein Regulation, Henan Medical School, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
10
|
Li J, Zhao J, Chen L, Gao H, Zhang J, Wang D, Zou Y, Qin Q, Qu Y, Li J, Xiong Y, Min Z, Yan M, Mao Z, Xue Z. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson's disease. Brain Behav Immun 2023; 108:32-44. [PMID: 36343753 DOI: 10.1016/j.bbi.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons (DA) and the accumulation of Lewy body deposits composed of alpha-Synuclein (α-Syn), which act as antigenic epitopes to drive cytotoxic T-cell responses in PD. Increased T helper 17 (Th17) cells and dysfunctional regulatory T cells (Tregs) have been reported to be associated with the loss of DA in PD. However, the mechanism underlying the Th17/Treg imbalance remains unknown. METHODS Here, we examined the percentage of Th17 cells, the percentage of Tregs and the α-Syn level and analysed their correlations in the peripheral blood of PD patients and in the substantia nigra pars compacta (SNpc) and spleen of MPTP-treated mice and A53 transgenic mice. We assessed the effect of α-Syn on the stability and function of Tregs and the differentiation of Th17 cells and evaluated the role of retinoid-related orphan nuclear receptor (RORγt) upregulation in α-Syn stimulation in vivo and in vitro. RESULTS We found that the α-Syn level and severity of motor symptoms were positively correlated with the increase in Th17 cells and decrease in Tregs in PD patients. Moreover, α-Syn stimulation led to the loss of Forkhead box protein P3 (FOXP3) expression in Tregs, accompanied by the acquisition of IL-17A expression. Increased Th17 differentiation was detected upon α-Syn stimulation when naïve CD4+ T cells were cultured under Th17-polarizing conditions. Mechanistically, α-Syn promotes the transcription of RORC, encoding RORγt, in Tregs and Th17 cells, leading to increased Th17 differentiation and loss of Treg function. Intriguingly, the increase in Th17 cells, decrease in Tregs and apoptosis of DA were suppressed by a RORγt inhibitor (GSK805) in MPTP-treated mice. CONCLUSION Together, our data suggest that α-Syn promotes the transcription of RORC in circulating CD4+ T cells, including Tregs and Th17 cells, to impair the stability of Tregs and promote the differentiation of Th17 cells in PD. Inhibition of RORγt attenuated the apoptosis of DA and alleviated the increase in Th17 cells and decrease in Tregs in PD.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jing Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuan Zou
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Manli Yan
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
11
|
Lellahi SM, Azeem W, Hua Y, Gabriel B, Paulsen Rye K, Reikvam H, Kalland KH. GM-CSF, Flt3-L and IL-4 affect viability and function of conventional dendritic cell types 1 and 2. Front Immunol 2023; 13:1058963. [PMID: 36713392 PMCID: PMC9880532 DOI: 10.3389/fimmu.2022.1058963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Conventional type 1 dendritic cells (cDC1) and conventional type 2 dendritic cells (cDC2) have attracted increasing attention as alternatives to monocyte-derived dendritic cells (moDCs) in cancer immunotherapy. Use of cDCs for therapy has been hindered by their low numbers in peripheral blood. In the present study, we found that extensive spontaneous apoptosis and cDC death in culture within 24hrs represent an additional challenge. Different media conditions that maintain cDC viability and function were investigated. CD141+ cDC1 and CD1c+ cDC2 were isolated from healthy blood donor buffy coats. Low viabilities were found with CellGenix DC, RPMI-1640, and X-VIVO 15 standard culture media and with several supplements at 24hrs and 48hrs. Among multiple factors it was found that GM-CSF improved both cDC1 and cDC2 viability, whereas Flt3-L and IL-4 only increased viability of cDC1 and cDC2, respectively. Combinations of these three cytokines improved viability of both cDCs further, both at 24hrs and 48hrs time points. Although these cytokines have been extensively investigated for their role in myeloid cell differentiation, and are also used clinically, their effects on mature cDCs remain incompletely known, in particular effects on pro-inflammatory or tolerogenic cDC features. HLA-DR, CD80, CD83, CD86, PD-L1 and PD-L2 cDC membrane expressions were relatively little affected by GM-CSF, IL-4 and Flt3-L cytokine supplements compared to the strong induction following Toll-like receptor (TLR) stimulation for 24hrs. With minor exceptions the three cytokines appeared to be permissive to the TLR-induced marker expression. Allogeneic mixed leukocyte reaction showed that the cytokines promoted T-cell proliferation and revealed a potential to boost both Th1 and Th2 polarizing cytokines. GM-CSF and Flt3-L and their combination improved the capability of cDC1 for dextran uptake, while in cDC2, dextran capture was improved by GM-CSF. The data suggest that GM-CSF, IL-4 and Flt3-L and combinations might be beneficial for DC viability and function in vitro. Limited viability of cDCs could be a confounding variable experimentally and in immunotherapy.
Collapse
Affiliation(s)
- Seyed Mohammad Lellahi
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Waqas Azeem
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Helse Bergen, Bergen, Norway
| | - Yaping Hua
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Benjamin Gabriel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Håkon Reikvam
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karl-Henning Kalland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Helse Bergen, Bergen, Norway
| |
Collapse
|
12
|
Badr M, McFleder RL, Wu J, Knorr S, Koprich JB, Hünig T, Brotchie JM, Volkmann J, Lutz MB, Ip CW. Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinson's disease mice. J Neuroinflammation 2022; 19:319. [PMID: 36587195 PMCID: PMC9805693 DOI: 10.1186/s12974-022-02685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Regulatory CD4+CD25+FoxP3+ T cells (Treg) are a subgroup of T lymphocytes involved in maintaining immune balance. Disturbance of Treg number and impaired suppressive function of Treg correlate with Parkinson's disease severity. Superagonistic anti-CD28 monoclonal antibodies (CD28SA) activate Treg and cause their expansion to create an anti-inflammatory environment. METHODS Using the AAV1/2-A53T-α-synuclein Parkinson's disease mouse model that overexpresses the pathogenic human A53T-α-synuclein (hαSyn) variant in dopaminergic neurons of the substantia nigra, we assessed the neuroprotective and disease-modifying efficacy of a single intraperitoneal dose of CD28SA given at an early disease stage. RESULTS CD28SA led to Treg expansion 3 days after delivery in hαSyn Parkinson's disease mice. At this timepoint, an early pro-inflammation was observed in vehicle-treated hαSyn Parkinson's disease mice with elevated percentages of CD8+CD69+ T cells in brain and increased levels of interleukin-2 (IL-2) in the cervical lymph nodes and spleen. These immune responses were suppressed in CD28SA-treated hαSyn Parkinson's disease mice. Early treatment with CD28SA attenuated dopaminergic neurodegeneration in the SN of hαSyn Parkinson's disease mice accompanied with reduced brain numbers of activated CD4+, CD8+ T cells and CD11b+ microglia observed at the late disease-stage 10 weeks after AAV injection. In contrast, a later treatment 4 weeks after AAV delivery failed to reduce dopaminergic neurodegeneration. CONCLUSIONS Our data indicate that immune modulation by Treg expansion at a timepoint of overt inflammation is effective for treatment of hαSyn Parkinson's disease mice and suggest that the concept of early immune therapy could pose a disease-modifying option for Parkinson's disease patients.
Collapse
Affiliation(s)
- Mohammad Badr
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Rhonda L. McFleder
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jingjing Wu
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Knorr
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - James B. Koprich
- grid.417188.30000 0001 0012 4167Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada ,grid.511892.6Atuka Inc, Toronto, ON Canada
| | - Thomas Hünig
- grid.8379.50000 0001 1958 8658Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Jonathan M. Brotchie
- grid.417188.30000 0001 0012 4167Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada ,grid.511892.6Atuka Inc, Toronto, ON Canada
| | - Jens Volkmann
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Manfred B. Lutz
- grid.8379.50000 0001 1958 8658Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Chi Wang Ip
- grid.411760.50000 0001 1378 7891Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Negative effects of brain regulatory T cells depletion on epilepsy. Prog Neurobiol 2022; 217:102335. [PMID: 35931355 DOI: 10.1016/j.pneurobio.2022.102335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
The infiltration of immune cells is observed in the epileptogenic zone; however, the relationship between epilepsy and regulatory T cells (Tregs) remains only partially understood. We aimed to investigate brain-infiltrating Tregs to reveal their underlying role in epilepsy. We analyzed the infiltration of Tregs in the epileptogenic zones from patients with epilepsy and a pilocarpine-induced temporal lobe epilepsy (TLE) model. Next, we evaluated the effects of brain Treg depletion on neuroinflammation, neuronal loss, oxidative stress, seizure activity and behavioral changes in the pilocarpine model. We also explored the impact of Treg expansion in the brain on seizure activity. There were a large number of Tregs in the epileptogenic zones of human and experimental epilepsy. The number of brain Tregs was negatively correlated with the frequency of seizures in patients with epilepsy. Our further findings demonstrated that brain Treg depletion promoted astrocytosis, microgliosis, inflammatory cytokine production, oxidative stress, and neuronal loss in the hippocampus after status epilepticus (SE). Moreover, brain Treg depletion increased seizure activity and contributed to behavioral impairments in experimental chronic TLE. Interestingly, intracerebroventricular injection of CCL20 amplified Tregs in brain tissue, thereby inhibiting seizure activity. Taken together, our study highlights the therapeutic potential of regulating Tregs in epileptic brain tissue.
Collapse
|
14
|
Abdelmoaty MM, Machhi J, Yeapuri P, Shahjin F, Kumar V, Olson KE, Mosley RL, Gendelman HE. Monocyte biomarkers define sargramostim treatment outcomes for Parkinson's disease. Clin Transl Med 2022; 12:e958. [PMID: 35802825 PMCID: PMC9270000 DOI: 10.1002/ctm2.958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 12/26/2022] Open
Abstract
Background Dysregulation of innate and adaptive immunity heralds both the development and progression of Parkinson's disease (PD). Deficits in innate immunity in PD are defined by impairments in monocyte activation, function, and pro‐inflammatory secretory factors. Each influences disease pathobiology. Methods and Results To define monocyte biomarkers associated with immune transformative therapy for PD, changes in gene and protein expression were evaluated before and during treatment with recombinant human granulocyte‐macrophage colony‐stimulating factor (GM‐CSF, sargramostim, Leukine®). Monocytes were recovered after leukapheresis and isolation by centrifugal elutriation, before and 2 and 6 months after initiation of treatment. Transcriptome and proteome biomarkers were scored against clinical motor functions. Pathway enrichments from single cell‐RNA sequencing and proteomic analyses from sargramostim‐treated PD patients demonstrate a neuroprotective signature, including, but not limited to, antioxidant, anti‐inflammatory, and autophagy genes and proteins (LRRK2, HMOX1, TLR2, TLR8, RELA, ATG7, and GABARAPL2). Conclusions This monocyte profile provides an “early” and unique biomarker strategy to track clinical immune‐based interventions, but requiring validation in larger case studies.
Collapse
Affiliation(s)
- Mai M Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Pravin Yeapuri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
15
|
Zang X, Chen S, Zhu J, Ma J, Zhai Y. The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:872134. [PMID: 35547626 PMCID: PMC9082639 DOI: 10.3389/fnagi.2022.872134] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
For decades, it has been widely believed that the blood-brain barrier (BBB) provides an immune privileged environment in the central nervous system (CNS) by blocking peripheral immune cells and humoral immune factors. This view has been revised in recent years, with increasing evidence revealing that the peripheral immune system plays a critical role in regulating CNS homeostasis and disease. Neurodegenerative diseases are characterized by progressive dysfunction and the loss of neurons in the CNS. An increasing number of studies have focused on the role of the connection between the peripheral immune system and the CNS in neurodegenerative diseases. On the one hand, peripherally released cytokines can cross the BBB, cause direct neurotoxicity and contribute to the activation of microglia and astrocytes. On the other hand, peripheral immune cells can also infiltrate the brain and participate in the progression of neuroinflammatory and neurodegenerative diseases. Neurodegenerative diseases have a high morbidity and disability rate, yet there are no effective therapies to stop or reverse their progression. In recent years, neuroinflammation has received much attention as a therapeutic target for many neurodegenerative diseases. In this review, we highlight the emerging role of the peripheral and central immune systems in neurodegenerative diseases, as well as their interactions. A better understanding of the emerging role of the immune systems may improve therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin Zang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Chen
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - JunYao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junwen Ma
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Markovic M, Yeapuri P, Namminga KL, Lu Y, Saleh M, Olson KE, Gendelman HE, Mosley RL. Interleukin-2 expands neuroprotective regulatory T cells in Parkinson's disease. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2022; 1:43-50. [PMID: 38407500 PMCID: PMC9254387 DOI: 10.1515/nipt-2022-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Background Pharmacological approaches that boost neuroprotective regulatory T cell (Treg) number and function lead to neuroprotective activities in neurodegenerative disorders. Objectives We investigated whether low-dose interleukin 2 (IL-2) expands Treg populations and protects nigrostriatal dopaminergic neurons in a model of Parkinson's disease (PD). Methods IL-2 at 2.5 × 104 IU/dose/mouse was administered for 5 days. Lymphocytes were isolated and phenotype determined by flow cytometric analyses. To 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice, 0.5 × 106 of enriched IL-2-induced Tregs were adoptively transferred to assess the effects on nigrostriatal neuron survival. Results IL-2 increased frequencies of CD4+CD25+CD127lowFoxP3+ Tregs that express ICOS and CD39 in blood and spleen. Adoptive transfer of IL-2-induced Tregs to MPTP-treated recipients increased tyrosine hydroxylase (TH)+ nigral dopaminergic neuronal bodies by 51% and TH+ striatal termini by 52% compared to control MPTP-treated animal controls. Conclusions IL-2 expands numbers of neuroprotective Tregs providing a vehicle for neuroprotection of nigrostriatal dopaminergic neurons in a pre-clinical PD model.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Pravin Yeapuri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Krista L. Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, 68198Omaha, NE, USA
| |
Collapse
|
17
|
Hussain A, Rafeeq H, Munir N, Jabeen Z, Afsheen N, Rehman KU, Bilal M, Iqbal HMN. Dendritic Cell-Targeted Therapies to Treat Neurological Disorders. Mol Neurobiol 2022; 59:603-619. [PMID: 34743292 DOI: 10.1007/s12035-021-02622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
Dendritic cells (DCs) are the immune system's highly specialized antigen-presenting cells. When DCs are sluggish and mature, self-antigen presentation results in tolerance; however, when pathogen-associated molecular patterns stimulate mature DCs, antigen presentation results in the development of antigen-specific immunity. DCs have been identified in various vital organs of mammals (e.g., the skin, heart, lungs, intestines, and spleen), but the brain has long been thought to be devoid of DCs in the absence of neuroinflammation. However, neuroinflammation is becoming more recognized as a factor in a variety of brain illnesses. DCs are present in the brain parenchyma in trace amounts under healthy circumstances, but their numbers rise during neuroinflammation. New therapeutics are being developed that can reduce dendritic cell immunogenicity by inhibiting pro-inflammatory cytokine production and T cell co-stimulatory pathways. Additionally, innovative ways of regulating dendritic cell growth and differentiation and harnessing their tolerogenic capability are being explored. Herein, we described the function of dendritic cells in neurological disorders and discussed the potential for future therapeutic techniques that target dendritic cells and dendritic cell-related targets in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nimra Munir
- Department of Biochemistry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zara Jabeen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Khalil Ur Rehman
- Department of Biochemistry, Riphah International University, Faisalabad, 38040, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
18
|
Saleh M, Markovic M, Olson KE, Gendelman HE, Mosley RL. Therapeutic Strategies for Immune Transformation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S201-S222. [PMID: 35871362 PMCID: PMC9535567 DOI: 10.3233/jpd-223278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Dysregulation of innate and adaptive immunity can lead to alpha-synuclein (α-syn) misfolding, aggregation, and post-translational modifications in Parkinson's disease (PD). This process is driven by neuroinflammation and oxidative stress, which can contribute to the release of neurotoxic oligomers that facilitate dopaminergic neurodegeneration. Strategies that promote vaccines and antibodies target the clearance of misfolded, modified α-syn, while gene therapy approaches propose to deliver intracellular single chain nanobodies to mitigate α-syn misfolding, or to deliver neurotrophic factors that support neuronal viability in an otherwise neurotoxic environment. Additionally, transformative immune responses provide potential targets for PD therapeutics. Anti-inflammatory drugs represent one strategy that principally affects innate immunity. Considerable research efforts have focused on transforming the balance of pro-inflammatory effector T cells (Teffs) to favor regulatory T cell (Treg) activity, which aims to attenuate neuroinflammation and support reparative and neurotrophic homeostasis. This approach serves to control innate microglial neurotoxic activities and may facilitate clearance of α-syn aggregates accordingly. More recently, changes in the intestinal microbiome have been shown to alter the gut-immune-brain axis leading to suppressed leakage of bacterial products that can promote peripheral inflammation and α-syn misfolding. Together, each of the approaches serves to interdict chronic inflammation associated with disordered immunity and neurodegeneration. Herein, we examine research strategies aimed at improving clinical outcomes in PD.
Collapse
Affiliation(s)
- Maamoon Saleh
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Su R, Zhou T. Alpha-Synuclein Induced Immune Cells Activation and Associated Therapy in Parkinson's Disease. Front Aging Neurosci 2021; 13:769506. [PMID: 34803660 PMCID: PMC8602361 DOI: 10.3389/fnagi.2021.769506] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder closely related to immunity. An important aspect of the pathogenesis of PD is the interaction between α-synuclein and a series of immune cells. Studies have shown that accumulation of α-synuclein can induce an autoimmune response that accelerates the progression of PD. This study discusses the mechanisms underlying the interaction between α-synuclein and the immune system. During the development of PD, abnormally accumulated α-synuclein becomes an autoimmune antigen that binds to Toll-like receptors (TLRs) that activate microglia, which differentiate into the microglia type 1 (M1) subtype. The microglia activate intracellular inflammatory pathways, induce the release of proinflammatory cytokines, and promote the differentiation of cluster of differentiation 4 + (CD4 +) T cells into proinflammatory T helper type 1 (Th1) and T helper type 17 (Th17) subtypes. Given the important role of α-synuclein in the immune system of the patients with PD, identifying potential targets of immunotherapy related to α-synuclein is critical for slowing disease progression. An enhanced understanding of immune-associated mechanisms in PD can guide the development of associated therapeutic strategies in the future.
Collapse
Affiliation(s)
- Ruichen Su
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, China
| | - Tian Zhou
- School of Basic Medical Science, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Lazarus HM, Ragsdale CE, Gale RP, Lyman GH. Sargramostim (rhu GM-CSF) as Cancer Therapy (Systematic Review) and An Immunomodulator. A Drug Before Its Time? Front Immunol 2021; 12:706186. [PMID: 34484202 PMCID: PMC8416151 DOI: 10.3389/fimmu.2021.706186] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sargramostim [recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF)] was approved by US FDA in 1991 to accelerate bone marrow recovery in diverse settings of bone marrow failure and is designated on the list of FDA Essential Medicines, Medical Countermeasures, and Critical Inputs. Other important biological activities including accelerating tissue repair and modulating host immunity to infection and cancer via the innate and adaptive immune systems are reported in pre-clinical models but incompletely studied in humans. OBJECTIVE Assess safety and efficacy of sargramostim in cancer and other diverse experimental and clinical settings. METHODS AND RESULTS We systematically reviewed PubMed, Cochrane and TRIP databases for clinical data on sargramostim in cancer. In a variety of settings, sargramostim after exposure to bone marrow-suppressing agents accelerated hematologic recovery resulting in fewer infections, less therapy-related toxicity and sometimes improved survival. As an immune modulator, sargramostim also enhanced anti-cancer responses in solid cancers when combined with conventional therapies, for example with immune checkpoint inhibitors and monoclonal antibodies. CONCLUSIONS Sargramostim accelerates hematologic recovery in diverse clinical settings and enhances anti-cancer responses with a favorable safety profile. Uses other than in hematologic recovery are less-well studied; more data are needed on immune-enhancing benefits. We envision significantly expanded use of sargramostim in varied immune settings. Sargramostim has the potential to reverse the immune suppression associated with sepsis, trauma, acute respiratory distress syndrome (ARDS) and COVID-19. Further, sargramostim therapy has been promising in the adjuvant setting with vaccines and for anti-microbial-resistant infections and treating autoimmune pulmonary alveolar proteinosis and gastrointestinal, peripheral arterial and neuro-inflammatory diseases. It also may be useful as an adjuvant in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Gary H. Lyman
- Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
21
|
Olson KE, Namminga KL, Lu Y, Schwab AD, Thurston MJ, Abdelmoaty MM, Kumar V, Wojtkiewicz M, Obaro H, Santamaria P, Mosley RL, Gendelman HE. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson's disease. EBioMedicine 2021; 67:103380. [PMID: 34000620 PMCID: PMC8138485 DOI: 10.1016/j.ebiom.2021.103380] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/04/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background Neuroinflammation plays a pathogenic role in Parkinson's disease (PD). Immunotherapies that restore brain homeostasis can mitigate neurodegeneration by transforming T cell phenotypes. Sargramostim has gained considerable attention as an immune transformer through laboratory bench to bedside clinical studies. However, its therapeutic use has been offset by dose-dependent adverse events. Therefore, we performed a reduced drug dose regimen to evaluate safety and to uncover novel disease-linked biomarkers during 5 days/week sargramostim treatments for one year. Methods Five PD subjects were enrolled in a Phase 1b, unblinded, open-label study to assess safety and tolerability of 3 μg/kg/day sargramostim. Complete blood counts and chemistry profiles, physical examinations, adverse events (AEs), immune profiling, Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) scores, T cell phenotypes/function, DNA methylation, and gene and protein patterns were evaluated. Findings Sargramostim administered at 3 μg/kg/day significantly reduced numbers and severity of AEs/subject/month compared to 6 μg/kg/day treatment. While MDS-UPDRS Part III score reductions were recorded, peripheral blood immunoregulatory phenotypes and function were elevated. Hypomethylation of upstream FOXP3 DNA elements was also increased. Interpretation Long-term sargramostim treatment at 3 μg/kg/day is well-tolerated and effective in restoring immune homeostasis. There were decreased numbers and severity of AEs and restored peripheral immune function coordinate with increased numbers and function of Treg. MDS-UPDRS Part III scores did not worsen. Larger patient numbers need be evaluated to assess conclusive drug efficacy (ClinicalTrials.gov NCT03790670). Funding The research was supported by community funds to the University of Nebraska Foundation and federal research support from 5 R01NS034239-25.
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Mai M Abdelmoaty
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Vikas Kumar
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, NE 68198, USA
| | - Melinda Wojtkiewicz
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Helen Obaro
- Great Plains Center for Clinical and Translational Research, University of Nebraska, USA
| | - Pamela Santamaria
- Neurology Consultants of Nebraska, PC and Nebraska Medicine, Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha , NE 68198, USA.
| |
Collapse
|
22
|
Thome AD, Atassi F, Wang J, Faridar A, Zhao W, Thonhoff JR, Beers DR, Lai EC, Appel SH. Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:41. [PMID: 33986285 PMCID: PMC8119976 DOI: 10.1038/s41531-021-00188-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a pathological hallmark of Parkinson's disease (PD). Chronic pro-inflammatory responses contribute to the loss of neurons in the neurodegenerative process. The present study was undertaken to define the peripheral innate and adaptive immune contributions to inflammation in patients with PD. Immunophenotyping revealed a shift of peripheral myeloid and lymphoid cells towards a pro-inflammatory phenotype. Regulatory T cells (Tregs) were reduced in number, and their suppression of T responder proliferation decreased. The PD Tregs did not suppress activated pro-inflammatory myeloid cells. Ex vivo expansion of Tregs from patients with PD restored and enhanced their suppressive functions while expanded Tregs displayed increased expression of foxp3, il2ra (CD25), nt5e (CD73), il10, il13, ctla4, pdcd1 (PD1), and gzmb. Collectively, these findings documented a shift towards a pro-inflammatory peripheral immune response in patients with PD; the loss of Treg suppressive functions may contribute significantly to this response, supporting PD as a disorder with extensive systemic pro-inflammatory responses. The restoration and enhancement of Treg suppressive functions following ex vivo expansion may provide a potential cell therapeutic approach for patients with PD.
Collapse
Affiliation(s)
- Aaron D. Thome
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Farah Atassi
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Jinghong Wang
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Alireza Faridar
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Weihua Zhao
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Jason R. Thonhoff
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - David R. Beers
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Eugene C. Lai
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| | - Stanley H. Appel
- grid.63368.380000 0004 0445 0041Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX USA
| |
Collapse
|
23
|
Olson KE, Namminga KL, Lu Y, Thurston MJ, Schwab AD, de Picciotto S, Tse SW, Walker W, Iacovelli J, Small C, Wipke BT, Mosley RL, Huang E, Gendelman HE. Granulocyte-macrophage colony-stimulating factor mRNA and Neuroprotective Immunity in Parkinson's disease. Biomaterials 2021; 272:120786. [PMID: 33839625 PMCID: PMC8382980 DOI: 10.1016/j.biomaterials.2021.120786] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Restoring numbers and function of regulatory T cells (Tregs) is a novel therapeutic strategy for neurodegenerative disorders. Whether Treg function is boosted by adoptive cell transfer, pharmaceuticals, or immune modulators, the final result is a robust anti-inflammatory and neuronal sparing response. Herein, a newly developed lipid nanoparticle (LNP) containing mRNA encoding granulocyte-macrophage colony-stimulating factor (Gm-csf mRNA) was developed to peripherally induce Tregs and used for treatment in preclinical Parkinson's disease (PD) models. Administration of Gm-csf mRNA to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice and rats overexpressing alpha-synuclein produced dose-dependent increases in plasma GM-CSF levels and peripheral CD4+CD25+FoxP3+ Treg populations. This upregulation paralleled nigrostriatal neuroprotection, upregulated immunosuppression-associated mRNAs that led to the detection of a treatment-induced CD4+ T cell population, and decreased reactive microgliosis. The current findings strengthen prior works utilizing immune modulation by harnessing Gm-csf mRNA to augment adaptive immune function by employing a new delivery platform to treat PD and potentially other neurodegenerative disorders.
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | | | | | | | | | | | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Eric Huang
- Moderna, Inc., Cambridge, MA, 02139, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
24
|
Modification of Glial Cell Activation through Dendritic Cell Vaccination: Promises for Treatment of Neurodegenerative Diseases. J Mol Neurosci 2021; 71:1410-1424. [PMID: 33713321 DOI: 10.1007/s12031-021-01818-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Accumulation of misfolded tau, amyloid β (Aβ), and alpha-synuclein (α-syn) proteins is the fundamental contributor to many neurodegenerative diseases, namely Parkinson's (PD) and AD. Such protein aggregations trigger activation of immune mechanisms in neuronal and glial, mainly M1-type microglia cells, leading to release of pro-inflammatory mediators, and subsequent neuronal dysfunction and apoptosis. Despite the described neurotoxic features for glial cells, recruitment of peripheral leukocytes to the brain and their conversion to neuroprotective M2-type microglia can mitigate neurodegeneration by clearing extracellular protein accumulations or residues. Based on these observations, it was speculated that Dendritic cell (DC)-based vaccination, by making use of DCs as natural adjuvants, could be used for treatment of neurodegenerative disorders. DCs potentiated by disease-specific antigens can also enhance T helper 2 (Th2)-specific immune response and by production of specific antibodies contribute to clearance of intracellular aggregations, as well as enhancing regulatory T cell response. Thus, enhancement of immune response by DC vaccine therapy can potentially augment glial polarization into the neuroprotective phenotype, enhance antibody production, and at the same time balance neuronal cells' repair, renewal, and protection. The characteristic feature of this method of treatment is to maintain the equilibrium in the immune response rather than targeting a single mediator in the disease and their application in other neurodegenerative diseases should be addressed. However, the safety of these methods should be investigated by clinical trials.
Collapse
|
25
|
Wang T, Shi C, Luo H, Zheng H, Fan L, Tang M, Su Y, Yang J, Mao C, Xu Y. Neuroinflammation in Parkinson's Disease: Triggers, Mechanisms, and Immunotherapies. Neuroscientist 2021; 28:364-381. [PMID: 33576313 DOI: 10.1177/1073858421991066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease involving multiple etiologies and pathogenesis, in which neuroinflammation is a common factor. Both preclinical experiments and clinical studies provide evidence for the involvement of neuroinflammation in the pathophysiology of PD, although there are a number of key issues related to neuroinflammatory processes in PD that remain to be addressed. In this review, we highlight the relationship between the common pathological mechanisms of PD and neuroinflammation, including aggregation of α-synuclein, genetic factors, mitochondrial dysfunction, and gut microbiome dysbiosis. We also describe the two positive feedback loops initiated in PD after the immune system is activated, and their role in the pathogenesis of PD. In addition, the interconnections and differences between the central and peripheral immune systems are discussed. Finally, we review the latest progress in immunotherapy research for PD patients, and propose future directions for clinical research.
Collapse
Affiliation(s)
- Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Yang Q, Wang G, Zhang F. Role of Peripheral Immune Cells-Mediated Inflammation on the Process of Neurodegenerative Diseases. Front Immunol 2020; 11:582825. [PMID: 33178212 PMCID: PMC7593572 DOI: 10.3389/fimmu.2020.582825] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of selectively vulnerable neuronal populations, which contrasts with selectively static loss of neurons due to toxic or metabolic disorders. The mechanisms underlying their progressive nature remain unknown. To date, a timely and well-controlled peripheral inflammatory reaction is verified to be essential for neurodegenerative diseases remission. The influence of peripheral inflammation on the central nervous system is closely related to immune cells activation in peripheral blood. The immune cells activation participated in the uncontrolled and prolonged inflammation that drives the chronic progression of neurodegenerative diseases. Thus, the dynamic modulation of this peripheral inflammatory reaction by interrupting the vicious cycle might become a disease-modifying therapeutic strategy for neurodegenerative diseases. This review focused on the role of peripheral immune cells on the pathological progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qiuyu Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Laboratory Animal Center and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Laboratory Animal Center and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Laboratory Animal Center and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
27
|
Olson KE, Namminga KL, Schwab AD, Thurston MJ, Lu Y, Woods A, Lei L, Shen W, Wang F, Joseph SB, Gendelman HE, Mosley RL. Neuroprotective Activities of Long-Acting Granulocyte-Macrophage Colony-Stimulating Factor (mPDM608) in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Intoxicated Mice. Neurotherapeutics 2020; 17:1861-1877. [PMID: 32638217 PMCID: PMC7851309 DOI: 10.1007/s13311-020-00877-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of dopaminergic neurons along the nigrostriatal axis, neuroinflammation, and peripheral immune dysfunction are the pathobiological hallmarks of Parkinson's disease (PD). Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been successfully tested for PD treatment. GM-CSF is a known immune modulator that induces regulatory T cells (Tregs) and serves as a neuronal protectant in a broad range of neurodegenerative diseases. Due to its short half-life, limited biodistribution, and potential adverse effects, alternative long-acting treatment schemes are of immediate need. A long-acting mouse GM-CSF (mPDM608) was developed through Calibr, a Division of Scripps Research. Following mPDM608 treatment, complete hematologic and chemistry profiles and T-cell phenotypes and functions were determined. Neuroprotective and anti-inflammatory capacities of mPDM608 were assessed in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice that included transcriptomic immune profiles. Treatment with a single dose of mPDM608 resulted in dose-dependent spleen and white blood cell increases with parallel enhancements in Treg numbers and immunosuppressive function. A shift in CD4+ T-cell gene expression towards an anti-inflammatory phenotype corresponded with decreased microgliosis and increased dopaminergic neuronal cell survival. mPDM608 elicited a neuroprotective peripheral immune transformation. The observed phenotypic shift and neuroprotective response was greater than observed with recombinant GM-CSF (rGM-CSF) suggesting human PDM608 as a candidate for PD treatment.
Collapse
Affiliation(s)
- Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Krista L. Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Aaron D. Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Mackenzie J. Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Ashley Woods
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Lei Lei
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Weijun Shen
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Feng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Sean B. Joseph
- Calibr, a Division of Scripps Research, La Jolla, CA 92037 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 6898-5880 USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 6898-5880 USA
| |
Collapse
|
28
|
Bi Y, Lin X, Liang H, Yang D, Zhang X, Ke J, Xiao J, Chen Z, Chen W, Zhang X, Wang S, Liu CF. Human Adipose Tissue-Derived Mesenchymal Stem Cells in Parkinson's Disease: Inhibition of T Helper 17 Cell Differentiation and Regulation of Immune Balance Towards a Regulatory T Cell Phenotype. Clin Interv Aging 2020; 15:1383-1391. [PMID: 32884248 PMCID: PMC7434526 DOI: 10.2147/cia.s259762] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder displaying a typical neuroinflammation pathology that may result from an imbalance between regulatory T cells (Treg) and T helper 17 (Th17) cells. Human adipose tissue-derived mesenchymal stem cells (Ad-MSCs) exert immunomodulatory effects by inhibiting effector T cell responses and have been used to treat diverse immune disorders. We aimed to investigate the modulating effect of human Ad-MSCs on peripheral blood mononuclear cells (PBMCs) of patients with PD, focusing on differentiation into Th17 and Treg cells. METHODS We isolated human peripheral blood CD4+T cells and co-cultured them with Ad-MSCs at a ratio of 4:1 under either Th17 or Treg cell polarizing conditions for 4 days to detect the proportions of IL-17-producing CD4+T (Th17) and CD4+CD25+Foxp3+regulatory T (Treg) cells by flow cytometry. We also determined the mRNA expression levels of the retinoid-related orphan nuclear receptor (RORγt) transcription factor and those of interleukin-6 receptor (IL-6R), interleukin-23 receptor (IL-23R), leukemia inhibitory factor (LIF), and LIF receptor (LIFR) by quantitative reverse transcription PCR. We detected levels of cytokines in the supernatant (including LIF, IL-6, IL-23, IL-10, and TGF-β) using ELISA. RESULTS Our results showed that Ad-MSCs specifically inhibited the differentiation of PBMCs of patients with PD into IL-17-producing CD4+T cells by decreasing expressions of IL-6R, IL-23R, and RORγt (the key transcription factor for Th17 cells). Moreover, Ad-MSCs induced a functional CD4+CD25+Foxp3+T regulatory cell phenotype as evidenced by the secretion of IL-10. The levels of IL-6, IL-23, and TGF-β remained constant after co-culture under either the Th17 or the Treg cell polarizing condition. In addition, levels of LIF protein and its receptor mRNA were significantly increased under both polarizing conditions. CONCLUSION The present in vitro study found that Ad-MSCs from healthy participants were able to correct the imbalance between Th17 and Treg found in PBMCs of PD patients, which were correlated with an increase in LIF secretion and a decrease in expression of IL-6R, IL-23R, and RORγt. These findings should be confirmed by in vivo experiments.
Collapse
Affiliation(s)
- Yong Bi
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, People’s Republic of China
| | - Xiaobin Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Huazheng Liang
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Dehao Yang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaowei Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jianming Ke
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jingjing Xiao
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Zhilin Chen
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Weian Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xu Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Shaoshi Wang
- Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
29
|
Jia P, Pan T, Xu S, Fang Y, Song N, Guo M, Liang Y, Xu X, Ding X. Depletion of miR-21 in dendritic cells aggravates renal ischemia-reperfusion injury. FASEB J 2020; 34:11729-11740. [PMID: 32667078 DOI: 10.1096/fj.201903222rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/30/2023]
Abstract
Dendritic cells (DCs) play an important role in the pathophysiology of renal ischemia-reperfusion injury (IRI). The mechanisms underlying DCs phenotypic modulation and their function are not fully understood. In this study, we examined the effect of miR-21 on the phenotypic modulation of DCs in vitro and in vivo, and further investigated the impact of miR-21-overexpression DC or miR-21-deficient DC on renal IRI. We found that treatment with hypoxia/reoxygenation (H/R) suppressed miR-21 expression in bone marrow-derived dendritic cells (BMDCs), and significantly increased the percentage of mature DCs (CD11c+ /MHC-II+ /CD80+ ). Using a selection of microRNA mimics, we successfully induced the upregulation of miR-21 in BMDCs, which induced immature DC phenotype and an anti-inflammatory DC response. However, deletion of miR-21 in BMDCs promoted maturation of DCs under H/R. Adoptive transfer of miR-21-overexpression BMDCs could alleviate renal IR-induced pro-inflammatory cytokines production and acute kidney injury (AKI). Mice with miR-21 deficiency in DCs subjected to renal IR showed more severe renal dysfunction and inflammatory response compared with wild-type mice. In addition, chemokine C receptor 7 (CCR7), a surface marker of mature DC, was a target gene of miR-21, and silencing of CCR7 in BMDCs led to reduced mature DCs under H/R. In conclusion, our findings highlight miR-21 as a key regulator of DCs subset phenotype and a potential therapeutic target in renal IRI.
Collapse
Affiliation(s)
- Ping Jia
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China
| | - Tianyi Pan
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Medical Association, Shanghai, China
| | - Sujuan Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nana Song
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Man Guo
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiran Liang
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xialian Xu
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China.,Kidney and Blood Purification Laboratory of Shanghai, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Kidney and Dialysis Institute of Shanghai, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| |
Collapse
|
30
|
Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, Gendelman HE. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener 2020; 15:32. [PMID: 32503641 PMCID: PMC7275301 DOI: 10.1186/s13024-020-00375-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence demonstrates that adaptive immunity influences the pathobiology of neurodegenerative disorders. Misfolded aggregated self-proteins can break immune tolerance leading to the induction of autoreactive effector T cells (Teffs) with associated decreases in anti-inflammatory neuroprotective regulatory T cells (Tregs). An imbalance between Teffs and Tregs leads to microglial activation, inflammation and neuronal injury. The cascade of such a disordered immunity includes the drainage of the aggregated protein antigens into cervical lymph nodes serving to amplify effector immune responses. Both preclinical and clinical studies demonstrate transformation of this altered immunity for therapeutic gain. We posit that the signs and symptoms of common neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke can be attenuated by boosting Treg activities.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, 94304 USA
| | - Ijaz Khan Muhammad
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pharmacy, University of Swabi, Anbar Swabi, 23561 Pakistan
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|
31
|
Schwab AD, Thurston MJ, Machhi J, Olson KE, Namminga KL, Gendelman HE, Mosley RL. Immunotherapy for Parkinson's disease. Neurobiol Dis 2020; 137:104760. [PMID: 31978602 PMCID: PMC7933730 DOI: 10.1016/j.nbd.2020.104760] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
With the increasing prevalence of Parkinson’s disease (PD), there is an immediate need to interdict disease signs and symptoms. In recent years this need was met through therapeutic approaches focused on regenerative stem cell replacement and alpha-synuclein clearance. However, neither have shown long-term clinical benefit. A novel therapeutic approach designed to affect disease is focused on transforming the brain’s immune microenvironment. As disordered innate and adaptive immune functions are primary components of neurodegenerative disease pathogenesis, this has emerged as a clear opportunity for therapeutic development. Interventions that immunologically restore the brain’s homeostatic environment can lead to neuroprotective outcomes. These have recently been demonstrated in both laboratory and early clinical investigations. To these ends, efforts to increase the numbers and function of regulatory T cells over dominant effector cells that exacerbate systemic inflammation and neurodegeneration have emerged as a primary research focus. These therapeutics show broad promise in affecting disease outcomes beyond PD, such as for Alzheimer’s disease, stroke and traumatic brain injuries, which share common neurodegenerative disease processes.
Collapse
Affiliation(s)
- Aaron D Schwab
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Mackenzie J Thurston
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America.
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5110, United States of America
| |
Collapse
|
32
|
Mayne K, White JA, McMurran CE, Rivera FJ, de la Fuente AG. Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe? Front Aging Neurosci 2020; 12:572090. [PMID: 33173502 PMCID: PMC7538701 DOI: 10.3389/fnagi.2020.572090] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases of the central nervous system (CNS) are characterized by progressive neuronal death and neurological dysfunction, leading to increased disability and a loss of cognitive or motor functions. Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis have neurodegeneration as a primary feature. However, in other CNS diseases such as multiple sclerosis, stroke, traumatic brain injury, and spinal cord injury, neurodegeneration follows another insult, such as demyelination or ischaemia. Although there are different primary causes to these diseases, they all share a hallmark of neuroinflammation. Neuroinflammation can occur through the activation of resident immune cells such as microglia, cells of the innate and adaptive peripheral immune system, meningeal inflammation and autoantibodies directed toward components of the CNS. Despite chronic inflammation being pathogenic in these diseases, local inflammation after insult can also promote endogenous regenerative processes in the CNS, which are key to slowing disease progression. The normal aging process in the healthy brain is associated with a decline in physiological function, a steady increase in levels of neuroinflammation, brain shrinkage, and memory deficits. Likewise, aging is also a key contributor to the progression and exacerbation of neurodegenerative diseases. As there are associated co-morbidities within an aging population, pinpointing the precise relationship between aging and neurodegenerative disease progression can be a challenge. The CNS has historically been considered an isolated, "immune privileged" site, however, there is mounting evidence that adaptive immune cells are present in the CNS of both healthy individuals and diseased patients. Adaptive immune cells have also been implicated in both the degeneration and regeneration of the CNS. In this review, we will discuss the key role of the adaptive immune system in CNS degeneration and regeneration, with a focus on how aging influences this crosstalk.
Collapse
Affiliation(s)
- Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Jessica A. White
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Alerie G. de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Alerie G. de la Fuente,
| |
Collapse
|
33
|
Mosley RL, Lu Y, Olson KE, Machhi J, Yan W, Namminga KL, Smith JR, Shandler SJ, Gendelman HE. A Synthetic Agonist to Vasoactive Intestinal Peptide Receptor-2 Induces Regulatory T Cell Neuroprotective Activities in Models of Parkinson's Disease. Front Cell Neurosci 2019; 13:421. [PMID: 31619964 PMCID: PMC6759633 DOI: 10.3389/fncel.2019.00421] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
A paradigm shift has emerged in Parkinson’s disease (PD) highlighting the prominent role of CD4+ Tregs in pathogenesis and treatment. Bench to bedside research, conducted by others and our own laboratories, advanced a neuroprotective role for Tregs making pharmacologic transformation of immediate need. Herein, a vasoactive intestinal peptide receptor-2 (VIPR2) peptide agonist, LBT-3627, was developed as a neuroprotectant for PD-associated dopaminergic neurodegeneration. Employing both 6-hydroxydopamine (6-OHDA) and α-synuclein (α-Syn) overexpression models in rats, the sequential administration of LBT-3627 increased Treg activity without altering cell numbers both in naïve animals and during progressive nigrostriatal degeneration. LBT-3627 administration was linked to reductions of inflammatory microglia, increased survival of dopaminergic neurons, and improved striatal densities. While α-Syn overexpression resulted in reduced Treg activity, LBT-3627 rescued these functional deficits. This occurred in a dose-dependent manner closely mimicking neuroprotection. Taken together, these data provide the basis for the use of VIPR2 agonists as potent therapeutic immune modulating agents to restore Treg activity, attenuate neuroinflammation, and interdict dopaminergic neurodegeneration in PD. The data underscore an important role of immunity in PD pathogenesis.
Collapse
Affiliation(s)
- R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wenhui Yan
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jenell R Smith
- Longevity Biotech, Inc., Philadelphia, PA, United States
| | | | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
34
|
Evans FL, Dittmer M, de la Fuente AG, Fitzgerald DC. Protective and Regenerative Roles of T Cells in Central Nervous System Disorders. Front Immunol 2019; 10:2171. [PMID: 31572381 PMCID: PMC6751344 DOI: 10.3389/fimmu.2019.02171] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Pathogenic mechanisms of T cells in several central nervous system (CNS) disorders are well-established. However, more recent studies have uncovered compelling beneficial roles of T cells in neurological diseases, ranging from tissue protection to regeneration. These divergent functions arise due to the diversity of T cell subsets, particularly CD4+ T cells. Here, we review the beneficial impact of T cell subsets in a range of neuroinflammatory and neurodegenerative diseases including multiple sclerosis, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, and CNS trauma. Both T cell-secreted mediators and direct cell contact-dependent mechanisms deliver neuroprotective, neuroregenerative and immunomodulatory signals in these settings. Understanding the molecular details of these beneficial T cell mechanisms will provide novel targets for therapeutic exploitation that can be applied to a range of neurological disorders.
Collapse
Affiliation(s)
- Frances L Evans
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Marie Dittmer
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Alerie G de la Fuente
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Denise C Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
35
|
Fernández-Valle T, Gabilondo I, Gómez-Esteban JC. New therapeutic approaches to target alpha-synuclein in Parkinson's disease: The role of immunotherapy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:281-295. [PMID: 31349931 DOI: 10.1016/bs.irn.2019.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by a slow and progressive loss of dopaminergic neurons. Its neuropathological hallmark is the accumulation of aggregated form of α-synuclein (α-syn) protein in intracellular inclusions known as Lewy bodies. This aggregated α-syn is believed to be central to the pathogenesis of PD. Emerging evidence suggests that aggregated forms of α-syn self-amplificates and propagates spreading from cell-to-cell in a "prion-like" fashion. Genetics and environmental factors are known causes for the pathogenesis of PD. In last years, inflammation in the pathophysiology of PD is gaining more importance. This neuroinflammation seems to contribute to the progressive degeneration of dopaminergic neurons. The currently available therapies for PD fail to modify the disease progression and neurodegeneration. The connection between α-syn and PD makes α-syn the major therapeutic target. We summarize the possible therapeutic strategies to target α-syn according to the steps in the molecular pathogenesis. The contribution of neuroinflammation to the progression of the disease and the "prion-like" hypothesis which enables targeting the extracellular phase of transmission of α-syn, make immunotherapy probably the most promising therapeutic approach for PD.
Collapse
Affiliation(s)
- T Fernández-Valle
- Movement Disorders and Autonomic Unit, Neurology Department, Cruces University Hospital, Barakaldo, Spain; Neurodegenerative Unit, Biocruces Health Research Institute, Barakaldo, Spain.
| | - I Gabilondo
- Movement Disorders and Autonomic Unit, Neurology Department, Cruces University Hospital, Barakaldo, Spain; Neurodegenerative Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - J C Gómez-Esteban
- Movement Disorders and Autonomic Unit, Neurology Department, Cruces University Hospital, Barakaldo, Spain; Neurodegenerative Unit, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
36
|
Lotfi N, Thome R, Rezaei N, Zhang GX, Rezaei A, Rostami A, Esmaeil N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front Immunol 2019; 10:1265. [PMID: 31275302 PMCID: PMC6593264 DOI: 10.3389/fimmu.2019.01265] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) was first described as a growth factor that induces the differentiation and proliferation of myeloid progenitors in the bone marrow. GM-CSF also has an important cytokine effect in chronic inflammatory diseases by stimulating the activation and migration of myeloid cells to inflammation sites, promoting survival of target cells and stimulating the renewal of effector granulocytes and macrophages. Because of these pro-cellular effects, an imbalance in GM-CSF production/signaling may lead to harmful inflammatory conditions. In this context, GM-CSF has a pathogenic role in autoimmune diseases that are dependent on cellular immune responses such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Conversely, a protective role has also been described in other autoimmune diseases where humoral responses are detrimental such as myasthenia gravis (MG), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and systemic lupus erythematosus (SLE). In this review, we aimed for a comprehensive analysis of literature data on the multiple roles of GM-CSF in autoimmue diseases and possible therapeutic strategies that target GM-CSF production.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nahid Rezaei
- Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Cui ZJ, Xie XL, Qi W, Yang YC, Bai Y, Han J, Ding Q, Jiang HQ. Cell-free miR-17-5p as a diagnostic biomarker for gastric cancer inhibits dendritic cell maturation. Onco Targets Ther 2019; 12:2661-2675. [PMID: 31040704 PMCID: PMC6462162 DOI: 10.2147/ott.s197682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Gastric cancer (GC) patients display aberrant miRNA expression and defective dendritic cell function. However, the role of cancer cell-derived oncomiR in GC detection and dendritic cell (DC) maturation remains largely elusive. Methods Candidate miRNAs were selected by deep sequencing (8 GC plasma samples vs 8 control plasma samples; 8 GC tissues vs 8 adjacent normal gastric tissues) and confirmed by PCR with 164 plasma samples and 72 formalin-fixed paraffin-embedded GC tissue samples. Their diagnostic performance was evaluated by receiver operating characteristic curve. Cy3 fluorescence signals in DCs, exposed to conditioned medium obtained from BGC-823 cells pre-transfected with Cy3-miR-17-5p, were determined by flow cytometry and visualized by confocal microscopy. Functional and phenotypical alterations of DCs were assayed when DCs were transfected with miR-17-5p in vitro. Results Deep sequencing and RT-PCR confirmed that five shared miRNAs were upregulated in plasma and tissue samples of GC patients. Cell-free miR-17-5p was superior to others in GC detection with an area under the curve of 0.82, and correlated with lymphatic metastasis and poor overall survival. GC cell-shuttled miR-17-5p can be delivered to immature DCs, and they significantly inhibited LPS-stimulated phenotypic maturation by diminishing the expression of maturation markers (MHC II, CD80 and CD86 molecules). In line with those alterations in the phenotypic markers, functional experiments demonstrated that miR-17-5p triggered an inhibitory effect on DCs endocytic activity and decreased tumor necrosis factor-α and IL-12 secretion, while enhancing IL-10 production. Mixed lymphocyte reaction showed that miR-17-5p inhibited the T cell stimulating effect of DCs and favored regulatory T cells expansion. Conclusion GC cell-derived miR-17-5p is a potential biomarker for GC detection. Taken up by DCs, miR-17-5p weakened antitumor immune responses via inhibiting the maturation of dendritic cells.
Collapse
Affiliation(s)
- Zi-Jin Cui
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China, .,Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Xiao-Li Xie
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China,
| | - Wei Qi
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China,
| | - Yi-Chao Yang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China,
| | - Yun Bai
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, People's Republic of China
| | - Jing Han
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China,
| | - Qian Ding
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China,
| | - Hui-Qing Jiang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China,
| |
Collapse
|
38
|
Interleukin 10 Gene-Modified Bone Marrow-Derived Dendritic Cells Attenuate Liver Fibrosis in Mice by Inducing Regulatory T Cells and Inhibiting the TGF- β/Smad Signaling Pathway. Mediators Inflamm 2019; 2019:4652596. [PMID: 30800002 PMCID: PMC6360045 DOI: 10.1155/2019/4652596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/14/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
Aim To explore the therapeutic effects and mechanisms of interleukin 10 gene-modified bone marrow-derived dendritic cells (DC-IL10) on liver fibrosis. Methods In vitro, BMDCs were transfected with lentiviral-interleukin 10-GFP (LV-IL10-GFP) at the MOI of 1 : 40. Then, the phenotype (MHCII, CD80, and CD86) and allo-stimulatory ability of DC-IL10 were identified by flow cytometry, and the levels of IL-10 and IL-12 (p70) secreted into the culture supernatants were quantified by ELISA. In vivo, DC-IL10 was injected into mice with CCl4-induced liver fibrosis through the tail vein. Lymphocytes were isolated to investigate the differentiation of T cells, and serum and liver tissue were collected for biochemical, cytokine, histopathologic, immune-histochemical, and Western blot analyzes. Results In vitro, the expressions of MHCII, CD80, and CD86 in DC-IL10 were significantly suppressed, allogeneic CD4+T cells incubated with DC-IL10 showed a lower proliferative response, and the levels of IL-10 and IL-12 (p70) secreted into the DC-IL10 culture supernatants were significantly increased and decreased, respectively. In vivo, regulatory T cells (Tregs) were significantly increased, while ALT, AST, and inflammatory cytokines were significantly reduced in the DC-IL10 treatment group, and the degree of hepatic fibrosis was obviously reversed. The TGF-β/smad pathway was inhibited following DC-IL10 treatment compared to the liver fibrosis group. Conclusion IL-10 genetic modification of BMDCs may maintain DC in the state of tolerance and allow DC to induce T cell hyporesponsiveness or tolerance. DC-IL10 suppressed liver fibrosis by inducing Treg production and inhibiting the TGF-β/smad signaling pathway.
Collapse
|
39
|
Zhang G, Xia Y, Wan F, Ma K, Guo X, Kou L, Yin S, Han C, Liu L, Huang J, Xiong N, Wang T. New Perspectives on Roles of Alpha-Synuclein in Parkinson's Disease. Front Aging Neurosci 2018; 10:370. [PMID: 30524265 PMCID: PMC6261981 DOI: 10.3389/fnagi.2018.00370] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is one of the synucleinopathies spectrum of disorders typified by the presence of intraneuronal protein inclusions. It is primarily composed of misfolded and aggregated forms of alpha-synuclein (α-syn), the toxicity of which has been attributed to the transition from an α-helical conformation to a β-sheetrich structure that polymerizes to form toxic oligomers. This could spread and initiate the formation of “LB-like aggregates,” by transcellular mechanisms with seeding and subsequent permissive templating. This hypothesis postulates that α-syn is a prion-like pathological agent and responsible for the progression of Parkinson’s pathology. Moreover, the involvement of the inflammatory response in PD pathogenesis has been reported on the excessive microglial activation and production of pro-inflammatory cytokines. At last, we describe several treatment approaches that target the pathogenic α-syn protein, especially the oligomers, which are currently being tested in advanced animal experiments or are already in clinical trials. However, there are current challenges with therapies that target α-syn, for example, difficulties in identifying varying α-syn conformations within different individuals as well as both the cost and need of long-duration large trials.
Collapse
Affiliation(s)
- Guoxin Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Han
- Department of Neurology, Anhui Provincial Hospital, The First Affiliated Hospital of Science and Technology of China, Hefei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|