1
|
Kokhdan EP, Khodavandi P, Ataeyan MH, Alizadeh F, Khodavandi A, Zaheri A. Anti-cancer activity of secreted aspartyl proteinase protein from Candida tropicalis on human cervical cancer HeLa cells. Toxicon 2024; 249:108073. [PMID: 39153686 DOI: 10.1016/j.toxicon.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cervical cancer is the fourth leading cause of cancer-related death in women worldwide. Microbial products are valuable sources of anti-cancer drugs. The aim of this study was to isolate secreted aspartyl proteinase protein from Candida tropicalis, investigate its inhibitory effect on human cervical cancer HeLa cells, and analyze the expression profiling of selected nuclear stem cell-associated transcription factors. The presence of secreted aspartyl proteinase protein was confirmed by the expression of SAP2 and SAP4 genes in C. tropicalis during the yeast-hyphae transition phase. The enzyme was purified and characterized using the aqueous two-phase system purification method, as well as proteolytic activity and the Bradford and micro-Kjeldahl methods, respectively. The in vitro anti-cancer properties of secreted aspartyl proteinase protein were evaluated by MTT assay, microscopic image analysis, nitric oxide (NO) scavenging activity assay, intracellular reactive oxygen species (ROS) production assay, and RT-qPCR. The isolated C. tropicalis secreted aspartyl proteinase protein exhibited proteinase activity with values ranging from 93.72 to 130.70 μg/mL and 89.88-127.72 μg/mL according to the Bradford and micro-Kjeldahl methods, respectively. Secreted aspartyl proteinase showed effective cytotoxicity in HeLa cell line leading to significant morphological changes. Additionally, it exhibited increased free radical scavenging activity compared to the untreated control group, as evidenced by nitrite inhibition. ROS production increased in HeLa cells exposed to secreted aspartyl proteinase. The expression levels of the nuclear stem cell-associated transcription factors octamer-binding transcription factor 4 (OCT4), sex determining region Y-box 2 (SOX2), and Nanog homeobox (NANOG) were significantly downregulated in the HeLa cells treated with secreted aspartyl proteinase. Secreted aspartyl proteinase protein may be a promising anti-cancer agent, as it effectively affects gene expression and may ultimately reduce the development and progression of cervical cancer. Targeting the genes related to nuclear stem cell-associated transcription factors may provide a novel amenable to cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Fahimeh Alizadeh
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Alireza Khodavandi
- Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| | - Ahmad Zaheri
- Department of Biology, Payame Noor University, Tehran, Iran
| |
Collapse
|
2
|
Adekunle A, Ukaigwe S, Bezerra Dos Santos A, Iorhemen OT. Potential for curdlan recovery from aerobic granular sludge wastewater treatment systems - A review. CHEMOSPHERE 2024; 362:142504. [PMID: 38825243 DOI: 10.1016/j.chemosphere.2024.142504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The aerobic granular sludge (AGS) biotechnology has been explored for wastewater treatment for over two decades. AGS is gaining increased interest due to its enhanced treatment performance ability and the potential for resource recovery from AGS-based wastewater treatment systems. Resource recovery from AGS is a promising approach to sustainable wastewater treatment and attaining a circular economy in the wastewater management industry. Currently, research is at an advanced stage on recovering value-added resources such as phosphorus, polyhydroxyalkanoates, alginate-like exopolysaccharides, and tryptophan from waste aerobic granules. Recently, other value-added resources, including curdlan, have been identified in the aerobic granule matrix, and this may increase the sustainability of biotechnology in the wastewater industry. This paper provides an overview of AGS resource recovery potential. In particular, the potential for enhanced curdlan biosynthesis in the granule matrix and its recovery from AGS wastewater treatment systems is outlined.
Collapse
Affiliation(s)
- Adedoyin Adekunle
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Sandra Ukaigwe
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Oliver Terna Iorhemen
- School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
| |
Collapse
|
3
|
Samykannu G, Mariyappan N, Natarajan J. Molecular interaction and MD-simulations: investigation of Sizofiran as a promising anti-cancer agent targeting eIF4E in colorectal cancer. In Silico Pharmacol 2024; 12:33. [PMID: 38655099 PMCID: PMC11033251 DOI: 10.1007/s40203-024-00206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
CRC has a major global health impact due to high mortality rates. CRC shows high expression of eukaryotic translation initiation factor (eIF4E) protein, the rapid development of lung, bladder, colon, prostate, breast, head, and neck cancer is attributed to the dysregulation of eIF4E making an important target for treatment. Targeting eIF4E-mediated translation is a promising anti-cancer strategy. Many organic compounds that inhibit eIF4E are being studied clinically. The compound Sizofiran has emerged as a promising eIF4E inhibitor candidate, but its exact mechanism of action is unclear. In an effort to close this discrepancy by clarifying the mechanism of the interactions between phytochemical substances and eIF4E, molecular docking and dynamics studies were conducted. Molecular docking studies found Sizofiran (- 12.513 kcal/mol) has the most affinity eIF4E binding energy out of 93 phytochemicals, 5 current drugs, and 4 known inhibitors. This positions it as a top eIF4E inhibitor candidate. An alignment of eIF4E protein sequences from multiple pathogens revealed that the glutamate103 interacting residues are evolutionarily conserved across the different eIF4E proteins. Further insights from 100 ns of MD simulations supported Sizofiran having superior stability and eIF4E inhibition compared to reference compounds. Designed Sizofiran-related compounds showed better activity than the current drugs such as Camptosar, Sorafenib, Regorafenib, Doxorubicin, and Kenpaullone, indicating strong potential to suppress CRC progression by targeting eIF4E. This research aims to significantly aid development of improved eIF4E-targeting drugs for cancer treatment. Graphical abstract Showing the Graphical abstract of the complete study. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00206-3.
Collapse
Affiliation(s)
- Gopinath Samykannu
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, TamilNadu India
| | - Nandhini Mariyappan
- Molecular Modelling and Designing Laboratory, Department of Physics, Bharathiar University, Coimbatore, TamilNadu India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, TamilNadu India
| |
Collapse
|
4
|
Boulifa A, Raftery MJ, Franzén AS, Radecke C, Stintzing S, Blohmer JU, Pecher G. Role of beta-(1→3)(1→6)-D-glucan derived from yeast on natural killer (NK) cells and breast cancer cell lines in 2D and 3D cultures. BMC Cancer 2024; 24:339. [PMID: 38486205 PMCID: PMC10938759 DOI: 10.1186/s12885-024-11979-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Beta-(1,3)(1,6)-D-glucan is a complex polysaccharide, which is found in the cell wall of various fungi, yeasts, bacteria, algae, barley, and oats and has immunomodulatory, anticancer and antiviral effects. In the present study, we investigated the effect of beta-(1,3)(1,6)-D-glucan derived from yeast on the proliferation of primary NK cells and breast cancer cell lines in 2D and 3D models, and on the cytotoxicity of primary NK cells against breast cancer cell lines in 2D and 3D models. METHODS In this study, we investigated the effects of different concentrations of yeast-derived beta-(1→3)(1→6)-D-glucan on the proliferation and cytotoxicity of human NK cells and breast cancer cell lines in 2D and 3D models using the XTT cell proliferation assay and the CellTiter-Glo® 2.0 assay to determine the cytotoxicity of human NK cells on breast cancer cell lines in 2D and 3D models. RESULTS We found that the co-incubation of NK cells with beta-glucan in the absence of IL2 at 48 h significantly increased the proliferation of NK cells, whereas the co-incubation of NK cells with beta-glucan in the presence of IL2 (70 U/ml) increased the proliferation of NK cells but not significantly. Moreover, beta-glucan significantly inhibited the proliferation of breast cancer cell lines in 2D model and induced a weak, non-significant growth inhibitory effect on breast cancer multicellular tumor spheroids (3D). In addition, the cytotoxicity of NK cells against breast cancer cell lines was examined in 2D and 3D models, and beta-glucan significantly increased the cytotoxicity of NK cells against MCF-7 (in 2D). CONCLUSIONS Yeast derived beta-(1,3)(1,6)-D-glucan could contribute to the treatment of cancer by enhancing NK cell immune response as well as contributing to inhibition of breast cancer cell growth.
Collapse
Affiliation(s)
- Abdelhadi Boulifa
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Martin J Raftery
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Alexander Sebastian Franzén
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Clarissa Radecke
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Sebastian Stintzing
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Jens-Uwe Blohmer
- Department of Gynecology with Breast Center Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany
| | - Gabriele Pecher
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany.
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany.
| |
Collapse
|
5
|
de Macêdo LS, de Pinho SS, Silva AJD, de Moura IA, Espinoza BCF, da Conceição Viana Invenção M, Novis PVS, da Gama MATM, do Nascimento Carvalho M, Leal LRS, Cruz BIS, Bandeira BMA, Santos VEP, de Freitas AC. Understanding yeast shells: structure, properties and applications. ADMET AND DMPK 2024; 12:299-317. [PMID: 38720922 PMCID: PMC11075163 DOI: 10.5599/admet.2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
Background and purpose The employment of yeasts for biomedical purposes has become increasingly frequent for the delivery of prophylactic and therapeutic products. Its structural components, such as β-glucans, mannan, and chitin, can be explored as immunostimulators that show safety and low toxicity. Besides, this system minimizes antigen degradation after administration, facilitating the delivery to the target cells. Review approach This review sought to present molecules derived from yeast, called yeast shells (YS), and their applications as carrier vehicles for drugs, proteins, and nucleic acids for immunotherapy purposes. Furthermore, due to the diversity of information regarding the production and immunostimulation of these compounds, a survey of the protocols and immune response profiles generated was presented. Key results The use of YS has allowed the development of strategies that combine efficiency and effectiveness in antigen delivery. The capsular structure can be recognized and phagocytized by dendritic cells and macrophages. In addition, the combination with different molecules, such as nanoparticles or even additional adjuvants, improves the cargo loading, enhancing the system. Activation by specific immune pathways can also be achieved by different administration routes. Conclusion Yeast derivatives combined in different ways can increase immunostimulation, enhancing the delivery of medicines and vaccine antigens. These aspects, combined with the simplicity of the production steps, make these strategies more accessible to be applied in the prevention and treatment of various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy - LEMTE; Department of Genetics, Biosciences Center, Federal University of Pernambuco; Pernambuco - Recife 50670-901, Brazil
| |
Collapse
|
6
|
Noorbakhsh Varnosfaderani SM, Ebrahimzadeh F, Akbari Oryani M, Khalili S, Almasi F, Mosaddeghi Heris R, Payandeh Z, Li C, Nabi Afjadi M, Alagheband Bahrami A. Potential promising anticancer applications of β-glucans: a review. Biosci Rep 2024; 44:BSR20231686. [PMID: 38088444 PMCID: PMC10776902 DOI: 10.1042/bsr20231686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
β-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of β-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via β-glucans. β-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of β-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal β-glucans, as well as their application.
Collapse
Affiliation(s)
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
7
|
Gu H, Wang W, Sun C, Ding L, Li L, Shu P, Xu J. Immune suppressive signaling regulated by latent transforming growth factor beta binding protein 1 promotes metastasis in cervical cancer. Braz J Med Biol Res 2023; 55:e12206. [PMID: 36629522 PMCID: PMC9828866 DOI: 10.1590/1414-431x2022e12206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/04/2022] [Indexed: 01/11/2023] Open
Abstract
Although metastasis is the major cause of death in cervical cancer, the mechanism of metastasis is still unclear. The mRNA expression and protein level of latent transforming growth factor beta binding protein 1 (LTBP1) were detected in tumor tissues and paracancerous tissues from in-house samples. Cell proliferation, cell cycle, migration, and in vivo metastasis were determined after LTBP1 was knocked down. Then, 13 drugs were screened, and the changes in cell apoptosis and proliferation and tumor metastasis were detected after drug treatment in shRNA cells. In our in-house samples, LTBP1 was lowly expressed in cervical cancer tissues. After LTBP1 knockdown, cell proliferation was increased, and the ability of in vitro migration and in vivo metastasis was enhanced. At the same time, the proportion of myeloid derived suppressor cells (MDSC) in situ increased, the proportion of T cells decreased, and transforming growth factor beta-1 (TGFβ1) signaling was activated. After carboplatin treatment, LTBP1 shRNA cell line apoptosis increased, metastasis in vivo was limited, and the proportion of MDSC in situ decreased. LTBP1 was lowly expressed in cervical cancer, and the inhibition of LTBP1 can improve the malignant degree of the tumor, and this process can be blocked by carboplatin.
Collapse
Affiliation(s)
- Haiyan Gu
- Department Gynecology, The People's Hospital of Beilun District, Beilun Branch Hospital, The First Affiliated Hospital, Medical School, Zhejiang University, Beilun District, Ningbo, China
| | - Wei Wang
- Biomedical Big Data Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Changdong Sun
- Department Gynecology, The People's Hospital of Beilun District, Beilun Branch Hospital, The First Affiliated Hospital, Medical School, Zhejiang University, Beilun District, Ningbo, China
| | - Li Ding
- Department Gynecology, The People's Hospital of Beilun District, Beilun Branch Hospital, The First Affiliated Hospital, Medical School, Zhejiang University, Beilun District, Ningbo, China
| | - Li Li
- Department Gynecology, The People's Hospital of Beilun District, Beilun Branch Hospital, The First Affiliated Hospital, Medical School, Zhejiang University, Beilun District, Ningbo, China
| | - Peng Shu
- Clinical Laboratory, The People's Hospital of Beilun District, Beilun Branch Hospital, The First Affiliated Hospital, Medical School, Zhejiang University, Beilun District, Ningbo, China
| | - Jun Xu
- Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Wouk J, Celestino GG, Rodrigues BCD, Malfatti CRM, Cunha MAA, Orsato A, Barbosa-Dekker AM, Dekker RFH, Lonni AASG, Reis Tavares E, Faccin-Galhardi LC. Sulfonated (1 → 6)-β-d-Glucan (Lasiodiplodan): A Promising Candidate against the Acyclovir-Resistant Herpes Simplex Virus Type 1 (HSV-1) Strain. Biomacromolecules 2022; 23:4041-4052. [PMID: 36173245 DOI: 10.1021/acs.biomac.2c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a persistent human pathogen, and the emergence of strains resistant to Acyclovir (ACV, reference drug) shows the urgency to develop new treatments. We report the antiherpetic mechanism of the action of lasiodiplodan (LAS-N, (1 → 6)-β-d-glucan) and its sulfonated derivative (LAS-S3) in vitro and in vivo. LAS-S3 showed anti-HSV-1 action with high selectivity indices for HSV-1 KOS (88.1) and AR (189.2), sensitive and resistant to ACV, respectively. LAS-S3 inhibited >80% of HSV-1 infection in different treatment protocols (virucidal, adsorption inhibition, and post-adsorption effects), even at low doses, and showed a preventive effect and DNA and protein synthesis inhibition. The antiherpetic effect was confirmed in vivo by the cosmetic LAS-S3-CRÈME decreasing cutaneous lesions of HSV-1, including the AR strain. LAS-S3 possessed a broad-spectrum mechanism of action acting in the early and post-adsorption stages of HSV-1 infection, and LAS-S3-CRÈME is a potential antiherpetic candidate for patients infected by HSV-1-resistant strains.
Collapse
Affiliation(s)
| | | | | | - Carlos R M Malfatti
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Campus CEDETEG, Universidade Estadual do Centro-Oeste (UNICENTRO), Guarapuava 85040-167, Brazil
| | - Mário A A Cunha
- Departamento de Química, Universidade Tecnológica Federal do Paraná (UTFPR), Pato Branco 85503-390, Brazil
| | | | - Aneli M Barbosa-Dekker
- β-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, 731 Avenida João Miguel Caram, Londrina 86036-700, Brazil
| | - Robert F H Dekker
- β-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, 731 Avenida João Miguel Caram, Londrina 86036-700, Brazil
| | | | | | | |
Collapse
|
9
|
Upadhyay TK, Trivedi R, Khan F, Al-Keridis LA, Pandey P, Sharangi AB, Alshammari N, Abdullah NM, Yadav DK, Saeed M. In vitro elucidation of antioxidant, antiproliferative, and apoptotic potential of yeast-derived β-1,3-glucan particles against cervical cancer cells. Front Oncol 2022; 12:942075. [PMID: 36059639 PMCID: PMC9436396 DOI: 10.3389/fonc.2022.942075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide and in particular is the fourth most common cause of mortality in women every year. Conventional treatments for cancer are chemotherapy and radiation therapy, which have various kinds of side effects. Hence, there is a high need to develop alternative, efficient, and safer therapies for cancer treatment. β-Glucan, a novel polysaccharide isolated from baker’s yeast Saccharomyces cerevisiae, shows noteworthy cytotoxicity toward a variety of cancer cell lines in vitro. In this research, we characterized the β-glucan with high-performance thin-layer chromatography (HPTLC) analysis and found that d-glucose units with β-1,3 links are the major component of the extracted β-glucan particles. Fourier transform IR (FTIR) analysis confirmed a β-(1→3)-linked glucan structure. In vitro cell cytotoxicity was evaluated by MTT with IC50 136 μg/ml, and therapeutic potential was assessed by various assays using values below and above the IC50. A significant reactive oxygen species (ROS) generation at 50–150 μg/ml of concentrations indicated the apoptosis of cervical cancer cells. Along with ROS generation, these concentrations were also found to induce morphological changes such as fragmentation in DNA upon staining HeLa cells with DAPI. Mitochondrial membrane potential was significantly reduced after increasing the dose of treatment, assessed with the help of MitoTracker dye. Hence, by all these experimental supports, we observed that β-glucan has the potential to slow down the growth of cervical cancer cells, and it can be further investigated for unfolding its complete anticancer potential.
Collapse
Affiliation(s)
- Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
- *Correspondence: Mohd Saeed, ; Dharmendra Kumar Yadav, ; Tarun Kumar Upadhyay, ; Lamya Ahmed Al-Keridis,
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Lamya Ahmed Al-Keridis
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- *Correspondence: Mohd Saeed, ; Dharmendra Kumar Yadav, ; Tarun Kumar Upadhyay, ; Lamya Ahmed Al-Keridis,
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya (BCKV)-Agricultural University, Mohanpur, India
| | - Nawaf Alshammari
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Nadiya M. Abdullah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon, South Korea
- *Correspondence: Mohd Saeed, ; Dharmendra Kumar Yadav, ; Tarun Kumar Upadhyay, ; Lamya Ahmed Al-Keridis,
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- *Correspondence: Mohd Saeed, ; Dharmendra Kumar Yadav, ; Tarun Kumar Upadhyay, ; Lamya Ahmed Al-Keridis,
| |
Collapse
|
10
|
Fujiike AY, Lee CYAL, Rodrigues FST, Oliveira LCB, Barbosa-Dekker AM, Dekker RFH, Cólus IMS, Serpeloni JM. Anticancer effects of carboxymethylated (1→3)(1→6)-β-D-glucan (botryosphaeran) on multicellular tumor spheroids of MCF-7 cells as a model of breast cancer. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:521-537. [PMID: 35255775 DOI: 10.1080/15287394.2022.2048153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breast cancer is the most common cancer worldwide among the female population. The fungal exopolysaccharide botryosphaeran is a (1→3)(1→6)-β-D-glucan with limited solubility in water that can be promoted through carboxymethylation. Thus, the aim of this study was to examine in-vitro anticancer effects of carboxymethylated-botryosphaeran (CM-BOT) on breast cancer MCF-7 cells cultivated in multicellular tumor spheroids (MCTS). CM-BOT (≥ 600 µ/ml) decreased the viability (resazurin assay) of MCF-7 grown in monolayers after 24 hr incubation. Although CM-BOT did not markedly alter viability of MCTS in the resazurin assay after 24, 48 or 72 hr, CM-BOT ≥ 600 µg/ml produced cell-death by apoptosis after 72 hr utilizing the triple staining assay and labeling dead cells with propidium iodide, which can also be visualized on the architecture of MCTS. CM-BOT (1000 µg/ml) inhibited cell proliferation, which resulted in MCTSs with smaller diameters than controls. CM-BOT at all concentrations examined decreased the ability of MCF-7 to form colonies and to migrate in the extracellular matrix. This is the first report using MCTS-architecture to study anti-tumor effects of β-glucans. Our findings are important in the search for compounds for use in breast cancer therapy, or as adjuvants in reducing the adverse effects of mammary tumor chemotherapy.
Collapse
Affiliation(s)
- Andressa Y Fujiike
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Celina Y A L Lee
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fabiana S T Rodrigues
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Larissa C B Oliveira
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Campus Londrina, Londrina, Brazil
| | - Robert F H Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Campus Londrina, Londrina, Brazil
| | - Ilce M S Cólus
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Juliana M Serpeloni
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
11
|
Zhou C, Chen F, Li L. A Disintegrin and Metalloprotease 17 (ADAM17)-Modified Bone Marrow Mesenchymal Stem Cells (BMSCs) Enhance Drug-Resistant Cervical Cancer Development. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ADAM-17 is a type I transmembrane protein, and its abnormal expression affects the body development and tumor growth. BMSCs act as a target gene carrier in tumor tissues. This study mainly aims to explore the role of ADAM-17 and BMSCs in drug-resistant cervical cancer (CC). BMSCs were
transfected with ADAM-17 or empty vectors and then co-cultured with cisplatin-resistant CC cells followed by analysis of cell morphology. The in vivo effect of ADAM-17-modified BMSC was evaluated using animal model of CC. The protein expression of ADAM-17, EGFR, PI3K, and Akt was detected
using Western blot and RT-qPCR. Transfection of ADAM-17 significantly facilitated tumor growth at different time points (4 d, 7 d, 10 d, 14 d), accompanied with the upregulation of ADAM-17, EGFR, PI3K, and Akt expression (p < 0.05) without differences between empty vector group and
blank group (p > 0.05). Mechanistically, ADAM-17 directly targets EGFR in CC. In conclusion, ADAM-17-modified BMSC enhances the growth of drug-resistant CC cell and tumor growth through EGFR/PI3K/Akt signaling pathway, which may contribute to a novel therapy for treating CC.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Obstetrics and Gynecology, Union Jiangnan Hospital, Wuhan, Hubei, 430200, China
| | - Fengxia Chen
- Department of Obstetrics and Gynecology, Union Jiangnan Hospital, Wuhan, Hubei, 430200, China
| | - Liling Li
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, 430015, China
| |
Collapse
|
12
|
Sanozky-Dawes R, Barrangou R. Lactobacillus, glycans and drivers of health in the vaginal microbiome. MICROBIOME RESEARCH REPORTS 2022; 1:18. [PMID: 38046360 PMCID: PMC10688826 DOI: 10.20517/mrr.2022.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 12/05/2023]
Abstract
A microbiome consists of microbes and their genomes, encompassing bacteria, viruses, fungi, protozoa, archaea, and eukaryotes. These elements interact dynamically in the specific environment in which they reside and evolve. In the past decade, studies of various microbiomes have been prevalent in the scientific literature, accounting for the shift from culture-dependent to culture-independent identification of microbes using new high-throughput sequencing technologies that decipher their composition and sometimes provide insights into their functions. Despite tremendous advances in understanding the gut microbiome, relatively little attention has been devoted to the vaginal environment, notably regarding the ubiquity and diversity of glycans which denote the significant role they play in the maintenance of homeostasis. Hopefully, emerging technologies will aid in the determination of what is a healthy vaginal microbiome, and provide insights into the roles of Lactobacillus, glycans and microbiome-related drivers of health and disease.
Collapse
Affiliation(s)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
13
|
Gao L, Lv S, Zhu Y. Bone Marrow Mesenchymal Stem Cells (BMSCs) with a Disintegrin and Metalloprotease 17 (ADAM17) Overexpression Increase Cervical Cancer Cell Proliferation and Migration Through Epidermal Growth Factor Receptor (EGFR)/Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase b (AKT) Signaling. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ADAM-17 is a membrane-bound protease and highly expressed in multiple tumors. BMSCs carrying target genes are delivered to damaged sites. This study aimed to investigate the mechanism underlying BMSCs with ADAM-17 in cervical cancer (CC). BMSCs were transfected with ADAM-17 mimics and
co-cultured with CC cells followed by analysis of cell proliferation and migration by MTT assay and scratch assay, ADAM-17 and target genes (LAMB3, Robol) level by Western blot and RT-qPCR. As the effectiveness of ADAM-17 transfection was confirmed by its increased level, the presence of empty
vector rarely affected ADAM-17 expression and biological activities of CC cells compared to control group (p > 0.05). BMSCs with ADAM-17 overexpression increased CC cell proliferation and enhanced scratch healing rate (p < 0.05), accompanied with upregulated LAMB3 and Robol.
The difference in LAMB3 and Robol expression between empty vector group and control group did not reach a significance. In conclsuion, this study elucidates that BMSCs with ADAM-17 overexpression promotes CC cell progression through up-regulation of LAMB3 and Robol and activation EGFR/PI3K/Akt
signaling, providing a novel BMSC-based targeted therapy.
Collapse
Affiliation(s)
- Li Gao
- Department of Gynaecology, Baoji Maternal and Child Health Hospital, Baoji City, Shaanxi Province, 721000, China
| | - Shulan Lv
- Department of Gynaecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an City, Shaanxi, 710061, China
| | - Yan Zhu
- Department of Gynaecology, Baoji Maternal and Child Health Hospital, Baoji City, Shaanxi Province, 721000, China
| |
Collapse
|
14
|
Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, Manickam S. Biosustainable production of nanoparticles via mycogenesis for biotechnological applications: A critical review. ENVIRONMENTAL RESEARCH 2022; 204:111963. [PMID: 34450157 DOI: 10.1016/j.envres.2021.111963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
The demand for the green synthesis of nanoparticles has gained prominence over the conventional chemical and physical syntheses, which often entails toxic chemicals, energy consumption and ultimately lead to negative environmental impact. In the green synthesis approach, naturally available bio-compounds found in plants and fungi can be effective and have been proven to be alternative reducing agents. Fungi or mushrooms are particularly interesting due to their high content of bioactive compounds, which can serve as excellent reducing agents in the synthesis of nanoparticles. Apart from the economic and environmental benefits, such as ease of availability, low synthesis/production cost, safe and no toxicity, the nanoparticles synthesized from this green method have unique physical and chemical properties. Stabilisation of the nanoparticles in an aqueous solution is exceedingly high, even after prolonged storage with unperturbed size uniformity. Biological properties were significantly improved with higher biocompatibility, anti-microbial, anti-oxidant and anti-cancer properties. These remarkable properties allow further exploration in their applications both in the medical and agricultural fields. This review aims to explore the mushroom-mediated biosynthesis of nanomaterials, specifically the mechanism and bio-compounds involved in the synthesis and their interactions for the stabilisation of nanoparticles. Various metal and non-metal nanoparticles have been discussed along with their synthesis techniques and parameters, making them ideal for specific industrial, agricultural, and medical applications. Only recent developments have been explored in this review.
Collapse
Affiliation(s)
- Surya Sudheer
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51005, Estonia.
| | - Renu Geetha Bai
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Center for Nanotechnology & Advanced Materials, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia.
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Tallinn, 10120, Estonia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| |
Collapse
|
15
|
Utama GL, Dio C, Sulistiyo J, Yee Chye F, Lembong E, Cahyana Y, Kumar Verma D, Thakur M, Patel AR, Singh S. Evaluating comparative β-glucan production aptitude of Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto. Saudi J Biol Sci 2021; 28:6765-6773. [PMID: 34866975 PMCID: PMC8626220 DOI: 10.1016/j.sjbs.2021.07.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
β-glucan is a natural polysaccharide derivative composed of a group of glucose monomers with β-glycoside bonds that can be synthesized intra- or extra-cellular by various microorganisms such as yeasts, bacteria, and moulds. The study aimed to discover the potential of various microorganisms such as Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto in producing β-glucan. The experimental method used and the data were analyzed descriptively. The four microorganisms above were cultured under a submerged state in Yeast glucose (YG) broth for 120 h at 30 °C with 200 rpm agitation. During the growth, several parameters were examined including total population by optical density, the pH, and glucose contents of growth media. β-glucan was extracted using acid-alkaline methods from the growth media then the weight was measured. The results showed that S. cerevisiae, A. oryzae X. campestris, and B. natto were prospective for β-glucans production in submerged fermentation up to 120 h. The highest β-glucans yield was shown by B. natto (20.38%) with the β-glucans mass of 1.345 ± 0.08 mg and globular diameter of 600 μm. The highest β-glucan mass was achieved by A. oryzae of 82.5 ± 0.03 mg with the total population in optical density of 0.1246, a final glucose level of 769 ppm, the pH of 6.67, and yield of 13.97% with a globular diameter of 1400 μm.
Collapse
Affiliation(s)
- Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia.,Center for Environment and Sustainability Science, UniversitasPadjadjaran, Bandung 40132, Indonesia
| | - Casey Dio
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Joko Sulistiyo
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Fook Yee Chye
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Elazmanawati Lembong
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Yana Cahyana
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mamta Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana384 002, Gujarat State, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to be) University, Dehradun, Uttarakhand 248002, India
| |
Collapse
|
16
|
Ikewaki N, Dedeepiya VD, Raghavan K, Rao KS, Vaddi S, Osawa H, Kisaka T, Kurosawa G, Srinivasan S, Kumar SRB, Senthilkumar R, Iwasaki M, Preethy S, Abraham SJK. β‑glucan vaccine adjuvant approach for cancer treatment through immune enhancement (B‑VACCIEN) in specific immunocompromised populations (Review). Oncol Rep 2021; 47:14. [PMID: 34779494 DOI: 10.3892/or.2021.8225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/07/2021] [Indexed: 11/06/2022] Open
Abstract
The incidence of cancer, which is the second leading cause of mortality globally, continues to increase, although continued efforts are being made to identify effective treatments with fewer side‑effects. Previous studies have reported that chronic microinflammation, which occurs in diseases, including diabetes, along with weakened immune systems, may ultimately lead to cancer development. Chemotherapy, radiotherapy and surgery are the mainstream approaches to treatment; however, they all lead to immune system weakness, which in turn increases the metastatic spread. The aim of the present review was to provide evidence of a biological response modifier β‑glucan [β‑glucan vaccine adjuvant approach to treating cancer via immune enhancement (B‑VACCIEN)] and its beneficial effects, including vaccine‑adjuvant potential, balancing metabolic parameters (including blood glucose and lipid levels), increasing peripheral blood cell cytotoxicity against cancer and alleviating chemotherapy side effects in animal models. This suggests its value as a potential strategy to provide long‑term prophylaxis in immunocompromised individuals or genetically prone to cancer.
Collapse
Affiliation(s)
- Nobunao Ikewaki
- Department of Medical Life Science, Kyushu University of Health and Welfare, Nobeoka, Miyazaki 882‑8508, Japan
| | | | - Kadalraja Raghavan
- Department of Paediatric Neurology, Kenmax Medical Service Private Limited, Tallakulam, Madurai 625002, India
| | - Kosagi-Sharaf Rao
- Institute of Scientific Research and High Technology Services of Panama (INDICASAT‑AIP), Clayton 88888, Republic of Panama
| | - Suryaprakash Vaddi
- Department of Urology, Yashoda Hospitals, Hyderabad, Telangana 50008, India
| | - Hiroshi Osawa
- Clinical Services Department, Omote Medical Clinic, Chiba 296‑8602, Japan
| | - Tomohiko Kisaka
- Division of Biodesign, Office of Research and Academic‑Government‑Community Collaboration, Hiroshima University, Higashihiroshima, Hiroshima 739‑8511, Japan
| | - Gene Kurosawa
- Department of Academic Research Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Subramaniam Srinivasan
- The Mary‑Yoshio Translational Hexagon (MYTH), Nichi‑In Centre for Regenerative Medicine (NCRM), Chennai 600034, India
| | | | - Rajappa Senthilkumar
- The Fujio‑Eiji Academic Terrain (FEAT), Nichi‑In Centre for Regenerative Medicine (NCRM), Chennai 600034, India
| | - Masaru Iwasaki
- Centre for Advancing Clinical Research (CACR), University of Yamanashi‑ School of Medicine, Chuo, Yamanashi 409‑3898, Japan
| | - Senthilkumar Preethy
- The Fujio‑Eiji Academic Terrain (FEAT), Nichi‑In Centre for Regenerative Medicine (NCRM), Chennai 600034, India
| | - Samuel J K Abraham
- The Mary‑Yoshio Translational Hexagon (MYTH), Nichi‑In Centre for Regenerative Medicine (NCRM), Chennai 600034, India
| |
Collapse
|
17
|
Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 2021; 13:3960. [PMID: 34836215 PMCID: PMC8623785 DOI: 10.3390/nu13113960] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are characterized by diverse structures and functions. They are known for their metabolic and immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM (biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to the formation of triple helix conformation, which is one of the key factors influencing the bioactivity of mushroom beta-glucans. This review summarizes the latest findings on biological and health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases, with particular emphasis on COVID-19.
Collapse
Affiliation(s)
- Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.K.); (A.M.W.)
| | | | | |
Collapse
|
18
|
Basak S, Gokhale J. Immunity boosting nutraceuticals: Current trends and challenges. J Food Biochem 2021; 46:e13902. [PMID: 34467553 DOI: 10.1111/jfbc.13902] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
The immune function of the human body is highly influenced by the dietary intake of certain nutrients and bioactive compounds present in foods. The preventive effects of these bioactive ingredients against various diseases have been well investigated. Functional foods are consumed across various diverse cultures, in some form or the other, which provide benefits greater than the basic nutritional needs. Novel functional foods are being developed using novel bioactive ingredients such as probiotics, polyunsaturated fatty acids, and various phytoconstituents, which have a range of immunomodulatory properties. Apart from immunomodulation, these ingredients also affect immunity by their antioxidant, antibacterial, and antiviral properties. The global pandemic of Severe Acute Respiratory Syndrome Coronavirus-2 has forced the scientific community to race against time to find a proper and effective drug or a vaccine. In this review, various non-pharmacological interventions using nutraceuticals and functional foods have been discussed. PRACTICAL APPLICATIONS: Despite a plethora of research being undertaken to understand the immunity boosting properties of the various bioactive present in food, the findings are not translating to nutraceutical products in the market. Immunity has proved to be one of the most important factors for the health and well-being of an individual, especially when the world has been under the grip of the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2. The anti-inflammatory properties of various nutraceuticals can come out as potential inhibitors of the various inflammatory processes such as cytokine storms, usually being observed in COVID 19. This review gives an insight into how various nutraceuticals can help in the prevention of various diseases through different mechanisms. The lack of awareness and proper clinical trials pose a challenge to the nutraceutical industry. This review will help and encourage researchers to further design and develop various functional foods, which might help in building immunity.
Collapse
Affiliation(s)
- Somnath Basak
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Jyoti Gokhale
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
19
|
Sadoughi F, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B. Beta-glucans is a potential inhibitor of ovarian cancer: based on molecular and biological aspects. Curr Pharm Biotechnol 2021; 23:1142-1152. [PMID: 34375183 DOI: 10.2174/1389201022666210810090728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is a lethal type of cancer which is initiated in the ovaries and affects 1 out of every 75 women. Due to the high number of deaths (almost 152,000) related to this cancer, it seems that novel effiecient therapeutic methods are required in this field. Beta-glucans are a type of glucose linear polymers which have proven to have a lot of advantageous activities. Recently, investigations have declared that these polysaccharides have the potential to be used as anti-cancer drugs. These agents are able to affect several mechanisms such as inflammation and apoptosis and that is how cancers are prone to be affected by them. In this review, we attempt to investigate the role of beta-glucans on ovarian cancer. We hope that this paper might give novel insights in the field of ovarian cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Chaudhari V, Buttar HS, Bagwe-Parab S, Tuli HS, Vora A, Kaur G. Therapeutic and Industrial Applications of Curdlan With Overview on Its Recent Patents. Front Nutr 2021; 8:646988. [PMID: 34262922 PMCID: PMC8273257 DOI: 10.3389/fnut.2021.646988] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Curdlan is an exopolysaccharide, which is composed of glucose linked with β-(1,3)-glycosidic bond and is produced by bacteria, such as Alcaligenes spp., Agrobacterium spp., Paenibacillus spp., Rhizobium spp., Saccharomyces cerevisiae, Candida spp., and fungal sources like Aureobasidium pullulan, Poria cocos, etc. Curdlan has been utilized in the food and pharmaceutical industries for its prebiotic, viscosifying, and water-holding properties for decades. Recently, the usefulness of curdlan has been further explored by the pharmaceutical industry for its potential therapeutic applications. Curdlan has exhibited immunoregulatory and antitumor activity in preclinical settings. It was observed that curdlan can prevent the proliferation of malarial merozoites in vivo; therefore, it may be considered as a promising therapy for the treatment of end-stage malaria. In addition, curdlan has demonstrated potent antiviral effects against human immunodeficiency virus (HIV) and Aedes aegypti virus. It has been suggested that the virucidal properties of curdlans should be extended further for other deadly viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2/COVID-19). The prebiotic property of curdlan would confer beneficial effects on the host by promoting the growth of healthy microbiota in the gut and consequently help to reduce gastrointestinal disorders. Therefore, curdlan can be employed in the manufacture of prebiotics for the management of various gastrointestinal dysbiosis problems. Studies on the mechanism of action of curdlan-induced suppression in microbial and tumor cells at the cellular and molecular levels would not only enhance our understanding regarding the therapeutic effectiveness of curdlan but also help in the discovery of new drugs and dietary supplements. The primary focus of this review is to highlight the therapeutic interventions of curdlan as an anticancer, anti-malaria, antiviral, and antibacterial agent in humans. In addition, our review provides the latest information about the chemistry and biosynthesis of curdlan and its applications for making novel dairy products, functional foods, and nutraceuticals and also details about the recent patents of curdlan and its derivatives.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Siddhi Bagwe-Parab
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
21
|
Dar TUH, Dar SA, Islam SU, Mangral ZA, Dar R, Singh BP, Verma P, Haque S. Lichens as a repository of bioactive compounds: an open window for green therapy against diverse cancers. Semin Cancer Biol 2021; 86:1120-1137. [PMID: 34052413 DOI: 10.1016/j.semcancer.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023]
Abstract
Lichens, algae and fungi-based symbiotic associations, are sources of many important secondary metabolites, such as antibiotics, anti-inflammatory, antioxidants, and anticancer agents. Wide range of experiments based on in vivo and in vitro studies revealed that lichens are a rich treasure of anti-cancer compounds. Lichen extracts and isolated lichen compounds can interact with all biological entities currently identified to be responsible for tumor development. The critical ways to control the cancer development include induction of cell cycle arrests, blocking communication of growth factors, activation of anti-tumor immunity, inhibition of tumor-friendly inflammation, inhibition of tumor metastasis, and suppressing chromosome dysfunction. Also, lichen-based compounds induce the killing of cells by the process of apoptosis, autophagy, and necrosis, that inturn positively modulates metabolic networks of cells against uncontrolled cell division. Many lichen-based compounds have proven to possess potential anti-cancer activity against a wide range of cancer cells, either alone or in conjunction with other anti-cancer compounds. This review primarily emphasizes on an updated account of the repository of secondary metabolites reported in lichens. Besides, we discuss the anti-cancer potential and possible mechanism of the most frequently reported secondary metabolites derived from lichens.
Collapse
Affiliation(s)
- Tanvir Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India.
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shahid Ul Islam
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Zahid Ahmed Mangral
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Rubiya Dar
- Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, Haryana, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
22
|
β-Glucan: A dual regulator of apoptosis and cell proliferation. Int J Biol Macromol 2021; 182:1229-1237. [PMID: 33991557 DOI: 10.1016/j.ijbiomac.2021.05.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 01/09/2023]
Abstract
β-Glucans are polysaccharides generally obtained from the cell wall of bacteria, fungi, yeasts, and aleurone layer of cereals. β-Glucans are polymers, with β-1,3 glucose as core linear structure, but they differ in their main branch length, linkages and branching patterns, giving rise to high and low-molecular-weight β-glucans. They are well-known cell response modifiers with immune-modulating, nutraceutical and health beneficial effects, including anticancer and pro-apoptotic properties. β-Glucan extracts have shown positive responses in controlling tumor cell proliferation and activation of the immune system. The immunomodulatory action of β-glucans enhances the host's antitumor defense against cancer. In consonance with the above, many studies have shown that β-glucan treatment leads to the induction of apoptotic death of cancer cells. The ability of β-glucans to stimulate apoptotic pathways or the proteins involved in apoptosis prompting a new domain in cancer therapy. β-glucan can be a potential therapeutic agent for the treatment of cancer. However, there is a need to legitimize the β-glucan type, as most of the studies include β-glucan from different sources having different physicochemical properties. The body of literature presented here focuses on the effects of β-glucan on immunomodulation, proliferation, cell death and the possible mechanisms and pathways involved in these processes.
Collapse
|
23
|
Drabińska N, Ogrodowczyk A. Crossroad of Tradition and Innovation – The Application of Lactic Acid Fermentation to Increase the Nutritional and Health-Promoting Potential of Plant-Based Food Products – a Review. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/134282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
Thirumdas R, Kothakota A, Pandiselvam R, Bahrami A, Barba FJ. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: A review. Trends Food Sci Technol 2021; 110:66-77. [PMID: 33558789 PMCID: PMC7857987 DOI: 10.1016/j.tifs.2021.01.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The viral infections can be highly contagious and easily transmissible, which even can lead to a pandemic, like the recent COVID-19 outbreak, causing massive deaths worldwide. While, still the best practical way to prevent the transmission of viruses is to practice self-sanitation and follow social distancing principles, enhancing the individual's immunity through the consumption of proper foods containing balanced nutrients can have significant result against viral infections. Foods containing nutrients such as vitamins, minerals, fatty acids, few polysaccharides, and some non-nutrients (i.e. polyphenols) have shown therapeutic potential against the function of viruses and can increase the immunity of people. SCOPE AND APPROACH The results of conducted works aiming for studying the potential antiviral characteristics of diverse groups of foods and food's nutrients (in terms of polysaccharides, proteins, lipids, vitamins, and minerals) are critically discussed. KEY FINDINGS AND CONCLUSION Nutrients, besides playing an important role in maintaining normal physiology of human's body and healthiness, are also required for enhancing the immunity of the body and can be effective against viral infections. They can present antiviral capacity either by entering into the defensive mechanism directly through interfering with the target viruses, or indirectly through activating the cells associated with the adaptive immune system. During the current situation of COVID-19 pandemic (the lack of proper curative viral drug), enhancing the immunity of individual's body through proposing the appropriate diet (rich in both macro and micro-nutrients) is one of few practical preventive measures available in fighting against Coronaviruses, this significant health-threatening virus, as well as other viruses in general.
Collapse
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology, College of Food Science & Technology, PJTSAU, Telangana, India
| | - Anjinelyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124, Kerala, India
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, 28081, USA
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, València, Spain
| |
Collapse
|
25
|
Vetvicka V, Teplyakova TV, Shintyapina AB, Korolenko TA. Effects of Medicinal Fungi-Derived β-Glucan on Tumor Progression. J Fungi (Basel) 2021; 7:250. [PMID: 33806255 PMCID: PMC8065548 DOI: 10.3390/jof7040250] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
β-Glucans have been studied in animal species, from earthworms to humans. They form a heterogenous group of glucose polymers found in fungi, plants, bacteria, and seaweed. β-Glucans have slowly emerged as an important target for the recognition of pathogens. In the current review, we highlight the major roles of mushroom-derived β-glucans on cancer progression.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 630117, USA
| | - Tamara V. Teplyakova
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk, Russia;
| | - Alexandra B. Shintyapina
- Federal Research Center of Fundamental and Translational Medicine, Federal State Budget Scientific Institution, 630117 Novosibirsk, Russia;
| | - Tatiana A. Korolenko
- Laboratory of Experimental Models of Neurodegeneration, Scientific Research Institute of Neurosciences and Medicine, Federal State Budgetary Scientific Institution, 4 Timakov St., 630117 Novosibirsk, Russia;
| |
Collapse
|
26
|
Chatterjee S, Balram A, Li W. Convergence: Lactosylceramide-Centric Signaling Pathways Induce Inflammation, Oxidative Stress, and Other Phenotypic Outcomes. Int J Mol Sci 2021; 22:ijms22041816. [PMID: 33673027 PMCID: PMC7917694 DOI: 10.3390/ijms22041816] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
Lactosylceramide (LacCer), also known as CD17/CDw17, is a member of a large family of small molecular weight compounds known as glycosphingolipids. It plays a pivotal role in the biosynthesis of glycosphingolipids, primarily by way of serving as a precursor to the majority of its higher homolog sub-families such as gangliosides, sulfatides, fucosylated-glycosphingolipids and complex neutral glycosphingolipids—some of which confer “second-messenger” and receptor functions. LacCer is an integral component of the “lipid rafts,” serving as a conduit to transduce external stimuli into multiple phenotypes, which may contribute to mortality and morbidity in man and in mouse models of human disease. LacCer is synthesized by the action of LacCer synthase (β-1,4 galactosyltransferase), which transfers galactose from uridine diphosphate galactose (UDP-galactose) to glucosylceramide (GlcCer). The convergence of multiple physiologically relevant external stimuli/agonists—platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), stress, cigarette smoke/nicotine, tumor necrosis factor-α (TNF-α), and in particular, oxidized low-density lipoprotein (ox-LDL)—on β-1,4 galactosyltransferase results in its phosphorylation or activation, via a “turn-key” reaction, generating LacCer. This newly synthesized LacCer activates NADPH (nicotinamide adenine dihydrogen phosphate) oxidase to generate reactive oxygen species (ROS) and a highly “oxidative stress” environment, which trigger a cascade of signaling molecules and pathways and initiate diverse phenotypes like inflammation and atherosclerosis. For instance, LacCer activates an enzyme, cytosolic phospholipase A2 (cPLA2), which cleaves arachidonic acid from phosphatidylcholine. In turn, arachidonic acid serves as a precursor to eicosanoids and prostaglandin, which transduce a cascade of reactions leading to inflammation—a major phenotype underscoring the initiation and progression of several debilitating diseases such as atherosclerosis and cancer. Our aim here is to present an updated account of studies made in the field of LacCer metabolism and signaling using multiple animal models of human disease, human tissue, and cell-based studies. These advancements have led us to propose that previously unrelated phenotypes converge in a LacCer-centric manner. This LacCer synthase/LacCer-induced “oxidative stress” environment contributes to inflammation, atherosclerosis, skin conditions, hair greying, cardiovascular disease, and diabetes due to mitochondrial dysfunction. Thus, targeting LacCer synthase may well be the answer to remedy these pathologies.
Collapse
|
27
|
Evaluation of Polish wild Mushrooms as Beta-Glucan Sources. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197299. [PMID: 33036263 PMCID: PMC7579588 DOI: 10.3390/ijerph17197299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/26/2022]
Abstract
Mushroom beta-glucans show immunomodulatory, anticancer and antioxidant features. Numerous papers have been published in the last years on fungal polysaccharides, especially beta-glucans, demonstrating their various biological activities. However substantial data about beta-glucan contents in many mushroom species, especially wild mushrooms, are still missing. Therefore, the main objective of the study was to evaluate β-glucans in 18 species of wild mushrooms and three species of commercial mushrooms for comparison purposes. The contents of β-glucans were determined by the Megazyme method and with the Congo red method, which differ in analytical procedure. Among wild mushrooms, the highest mean β-glucan content assessed with the Megazyme method was found in Tricholoma portentosum (34.97 g/100 g DM), whereas with the Congo red method in Lactarius deliciosus (17.11 g/100 g DM) and Suillus grevillei (16.97 g/100 g DM). The β-glucans in wild mushrooms assessed with the Megazyme method were comparable to commercial mushrooms, whereas β-glucans assessed with the Congo red method were generally higher in wild mushrooms, especially in Russula vinosa, L. deliciosus and S. grevillei. This study indicates wild mushrooms as interesting material for β-glucan extraction for food industry and medicinal purposes.
Collapse
|
28
|
Murphy EJ, Masterson C, Rezoagli E, O'Toole D, Major I, Stack GD, Lynch M, Laffey JG, Rowan NJ. β-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects - Implications for coronavirus disease (COVID-19) immunotherapies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139330. [PMID: 32413619 PMCID: PMC7211630 DOI: 10.1016/j.scitotenv.2020.139330] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 05/17/2023]
Abstract
Coronavirus pneumonia is accompanied by rapid virus replication, where a large number of inflammatory cell infiltration and cytokine storm may lead to acute lung injury, acute respiratory distress syndrome (ARDS) and death. The uncontrolled release of pro-inflammatory cytokines, including interleukin (IL)-1β and IL-6, is associated with ARDS. This constituted the first study to report on the variability in physicochemical properties of β-glucans extracts from the same edible mushroom Lentinus edodes on the reduction of these pro-inflammatory cytokines and oxidative stress. Specifically, the impact on the immunomodulatory and cytoprotective properties of our novel in 'house' (IH-Lentinan, IHL) and a commercial (Carbosynth-Lentinan, CL) Lentinan extract were investigated using in vitro models of lung injury and macrophage phagocytosis. CL comprised higher amounts of α-glucans and correspondingly less β-glucans. The two lentinan extracts demonstrated varying immunomodulatory activities. Both Lentinan extracts reduced cytokine-induced NF-κB activation in human alveolar epithelial A549 cells, with the IHL extract proving more effective at lower doses. In contrast, in activated THP-1 derived macrophages, the CL extract more effectively attenuated pro-inflammatory cytokine production (TNF-α, IL-8, IL-2, IL-6, IL-22) as well as TGF-β and IL-10. The CL extract attenuated oxidative stress-induced early apoptosis, while the IHL extract attenuated late apoptosis. Our findings demonstrate significant physicochemical differences between Lentinan extracts, which produce differential in vitro immunomodulatory and pulmonary cytoprotective effects that may also have positive relevance to candidate COVID-19 therapeutics targeting cytokine storm.
Collapse
Affiliation(s)
- Emma J Murphy
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.
| | - Claire Masterson
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Emanuele Rezoagli
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland; Department of Medicine and Surgery, University of Milano-Bicocca, Monza (MB), Italy
| | - Daniel O'Toole
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Gary D Stack
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Mark Lynch
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - John G Laffey
- Lung Biology Group, Regenerative Medicine Institute at CURAM Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland; Anaesthesia and Intensive Care Medicine, University Hospital Galway, Galway, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland; Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|