1
|
Cao MG, Wang Y, Yang ZM, Wang Y, Wang MQ, Zhuo S, Yang Y, Liu CS. The effect of miR-381 on proliferation and prognosis of breast cancer by altering CCNA2 expression. J OBSTET GYNAECOL 2024; 44:2360547. [PMID: 38904638 DOI: 10.1080/01443615.2024.2360547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND MiR-381 can regulate the expression of cyclin A2 (CCNA2) to inhibit the proliferation and migration of bladder cancer cells, but whether miR-381 has the same function in breast cancer is not well know. METHODS The over express or silence miR-381 expressing cell lines were constructed by lentivirus infection to reveal the biological functions of miR-381 in vitro. The expression of miR-381 and CCNA2 in 162 breast cancer patients were detected to further reveal their impact and predictive value on progression-free survival (PFS) and overall survival (OS). RESULTS After transfection of MDA-MB-231 and MCF-7 cells with miR-381 mimics, the expression of miR-381 was effectively up-regulated and CCNA2 was effectively down-regulated, while the opposite results were observed in tumour cell which transfected with miR-381 inhibitors. After transfection of cell lines with miR-381 mimics, tumour cell activity was significantly reduced, while the opposite results were observed in tumour cell which transfected with miR-381 inhibitors. The area under curves (AUCs) of miRNA-381 and CCNA2 for predicting PFS and OS were 0.711, 0.695, 0.694 and 0.675 respectively. Cox regression analysis showed that miRNA-381 ≥ 1.65 2-ΔΔCt and CCNA ≥ 2.95 2-ΔΔCt were the influence factors of PFS and OS, the hazard ratio (HR) values were 0.553, 2.075, 0.462 and 2.089, respectively. CONCLUSION miR-381 inhibitors breast cancer cells proliferation and migration by down-regulating the expression of CCNA2, both of them can predict the prognosis of breast cancer.
Collapse
Affiliation(s)
- Ming-Gang Cao
- Department of Clinical Medicine, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Yan Wang
- Department of Central Sterile Supply, The Second People's Hospital of Wuhu, Wuhu, China
| | - Zhi-Min Yang
- Department of Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yang Wang
- Department of Clinical Medicine, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Mei-Qing Wang
- Department of Clinical Medicine, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Shuai Zhuo
- Department of Clinical Medicine, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Yan Yang
- Department of Clinical Medicine, Anhui College of Traditional Chinese Medicine, Wuhu, China
| | - Chun-Sheng Liu
- Department of Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Huang Z, Iqbal Z, Zhao Z, Chen X, Mahmmod A, Liu J, Li W, Deng Z. TMEM16 proteins: Ca 2+‑activated chloride channels and phospholipid scramblases as potential drug targets (Review). Int J Mol Med 2024; 54:81. [PMID: 39092585 PMCID: PMC11315658 DOI: 10.3892/ijmm.2024.5405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 08/04/2024] Open
Abstract
TMEM16 proteins, which function as Ca2+‑activated Cl‑ channels are involved in regulating a wide variety of cellular pathways and functions. The modulators of Cl‑ channels can be used for the molecule‑based treatment of respiratory diseases, cystic fibrosis, tumors, cancer, osteoporosis and coronavirus disease 2019. The TMEM16 proteins link Ca2+ signaling, cellular electrical activity and lipid transport. Thus, deciphering these complex regulatory mechanisms may enable a more comprehensive understanding of the physiological functions of the TMEM16 proteins and assist in ascertaining the applicability of these proteins as potential pharmacological targets for the treatment of a range of diseases. The present review examined the structures, functions and characteristics of the different types of TMEM16 proteins, their association with the pathogenesis of various diseases and the applicability of TMEM16 modulator‑based treatment methods.
Collapse
Affiliation(s)
- Zeqi Huang
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zoya Iqbal
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zhe Zhao
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Xiaoqiang Chen
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Ayesha Mahmmod
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 58240, Pakistan
| | - Jianquan Liu
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Wencui Li
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zhiqin Deng
- Department of Hand and Foot Surgery, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
3
|
Yang X, Cui L, Liu Z, Li Y, Wu X, Tian R, Jia C, Ren C, Mou Y, Song X. TMEM16A inhibits autophagy and promotes the invasion of hypopharyngeal squamous cell carcinoma through mTOR pathway. Carcinogenesis 2024; 45:569-581. [PMID: 38470063 DOI: 10.1093/carcin/bgae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024] Open
Abstract
Previous studies have indicated that transmembrane protein 16A (TMEM16A) plays a crucial role in the pathogenesis and progression of various tumors by influencing multiple signaling pathways. However, the role of TMEM16A in regulating autophagy via the mammalian target of rapamycin (mTOR) pathway and its impact on the development of hypopharyngeal squamous cell carcinoma (HSCC) remain unclear. Immunohistochemistry and western blotting were used to assess the expression of TMEM16A in HSCC tissues and metastatic lymph nodes. Manipulation of TMEM16A expression levels was achieved in the FaDu cell line through overexpression or knockdown, followed by assessment of its biological effects using cell colony formation, wound healing, transwell and invasion assays. Additionally, apoptosis and autophagy-related proteins, as well as autophagosome formation, were evaluated through western blotting, transmission electron microscopy and immunofluorescence following TMEM16A knockdown or overexpression in FaDu cells. Our study revealed significantly elevated levels of TMEM16A in both HSCC tissues and metastatic lymph nodes compared with normal tissues. In vitro experiments demonstrated that silencing TMEM16A led to a notable suppression of HSCC cell proliferation, invasion and migration. Furthermore, TMEM16A silencing effectively inhibited tumor growth in xenografted mice. Subsequent investigations indicated that knockdown of TMEM16A in HSCC cells could suppress mTOR activation, thereby triggering autophagic cell death by upregulating sequestosome-1 (SQSTM1/P62) and microtubule-associated protein light chain 3 II (LC3II). This study highlights the crucial role of TMEM16A in modulating autophagy in HSCC, suggesting its potential as a therapeutic target for the treatment of this malignancy.
Collapse
Affiliation(s)
- Xin Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
| | - Limei Cui
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
| | - Zhonglu Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
| | - Yumei Li
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
| | - Xinxin Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
| | - Ruxian Tian
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
| | - Chuanliang Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
| | - Chao Ren
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Shandong Provincial Innovation and Practice Base for Postdoctors, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Yakui Mou
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
| | - Xicheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong Province, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong Province, China
| |
Collapse
|
4
|
Arreola J, López-Romero AE, Huerta M, Guzmán-Hernández ML, Pérez-Cornejo P. Insights into the function and regulation of the calcium-activated chloride channel TMEM16A. Cell Calcium 2024; 121:102891. [PMID: 38772195 DOI: 10.1016/j.ceca.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
The TMEM16A channel, a member of the TMEM16 protein family comprising chloride (Cl-) channels and lipid scramblases, is activated by the free intracellular Ca2+ increments produced by inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release after GqPCRs or Ca2+ entry through cationic channels. It is a ubiquitous transmembrane protein that participates in multiple physiological functions essential to mammals' lives. TMEM16A structure contains two identical 10-segment monomers joined at their transmembrane segment 10. Each monomer harbours one independent hourglass-shaped pore gated by Ca2+ ligation to an orthosteric site adjacent to the pore and controlled by two gates. The orthosteric site is created by assembling negatively charged glutamate side chains near the pore´s cytosolic end. When empty, this site generates an electrostatic barrier that controls channel rectification. In addition, an isoleucine-triad forms a hydrophobic gate at the boundary of the cytosolic vestibule and the inner side of the neck. When the cytosolic Ca2+ rises, one or two Ca2+ ions bind to the orthosteric site in a voltage (V)-dependent manner, thus neutralising the electrostatic barrier and triggering an allosteric gating mechanism propagating via transmembrane segment 6 to the hydrophobic gate. These coordinated events lead to pore opening, allowing the Cl- flux to ensure the physiological response. The Ca2+-dependent function of TMEM16A is highly regulated. Anions with higher permeability than Cl- facilitate V dependence by increasing the Ca2+ sensitivity, intracellular protons can replace Ca2+ and induce channel opening, and phosphatidylinositol 4,5-bisphosphate bound to four cytosolic sites likely maintains Ca2+ sensitivity. Additional regulation is afforded by cytosolic proteins, most likely by phosphorylation and protein-protein interaction mechanisms.
Collapse
Affiliation(s)
- Jorge Arreola
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico.
| | - Ana Elena López-Romero
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - Miriam Huerta
- Jorge Arreola, Physics Institute of Universidad Autónoma de San Luis Potosí. Av. Parque Chapultepec 1570, Privadas del Pedregal, 78295 San Luis Potosí, SLP., Mexico
| | - María Luisa Guzmán-Hernández
- Catedrática CONAHCYT, Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine, Universidad Autónoma de San Luis Potosí. Ave. V. Carranza 2905, Los Filtros, San Luis Potosí, SLP 78210, Mexico
| |
Collapse
|
5
|
Gu X, Liu Z, Shan S, Ren T, Wang S. Airway basal cell‑derived exosomes suppress epithelial‑mesenchymal transition of lung cells by inhibiting the expression of ANO1. Exp Ther Med 2024; 27:219. [PMID: 38590572 PMCID: PMC11000454 DOI: 10.3892/etm.2024.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Disruption of the epithelial-mesenchymal transition (EMT) of activated lung cells is an important strategy to inhibit the progression of idiopathic pulmonary fibrosis (IPF). The present study investigated the role of exosomes derived from airway basal cells on EMT of lung cells and elucidate the underlying mechanism. Exosomes were characterized by nanoparticle tracking analysis, transmission electron microscopy imaging and markers detection. The role of exosome on the EMT of lung epithelial cells and lung fibroblasts induced by TGF-β1 was detected. RNA sequencing screened dysregulated genes in exosome-treated group, followed by the bioinformatical analysis. One of the candidates, anoctamin-1 (ANO1), was selected for further gain-and-loss phenotype assays. A bleomycin-induced pulmonary fibrosis model was used to evaluate the treatment effect of exosomes. Exosomes were round-like and positively expressed CD63 and tumor susceptibility gene 101 protein. Treatment with exosomes inhibited the EMT of lung cells activated by TGF-β1. 4158 dysregulated genes were identified in exosome-treated group under the threshold of |log2 fold-change| value >1 and they were involved in the metabolism of various molecules, as well as motility-related biological processes. A key gene, ANO1, was verified by reverse transcription-quantitative PCR, whose overexpression induced the EMT of lung cells. By contrast, ANO1 knockdown reversed the EMT induced by TGF-β1. In vivo assay indicated that exosome treatment ameliorated pulmonary fibrosis and inhibited the upregulation of ANO1 induced by bleomycin. In conclusion, airway basal cell-derived exosomes suppressed the EMT of lung cells via the downregulation of ANO1. These exosomes represent a potential therapeutic option for patients with IPF.
Collapse
Affiliation(s)
- Xiaohua Gu
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| | - Zeyu Liu
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| | - Shaoyang Wang
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| |
Collapse
|
6
|
Ji J, Zhou Z, Luo Q, Zhu Y, Wang R, Liu Y. TMEM16A enhances the activity of the Cdc42-NWASP signaling pathway to promote invasion and metastasis in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 137:161-171. [PMID: 38155002 DOI: 10.1016/j.oooo.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE We explored the relationship between TMEM16A and metastasis and development in oral squamous cell carcinoma (OSCC). STUDY DESIGN The University of Alabama at Birmingham and Gene Expression Profiling Interactive Analysis Databases were employed to analyze the relationship between the expression of TMEM16A and the survival of patients with OSCC. TMEM16A was knocked down and overexpressed in CAL27 and SCC-4 cells, respectively, and the malignant behavior and expression of key proteins were detected. The Cdc42-NWASP pathway was inhibited, and the effects of TMEM16A and the Cdc42-NWASP pathway on promoting the malignant behavior of cancer cells were verified. A xenograft tumor model was constructed, and tumor growth, cell proliferation index, apoptosis, and Cdc42-NWASP signal pathway activity were detected. RESULTS The expression of TMEM16A in oral cancer tissues was significantly higher than in adjacent tissues, and mice with high expression of TMEM16A had shorter survival. Overexpression of TMTM16A could significantly promote the occurrence of cancer and reduce the apoptosis of cancer cells, whereas the activity of the Cdc42 pathway was higher. Knocking down TMEM16A or inhibiting the Cdc42-NWASP pathway could reverse these results. CONCLUSION The activation of the Cdc42-NWASP pathway by high TMEM16A expression is closely related to OSCC and may become a new therapeutic target to prevent OSCC metastasis.
Collapse
Affiliation(s)
- Juanjuan Ji
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Zhi Zhou
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Qi Luo
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yaling Zhu
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Rui Wang
- Department of Stomatology, The Affiliated Hospital of Yunnan University/The Second People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yali Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
7
|
Singh P, Li FJ, Dsouza K, Stephens CT, Zheng H, Kumar A, Dransfield MT, Antony VB. Low dose cadmium exposure regulates miR-381-ANO1 interaction in airway epithelial cells. Sci Rep 2024; 14:246. [PMID: 38168913 PMCID: PMC10762153 DOI: 10.1038/s41598-023-50471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death worldwide. Cigarette smoke which has approximately 2-3 µg of Cadmium (Cd) per cigarette contributes to the environmental exposure and development and severity of COPD. With the lack of a cadmium elimination mechanism in humans, the contribution of cadmium induced stress to lung epithelial cells remains unclear. Studies on cadmium responsive miRNAs suggest regulation of target genes with an emphasis on the critical role of miRNA-mRNA interaction for cellular homeostasis. Mir-381, the target miRNA in this study is negatively regulated by cadmium in airway epithelial cells. miR-381 is reported to also regulate ANO1 (Anoctamin 1) expression negatively and in this study low dose cadmium exposure to airway epithelial cells was observed to upregulate ANO1 mRNA expression via mir-381 inhibition. ANO1 which is a Ca2+-activated chloride channel has multiple effects on cellular functions such as proliferation, mucus hypersecretion and fibroblast differentiation in inflamed airways in chronic respiratory diseases. In vitro studies with cadmium at a high concentration range of 100-500 µM is reported to activate chloride channel, ANO1. The secretory epithelial cells are regulated by chloride channels like CFTR, ANO1 and SLC26A9. We examined "ever" smokers with COPD (n = 13) lung tissue sections compared to "never" smoker without COPD (n = 9). We found that "ever" smokers with COPD had higher ANO1 expression. Using mir-381 mimic to inhibit ANO1, we demonstrate here that ANO1 expression is significantly (p < 0.001) downregulated in COPD derived airway epithelial cells exposed to cadmium. Exposure to environmental cadmium contributes significantly to ANO1 expression.
Collapse
Affiliation(s)
- Pooja Singh
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fu Jun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kevin Dsouza
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Crystal T Stephens
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huaxiu Zheng
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhishek Kumar
- UAB Superfund Center Advisory Board, Gainesville, FL, United States
| | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
8
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
9
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
10
|
Li S, Wang Z, Geng R, Zhang W, Wan H, Kang X, Guo S. TMEM16A ion channel: A novel target for cancer treatment. Life Sci 2023; 331:122034. [PMID: 37611692 DOI: 10.1016/j.lfs.2023.122034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Cancer draws attention owing to the high morbidity and mortality. It is urgent to develop safe and effective cancer therapeutics. The calcium-activated chloride channel TMEM16A is widely distributed in various tissues and regulates physiological functions. TMEM16A is abnormally expressed in several cancers and associate with tumorigenesis, metastasis, and prognosis. Knockdown or inhibition of TMEM16A in cancer cells significantly inhibits cancer development. Therefore, TMEM16A is considered as a biomarker and therapeutic target for some cancers. This work reviews the cancers associated with TMEM16A. Then, the molecular mechanism of TMEM16A overexpression in cancer was analyzed, and the possible signal transduction mechanism of TMEM16A regulating cancer development was summarized. Finally, TMEM16A inhibitors with anticancer effect and their anticancer mechanism were concluded. We hope to provide new ideas for pharmacological studies on TMEM16A in cancer.
Collapse
Affiliation(s)
- Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Zhichen Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Ruili Geng
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
11
|
Gao X, Liu H, Wu Q, Wang R, Huang M, Ma Q, Liu Y. miRNA-381-3p Functions as a Tumor Suppressor to Inhibit Gastric Cancer by Targeting Fibroblast Growth Factor Receptor-2. Cancer Biother Radiopharm 2023; 38:396-404. [PMID: 35029520 DOI: 10.1089/cbr.2021.0357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objectives: MicroRNAs possess essential effects on gastric cancer (GC), whereas the underlying mechanisms have not been fully uncovered. The present work focused on investigating the role of miR-381-3p in GC cellular processes and the possible mechanisms. Materials and Methods: miR-381-3p levels within GC tissues and cells were measured through quantitative real-time polymerase chain reaction (qRT-PCR). This study measured cell proliferation, apoptosis, and metastasis through EdU, colony formation, flow cytometry, and Transwell assays separately. TargetScan was adopted to predict the miR-381-3p targets, whereas luciferase reporter assay was adopted for confirmation. Results: miR-381-3p levels were decreased, whereas fibroblast growth factor receptor-2 (FGFR2) expression was increased in GC. miR-381-3p upregulation inhibited proliferation, migration, and invasion and it promoted the apoptosis of GC cells. Further, FGFR2 overexpression partly reversed the miR-381-3p-mediated impacts on GC cellular processes. Conclusions: This study provides an experimental basis, suggesting the potential of using miR-381-3p as the novel marker for GC. Clinical Trial Registration number: 2020-05.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Huiqi Liu
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Qiong Wu
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Rong Wang
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Mingyu Huang
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Qiang Ma
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Yongnian Liu
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
12
|
Guo S, Zhang L, Li N. ANO1: More Than Just Calcium-Activated Chloride Channel in Cancer. Front Oncol 2022; 12:922838. [PMID: 35734591 PMCID: PMC9207239 DOI: 10.3389/fonc.2022.922838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
ANO1, a calcium-activated chloride channel (CACC), is also known as transmembrane protein 16A (TMEM16A). It plays a vital role in the occurrence, development, metastasis, proliferation, and apoptosis of various malignant tumors. This article reviews the mechanism of ANO1 involved in the replication, proliferation, invasion and apoptosis of various malignant tumors. Various molecules and Stimuli control the expression of ANO1, and the regulatory mechanism of ANO1 is different in tumor cells. To explore the mechanism of ANO1 overexpression and activation of tumor cells by studying the different effects of ANO1. Current studies have shown that ANO1 expression is controlled by 11q13 gene amplification and may also exert cell-specific effects through its interconnected protein network, phosphorylation of different kinases, and signaling pathways. At the same time, ANO1 also resists tumor apoptosis and promotes tumor immune escape. ANO1 can be used as a promising biomarker for detecting certain malignant tumors. Further studies on the channels and the mechanism of protein activity of ANO1 are needed. Finally, the latest inhibitors of ANO1 are summarized, which provides the research direction for the tumor-promoting mechanism of ANO1.
Collapse
Affiliation(s)
- Saisai Guo
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linna Zhang
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
TMEM16A as a potential treatment target for head and neck cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:196. [PMID: 35668455 PMCID: PMC9172006 DOI: 10.1186/s13046-022-02405-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
Transmembrane protein 16A (TMEM16A) forms a plasma membrane-localized Ca2+-activated Cl- channel. Its gene has been mapped to an area on chromosome 11q13, which is amplified in head and neck squamous cell carcinoma (HNSCC). In HNSCC, TMEM16A overexpression is associated with not only high tumor grade, metastasis, low survival, and poor prognosis, but also deterioration of clinical outcomes following platinum-based chemotherapy. Recent study revealed the interaction between TMEM16A and transforming growth factor-β (TGF-β) has an indirect crosstalk in clarifying the mechanism of TMEM16A-induced epithelial-mesenchymal transition. Moreover, human papillomavirus (HPV) infection can modulate TMEM16A expression along with epidermal growth factor receptor (EGFR), whose phosphorylation has been reported as a potential co-biomarker of HPV-positive cancers. Considering that EGFR forms a functional complex with TMEM16A and is a co-biomarker of HPV, there may be crosstalk between TMEM16A expression and HPV-induced HNSCC. EGFR activation can induce programmed death ligand 1 (PD-L1) synthesis via activation of the nuclear factor kappa B pathway and JAK/STAT3 pathway. Here, we describe an interplay among EGFR, PD-L1, and TMEM16A. Combination therapy using TMEM16A and PD-L1 inhibitors may improve the survival rate of HNSCC patients, especially those resistant to anti-EGFR inhibitor treatment. To the best of our knowledge, this is the first review to propose a biological validation that combines immune checkpoint inhibition with TMEM16A inhibition.
Collapse
|
14
|
Li D, Lu L, Liu M, Sun J. Inhibition of long noncoding RNA cancer susceptibility candidate 7 attenuates hepatocellular carcinoma development by targeting microRNA-30a-5p. Bioengineered 2022; 13:11296-11308. [PMID: 35484972 PMCID: PMC9208517 DOI: 10.1080/21655979.2022.2068289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNA (lncRNA) cancer susceptibility candidate 7 (CASC7) was reported to be participated in tumor development. This study was carried out to investigate the functions of CASC7 in hepatocellular carcinoma (HCC) progression. The expression of CASC7 and microRNA-30a-5p (miR-30a-5p) in HCC tissues and cells were detected by quantitative Real-time PCR (qRT-PCR). The expression of Krueppel-like factor 10 (KLF10), transforming growth factor-β (TGF-β), and SMAD3 were detected by Western Blot analysis. Transwell assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate the effects of CASC7, KLF10 and miR-30a-5p on cell function. The relationship among CASC7, KLF10 and miR-30a-5p was evaluated by luciferase reporter assay and bioinformatics analyses. Tumor growth was detected in nude mice. The expression levels of CASC7 were increased and the expression levels of miR-30a-5p were reduced in HCC cells and tissues. Knockdown of CASC7 and overexpression of miR-30a-5p reduced tumor growth as well as HCC cell proliferation, invasion and migration. In HCC tumor tissues, the expression of miR-30a-5p was negatively correlated with the expression of CASC7. Moreover, as a target of miR-30a-5p, KLF10 was regulated by CASC7 and miR-30a-5p, and CASC7 regulated the KLF10/TGF-β/SMAD3 pathway via binding to miR-30a-5p, thereby promoting HCC cell progression.
Collapse
Affiliation(s)
- Dongsheng Li
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lin Lu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Miaomiao Liu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jufeng Sun
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
15
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
16
|
Ion Channel Involvement in Tumor Drug Resistance. J Pers Med 2022; 12:jpm12020210. [PMID: 35207698 PMCID: PMC8878471 DOI: 10.3390/jpm12020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Over 90% of deaths in cancer patients are attributed to tumor drug resistance. Resistance to therapeutic agents can be due to an innate property of cancer cells or can be acquired during chemotherapy. In recent years, it has become increasingly clear that regulation of membrane ion channels is an important mechanism in the development of chemoresistance. Here, we review the contribution of ion channels in drug resistance of various types of cancers, evaluating their potential in clinical management. Several molecular mechanisms have been proposed, including evasion of apoptosis, cell cycle arrest, decreased drug accumulation in cancer cells, and activation of alternative escape pathways such as autophagy. Each of these mechanisms leads to a reduction of the therapeutic efficacy of administered drugs, causing more difficulty in cancer treatment. Thus, targeting ion channels might represent a good option for adjuvant therapies in order to counteract chemoresistance development.
Collapse
|
17
|
Liu Y, Geng X. Long non-coding RNA (lncRNA) CYTOR promotes hepatocellular carcinoma proliferation by targeting the microRNA-125a-5p/LASP1 axis. Bioengineered 2022; 13:3666-3679. [PMID: 35081873 PMCID: PMC8974008 DOI: 10.1080/21655979.2021.2024328] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/24/2022] Open
Abstract
This study investigated the function of long non-coding RNA (lncRNA) cytoskeleton regulator RNA (CYTOR) in hepatocellular carcinoma (HCC). In HCC, the expression of CYTOR and microRNA (miR)-125a-5p were measured by quantitative real-time PCR (qRT-PCR). The expression of actin skeletal protein 1 (LASP1) was evaluated by Western blot analysis. Flow cytometry assays, transwell assays, colony formation assay, and cell counting kit-8 (CCK-8) assay were used to evaluate the roles of miR-125a-5p and CYTOR in HCC cells. The target genes of CYTOR and miR-125a-5p were identified by bioinformatics analysis and Luciferase assay. CYTOR was upregulated in HCC cell lines, and knockdown of CYTOR inhibited HCC cell growth. MiR-125a-5p was downregulated in HCC cells and a target of CYTOR in regulating HCC progression. Furthermore, LASP1 was a downstream target of miR-125a-5p. Finally, CYTOR was found to be involved in HCC progression in vivo. CYTOR promotes HCC development by regulating the miR-125a-5p/LASP1 axis.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| | - Xiaoling Geng
- Department of Gastroenterology& Hepatology, First Affiliated Hospital of Dalian Medical University, Dalian City, Liaoning Province, PR. China
| |
Collapse
|
18
|
Shi S, Pang C, Ren S, Sun F, Ma B, Guo S, Li J, Chen Y, An H. Molecular dynamics simulation of TMEM16A channel: Linking structure with gating. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183777. [PMID: 34537214 DOI: 10.1016/j.bbamem.2021.183777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
TMEM16A, the calcium-activated chloride channel, is broadly expressed and plays pivotal roles in diverse physiological processes. To understand the structural and functional relationships of TMEM16A, it is necessary to fully clarify the structural basis of the gating of the TMEM16A channel. Herein, we performed the protein electrostatic analysis and molecular dynamics simulation on the TMEM16A in the presence and absence of Ca2+. Data showed that the separation of TM4 and TM6 causes pore expansion, and Q646 may be a key residue for the formation of π-helix in the middle segment of TM6. Moreover, E705 was found to form a group of H-bond interactions with D554/K588/K645 below the hydrophobic gate to stabilize the closed conformation of the pore in the Ca2+-free state. Interestingly, in the Ca2+ bound state, the E705 side chain swings 100o to serve as Ca2+-binding coordination and released K645. K645 is closer to the hydrophobic gate in the calcium-bound state, which facilitates the provision of electrostatic forces for chloride ions as the ions pass through the hydrophobic gate. Our findings provide the structural-based insights to understanding the mechanisms of gating of TMEM16A.
Collapse
Affiliation(s)
- Sai Shi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Chunli Pang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Shuxi Ren
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Fude Sun
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Shuai Guo
- College of Life Science, Hebei University, Baoding 071002, Hebei, China
| | - Junwei Li
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology, Tianjin 300401, China; Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
19
|
Sha H, Gan Y, Xu F, Zhu Y, Zou R, Peng W, Wu Z, Ma R, Wu J, Feng J. MicroRNA-381 in human cancer: Its involvement in tumour biology and clinical applications potential. J Cell Mol Med 2022; 26:977-989. [PMID: 35014178 PMCID: PMC8831973 DOI: 10.1111/jcmm.17161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/14/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small non‐coding RNAs that regulate gene expression at the post‐transcriptional level. MiRNAs are involved in the development and progression of a wide range of cancers. Among such cancer‐associated miRNAs, miR‐381 has been a major focus of research. The expression pattern and role of miR‐381 vary among different cancer types. MiR‐381 modulates various cellular behaviours in cancer, including proliferation, apoptosis, cell cycle progression, migration and invasion. MiR‐381 is also involved in angiogenesis and lymphangiogenesis, as well as in the resistance to chemotherapy and radiotherapy. MiR‐381 itself is regulated by several factors, such as long noncoding RNAs, circular RNAs and cytokines. Aberrant expression of miR‐381 in blood samples indicates that it can be used as a diagnostic marker in cancer. Tissue miR‐381 expression may serve as a prognostic factor for the clinicopathological characteristics of cancers and survival of patients. Metformin and icaritin regulate miR‐381 expression and present anticancer properties. This review comprehensively summarizes the effect of miR‐381 on tumour biological behaviours, as well as the clinical application potential of miR‐381 for the treatment of cancer.
Collapse
Affiliation(s)
- Huanhuan Sha
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yujie Gan
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yue Zhu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Renrui Zou
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Peng
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiya Wu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Ma
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianzhong Wu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Feng
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Ma J, Zhao G, Du J, Li J, Lin G, Zhang J. LncRNA FENDRR Inhibits Gastric Cancer Cell Proliferation and Invasion via the miR-421/SIRT3/Notch-1 Axis. Cancer Manag Res 2021; 13:9175-9187. [PMID: 34938121 PMCID: PMC8685553 DOI: 10.2147/cmar.s329419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Objective This study aimed to investigate the regulatory effect of lncRNA fetal-lethal non-coding developmental regulatory RNA (FENDRR) on gastric cancer (GC) progression. Methods The expression levels of FENDRR in GC tissues and paracancerous tissues, as well as in gastric normal epithelial cell line and GC cell lines were detected. The Ad-FENDRR or si-FENDRR was transfected into AGS and SGC-7901 cells, and cell proliferation, invasion and apoptosis were determined. Online bioinformatics database predicted and screened miR-421 as a potential target of FENDRR, and SIRT3 was predicted as a target gene of miR-421. The pcDNA-SIRT3 or si-SIRT3 was transfected into AGS cells, and cell proliferation, invasion, apoptosis and Notch-1 protein expression were determined. Ad-FENDRR was transfected into AGS and SGC-7901 cells alone or together with miR-421 mimic to explore the effect of miR-421 on cells. The AGS cells transfected with Ad-FENDRR were injected into the armpits of nude mice to establish subcutaneous xenograft tumor model, and tumor growth was observed. Results FENDRR expression was downregulated in GC tissues and cell lines. Overexpression of FENDRR or SIRT3 inhibited tumor proliferation and invasion, and promoted apoptosis. The overexpression of Notch-1 reversed the inhibitory effect of SIRT3 on AGS cell. MiR-421 mimic reversed the inhibitory effect of FENDRR on the growth of AGS and SGC-7901 cells. Nude mice injected with FENDRR overexpressing AGS cells had smaller tumor volume and weight and weaker tumor cell proliferation ability. Conclusion FENDRR inhibits Notch-1 pathway to inhibit GC cell proliferation and invasion by upregulating SIRT3 expression via targeting miR-421.
Collapse
Affiliation(s)
- Jia Ma
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Gang Zhao
- Department of Surgical Oncology, Pucheng County Hospital, Weinan, 715500, Shaanxi, People's Republic of China
| | - Jia Du
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Jiang Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Guangshuai Lin
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Jianfei Zhang
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| |
Collapse
|
21
|
Zheng H, Li X, Zeng X, Huang C, Ma M, Lv X, Zhang Y, Sun L, Wang G, Du Y, Guan Y. TMEM16A inhibits angiotensin II-induced basilar artery smooth muscle cell migration in a WNK1-dependent manner. Acta Pharm Sin B 2021; 11:3994-4007. [PMID: 35024321 PMCID: PMC8727780 DOI: 10.1016/j.apsb.2021.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) migration plays a critical role in the pathogenesis of many cardiovascular diseases. We recently showed that TMEM16A is involved in hypertension-induced cerebrovascular remodeling. However, it is unclear whether this effect is related to the regulation of VSMC migration. Here, we investigated whether and how TMEM16A contributes to migration in basilar artery smooth muscle cells (BASMCs). We observed that AngII increased the migration of cultured BASMCs, which was markedly inhibited by overexpression of TMEM16A. TMEM16A overexpression inhibited AngII-induced RhoA/ROCK2 activation, and myosin light chain phosphatase (MLCP) and myosin light chain (MLC20) phosphorylation. But AngII-induced myosin light chain kinase (MLCK) activation was not affected by TMEM16A. Furthermore, a suppressed activation of integrinβ3/FAK pathway, determined by reduced integrinβ3 expression, FAK phosphorylation and F-actin rearrangement, was observed in TMEM16A-overexpressing BASMCs upon AngII stimulation. Contrary to the results of TMEM16A overexpression, silencing of TMEM16A showed the opposite effects. These in vitro results were further demonstrated in vivo in basilar arteries from VSMC-specific TMEM16A transgenic mice during AngII-induced hypertension. Moreover, we observed that the inhibitory effect of TMEM16A on BASMC migration was mediated by decreasing the activation of WNK1, a Cl--sensitive serine/threonine kinase. In conclusion, this study demonstrated that TMEM16A suppressed AngII-induced BASMC migration, thus contributing to the protection against cerebrovascular remodeling during AngII-infused hypertension. TMEM16A may exert this effect by suppressing the RhoA/ROCK2/MLCP/MLC20 and integrinβ3/FAK signaling pathways via inhibiting WNK1. Our results suggest that TMEM16A may serve as a novel therapeutic target for VSMC migration-related diseases, such as vascular remodeling.
Collapse
Key Words
- AngII, angiotensin II
- BASMCs, basilar artery smooth muscle cells
- CaCC, Ca2+-activated chloride channel
- F-actin, filamentous actin
- FAK
- FAK, focal adhesion kinase
- Hypertension
- Integrin
- MLC20, myosin light chain 20
- MLCK, myosin light chain kinase
- MLCP, myosin light chain phosphates
- MYPT1, myosin phosphatase target subunit 1
- RhoA/ROCK
- SMTg, smooth muscle-specific TMEM16A transgenic mice
- TMEM16A
- VSMC migration
- VSMCs, vascular smooth muscle cells
- Vascular remodeling
- WNK1
- WNK1, with-no-lysine kinase 1
Collapse
Affiliation(s)
| | | | - Xin Zeng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chengcui Huang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Mingming Ma
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaofei Lv
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yajuan Zhang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lu Sun
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanlei Wang
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanhua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongyuan Guan
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
22
|
Zhang M, Yang L, Hou L, Tang X. LncRNA SNHG1 promotes tumor progression and cisplatin resistance through epigenetically silencing miR-381 in breast cancer. Bioengineered 2021; 12:9239-9250. [PMID: 34806925 PMCID: PMC8809974 DOI: 10.1080/21655979.2021.1996305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The long-non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) is a known cause of tumorigenesis. Nevertheless, it’s yet unclear how lncRNA SNHG1 influences breast cancer. Herein, we explored the mechanisms through which SNHG1 modulates breast cancer tumor progression. Our findings demonstrated that SNHG1 is significantly upregulated in breast cancer tissues and cells. High SNHG1 levels were closely linked to reduced survival rates in breast cancer patients. SNHG1 silencing has been shown to inhibit the proliferative, migratory, and invasive activity of breast cancer cells. Moreover, SNHG1 silencing enhanced cisplatin (DDP) sensitivity of these cells through improving DDP-induced cell apoptosis. Mechanistically, SNHG1 was found to interact with enhancer of zeste homolog 2 (EZH2), recruiting EZH2 to trigger trimethylation of histone H3 lysine 27 (H3K27me3), thus epigenetically inhibiting miR-381 transcription in these cells. Overexpression of miR-381 inhibited tumor progression and sensitized cells to the chemotherapeutic reagent DDP. More importantly, rescue experiments demonstrated that miR-381 inhibition could inverse the tumor-suppressive effect of SNHG1 silencing in breast cancer. In summary, SNHG1 silencing suppressed tumor progression and overcame breast cancer cell DDP resistance via the epigenetic suppression of miR-381 expression. Our study revealed that SNHG1 served as a novel therapeutic target for breast cancer chemoresistance.
Collapse
Affiliation(s)
- Mingkun Zhang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Liu Yang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Lan Hou
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Xueyuan Tang
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Xi'an, China
| |
Collapse
|
23
|
Chen D, Ping S, Xu Y, Wang M, Jiang X, Xiong L, Zhang L, Yu H, Xiong Z. Non-Coding RNAs in Gastric Cancer: From Malignant Hallmarks to Clinical Applications. Front Cell Dev Biol 2021; 9:732036. [PMID: 34805143 PMCID: PMC8595133 DOI: 10.3389/fcell.2021.732036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most lethal malignancies worldwide. However, the molecular mechanisms underlying gastric carcinogenesis remain largely unknown. Over the past decades, advances in RNA-sequencing techniques have greatly facilitated the identification of various non-coding RNAs (ncRNAs) in cancer cells, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Accumulating evidence has revealed that ncRNAs are essential regulators in GC occurrence and development. However, ncRNAs represent an emerging field of cancer research, and their complex functionality remains to be clarified. Considering the lack of viable biomarkers and therapeutic targets in GC, further studies should focus on elucidating the intricate relationships between ncRNAs and GC, which can be translated into clinical practice. In this review, we summarize recent research progress on how ncRNAs modulate the malignant hallmarks of GC, especially in tumor immune escape, drug resistance, and stemness. We also discuss the promising applications of ncRNAs as diagnostic biomarkers and therapeutic targets in GC, aiming to validate their practical value for clinical treatment.
Collapse
Affiliation(s)
- Di Chen
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Ping
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuang Xu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglu Yu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Upregulation of TTYH3 promotes epithelial-to-mesenchymal transition through Wnt/β-catenin signaling and inhibits apoptosis in cholangiocarcinoma. Cell Oncol (Dordr) 2021; 44:1351-1361. [PMID: 34796468 DOI: 10.1007/s13402-021-00642-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Cholangiocarcinoma (CCA) is a highly invasive malignant tumor originating from the bile duct epithelium. Tweety homolog 3 (TTYH3) is a member of the family of calcium-activated chloride channels, which have several biological functions. Here, we aimed to investigate the expression and biological function of TTYH3 in CCA. METHODS The mRNA and protein expression levels of TTYH3 were investigated in primary human CCA tissues and normal tissues. The DNA methylation levels of three CpG sites in the TTYH3 promoter region were evaluated using pyrosequencing. The effect of TTYH3 expression on proliferation, apoptosis, migration and invasion were assessed in HUCCT1 and QBC939 cells. Xenograft models were developed to substantiate its role in the development of CCA. Western blot analysis was used to investigate the mechanistic role of TTYH3 in regulating CCA progression. RESULTS We found that TTYH3 was highly expressed both at the mRNA and protein levels in CCA (p = 0.0001) and that the expression levels were significantly related to a poor overall survival of the patients (p = 0.0019). The DNA methylation levels of three CpG sites in the TTYH3 promoter region were significantly lower in CCA tissues compared to normal tissues (p < 0.05). In vitro studies indicated that TTYH3 can promote the proliferation, migration and invasion of the CCA cells. TTYH3 overexpression significantly promoted tumor progression and cellular proliferation in vivo as indicated by Ki-67 expression. In addition, we found that exogenous TTYH3 overexpression induced epithelial-mesenchymal transition (EMT) in CCA as indicated by expression changes in E-cadherin, N-cadherin and vimentin. The EMT process was found to occur through the Wnt/β-catenin signaling pathway, with simultaneous changes in P-GSK3β and β-catenin levels. CONCLUSIONS Our data indicate that DNA hypomethylation-induced overexpression of TTYH3 regulates CCA development and metastasis through the Wnt/β-catenin pathway.
Collapse
|
25
|
Cinobufagin Exerts Anticancer Activity in Oral Squamous Cell Carcinoma Cells through Downregulation of ANO1. Int J Mol Sci 2021; 22:ijms222112037. [PMID: 34769467 PMCID: PMC8584692 DOI: 10.3390/ijms222112037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Anoctamin1 (ANO1), a calcium-activated chloride channel, is frequently overexpressed in several cancers, including oral squamous cell carcinoma (OSCC). OSCC is a highly aggressive cancer and the most common oral malignancy. ANO1 has been proposed as a potential candidate for targeted anticancer therapy. In this study, we performed a cell-based screening to identify novel regulators leading to the downregulation of ANO1, and discovered cinobufagin, which downregulated ANO1 expression in oral squamous cell carcinoma CAL-27 cells. ANO1 protein levels were significantly reduced by cinobufagin in a dose-dependent manner with an IC50 value of ~26 nM. Unlike previous ANO1 inhibitors, short-term (≤10 min) exposure to cinobufagin did not alter ANO1 chloride channel activity and ANO1-dependent intestinal smooth muscle contraction, whereas long-term (24 h) exposure to cinobufagin significantly reduced phosphorylation of STAT3 and mRNA expression of ANO1 in CAL-27 cells. Notably, cinobufagin inhibited cell proliferation of CAL-27 cells expressing high levels of ANO1 more potently than that of ANO1 knockout CAL-27 cells. In addition, cinobufagin significantly reduced cell migration and induced caspase-3 activation and PARP cleavage in CAL-27 cells. These results suggest that downregulation of ANO1 by cinobufagin is a potential mechanism for the anticancer effect of cinobufagin in OSCC.
Collapse
|
26
|
Bai W, Liu M, Xiao Q. The diverse roles of TMEM16A Ca 2+-activated Cl - channels in inflammation. J Adv Res 2021; 33:53-68. [PMID: 34603778 PMCID: PMC8463915 DOI: 10.1016/j.jare.2021.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Transmembrane protein 16A (TMEM16A) Ca2+-activated Cl- channels have diverse physiological functions, such as epithelial secretion of Cl- and fluid and sensation of pain. Recent studies have demonstrated that TMEM16A contributes to the pathogenesis of infectious and non-infectious inflammatory diseases. However, the role of TMEM16A in inflammation has not been clearly elucidated. Aim of review In this review, we aimed to provide comprehensive information regarding the roles of TMEM16A in inflammation by summarizing the mechanisms underlying TMEM16A expression and activation under inflammatory conditions, in addition to exploring the diverse inflammatory signaling pathways activated by TMEM16A. This review attempts to develop the idea that TMEM16A plays a diverse role in inflammatory processes and contributes to inflammatory diseases in a cellular environment-dependent manner. Key scientific concepts of review Multiple inflammatory mediators, including cytokines (e.g., interleukin (IL)-4, IL-13, IL-6), histamine, bradykinin, and ATP/UTP, as well as bacterial and viral infections, promote TMEM16A expression and/or activity under inflammatory conditions. In addition, TMEM16A activates diverse inflammatory signaling pathways, including the IP3R-mediated Ca2+ signaling pathway, the NF-κB signaling pathway, and the ERK signaling pathway, and contributes to the pathogenesis of many inflammatory diseases. These diseases include airway inflammatory diseases, lipopolysaccharide-induced intestinal epithelial barrier dysfunction, acute pancreatitis, and steatohepatitis. TMEM16A also plays multiple roles in inflammatory processes by increasing vascular permeability and leukocyte adhesion, promoting inflammatory cytokine release, and sensing inflammation-induced pain. Furthermore, TMEM16A plays its diverse pathological roles in different inflammatory diseases depending on the disease severity, proliferating status of the cells, and its interacting partners. We herein propose cellular environment-dependent mechanisms that explain the diverse roles of TMEM16A in inflammation.
Collapse
Affiliation(s)
- Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
27
|
Luo S, Wang H, Bai L, Chen Y, Chen S, Gao K, Wang H, Wu S, Song H, Ma K, Liu M, Yao F, Fang Y, Xiao Q. Activation of TMEM16A Ca 2+-activated Cl - channels by ROCK1/moesin promotes breast cancer metastasis. J Adv Res 2021; 33:253-264. [PMID: 34603794 PMCID: PMC8463928 DOI: 10.1016/j.jare.2021.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/28/2021] [Accepted: 03/13/2021] [Indexed: 12/01/2022] Open
Abstract
Introduction Transmembrane protein 16A (TMEM16A) is a Ca2+-activated chloride channel that plays a role in cancer cell proliferation, migration, invasion, and metastasis. However, whether TMEM16A contributes to breast cancer metastasis remains unknown. Objective In this study, we investigated whether TMEM16A channel activation by ROCK1/moesin promotes breast cancer metastasis. Methods Wound healing assays and transwell migration and invasion assays were performed to study the migration and invasion of MCF-7 and T47D breast cancer cells. Western blotting was performed to evaluate the protein expression, and whole-cell patch clamp recordings were used to record TMEM16A Cl− currents. A mouse model of breast cancer lung metastasis was generated by injecting MCF-7 cells via the tail vein. Metastatic nodules in the lung were assessed by hematoxylin and eosin staining. Lymph node metastasis, overall survival, and metastasis-free survival of breast cancer patients were assessed using immunohistochemistry and The Cancer Genome Atlas dataset. Results TMEM16A activation promoted breast cancer cell migration and invasion in vitro as well as breast cancer metastasis in mice. Patients with breast cancer who had higher TMEM16A levels showed greater lymph node metastasis and shorter survival. Mechanistically, TMEM16A promoted migration and invasion by activating EGFR/STAT3/ROCK1 signaling, and the role of the TMEM16A channel activity was important in this respect. ROCK1 activation by RhoA enhanced the TMEM16A channel activity via the phosphorylation of moesin at T558. The cooperative action of TMEM16A and ROCK1 was supported through clinical findings indicating that breast cancer patients with high levels of TMEM16A/ROCK1 expression showed greater lymph node metastasis and poor survival. Conclusion Our findings revealed a novel mechanism underlying TMEM16A-mediated breast cancer metastasis, in which ROCK1 increased TMEM16A channel activity via moesin phosphorylation and the increase in TMEM16A channel activities promoted cell migration and invasion. TMEM16A inhibition may be a novel strategy for treating breast cancer metastasis.
Collapse
Key Words
- Cl− channel
- EGFR, epidermal growth factor receptor
- ER, estrogen receptor
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- HNSCC, head and neck squamous cell carcinoma
- IHC, immunohistochemical
- MFS, metastasis-free survival
- Metastasis
- Moesin
- OS, overall survival
- PR, progesterone receptor
- ROCK1
- ROCK1, Rho-associated, coiled-coil containing protein kinase 1
- STAT3, signal transducers and activators of transcription 3
- TCGA, The Cancer Genome Atlas
- TMEM16A
- shRNAs, small hairpin RNAs
Collapse
Affiliation(s)
- Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hui Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Lichuan Bai
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yiwen Chen
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Si Chen
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Kuan Gao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huijie Wang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Shuwei Wu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hanbin Song
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ke Ma
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Mei Liu
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Fan Yao
- Department of Breast Surgery and Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yue Fang
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
28
|
He B, Wu C, Sun W, Qiu Y, Li J, Liu Z, Jing T, Wang H, Liao Y. miR‑383 increases the cisplatin sensitivity of lung adenocarcinoma cells through inhibition of the RBM24‑mediated NF‑κB signaling pathway. Int J Oncol 2021; 59:87. [PMID: 34558639 PMCID: PMC8460061 DOI: 10.3892/ijo.2021.5267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
The expression of microRNA-383 (miR-383) is downregulated in a variety of tumor tissues, and it exhibits antiproliferative activity in non-small cell lung cancer cells. In the present study, an association between the downregulation of miR-383 expression and the deletion of chr8p22 in patients with lung adenocarcinoma was identified. The promoting effect of miR-383 on cisplatin sensitivity was verified both in vivo and in vitro. Additionally, it was revealed that the expression of RNA binding motif protein 24 (RBM24) protein was regulated by and negatively correlated with miR-383 expression. Ectopic expression of RBM24 or inhibition of miR-383 decreased the chemosensitivity of parental A549 cells, whereas knockdown of RBM24 in cisplatin-resistant A549 cells increased chemosensitivity. Mechanistically, miR-383 interfered with the activation of nuclear factor κB (NF-κB) signaling through repression of RBM24-mediated phosphorylation of Rel-like domain-containing protein A and inhibitor α of NF-κB. Taken together, the downregulation of miR-383 induced RBM24 expression, which was mediated through the activation of NF-κB signaling, to contribute to chemotherapy resistance in lung adenocarcinoma cells. The results of the present study highlight potential therapeutic targets for the clinical reversal of the chemotherapy resistance in lung adenocarcinoma.
Collapse
Affiliation(s)
- Bo He
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Chao Wu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Yang Qiu
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Jingyao Li
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Zhihui Liu
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Tao Jing
- Department of Cardiology, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Haidong Wang
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
29
|
LncRNA SNHG7 Regulates Gastric Cancer Progression by miR-485-5p. JOURNAL OF ONCOLOGY 2021; 2021:6147962. [PMID: 34512753 PMCID: PMC8424243 DOI: 10.1155/2021/6147962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Background Long noncoding ribonucleic acids (lncRNAs) were closely related to the development of gastric cancer. This study investigated the effect of SNHG7 on gastric cancer progression and its potential molecular mechanism. Methods SNHG7 and microRNA-485-5p (miR-485-5p) expressions in gastric cancer tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell counting kit-8 (CCK-8), wound healing, and transwell experiments were used to detect cell proliferation, migration, and invasion. The dual luciferase reporter assay, RNA immunoprecipitation (RIP) experiment, and Pearson's correlation analysis were used to confirm the relationship between SNHG7 and miR-485-5p. Results SNHG7 expression was increased in human gastric cancer tissues and cells. Knockdown of SNHG7 could notably inhibit the gastric cancer cells proliferation, migration, and invasion. The dual-luciferase reporter assay and RIP experiments proved that miR-485-5p was a direct target of SNHG7. At the same time, further experiments demonstrated that miR-485-5p inhibition reversed the suppression of SNHG7 knockdown on gastric cancer cells proliferation, migration, and invasion. Conclusions SNHG7 knockdown could hamper gastric cancer progression via inhibiting miR-485-5p expression, providing a novel understanding for gastric cancer development.
Collapse
|
30
|
Yu YZ, Mu Q, Ren Q, Xie LJ, Wang QT, Wang CP. miR-381-3p suppresses breast cancer progression by inhibition of epithelial-mesenchymal transition. World J Surg Oncol 2021; 19:230. [PMID: 34362391 PMCID: PMC8348871 DOI: 10.1186/s12957-021-02344-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating evidence indicates that miRNAs are involved in multiple cellular functions and participate in various cancer development and progression, including breast cancer. Methods We aimed to investigate the role of miR-381-3p in breast cancer. The expression level of miR-381-3p and EMT transcription factors was examined by quantitative real-time PCR (qRT-PCR). The effects of miR-381-3p on breast cancer proliferation and invasion were determined by Cell Counting Kit-8 (CCK-8), colony formation, and transwell assays. The regulation of miR-381-3p on its targets was determined by dual-luciferase analysis, qRT-PCR, and western blot. Results We found that the expression of miR-381-3p was significantly decreased in breast cancer tissues and cell lines. Overexpression of miR-381-3p inhibited breast cancer proliferation and invasion, whereas knockdown of miR-381-3p promoted cell proliferation and invasion in MDA-MB-231 and SKBR3 cells. Mechanistically, overexpression of miR-381-3p inhibited breast cancer epithelial–mesenchymal transition (EMT). Both Sox4 and Twist1 were confirmed as targets of miR-381-3p. Moreover, transforming growth factor-β (TGF-β) could reverse the effects of miR-381-3p on breast cancer progression. Conclusions Our observation suggests that miR-381-3p inhibits breast cancer progression and EMT by regulating the TGF-β signaling via targeting Sox4 and Twist1.
Collapse
Affiliation(s)
- Yong-Zheng Yu
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Qiang Mu
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Qian Ren
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Li-Juan Xie
- Department of Ophthalmology, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266034, China
| | - Qi-Tang Wang
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Cui-Ping Wang
- The First Department of Breast Surgery, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
31
|
Zhen J, Li J, Li X, Wang X, Xiao Y, Sun Z, Yu Q. Downregulating lncRNA NEAT1 induces proliferation and represses apoptosis of ovarian granulosa cells in polycystic ovary syndrome via microRNA-381/IGF1 axis. J Biomed Sci 2021; 28:53. [PMID: 34266430 PMCID: PMC8281489 DOI: 10.1186/s12929-021-00749-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Researchers have revealed the combined functions of long noncoding RNAs (lncRNAs) and microRNA (miRNAs) in polycystic ovary syndrome (PCOS). This study aimed to understand the role of nuclear-enriched abundant transcript 1 (NEAT1) and miR-381 involving insulin-like growth factor 1 (IGF1) in PCOS. METHODS PCOS rat model was established by dehydroepiandrosterone induction. NEAT1, miR-381 and IGF1 expression in ovarian granulosa cells of PCOS patients and ovarian tissues of PCOS rats were tested. Bioinformatics website and dual luciferase reporter gene assay were utilized to verify the relationship between NEAT1 and miR-381 and that between miR-381 and IGF1. Levels of sex hormone, pathological changes and ovarian granulosa cell apoptosis in ovarian tissues of PCOS rats were detected. Ovarian granulosa cell proliferation and apoptosis were analyzed in vitro. RESULTS NEAT1 and IGF1 expression increased while miR-381 expression decreased in the ovarian granulosa cells of patients with PCOS and the ovarian tissues of PCOS rats. In in vivo experiments, interference with NEAT1 improved the levels of sex hormones, alleviated pathological changes and suppressed ovarian granulosa cell apoptosis in the ovarian tissues of PCOS rats. In in vitro cell experiments, interference with NEAT1 suppressed apoptosis and enhanced cell proliferation of ovarian granulosa cells. NEAT1 interference-mediated effect would be reversed by up-regulating miR-381. NEAT1 acted as a ceRNA to adsorb miR-381 to target IGF1. Overexpression of IGF1 reversed the inhibitory effect of miR-381 on ovarian granulosa cell apoptosis. CONCLUSION Interference with NEAT1 increases miR-381 and reduces IGF1 levels, effectively improving the levels of sex hormones and reducing the pathological damage of ovarian tissue in rats with PCOS.
Collapse
Affiliation(s)
- Jingran Zhen
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China
| | - Jiangli Li
- Department of Obstetrics and Gynecology, Zhongguancun Hospital, Beijing, 100080, China
| | - Xia Li
- Community Health Service Center, Beijing Forestry University, Beijing, 100053, China
| | - Xue Wang
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China
| | - Yaling Xiao
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China
| | - Zhengyi Sun
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China.
| | - Qi Yu
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China.
| |
Collapse
|
32
|
Emerging Modulators of TMEM16A and Their Therapeutic Potential. J Membr Biol 2021; 254:353-365. [PMID: 34263350 DOI: 10.1007/s00232-021-00188-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/21/2021] [Indexed: 02/04/2023]
Abstract
Calcium-activated chloride channels (CaCCs) are widespread chloride channels which rely on calcium activation to perform their functions. In 2008, TMEM16A (also known as anoctamin1, ANO1) was identified as the molecular basis of the CaCCs, which provided the possibility to study the physiological function of CaCCs. TMEM16A is widely expressed in various cells and controls basic physiological functions, including neuronal and cardiac excitability, nerve transduction, smooth muscle contraction, epithelial Cl- secretion and fertilization. However, the abnormal function of TMEM16A may cause a variety of diseases, including asthma, gastrointestinal motility disorder and various cancers. Therefore, TMEM16A is a putative drug target for many diseases, and it is important to determine specific and efficient modulators of TMEM16A channel. In recent years, we and others have screened several natural modulators of TMEM16A against cancers and gastrointestinal motility dysfunction. This article reviews the screening methods, efficacy of TMEM16A modulators and pharmacological effects of TMEM16A modulators on different diseases. GRAPHIC ABSTACT.
Collapse
|
33
|
Weidle UH, Birzele F, Brinkmann U, Auslaender S. Gastric Cancer: Identification of microRNAs Inhibiting Druggable Targets and Mediating Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:497-514. [PMID: 34183383 DOI: 10.21873/cgp.20275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
In addition to chemotherapy, targeted therapies have been approved for treatment of locally advanced and metastatic gastric cancer. The therapeutic benefit is significant but more durable responses and improvement of survival should be achieved. Therefore, the identification of new targets and new approaches for clinical treatment are of paramount importance. In this review, we searched the literature for down-regulated microRNAs which interfere with druggable targets and exhibit efficacy in preclinical in vivo efficacy models. As druggable targets, we selected transmembrane receptors, secreted factors and enzymes. We identified 38 microRNAs corresponding to the criteria as outlined. A total of 13 miRs target transmembrane receptors, nine inhibit secreted proteins and 16 attenuate enzymes. These microRNAs are targets for reconstitution therapy of gastric cancer. Further target validation experiments are mandatory for all of the identified microRNAs.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRed), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany;
| | - Simon Auslaender
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
34
|
Henckels KA, Fong D, Phillips JE. Development of a QPatch-Automated Electrophysiology Assay for Identifying TMEM16A Small-Molecule Inhibitors. Assay Drug Dev Technol 2021; 18:134-147. [PMID: 32319819 PMCID: PMC7268545 DOI: 10.1089/adt.2019.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The calcium-activated chloride channel, TMEM16A, is involved in airway hydration and bronchoconstriction and is a promising target for respiratory disease. Drug development efforts around channels require an electrophysiology-based assay for identifying inhibitors or activators. TMEM16A has proven to be a difficult channel to record on automated electrophysiology platforms due to its propensity for rundown. We developed an automated, whole-cell, electrophysiology assay on the QPatch-48 to evaluate small-molecule inhibitors of TMEM16A. In this assay, currents remained stable for a duration of roughly 11 min, allowing for the cumulative addition of five concentrations of compounds and resulted in reproducible IC50s. The absence of rundown was likely due to a low internal free-calcium level of 250 nM, which was high enough to produce large currents, but also maintained the voltage dependence of the channel. Current amplitude averaged 6 nA using the single-hole QPlate and the channel maintained outward rectification throughout the recording. Known TMEM16A inhibitors were tested and their IC50s aligned with those reported in the literature using manual patch-clamp. Once established, this assay was used to validate novel TMEM16A inhibitors that were identified in our high-throughput fluorescent-based assay, as well as to assist in structure–activity relationship efforts by the chemists. Overall, we demonstrate an easy to operate, reproducible, automated electrophysiology assay using the QPatch-48 for TMEM16A drug development efforts.
Collapse
Affiliation(s)
- Kathryn A Henckels
- Department of Process Development, Amgen, Inc., Thousand Oaks, California, USA
| | - David Fong
- Department of Inflammation Discovery Research, Amgen, Inc., Thousand Oaks, California, USA
| | - Jonathan E Phillips
- Department of Inflammation Discovery Research, Amgen, Inc., Thousand Oaks, California, USA
| |
Collapse
|
35
|
Liu Y, Liu Z, Wang K. The Ca 2+-activated chloride channel ANO1/TMEM16A: An emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B 2021; 11:1412-1433. [PMID: 34221860 PMCID: PMC8245819 DOI: 10.1016/j.apsb.2020.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Anoctamin 1 (ANO1) or TMEM16A gene encodes a member of Ca2+ activated Cl– channels (CaCCs) that are critical for physiological functions, such as epithelial secretion, smooth muscle contraction and sensory signal transduction. The attraction and interest in ANO1/TMEM16A arise from a decade long investigations that abnormal expression or dysfunction of ANO1 is involved in many pathological phenotypes and diseases, including asthma, neuropathic pain, hypertension and cancer. However, the lack of specific modulators of ANO1 has impeded the efforts to validate ANO1 as a therapeutic target. This review focuses on the recent progress made in understanding of the pathophysiological functions of CaCC ANO1 and the current modulators used as pharmacological tools, hopefully illustrating a broad spectrum of ANO1 channelopathy and a path forward for this target validation.
Collapse
Key Words
- ANO1
- ANO1, anoctamin-1
- ASM, airway smooth muscle
- Ang II, angiotensin II
- BBB, blood–brain barrier
- CAMK, Ca2+/calmodulin-dependent protein kinase
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Ca2+-activated Cl– channels (CaCCs)
- CaCCinh-A01
- CaCCs, Ca2+ activated chloride channels
- Cancer
- Cystic fibrosis
- DRG, dorsal root ganglion
- Drug target
- EGFR, epidermal growth factor receptor
- ENaC, epithelial sodium channels
- ER, endoplasmic reticulum
- ESCC, esophageal squamous cell carcinoma
- FRT, fisher rat thyroid
- GI, gastrointestinal
- GIST, gastrointestinal stromal tumor
- GPCR, G-protein coupled receptor
- HNSCC, head and neck squamous cell carcinoma
- HTS, high-throughput screening
- ICC, interstitial cells of Cajal
- IPAH, idiopathic pulmonary arterial hypertension
- MAPK, mitogen-activated protein kinase
- NF-κB, nuclear factor κB
- PAH, pulmonary arterial hypertension
- PAR2, protease activated receptor 2
- PASMC, pulmonary artery smooth muscle cells
- PIP2, phosphatidylinositol 4,5-bisphosphate
- PKD, polycystic kidney disease
- T16Ainh-A01
- TGF-β, transforming growth factor-β
- TMEM16A
- VGCC, voltage gated calcium channel
- VRAC, volume regulated anion channel
- VSMC, vascular smooth muscle cells
- YFP, yellow fluorescent protein
Collapse
Affiliation(s)
- Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Qingdao Third People's Hospital, Qingdao 266041, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, Qingdao 266021, China
- Corresponding authors.
| |
Collapse
|
36
|
Wang L, Zhang M, Wang J, Zhang J. Diagnostic and therapeutic potencies of miR-18a-5p in mixed-type gastric adenocarcinoma. J Cell Biochem 2021; 122:1062-1071. [PMID: 33942935 PMCID: PMC8453821 DOI: 10.1002/jcb.29927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Mixed-type gastric adenocarcinoma (by Lauren Classification) has poor clinical outcomes with few targeted treatment options. The primary objective of this study was to find the prognostic factors, accurate treatment approaches, and effective postoperative adjuvant therapy strategies for patients with mixed-type gastric adenocarcinoma (GA). A microRNA sequencing data set and the corresponding clinical parameters of patients with gastric cancer were obtained from The Cancer Genome Atlas. Differentially expressed microRNAs (DEMs) of diffuse- and intestinal-type GA were, respectively, determined. Kaplan-Meier and log-rank tests were subsequently carried out to evaluate the prognostic relevance of each DEM. To study the common factors between diffuse- and intestinal-type GA, a pathway enrichment analysis was performed on the target genes of identified DEMs using the PANTHER database. After data preprocessing, we analyzed a total of 230 samples from 210 patients with GA. Eighty-six DEMs in diffuse-type GA samples and 59 DEMs in intestinal-type GA samples were, respectively, identified (p 2.0). The Kaplan-Meier survival method further screened out six prognosis-related DEMs for diffuse-type GA and seven prognosis-related DEMs for intestinal-type GA (p < 0.05). MiR-18a-5p was found to be the only common prognosis-related DEM between diffuse- and intestinal-type GA. The common signaling pathways further revealed that target genes of miR-18a-5p are involved in mixed-type GA progression. This study suggests that miR-18a-5p acts as a potential target for treatment, and common signal pathways provide a rich basis to seek reliable and effective molecular targets for the diagnosis, clinical treatment, and postoperative adjuvant therapy strategy of mixed-type GA.
Collapse
Affiliation(s)
- Li Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
- Department of SurgeryThe Hospital of Chang'an UniversityXi'anShaanxiChina
| | - Mingxin Zhang
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Jiansheng Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Jia Zhang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
37
|
Li H, Yang Q, Huo S, Du Z, Wu F, Zhao H, Chen S, Yang L, Ma Z, Sui Y. Expression of TMEM16A in Colorectal Cancer and Its Correlation With Clinical and Pathological Parameters. Front Oncol 2021; 11:652262. [PMID: 33816307 PMCID: PMC8017291 DOI: 10.3389/fonc.2021.652262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
TMEM16A is a recently identified calcium-activated chloride channel (CaCC) and its overexpression contributes to tumorigenesis and progression in several human malignancies. However, little is known about expression of TMEM16A and its clinical significance in colorectal cancer (CRC). TMEM16A mRNA expression was determined by quantitative real time-PCR (qRT-PCR) in 67 CRC tissues and 24 para-carcinoma tissues. TMEM16A protein expression was performed by immunohistochemistry in 80 CRC tissues. The correlation between TMEM16A expression and clinicopathological parameters, and known genes and proteins involved in CRC was analyzed. The results showed that TMEM16A mRNA expression was frequently detected in 51 CRC tissues (76%), whereas TMEM16A protein expression was determined at a relatively lower frequency (26%). TMEM16A mRNA expression in tumor tissues was higher than its expression in normal para-carcinoma tissues (P < 0.05). TMEM16A mRNA expression was significantly correlated with TNM stage (p = 0.039) and status of lymph node metastasis (p = 0.047). In addition, there was a strong positive correlation between TMEM16A mRNA expression and MSH2 protein. More importantly, TMEM16A protein expression was positively associated with KRAS mutation, and negatively correlated with mutant p53 protein. Logistic regression analysis demonstrated that TMEM16A mRNA expression was an important independent predictive factor of lymph node metastasis (OR = 16.38, CI: 1.91–140.27, p = 0.01). TMEM16A mRNA and protein expression was not significantly related with patient survival. Our findings provide original evidence demonstrating TMEM16A mRNA expression can be a novel predictive marker of lymph node metastasis and TMEM16A protein expression may be an important regulator of tumor proliferation and metastasis in CRC.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Dermatology, First Hospital of Jilin University, Changchun, China
| | - Qiwei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China
| | - Sibo Huo
- Department of Gastrointestinal Nutrition and Hernia Surgery, Second Hospital of Jilin University, Changchun, China.,Department of General Surgery, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Zhenwu Du
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China.,Department of Orthopedics, Second Hospital of Jilin University, Changchun, China
| | - Fei Wu
- Department of Gynecology and Obstetrics, Second Hospital of Jilin University, Changchun, China
| | - Haiyue Zhao
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| | - Shifan Chen
- Department of Pathology, Second Hospital of Jilin University, Changchun, China
| | - Longfei Yang
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, Second Hospital of Jilin University, Changchun, China
| | - Yujie Sui
- Key Laboratory for Molecular and Chemical Genetics of Critical Human Diseases of Jilin Province, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Grigoriev VV. [Calcium-activated chloride channels: structure, properties, role in physiological and pathological processes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 67:17-33. [PMID: 33645519 DOI: 10.18097/pbmc20216701017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ca2+-activated chloride channels (CaCC) are a class of intracellular calcium activated chloride channels that mediate numerous physiological functions. In 2008, the molecular structure of CaCC was determined. CaCC are formed by the protein known as anoctamine 1 (ANO1 or TMEM16A). CaCC mediates the secretion of Cl- in secretory epithelia, such as the airways, salivary glands, intestines, renal tubules, and sweat glands. The presence of CaCC has also been recognized in the vascular muscles, smooth muscles of the respiratory tract, which control vascular tone and hypersensitivity of the respiratory tract. TMEM16A is activated in many cancers; it is believed that TMEM16A is involved in carcinogenesis. TMEM16A is also involved in cancer cells proliferation. The role of TMEM16A in the mechanisms of hypertension, asthma, cystic fibrosis, nociception, and dysfunction of the gastrointestinal tract has been determined. In addition to TMEM16A, its isoforms are involved in other physiological and pathophysiological processes. TMEM16B (or ANO2) is involved in the sense of smell, while ANO6 works like scramblase, and its mutation causes a rare bleeding disorder, known as Scott syndrome. ANO5 is associated with muscle and bone diseases. TMEM16A interacts with various cellular signaling pathways including: epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPK), calmodulin (CaM) kinases, transforming growth factor TGF-β. The review summarizes existing information on known natural and synthetic compounds that can block/modulate CaCC currents and their effect on some pathologies in which CaCC is involved.
Collapse
Affiliation(s)
- V V Grigoriev
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
39
|
Chen W, Gu M, Gao C, Chen B, Yang J, Xie X, Wang X, Sun J, Wang J. The Prognostic Value and Mechanisms of TMEM16A in Human Cancer. Front Mol Biosci 2021; 8:542156. [PMID: 33681289 PMCID: PMC7930745 DOI: 10.3389/fmolb.2021.542156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
As a calcium ion-dependent chloride channel transmembrane protein 16A (TMEM16A) locates on the cell membrane. Numerous research results have shown that TMEM16A is abnormally expressed in many cancers. Mechanically, TMEM16A participates in cancer proliferation and migration by affecting the MAPK and CAMK signaling pathways. Additionally, it is well documented that TMEM16A exerts a regulative impact on the hyperplasia of cancer cells by interacting with EGFR in head and neck squamous cell carcinoma (HNSCC), an epithelial growth factor receptor in head and neck squamous cell carcinoma respectively. Meanwhile, as an EGFR activator, TMEM16A is considered as an oncogene or a tumor-promoting factor. More and more experimental data showed that down-regulation of TMEM16A or gene targeted therapy may be an effective treatment for cancer. This review summarized its role in various cancers and research advances related to its clinical application included treatment and diagnosis.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - Meng Gu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chaobing Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Bangjie Chen
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Junfa Yang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaoli Xie
- Anhui Medicine Centralized Procurement Service Center, Hefei, China
| | - Xinyi Wang
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jinian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
40
|
Zhang C, Li H, Gao J, Cui X, Yang S, Liu Z. Prognostic significance of ANO1 expression in cancers. Medicine (Baltimore) 2021; 100:e24525. [PMID: 33530281 PMCID: PMC7850693 DOI: 10.1097/md.0000000000024525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Anoctamin-1 (ANO1) plays a pivotal role in cancer progression. A meta-analysis was conducted to assess the potential prognostic role of ANO1 in cancers. METHODS A total of 1760 patients from 7 eligible studies were included into the analysis. Pooled hazard ratios or odds ratios were extracted and calculated with a random-effects model, and analyses of heterogeneity bias were conducted. RESULTS Our results showed that over expression of ANO1 was significantly correlated with poor overall survival in all cancers (HR = 1.52; 95% CI: 1.19-1.92; P = .0006). Subgroup analysis indicated that there was a significant association between over expression of ANO1 and poor prognosis breast cancer (HR = 3.24; 95% CI: 1.74-6.04), head and neck squamous cell carcinoma (HR = 1.14; 95% CI: 1.00-1.30), esophageal squamous cell carcinoma (HR = 1.93; 95% CI: 1.07-3.50), gastric cancer (HR = 1.62; 95% CI: 1.12-2.34) and colorectal cancer (HR = 1.38; 95% CI: 1.03-1.85). In addition, over expression of ANO1 was not associated with TNM stage, histological grade, lymph node metastasis, tumor size, age and gender. However, ANO1 was significantly associated with human epidermal growth factor receptor 2, but not associated with progesterone receptor or estrogen receptor in breast cancer. CONCLUSIONS Our results indicate that ANO1 can be a predictive factor for prognosis of cancer.
Collapse
Affiliation(s)
- Congxiao Zhang
- Qingdao University School of Pharmacy, Department of Pharmacology
| | - Haini Li
- Qingdao Sixth People's Hospital, Department of Gastroenterology
| | - Jing Gao
- Affiliated Qingdao Third People's Hospital, Qingdao University, Department of Pharmacy
| | - Xiaoqing Cui
- Affiliated Qingdao Third People's Hospital, Qingdao University, Department of Pharmacy
| | - Shengmei Yang
- Qingdao University Affiliated Hospital, Department of Gynecology
| | - Zongtao Liu
- Affiliated Qingdao Third People's Hospital, Qingdao University, Department of Clinical Laboratory, Qingdao, China
| |
Collapse
|
41
|
Shojaei S, Hashemi SM, Ghanbarian H, Sharifi K, Salehi M, Mohammadi-Yeganeh S. Delivery of miR-381-3p Mimic by Mesenchymal Stem Cell-Derived Exosomes Inhibits Triple Negative Breast Cancer Aggressiveness; an In Vitro Study. Stem Cell Rev Rep 2021; 17:1027-1038. [PMID: 33410095 DOI: 10.1007/s12015-020-10089-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Recent investigations have emphasized the role of aberrant expression of microRNAs (miRNAs) in progression of almost all types of cancers. Exosomes, membrane-enclosed natural nanovesicles, transport cellular contents, including proteins, mRNAs, and miRNAs, between cells. Unique features of exosomes make them an appropriate carrier for drug delivery. miRNA-381 is one of the downregulated miRNAs in several cancers including triple-negative breast cancer (TNBC) and restoration of its expression in TNBC cells can restrict their migratory ability through targeting several signaling pathways. In current study, we exploited the exosomes isolated from adipose-derived mesenchymal stem cells (ADMSC-exosomes) to deliver miR-381 mimic to MDA-MB-231 cells to elucidate their effects on TNBC cells. The effects of miR-381 loaded ADMSC-exosomes on proliferation, apoptosis, migration, and invasion of MDA-MB-231 cells were analyzed. Our results indicated that ADMSC-exosomes were successfully isolated and internalized by MDA-MB-231 cells. miR-381 mimic was efficiently delivered to MDA-MB-231 cells by ADMSC-exosomes. miR-381 loaded ADMSC-exosomes significantly downregulated the expression of epithelial to mesenchymal transition (EMT) related genes and proteins. Notably, miR-381 loaded ADMSC-exosomes inhibited proliferation, migration, and invasion capacity of MDA-MB-231 and promoted their apoptosis in vitro. Taken together, we showed that ADMSC-exosomes could be used as efficient nanocarriers for RNA-based therapies. Graphical abstract.
Collapse
Affiliation(s)
- Samaneh Shojaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Tan Y, Wang H, Zhang C. MicroRNA-381 targets G protein-Coupled receptor 34 (GPR34) to regulate the growth, migration and invasion of human cervical cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103514. [PMID: 33086148 DOI: 10.1016/j.etap.2020.103514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) have emerged as the vital post-transcriptional regulators and control the growth and progression of different cancers types. The current study aimed at exploration of the role of microRNA-381 (miRNA-381) in human cervical cancer with emphasis on the evaluation of the underlying molecular mechanism. The results revealed a significant (P < 0.05) downregulation of miRNA-381 was found in cervical cancer tissues and cancer cell lines. Overexpression of miRNA-381 in cervical cancer cells significantly (P < 0.05) inhibited their proliferation through the induction of cell apoptosis which was accompanied by depletion of Bcl-2 and increase in Bax expression. Additionally, the cleavage of caspase-3 and 9 was also activated upon miRNA-381 overexpression. The Overexpression of miRNA-381 further inhibited the migration and invasion of cervical cancer cells. In silico analysis together with dual luciferase assay revealed G protein-Coupled receptor 34 (GPR34) to be the target of miRNA-381. The expression of GPR34 was significantly (P < 0.05) upregulated in the cervical cancer tissues and cell lines. Nonetheless, miRNA-381 overexpression caused a remarkable decrease in the expression of GPR34. The GPR34 knockdown and overexpression proved that the tumor-suppressive effects of miRNA-381 are mediated via GPR34. The study elucidated the essence of miRNA-381/GPR34 molecular regulatory axis in cervical cancer and unraveled the possibility of targeting this molecular axis as an important therapeutic approach against human cervical cancer.
Collapse
Affiliation(s)
- Yujie Tan
- Department of Obstetrics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471009, China
| | - Hao Wang
- Department of Obstetrics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471009, China.
| | - Chan Zhang
- Department of Obstetrics, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, 471009, China
| |
Collapse
|
43
|
Zhao W, Huang Z, Liu H, Wang C. LncRNA GIHCG Promotes the Development of Esophageal Cancer by Modulating miR-29b-3p/ANO1 Axis. Onco Targets Ther 2020; 13:13387-13400. [PMID: 33408485 PMCID: PMC7781470 DOI: 10.2147/ott.s282348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Esophageal cancer is one of the most frequent cancers with a higher mortality worldwide. Although many long non-coding RNAs (LncRNAs) are reported to play important roles in the progression of esophageal cancer, the function of lncRNA GIHCG in esophageal cancer remains unclear. Methods The expression of GIHCG in esophageal cancer tissues and cancer cell lines was detected by qRT-PCR. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay, EdU staining assay and colony formation assay. Cell invasion and migration were measured by transwell assay. Cell apoptosis was detected by a flow cytometer. Luciferase reporter assay and RIP assay were used to determine the interaction between GIHCG and miR-29b-3p, and their subsequent regulation of anoctamin 1 (ANO1). The expression of ANO1 in esophageal cancer tissues and cell lines was detected by Western blot. The effect of GIHCG/miR-29b-3p in tumor formation was assessed by the xenograft nude mice model in vivo. Results GIHCG was significantly upregulated in esophageal cancer tissues and relevant cancer cell lines. Downregulation of GIHCG significantly inhibited the growth, colony formation, invasion, migration and induced apoptosis of esophageal cancer cells in vitro. Bioinformatic analysis and RIP assay determined that GIHCG was a sponge of miR-29b-3p, and ANO1 was a direct target of miR-29b-3p. Moreover, functional experiments showed that GIHCG upregulated ANO1 expression by directly sponging miR-29b-3p. Furthermore, in vivo experiment revealed that knockdown of GIHCG significantly inhibited tumor growth in nude mice. Conclusion Our study revealed that lncRNA GIHCG promoted the progression of esophageal cancer by targeting the miR-29b-3p/ANO1 axis, suggesting that GIHCG might be a novel therapeutic target for esophageal cancer.
Collapse
Affiliation(s)
- Weifeng Zhao
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, Henan Province 450003, People's Republic of China
| | - Zhoufeng Huang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, Henan Province 450003, People's Republic of China.,Institute of Hematology, Henan Provincial People's Hospital, Zhengzhou City, Henan Province 450003, People's Republic of China
| | - Huimin Liu
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, Henan Province 450003, People's Republic of China
| | - Chaojie Wang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou City, Henan Province 450003, People's Republic of China
| |
Collapse
|
44
|
Zeng X, Cao Z, Luo W, Zheng L, Zhang T. MicroRNA-381-A Key Transcriptional Regulator: Its Biological Function and Clinical Application Prospects in Cancer. Front Oncol 2020; 10:535665. [PMID: 33324542 PMCID: PMC7726430 DOI: 10.3389/fonc.2020.535665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that function by regulating messenger RNAs. Recent studies have shown that miRNAs play important roles in multiple processes of cancer development. MiR-381 is one of the most important miRNAs in cancer progression. MiR-381 is downregulated in some cancers and upregulated in other cancers, including glioma, epithelial sarcoma, and osteosarcoma. MiR-381 regulates epithelial-mesenchymal transition (EMT), chemotherapeutic resistance, radioresistance, and immune responses. Thus, miR-381 participates in tumor initiation, progression, and metastasis. Moreover, miR-381 functions in various oncogenic pathways, including the Wnt/β-catenin, AKT, and p53 pathways. Clinical studies have shown that miR-381 could be considered a biomarker or a novel prognostic factor. Here, we summarize the present studies on the role of miR-381 in cancer development, including its biogenesis and various affected signaling pathways, and its clinical application prospects. MiR-381 expression is associated with tumor stage and survival time, making miR-381 a novel prognostic factor.
Collapse
Affiliation(s)
- Xue Zeng
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Dulin NO. Calcium-Activated Chloride Channel ANO1/TMEM16A: Regulation of Expression and Signaling. Front Physiol 2020; 11:590262. [PMID: 33250781 PMCID: PMC7674831 DOI: 10.3389/fphys.2020.590262] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
Anoctamin-1 (ANO1), also known as TMEM16A, is the most studied member of anoctamin family of calcium-activated chloride channels with diverse cellular functions. ANO1 controls multiple cell functions including cell proliferation, survival, migration, contraction, secretion, and neuronal excitation. This review summarizes the current knowledge of the cellular mechanisms governing the regulation of ANO1 expression and of ANO1-mediated intracellular signaling. This includes the stimuli and mechanisms controlling ANO1 expression, agonists and processes that activate ANO1, and signal transduction mediated by ANO1. The major conclusion is that this field is poorly understood, remains highly controversial, and requires extensive and rigorous further investigation.
Collapse
Affiliation(s)
- Nickolai O Dulin
- Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
46
|
Song R, Li Y, Hao W, Yang L, Chen B, Zhao Y, Sun B, Xu F. Circular RNA MTO1 inhibits gastric cancer progression by elevating PAWR via sponging miR-199a-3p. Cell Cycle 2020; 19:3127-3139. [PMID: 33089757 PMCID: PMC7714510 DOI: 10.1080/15384101.2020.1834301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/12/2020] [Accepted: 09/24/2020] [Indexed: 02/03/2023] Open
Abstract
The effect of circular RNA MTO1 (circMTO1) signaling on the expression of miR-199a-3p in gastric carcinoma cells, and its effect on proliferation and apoptosis of gastric cancer cells were investigated in this study. RT-qPCR was performed to detect the expression levels of circMTO1 and miR-199a-3p in the cell lines and tissues of gastric cancer. The effect of circMTO1 and miR-199a-3p on the growth and apoptosis of tumor cells was detected by BrdU incorporation and Annexin V/PI staining. Target gene prediction and screening, and luciferase reporter assays were performed to validate downstream interested genes of circMTO1 and miR-199a-3p. The expression levels of miR-199a-3p target gene PAWR (named as PRKC apoptosis WT1 Regulator Protein) was measured by RT-qPCR and Western blotting. Tumor changes in mice were detected by transfecting circMTO1. The expression of circMTO1 was significantly downregulated in the cell lines and tissues of gastric cancer, and low expression levels of circMTO1 were closely associated with poor prognosis. Overexpression of circMTO1 inhibited tumor growth, enhanced apoptosis rate and decreased cell invasion and migration. There was a significant negative relationship between the expression levels of circMTO1 and miR-199a-3p in gastric cancer tissues. Inhibiting miR-199a-3p expression or overexpression of PAWR could decrease the promotive effects of knockdown of circMTO1 on the progression of gastric cancer, and a positive relationship was established between the expression of circMTO1 and PAWR. circMTO1 can regulate the growth of gastric cancer cells by regulating miR-199a-3p/PAWR axis, thus inhibiting the development and progression of gastric cancer. Abbreviation GC: Gastric cancer; circ RNA: Circular RNA; MTO1: mitochondrial translation optimized 1 homolog.
Collapse
Affiliation(s)
- Ruifeng Song
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Weiwei Hao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Lei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Yingying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Binghua Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| | - Feng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, PR. China
| |
Collapse
|
47
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
48
|
Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci Rep 2020; 39:221384. [PMID: 31793989 PMCID: PMC6928529 DOI: 10.1042/bsr20193045] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most commonly diagnosed malignancy. Paclitaxel (PTX) is an effective first-line chemotherapy drug in GC treatment, but the resistance of PTX attenuates the therapeutic effect. Circular RNA circ-PVT1 can exert the oncogenic effect in GC. But the function of circ-PVT1 involved in PTX resistance of GC is still unknown. In the present study, the expression levels of circ-PVT1, miR-124-3p and ZEB1 in PTX-resistant GC tissues and cells were detected by quantitative real-time polymerase chain reaction (RT-qPCR). PTX resistance in PTX-resistant cells was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The protein levels of Zinc finger E-box binding homeobox 1 (ZEB1), P-glycoprotein (P-gp) and glutathione S-transferase (GST-π) were detected by Western blot assay. Cell apoptosis and invasion were measured in PTX-resistant cells by flow cytometry and transwell invasion assays, severally. The interaction between miR-124-3p and circ-PVT1 or ZEB1 was predicted by starBase software, and then verified by the dual-luciferase reporter assay. The role of circ-PVT1 in PTX resistance of GC in vivo was measured by xenograft tumor model. Our results showed that circ-PVT1 expression was up-regulated in PTX-resistant GC tissues and cells. Circ-PVT1 down-regulation enhanced PTX sensitivity in PTX-resistant GC cells by negatively regulating miR-124-3p. ZEB1 served as a direct target of miR-124-3p. Circ-PVT1 enhanced ZEB1 expression by sponging miR-124-3p. Circ-PVT1 knockdown increased PTX sensitivity of GC in vivo. Taken together, our studies disclosed that circ-PVT1 facilitated PTX resistance by up-regulating ZEB1 mediated via miR-124-3p, suggesting an underlying therapeutic strategy for GC.
Collapse
|
49
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
50
|
Ji Q, Shi S, Guo S, Zhan Y, Zhang H, Chen Y, An H. Activation of TMEM16A by natural product canthaxanthin promotes gastrointestinal contraction. FASEB J 2020; 34:13430-13444. [PMID: 32812278 DOI: 10.1096/fj.202000443rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/11/2022]
Abstract
Transmembrane 16A (TMEM16A), also known as anoctamin 1, is the molecular basis of the calcium-activated chloride channels. TMEM16A is present in interstitial cells of Cajal, which are the pacemaker cells that control smooth muscle contraction. TMEM16A is implicated in gastrointestinal disorders. Activation of TMEM16A is believed to promote the gastrointestinal muscle contraction. Here, we report a highly efficient, nontoxic, and selective activator of TMEM16A, canthaxanthin (CX). The study using molecular docking and site-directed mutation revealed that CX-specific binging site in TMEM16A is K769. CX was also found to promote the contraction of smooth muscle cells in gastrointestinal tract through activation of TMEM16A channels, which provides an excellent basis for development of CX as a chemical tool and potential therapeutic for gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Qiushuang Ji
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Sai Shi
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Shuai Guo
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Yong Zhan
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| | - Hailin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of Pharmacology and Toxicology for New Drug, Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yafei Chen
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin, China.,School of Electrical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|