1
|
Kundu T, Smith JC, Gupta M. Effect of Acetylation Patterns of Xylan on Interactions with Cellulose. Biomacromolecules 2025; 26:1659-1671. [PMID: 40015992 DOI: 10.1021/acs.biomac.4c01469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The present study demonstrates that the change in the degree of xylan acetylation significantly alters the 2-fold screw population that effectively interacts with the (100) hydrophobic cellulose, while such effects are less prominent for the (110) hydrophilic surface. All of the acetylated xylans reveal an ≈10-40% higher 2-fold population on the hydrophobic cellulose due to higher xylan-cellulose contacts. Deviations from periodic acetylation result in much lower 2-fold conformations, despite a comparable number of xylan-cellulose hydrogen bonds and contacts. Thus, it can be hypothesized that a specific and unique set of xylan: cellulose interactions mediate the formation of 2-fold xylan to interact with cellulose, which is also a 2-fold screw. Highly acetylated xylans desorb from cellulose, while low acetylated xylans show dependence on the topology of the cellulose surface. These findings provide additional insights into plant cell wall microstructure dynamics and inform future strategies for efficient biomass deconstruction in biofuel production.
Collapse
Affiliation(s)
- Tripti Kundu
- Computational Biophysics Lab, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Madhulika Gupta
- Computational Biophysics Lab, Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
2
|
Vu Thanh C, Gooding JJ, Kah M. Learning lessons from nano-medicine to improve the design and performances of nano-agrochemicals. Nat Commun 2025; 16:2306. [PMID: 40055366 PMCID: PMC11889108 DOI: 10.1038/s41467-025-57650-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
Sharing concepts and knowledge between medical and agricultural fields can promote the development of improved nano-enabled technologies. A central idea behind drug delivery systems is that the active substances are encapsulated in nanoparticles (nano-medicines) to protect the drugs from premature degradation and allow them to be transported to the target site within the body. After three decades of development, nano-medicines are now used in many practical applications, including clinical oncology, infectious disease, cosmetics, and vaccines. Nano-agrochemicals are increasingly considered to tackle challenges associated with food production, sustainability and food security. Despite obvious differences between nano-medicines and nano-agrochemicals in terms of uptake mechanisms, target and environmental and economic constraints, the principles behind nanoparticle design share many similarities. This article hopes to share experiences and lessons learnt from nano-medicines that will help design more effective and safer nano-agrochemicals.
Collapse
Affiliation(s)
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia.
| | - Melanie Kah
- School of Environment, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Yu H, Zhang G, Liu J, Liu P, Peng H, Teng Z, Li Y, Ren X, Fu C, Tang J, Li M, Wang Y, Wang L, Peng L. A functional cascading of lignin modification via repression of caffeic acid O-methyltransferase for bioproduction and anti-oxidation in rice. J Adv Res 2025:S2090-1232(25)00067-0. [PMID: 39914488 DOI: 10.1016/j.jare.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
INTRODUCTION Crop straws provide substantial biomass resources that are transformable for sustainable biofuels and valuable bioproducts. However, the natural lignocellulose recalcitrance results in an expensive biomass process and secondary waste liberation. As lignin is a major recalcitrant factor, genetic engineering of lignin biosynthesis is increasingly being implemented in bioenergy crops, but much remains unclear about the desired lignocellulose alteration and resulting function. OBJECTIVES This study attempted to explore the mechanisms of lignin modification responsible for efficient lignocellulose conversion in vitro and an effective plant anti-oxidation response in vivo. METHODS We initially selected specific rice mutants by performing modern CRISPR/cas9 editing with caffeic acid O-methyltransferase involved in the synthetic pathways of monolignols (G, S) and ferulic acid (FA), and then explored lignocellulose conversion and plant cadmium (Cd) accumulation using advanced chemical, biochemical and thermal-chemical analyses. RESULTS Notable lignin modification was achieved from the predominately synergistic down-regulation of S-monomer synthesis in three mutants. This consequently upgraded lignocellulose porosity by up to 1.8 folds to account for significantly enhanced biomass saccharification and bioethanol production by 20 %-26 % relative to the wild-type. The modified lignin also favors the dissection of diverse lignin nanoparticles with dimensions reduced by 1.5-1.9 folds, applicable for thermal-chemical conversion into the carbon quantum dots with increased yields by 15 % and 31 %. The proportions of G-monomers and FA were significantly increased in the mutants, and the lignin extractions were further assayed with higher activities for two standard antioxidants (DPPH and ABTS) in vitro compared to the wild-type, revealing a distinctively enhanced plant antioxidative capacity in the mutants. Water culture showed that young mutant seedlings accumulated more Cd than wild-type did (p < 0.01, n = 3), suggesting effective heavy metal phytoremediation in the mutants. CONCLUSION A hypothetical model of characteristic lignin modification for specific S-monomer reduction, accountable for improved lignocellulose recalcitrance, was proposed. It provides a powerful strategy for achieving high-yield biofuels and value-added bioproducts or enhancing plant antioxidative capacity for heavy metal phytoremediation.
Collapse
Affiliation(s)
- Hua Yu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guifen Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingyuan Liu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Peng Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhipeng Teng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xifeng Ren
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jingfeng Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Mi Li
- Center for Renewable Carbon, School of Natural Resources, University of Tennessee-Knoxville, Knoxville, TN 37996, United States
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingqiang Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Conservation & Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
López-Malvar A, Malvar RA, Butrón A, Souto XC, Santiago R. Assessing the success of breeding maize inbred lines with contrasting diferulate concentrations. BMC PLANT BIOLOGY 2025; 25:18. [PMID: 39757217 DOI: 10.1186/s12870-024-05990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND The crosslinking of maize cell wall components, particularly mediated by the formation of ferulic acid dimers or diferulates, has been associated with important crop valorization traits such as increased pest resistance, lower forage digestibility, or reduced bioethanol production. However, these relationships were based on studies performed using diverse unrelated inbred lines and/or populations, so genetic background could interfere on these associations. RESULTS In the present research, the success of a pedigree selection program aimed to obtain inbred lines from a common antecessor with contrasting diferulate concentration was evaluated. From the 10 inbreds lines developed we could validate the success of the breeding program, obtaining 4 inbred lines with significant contrating values of total diferulate content in the pith tissues (two of each group): high (X̅= 0.69 mg/g of DW) and low (X̅= 0.35 mg/g). Ferulate changes in the same way were also observed: high (X̅= 3.09 mg/g of DW) and low (X̅= 1.62 mg/g). On the other hand, we found strong and positive correlations between DFAT and individual dimers, and moderate negative correlations between total DFAT and a main cell wall component such as cellulose. However, we did not find a significant effect of DFAT on maize valorization traits, except of a negative effect of DFAT on the concentration of sugars released after the enzimatic hydrolysis of the pith tissues. Interestingly, increasing DFAT in the pith does not seem to affect the digestibility of the forage or the saccharification of the stover residue, highlighting that changes in a specific tissue do not encompass correlated changes in other resources. CONCLUSIONS Overall, we have obtained contrasting inbred lines with diferulates concentration, which could be uselful in further studies focussing in the identification of regions/genes predominantly involved in the hydroxycinnamate biosynthesis pathway and cell wall crosslinking network.
Collapse
Affiliation(s)
- Ana López-Malvar
- Facultad de Biología, Depto. Biología Vegetal Y Ciencias del Suelo, Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a MBG (CSIC), Universidad de Vigo, As Lagoas Marcosende, Vigo, 36310, Spain.
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC), Depto. Producción Vegetal, Pazo de Salcedo, Carballeira 8, Pontevedra, 36143, Spain
| | - Ana Butrón
- Misión Biológica de Galicia (CSIC), Depto. Producción Vegetal, Pazo de Salcedo, Carballeira 8, Pontevedra, 36143, Spain
| | - Xose Carlos Souto
- Facultad de Biología, Depto. Biología Vegetal Y Ciencias del Suelo, Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a MBG (CSIC), Universidad de Vigo, As Lagoas Marcosende, Vigo, 36310, Spain
- E.E. Forestal, Dpto. Ingeniería Recursos Naturales y Medio Ambiente, Pontevedra, 36005, Spain
| | - Rogelio Santiago
- Misión Biológica de Galicia (CSIC), Depto. Producción Vegetal, Pazo de Salcedo, Carballeira 8, Pontevedra, 36143, Spain
| |
Collapse
|
5
|
Roudbari M, Barzegar M, Sendra E, Casanova-Martínez I, Rodríguez-Estrada M, Carbonell-Barrachina ÁA. Characterization of the Different Chemical Components and Nutritional Properties of Two Eryngium Species. Foods 2025; 14:118. [PMID: 39796408 PMCID: PMC11719572 DOI: 10.3390/foods14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
This study aimed to investigate the nutritional value and potential for herbal tea production of two species Eryngium. The analysis includes the quantification of lipids, proteins, organic acids (HPLC-MS), sugars (HPLC-MS), phenolic compounds (HPLC-MS-MS), volatile compounds (GC-MS), fatty acids (GC-MS), amino acids (HPLC-MS-MS), some minerals (ICP-MS), total phenolic content, and antioxidant activities of Eryngium billardieri flowers (EBF) and thorns (EBT), as well as Eryngium planum flowers (EPF) and thorns (EPT). The results indicate that EPF and EPT exhibit elevated levels of protein (11.2%) and sugars (224.2 mg/gdw), respectively. Whereas, EBF demonstrates a higher concentration of amino acids (7.13 mg/100 gdw) and total phenolic content (19.25 mg GAE/gdw), which correlates with pronounced antioxidant properties. Oleic acid was notable in E. billardieri, while linoleic and α-linolenic acids were predominant in E. planum. Furthermore, essential minerals such as Fe, Mn, Zn, Mg, K, Ca, and P were also determined. Sensory evaluations by panelists confirmed that tea derived from the studied species possesses favorable taste and flavor profiles, attributed to its rich volatile compounds. These findings highlight the nutritional value of Eryngium species as a functional ingredient in the food industry. Additionally, their antioxidant properties suggest promising uses in pharmaceutical applications.
Collapse
Affiliation(s)
- Mozhgan Roudbari
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran P.O. Box 14155-336, Iran;
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran P.O. Box 14155-336, Iran;
| | - Esther Sendra
- Research Group of Food Quality and Safety, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Ctra. Beniel, km 3.2, 03312 Orihuela, Spain; (E.S.); (I.C.-M.); (M.R.-E.); (Á.A.C.-B.)
| | - Isabel Casanova-Martínez
- Research Group of Food Quality and Safety, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Ctra. Beniel, km 3.2, 03312 Orihuela, Spain; (E.S.); (I.C.-M.); (M.R.-E.); (Á.A.C.-B.)
| | - Marcos Rodríguez-Estrada
- Research Group of Food Quality and Safety, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Ctra. Beniel, km 3.2, 03312 Orihuela, Spain; (E.S.); (I.C.-M.); (M.R.-E.); (Á.A.C.-B.)
| | - Ángel A. Carbonell-Barrachina
- Research Group of Food Quality and Safety, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández de Elche, Ctra. Beniel, km 3.2, 03312 Orihuela, Spain; (E.S.); (I.C.-M.); (M.R.-E.); (Á.A.C.-B.)
| |
Collapse
|
6
|
Luo M, Fu S. Distribution of xylan linked glucuronic acid labelled by molecularly imprinted polymers on pulp fiber surface. Int J Biol Macromol 2024; 278:134519. [PMID: 39111479 DOI: 10.1016/j.ijbiomac.2024.134519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024]
Abstract
Efficiently utilization of plant resources is heavily restricted by the resistance of lignocellulose in plant cells, which is related to the interlinkages of lignocellulose components. Hemicellulose in plant cell wall is bound to cellulose by hydrogen bond and linked with lignin in lignin-carbohydrate complex (LCC). In the xylan chain of hemicellulose, glucuronic acid (GA) is a typical side-group, which provides clues for us to label and locate hemicellulose. The way to label GA on the surface of pulp fibers obtained from pulping process is benefit to explore the deconstruction of lignocellulose. Herein, a new visualization method, fluorescence modified molecularly imprinted polymers (MIP) were applied to recognize and locate GA on the pulp fiber surface. The method combining fluorescence imaging and integrated 3D fiber structure verified the feasibility of the MIP for specific GA recognition. The results showed that xylan (represented by GA) was closely attached to lignin, distributed along the inner wall of pulp fiber cells, and gradually taken off from the inside edge of fiber cells with the deconstruction of lignocellulose. This research provided a basis to develop visualization bioimaging technology to identify biomass components.
Collapse
Affiliation(s)
- Min Luo
- State Key Lab of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, Guangdong province 510640, China; China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China
| | - Shiyu Fu
- State Key Lab of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, Guangdong province 510640, China.
| |
Collapse
|
7
|
Bao L, Liu J, Mao T, Zhao L, Wang D, Zhai Y. Nanobiotechnology-mediated regulation of reactive oxygen species homeostasis under heat and drought stress in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1418515. [PMID: 39258292 PMCID: PMC11385006 DOI: 10.3389/fpls.2024.1418515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
Global warming causes heat and drought stress in plants, which affects crop production. In addition to osmotic stress and protein inactivation, reactive oxygen species (ROS) overaccumulation under heat and drought stress is a secondary stress that further impairs plant performance. Chloroplasts, mitochondria, peroxisomes, and apoplasts are the main ROS generation sites in heat- and drought-stressed plants. In this review, we summarize ROS generation and scavenging in heat- and drought-stressed plants and highlight the potential applications of plant nanobiotechnology for enhancing plant tolerance to these stresses.
Collapse
Affiliation(s)
- Linfeng Bao
- College of Agriculture, Tarim University, Alar, China
| | - Jiahao Liu
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Tingyong Mao
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Linbo Zhao
- College of Agriculture, Tarim University, Alar, China
| | - Desheng Wang
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| | - Yunlong Zhai
- College of Agriculture, Tarim University, Alar, China
- Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, Alar, China
| |
Collapse
|
8
|
Yin B, Xie W, Fang S, He S, Ma W, Liang L, Yin Y, Zhou D, Wang Z, Wang D. Research Progress on Saccharide Molecule Detection Based on Nanopores. SENSORS (BASEL, SWITZERLAND) 2024; 24:5442. [PMID: 39205136 PMCID: PMC11360570 DOI: 10.3390/s24165442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification and structural analysis of saccharide molecules. This review focuses on recent advancements in nanopore technology for carbohydrate detection, presenting an array of methods that leverage the molecular complexity of saccharides. Biological nanopore techniques utilize specific protein binding or pore modifications to trigger typical resistive pulses, enabling the high-sensitivity detection of monosaccharides and oligosaccharides. In solid-state nanopore sensing, boronic acid modification and pH gating mechanisms are employed for the specific recognition and quantitative analysis of polysaccharides. The integration of artificial intelligence algorithms can further enhance the accuracy and reliability of analyses. Serving as a crucial tool in carbohydrate detection, we foresee significant potential in the application of nanopore technology for the detection of carbohydrate molecules in disease diagnosis, drug screening, and biosensing, fostering innovative progress in related research domains.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shixuan He
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wenhao Ma
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Yajie Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Daming Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| |
Collapse
|
9
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
10
|
Hua Z, Zhang T, Luo J, Bai H, Ma S, Qiang H, Guo X. Internalization, physiological responses and molecular mechanisms of lettuce to polystyrene microplastics of different sizes: Validation of simulated soilless culture. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132710. [PMID: 37832437 DOI: 10.1016/j.jhazmat.2023.132710] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Microplastics (MPs) exists widely in the environment, and the resulting pollution of MPs has become a global environmental problem. Plants can absorb MPs through their roots. However, studies on the mechanism of the effect of root exposure to different size MPs on vegetables are limited. Here, we use Polystyrene (PS) MPs with different particle sizes to investigate the internalization, physiological response and molecular mechanism of lettuce to MPs. MPs may accumulate in large amounts in lettuce roots and migrate to the aboveground part through the vascular bundle, while small particle size MPs (SMPs, 100 nm) have stronger translocation ability than large particle size MPs (LMPs, 500 nm). MPs can cause physiological and biochemical responses and transcriptome changes in lettuce. SMPs and LMPs resulted in reduced biomass (38.27 % and 48.22 % reduction in fresh weight); caused oxidative stress (59.33 % and 47.74 % upregulation of SOD activity in roots) and differential gene expression (605 and 907 DEGs). Signal transduction, membrane transport and alteration of synthetic and metabolic pathways may be the main causes of physiological toxicity of lettuce. Our study provides important information for understanding the behavior and fate of MPs in edible vegetables, especially the physiological toxicity of MPs to edible vegetables, in order to assess the potential threat of MPs to food safety and agricultural sustainable development.
Collapse
Affiliation(s)
- Zhengdong Hua
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Tianli Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Junqi Luo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haoduo Bai
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Sirui Ma
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hong Qiang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
11
|
Chen M, Ralph J, Luterbacher JS, Shi QS, Xie X. Selecting Suitable Near-Native Lignins for Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20751-20761. [PMID: 38065961 DOI: 10.1021/acs.jafc.3c04973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
There are several methods to isolate near-native lignins, including milled-wood lignin, enzymatic lignin, cellulolytic enzyme lignin, and enzymatic mild-acidolysis lignin. Which one is the most representative of the native lignin? Herein, near-native lignins were isolated from different plant groups and structurally analyzed to determine how well these lignins represented their native lignin counterparts. Analytical methods were applied to understand the molecular weight, monomer composition, and distribution of interunit linkages in the structure of the lignins. The results indicated that either enzymatic lignin or cellulolytic enzyme lignin may be used to represent native lignin in softwoods and hardwoods. None of the lignins, however, appeared to represent native lignins in grasses (monocot plants) because of substantial syringyl/guaiacyl differences. Complicating the understanding of grass lignin structure, large amounts of hydroxycinnamates acylate their polysaccharides and, when released, are often conflated with actual lignin monomers.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeremy S Luterbacher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
12
|
Hou H, Xu Z, Takeda YS, Powers M, Yang Y, Hershberger K, Hanscom H, Svenson S, Simhadri RK, Vegas AJ. Quantitative biodistribution of nanoparticles in plants with lanthanide complexes. Sci Rep 2023; 13:21440. [PMID: 38052849 PMCID: PMC10698154 DOI: 10.1038/s41598-023-47811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
The inefficient distribution of fertilizers, nutrients, and pesticides on crops is a major challenge in modern agriculture that leads to reduced productivity and environmental pollution. Nanoformulation of agrochemicals is an attractive approach to enable the selective delivery of agents into specific plant organs, their release in those tissues, and improve their efficiency. Already commercialized nanofertilizers utilize the physiochemical properties of metal nanoparticles such as size, charge, and the metal core to overcome biological barriers in plants to reach their target sites. Despite their wide application in human diseases, lipid nanoparticles are rarely used in agricultural applications and a systematic screening approach to identifying efficacious formulations has not been reported. Here, we developed a quantitative metal-encoded platform to determine the biodistribution of different lipid nanoparticles in plant tissues. In this platform lanthanide metal complexes were encapsulated into four types of lipid nanoparticles. Our approach was able to successfully quantify payload accumulation for all the lipid formulations across the roots, stem, and leaf of the plant. Lanthanide levels were 20- to 57-fold higher in the leaf and 100- to 10,000-fold higher in the stem for the nanoparticle encapsulated lanthanide complexes compared to the unencapsulated, free lanthanide complex. This system will facilitate the discovery of nanoparticles as delivery carriers for agrochemicals and plant tissue-targeting products.
Collapse
Affiliation(s)
- H Hou
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA
| | - Z Xu
- Department of Chemistry, Boston University, Boston, MA, USA
| | | | - M Powers
- Invaio Sciences, Cambridge, MA, USA
| | - Y Yang
- Invaio Sciences, Cambridge, MA, USA
| | | | | | | | | | - A J Vegas
- Division of Materials Science and Engineering, Boston University, Boston, MA, USA.
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Rehman S, Yang YS, Patria RD, Zulfiqar T, Khanzada NK, Khan RJ, Lin CSK, Lee DJ, Leu SY. Substrate-related factors and kinetic studies of Carbohydrate-Rich food wastes on enzymatic saccharification. BIORESOURCE TECHNOLOGY 2023; 390:129858. [PMID: 37863332 DOI: 10.1016/j.biortech.2023.129858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Food waste biorefinery is a sustainable approach to producing green chemicals, however the essential substrate-related factors hindering the efficacy of enzymatic hydrolysis have never been clarified. This study explored the key rate-limiting parameters and mechanisms of carbohydrate-rich food after different cooking and storing methods, i.e., impacts of compositions, structural diversities, and hornification. Shake-flask enzymatic kinetics determined the optimal dosages (0.5 wt% glucoamylase, 3 wt% cellulase) for food waste hydrolysis. First order kinetics and simulation results determined that reaction coefficient (K) of cooked starchy food was ∼ 3.63 h-1 (92 % amylum digestibility) within 2 h, while those for cooked cellulosic vegetables were 0.25-0.5 h-1 after 12 h of hydrolysis. Drying and frying reduced ∼ 71-89 % hydrolysis rates for rice, while hydrothermal pretreatment increased the hydrolysis rate by 82 % on vegetable wastes. This study provided insights into advanced control strategy and reduced the operational costs by optimized enzyme doses for food waste valorization.
Collapse
Affiliation(s)
- Shazia Rehman
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yvette Shihui Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Raffel Dharma Patria
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Talha Zulfiqar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Rabia Jalil Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality (RCRE), The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
14
|
Lee ZJ, Xie C, Ng K, Suleria HAR. Unraveling the bioactive interplay: seaweed polysaccharide, polyphenol and their gut modulation effect. Crit Rev Food Sci Nutr 2023; 65:382-405. [PMID: 37991467 DOI: 10.1080/10408398.2023.2274453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Seaweed is rich in many unique bioactive compounds such as polyphenols and sulfated polysaccharides that are not found in terrestrial plant. The discovery of numerous biological activities from seaweed has made seaweed an attractive functional food source with the potential to be exploited for human health benefits. During food processing and digestion, cell wall polysaccharide and polyphenols commonly interact, and this may influence the nutritional properties of food. Interactions between cell wall polysaccharide and polyphenols in plant-based system has been extensively studied. However, similar interactions in seaweed have received little attention despite the vast disparity between the structural and chemical composition of plant and seaweed cell wall. This poses a challenge in extracting seaweed bioactive compounds with intact biological properties. This review aims to summarize the cell wall polysaccharide and polyphenols present in brown, red and green seaweed, and current knowledge on their potential interactions. Moreover, this review gives an overview of the gut modulation effect of seaweed polysaccharide and polyphenol.
Collapse
Affiliation(s)
- Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
15
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
16
|
Ashy RA, Jalal RS, Sonbol HS, Alqahtani MD, Sefrji FO, Alshareef SA, Alshehrei FM, Abuauf HW, Baz L, Tashkandi MA, Hakeem IJ, Refai MY, Abulfaraj AA. Functional annotation of rhizospheric phageome of the wild plant species Moringa oleifera. Front Microbiol 2023; 14:1166148. [PMID: 37260683 PMCID: PMC10227523 DOI: 10.3389/fmicb.2023.1166148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction The study aims to describe phageome of soil rhizosphere of M.oleifera in terms of the genes encoding CAZymes and other KEGG enzymes. Methods Genes of the rhizospheric virome of the wild plant species Moringa oleifera were investigated for their ability to encode useful CAZymes and other KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes and to resist antibiotic resistance genes (ARGs) in the soil. Results Abundance of these genes was higher in the rhizospheric microbiome than in the bulk soil. Detected viral families include the plant viral family Potyviridae as well as the tailed bacteriophages of class Caudoviricetes that are mainly associated with bacterial genera Pseudomonas, Streptomyces and Mycobacterium. Viral CAZymes in this soil mainly belong to glycoside hydrolase (GH) families GH43 and GH23. Some of these CAZymes participate in a KEGG pathway with actions included debranching and degradation of hemicellulose. Other actions include biosynthesizing biopolymer of the bacterial cell wall and the layered cell wall structure of peptidoglycan. Other CAZymes promote plant physiological activities such as cell-cell recognition, embryogenesis and programmed cell death (PCD). Enzymes of other pathways help reduce the level of soil H2O2 and participate in the biosynthesis of glycine, malate, isoprenoids, as well as isoprene that protects plant from heat stress. Other enzymes act in promoting both the permeability of bacterial peroxisome membrane and carbon fixation in plants. Some enzymes participate in a balanced supply of dNTPs, successful DNA replication and mismatch repair during bacterial cell division. They also catalyze the release of signal peptides from bacterial membrane prolipoproteins. Phages with the most highly abundant antibiotic resistance genes (ARGs) transduce species of bacterial genera Pseudomonas, Streptomyces, and Mycobacterium. Abundant mechanisms of antibiotic resistance in the rhizosphere include "antibiotic efflux pump" for ARGs soxR, OleC, and MuxB, "antibiotic target alteration" for parY mutant, and "antibiotic inactivation" for arr-1. Discussion These ARGs can act synergistically to inhibit several antibiotics including tetracycline, penam, cephalosporin, rifamycins, aminocoumarin, and oleandomycin. The study highlighted the issue of horizontal transfer of ARGs to clinical isolates and human gut microbiome.
Collapse
Affiliation(s)
- Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hana S. Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mashael D. Alqahtani
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatmah O. Sefrji
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah M. Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King AbdulAziz University, Rabigh, Saudi Arabia
| |
Collapse
|
17
|
Yap YW, Mahmed N, Norizan MN, Abd Rahim SZ, Ahmad Salimi MN, Abdul Razak K, Mohamad IS, Abdullah MMAB, Mohamad Yunus MY. Recent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093601. [PMID: 37176484 PMCID: PMC10180389 DOI: 10.3390/ma16093601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Graphitic carbon is a valuable material that can be utilized in many fields, such as electronics, energy storage and wastewater filtration. Due to the high demand for commercial graphite, an alternative raw material with lower costs that is environmentally friendly has been explored. Amongst these, an agricultural bio-waste material has become an option due to its highly bioactive properties, such as bioavailability, antioxidant, antimicrobial, in vitro and anti-inflammatory properties. In addition, biomass wastes usually have high organic carbon content, which has been discovered by many researchers as an alternative carbon material to produce graphite. However, there are several challenges associated with the graphite production process from biomass waste materials, such as impurities, the processing conditions and production costs. Agricultural bio-waste materials typically contain many volatiles and impurities, which can interfere with the synthesis process and reduce the quality of the graphitic carbon produced. Moreover, the processing conditions required for the synthesis of graphitic carbon from agricultural biomass waste materials are quite challenging to optimize. The temperature, pressure, catalyst used and other parameters must be carefully controlled to ensure that the desired product is obtained. Nevertheless, the use of agricultural biomass waste materials as a raw material for graphitic carbon synthesis can reduce the production costs. Improving the overall cost-effectiveness of this approach depends on many factors, including the availability and cost of the feedstock, the processing costs and the market demand for the final product. Therefore, in this review, the importance of biomass waste utilization is discussed. Various methods of synthesizing graphitic carbon are also reviewed. The discussion ranges from the conversion of biomass waste into carbon-rich feedstocks with different recent advances to the method of synthesis of graphitic carbon. The importance of utilizing agricultural biomass waste and the types of potential biomass waste carbon precursors and their pre-treatment methods are also reviewed. Finally, the gaps found in the previous research are proposed as a future research suggestion. Overall, the synthesis of graphite from agricultural bio-waste materials is a promising area of research, but more work is needed to address the challenges associated with this process and to demonstrate its viability at scale.
Collapse
Affiliation(s)
- Yee Wen Yap
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Norsuria Mahmed
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Mohd Natashah Norizan
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Shayfull Zamree Abd Rahim
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Midhat Nabil Ahmad Salimi
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Kamrosni Abdul Razak
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Ili Salwani Mohamad
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | - Mohd Mustafa Al-Bakri Abdullah
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
| | | |
Collapse
|
18
|
Liu Y, Jin T, Wang L, Tang J. Polystyrene micro and nanoplastics attenuated the bioavailability and toxic effects of Perfluorooctane sulfonate (PFOS) on soybean (Glycine max) sprouts. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130911. [PMID: 36860033 DOI: 10.1016/j.jhazmat.2023.130911] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Microplastics and nanoplastics (MNPs) have attracted much attention since their wide distribution in the environment and organisms. MNPs in the environment adsorb other organic pollutants, such as Perfluorooctane sulfonate (PFOS), and cause combined effects. However, the impact of MNPs and PFOS in agricultural hydroponic systems is unclear. This study investigated the combined effects of polystyrene (PS) MNPs and PFOS on soybean (Glycine max) sprouts, which are common hydroponic vegetable. Results demonstrated that the adsorption of PFOS on PS particles transformed free PFOS into adsorbed state and reduced its bioavailability and potential migration, thus attenuating acute toxic effects such as oxidative stress. TEM and Laser confocal microscope images showed that PS nanoparticles uptake in sprout tissue was enhanced by the adsorption of PFOS which is because of changes of the particle surface properties. Transcriptome analysis showed that PS and PFOS exposure promoted soybean sprouts to adapt to environmental stress and MARK pathway might play an important role in recognition of microplastics coated by PFOS and response to enhancing plant resistance. This study provided the first evaluation about the effect of adsorption between PS particles and PFOS on their phytotoxicity and bioavailability, in order to provide new ideas for risk assessment.
Collapse
Affiliation(s)
- Yaxuan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tianyue Jin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
The review of nanoplastics in plants: Detection, analysis, uptake, migration and risk. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Lv W, Geng H, Zhou B, Chen H, Yuan R, Ma C, Liu R, Xing B, Wang F. The behavior, transport, and positive regulation mechanism of ZnO nanoparticles in a plant-soil-microbe environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120368. [PMID: 36216179 DOI: 10.1016/j.envpol.2022.120368] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
ZnO nanoparticles (ZnO NPs) have been widely used in several fields, and they have the potential to be a novel fertilizer to promote plant growth. For the effective use of ZnO NPs, it is necessary to understand their influence mechanisms and key interactions with the soil physical and biological environment. In this review, we summarize the fate and transport of ZnO NPs applied via soil treatment or foliar spray in plant-soil systems and discuss their positive regulation mechanisms in plants and microbes. The latest research shows that the formation, bioavailability, and location of ZnO NPs experience complicated changes during the transport in soil-plant systems and that this depends on many factors. ZnO NPs can improve plant photosynthesis, nutrient element uptake, enzyme activity, and the related gene expression as well as modulate carbon/nitrogen metabolism, secondary metabolites, and the antioxidant systems in plants. Several microbial groups related to plant growth, disease biocontrol, and nutrient cycling in soil can be altered with ZnO NP treatment. In this work, we present a systematic comparison between ZnO NP fertilizer and conventional zinc salt fertilizer. We also fill several knowledge gaps in current studies with the hope of providing guidance for future research.
Collapse
Affiliation(s)
- Wenxiao Lv
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China; School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing, 100875, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Beihai Zhou
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Huilun Chen
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Rongfang Yuan
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ruiping Liu
- Chinese Academy of Environmental Planning, Ministry of Ecology and Environment, 15 Shixing St, Shijingshan District, Beijing, 100043, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Fei Wang
- School of Environment, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing, 100875, China.
| |
Collapse
|
21
|
Endo Y, Yamaguchi S, Inokai K, Fujita F. Anatomical study on the developmental process of the swollen internodes of Phryma (Phrymaceae, eudicots). PLANTA 2022; 257:10. [PMID: 36509964 DOI: 10.1007/s00425-022-04043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
We discovered that the internodal swellings of Phryma (eudicots) stems were same as the internodal pulvini of Poaceae (monocots) from the viewpoints of internal structures and functions. The stems of eudicots are usually rod-shaped and are composed of nodes, attached by leaves, and internodes. The internodes of some species, belonging to the clade 'asterids' and its sister clade 'Caryophyllales' of eudicots, have swellings, which have negative tropism, at the basal or apical part of each internode. To know the internal features of the swollen internodes, we performed outer morphological and anatomical studies on the swollen internodes of Phryma, eudicots, one of the genera having swollen internodes, from the winter bud stage to the flowering stage. The results revealed the following: (i) the swollen regions of the internodes were composed of less lignified tissues (e.g., endodermis without Casparian strips, and xylem having less lignified xylem fibers); (ii) the internodal less lignified parts were supported by collenchyma; (iii) the endodermis includes amyloplasts, having accumulated starch granules, which would function as statoliths for negative gravitropism. Consequently, we determined that the swollen parts of the Phryma internodes are same as the internodal pulvini of Poaceae of monocots from the viewpoints of internal structures and functions.
Collapse
Affiliation(s)
- Yasuhiko Endo
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, 310-8512, Japan.
| | - Shu Yamaguchi
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, 310-8512, Japan
| | - Keisuke Inokai
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, 310-8512, Japan
| | - Fuyuka Fujita
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, 310-8512, Japan
| |
Collapse
|
22
|
Wu H, Li Z. Nano-enabled agriculture: How do nanoparticles cross barriers in plants? PLANT COMMUNICATIONS 2022; 3:100346. [PMID: 35689377 PMCID: PMC9700125 DOI: 10.1016/j.xplc.2022.100346] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 05/15/2023]
Abstract
Nano-enabled agriculture is a topic of intense research interest. However, our knowledge of how nanoparticles enter plants, plant cells, and organelles is still insufficient. Here, we discuss the barriers that limit the efficient delivery of nanoparticles at the whole-plant and single-cell levels. Some commonly overlooked factors, such as light conditions and surface tension of applied nano-formulations, are discussed. Knowledge gaps regarding plant cell uptake of nanoparticles, such as the effect of electrochemical gradients across organelle membranes on nanoparticle delivery, are analyzed and discussed. The importance of controlling factors such as size, charge, stability, and dispersibility when properly designing nanomaterials for plants is outlined. We mainly focus on understanding how nanoparticles travel across barriers in plants and plant cells and the major factors that limit the efficient delivery of nanoparticles, promoting a better understanding of nanoparticle-plant interactions. We also provide suggestions on the design of nanomaterials for nano-enabled agriculture.
Collapse
Affiliation(s)
- Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China.
| | - Zhaohu Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
23
|
The Loss-of-Function Mutation aldA67 Leads to Enhanced α-L-Rhamnosidase Production by Aspergillus nidulans. J Fungi (Basel) 2022; 8:jof8111181. [PMID: 36354948 PMCID: PMC9699597 DOI: 10.3390/jof8111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
In Aspergillus nidulans L-rhamnose is catabolised to pyruvate and L-lactaldehyde, and the latter ultimately to L-lactate, via the non-phosphorylated pathway (LRA) encoded by the genes lraA-D, and aldA that encodes a broad substrate range aldehyde dehydrogenase (ALDH) that also functions in ethanol utilisation. LRA pathway expression requires both the pathway-specific transcriptional activator RhaR (rhaR is expressed constitutively) and the presence of L-rhamnose. The deletion of lraA severely impairs growth when L-rhamnose is the sole source of carbon and in addition it abolishes the induction of genes that respond to L-rhamnose/RhaR, indicating that an intermediate of the LRA pathway is the physiological inducer likely required to activate RhaR. The loss-of-function mutation aldA67 also has a severe negative impact on growth on L-rhamnose but, in contrast to the deletion of lraA, the expression levels of L-rhamnose/RhaR-responsive genes under inducing conditions are substantially up-regulated and the production of α-L-rhamnosidase activity is greatly increased compared to the aldA+ control. These findings are consistent with accumulation of the physiological inducer as a consequence of the loss of ALDH activity. Our observations suggest that aldA loss-of-function mutants could be biotechnologically relevant candidates for the over-production of α-L-rhamnosidase activity or the expression of heterologous genes driven by RhaR-responsive promoters.
Collapse
|
24
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore‐Based Saccharide Sensor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Yao Liu
- Nanjing University Chemistry CHINA
| | | | | | | | | | - Shuo Huang
- Nanjing University Chemistry 163 Xianlin AveSchool of Chemistry and Chemical EngineeringXixia District 210023 Nanjing CHINA
| |
Collapse
|
25
|
Zhang S, Cao Z, Fan P, Wang Y, Jia W, Wang L, Wang K, Liu Y, Du X, Hu C, Zhang P, Chen HY, Huang S. A Nanopore-Based Saccharide Sensor. Angew Chem Int Ed Engl 2022; 61:e202203769. [PMID: 35718742 DOI: 10.1002/anie.202203769] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Indexed: 12/19/2022]
Abstract
Saccharides play critical roles in many forms of cellular activities. Saccharide structures are however complicated and similar, setting a technical hurdle for direct identification. Nanopores, which are emerging single molecule tools sensitive to minor structural differences between analytes, can be engineered to identity saccharides. A hetero-octameric Mycobacterium smegmatis porin A nanopore containing a phenylboronic acid was prepared, and was able to clearly identify nine monosaccharide types, including D-fructose, D-galactose, D-mannose, D-glucose, L-sorbose, D-ribose, D-xylose, L-rhamnose and N-acetyl-D-galactosamine. Minor structural differences between saccharide epimers can also be distinguished. To assist automatic event classification, a machine learning algorithm was developed, with which a general accuracy score of 0.96 was achieved. This sensing strategy is generally suitable for other saccharide types and may bring new insights to nanopore saccharide sequencing.
Collapse
Affiliation(s)
- Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Zhenyuan Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Pingping Fan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Chengzhen Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
26
|
Zhu J, Wang J, Chen R, Feng Q, Zhan X. Cellular Process of Polystyrene Nanoparticles Entry into Wheat Roots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6436-6444. [PMID: 35475335 DOI: 10.1021/acs.est.1c08503] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscale plastic particles are widely found in the terrestrial environment and being increasingly studied in recent years. However, the knowledge of their translocation and accumulation mechanism controlled by nanoplastic characterizations in plant tissues is limited, especially in plant cells. Here, 20 mg L-1 polystyrene nanoparticles (PS NPs) with different sizes and amino/carboxy groups were employed to investigate the internalization process in wheat roots and cells. From the results, we found that the uptake of small-size PS NPs in the root tissues was increased compared to that of large-size ones, but no PS NPs were observed in the vascular cylinder. Similar results were observed in their cellular uptake process. Besides, the cell wall could block the entry of large-size PS NPs while the cell membrane could not. The -NH2 group on the PS NPs surface could benefit their tissular/cellular translocation compared to the -COOH group. The internalization of PS NPs was controlled by both particle size and surface functional group, and the size should be the primary factor. Our findings offer important information for understanding the PS NPs behaviors in plant tissues, especially at the cellular level, and assessing their potential risk to food safety, quality, and agricultural sustainability.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jia Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Ruonan Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| |
Collapse
|
27
|
Gacias-Amengual N, Wohlschlager L, Csarman F, Ludwig R. Fluorescent Imaging of Extracellular Fungal Enzymes Bound onto Plant Cell Walls. Int J Mol Sci 2022; 23:ijms23095216. [PMID: 35563607 PMCID: PMC9105846 DOI: 10.3390/ijms23095216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Lignocelluloytic enzymes are industrially applied as biocatalysts for the deconstruction of recalcitrant plant biomass. To study their biocatalytic and physiological function, the assessment of their binding behavior and spatial distribution on lignocellulosic material is a crucial prerequisite. In this study, selected hydrolases and oxidoreductases from the white rot fungus Phanerochaete chrysosporium were localized on model substrates as well as poplar wood by confocal laser scanning microscopy. Two different detection approaches were investigated: direct tagging of the enzymes and tagging specific antibodies generated against the enzymes. Site-directed mutagenesis was employed to introduce a single surface-exposed cysteine residue for the maleimide site-specific conjugation. Specific polyclonal antibodies were produced against the enzymes and were labeled using N-hydroxysuccinimide (NHS) ester as a cross-linker. Both methods allowed the visualization of cell wall-bound enzymes but showed slightly different fluorescent yields. Using native poplar thin sections, we identified the innermost secondary cell wall layer as the preferential attack point for cellulose-degrading enzymes. Alkali pretreatment resulted in a partial delignification and promoted substrate accessibility and enzyme binding. The methods presented in this study are suitable for the visualization of enzymes during catalytic biomass degradation and can be further exploited for interaction studies of lignocellulolytic enzymes in biorefineries.
Collapse
|
28
|
Fradera-Soler M, Grace OM, Jørgensen B, Mravec J. Elastic and collapsible: current understanding of cell walls in succulent plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2290-2307. [PMID: 35167681 PMCID: PMC9015807 DOI: 10.1093/jxb/erac054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/11/2022] [Indexed: 05/11/2023]
Abstract
Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Correspondence: or
| | | | | | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Correspondence: or
| |
Collapse
|
29
|
Carrillo-Díaz MI, Miranda-Romero LA, Chávez-Aguilar G, Zepeda-Batista JL, González-Reyes M, García-Casillas AC, Tirado-González DN, Tirado-Estrada G. Improvement of Ruminal Neutral Detergent Fiber Degradability by Obtaining and Using Exogenous Fibrolytic Enzymes from White-Rot Fungi. Animals (Basel) 2022; 12:843. [PMID: 35405833 PMCID: PMC8997131 DOI: 10.3390/ani12070843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
The present review examines the factors and variables that should be considered to obtain, design, and evaluate EFEs that might enhance ruminal NDF degradability. Different combinations of words were introduced in Google Scholar, then scientific articles were examined and included if the reported factors and variables addressed the objective of this review. One-hundred-and-sixteen articles were included. The fungal strains and culture media used to grow white-rot fungi induced the production of specific isoforms of cellulases and xylanases; therefore, EFE products for ruminant feed applications should be obtained in cultures that include the high-fibrous forages used in the diets of those animals. Additionally, the temperature, pH, osmolarity conditions, and EFE synergisms and interactions with ruminal microbiota and endogenous fibrolytic enzymes should be considered. More consistent results have been observed in studies that correlate the cellulase-to-xylanase ratio with ruminant productive behavior. EFE protection (immobilization) allows researchers to obtain enzymatic products that may act under ruminal pH and temperature conditions. It is possible to generate multi-enzyme cocktails that act at different times, re-associate enzymes, and simulate natural protective structures such as cellulosomes. Some EFEs could consistently improve ruminal NDF degradability if we consider fungal cultures and ruminal environmental conditions variables, and include biotechnological tools that might be useful to design novel enzymatic products.
Collapse
Affiliation(s)
- María Isabel Carrillo-Díaz
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Tecomán 8930, Colima, Mexico; (M.I.C.-D.); (J.L.Z.-B.); (A.C.G.-C.)
| | - Luis Alberto Miranda-Romero
- Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco 56230, Edo. México, Mexico;
| | - Griselda Chávez-Aguilar
- Centro Nacional de Investigación Disciplinaria Agricultura Familiar (CENID AF), Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Ojuelos de Jalisco 47540, Jalisco, Mexico;
| | - José Luis Zepeda-Batista
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Tecomán 8930, Colima, Mexico; (M.I.C.-D.); (J.L.Z.-B.); (A.C.G.-C.)
| | - Mónica González-Reyes
- División de Estudios de Posgrado (DEPI), Tecnológico Nacional de México Aguascalientes (TecNM)/Instituto Tecnológico El Llano Aguascalientes (ITEL), El Llano 20330, Aguascalientes, Mexico;
| | - Arturo César García-Casillas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima, Tecomán 8930, Colima, Mexico; (M.I.C.-D.); (J.L.Z.-B.); (A.C.G.-C.)
| | - Deli Nazmín Tirado-González
- Departamento de Ingenierías, Tecnológico Nacional de México Aguascalientes (TecNM)/Instituto Tecnológico El Llano Aguascalientes (ITEL), El Llano 20330, Aguascalientes, Mexico
| | - Gustavo Tirado-Estrada
- División de Estudios de Posgrado (DEPI), Tecnológico Nacional de México Aguascalientes (TecNM)/Instituto Tecnológico El Llano Aguascalientes (ITEL), El Llano 20330, Aguascalientes, Mexico;
| |
Collapse
|
30
|
Long B, Fischer B, Zeng Y, Amerigian Z, Li Q, Bryant H, Li M, Dai SY, Yuan JS. Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity. Nat Commun 2022; 13:541. [PMID: 35087023 PMCID: PMC8795378 DOI: 10.1038/s41467-021-27665-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
Algal biofuel is regarded as one of the ultimate solutions for renewable energy, but its commercialization is hindered by growth limitations caused by mutual shading and high harvest costs. We overcome these challenges by advancing machine learning to inform the design of a semi-continuous algal cultivation (SAC) to sustain optimal cell growth and minimize mutual shading. An aggregation-based sedimentation (ABS) strategy is then designed to achieve low-cost biomass harvesting and economical SAC. The ABS is achieved by engineering a fast-growing strain, Synechococcus elongatus UTEX 2973, to produce limonene, which increases cyanobacterial cell surface hydrophobicity and enables efficient cell aggregation and sedimentation. SAC unleashes cyanobacterial growth potential with 0.1 g/L/hour biomass productivity and 0.2 mg/L/hour limonene productivity over a sustained period in photobioreactors. Scaling-up the SAC with an outdoor pond system achieves a biomass yield of 43.3 g/m2/day, bringing the minimum biomass selling price down to approximately $281 per ton. Growth limitation caused by mutual shading and the high harvest cost hamper algal biofuel production. Here, the authors overcome these two problems by designing a semi-continuous algal cultivation system and an aggregation-based sedimentation strategy to achieve high levels production of biomass and limonene.
Collapse
Affiliation(s)
- Bin Long
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Bart Fischer
- Department of Agricultural Economics, Texas A&M University, College Station, TX, 77843, USA
| | - Yining Zeng
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Zoe Amerigian
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Qiang Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Henry Bryant
- Department of Agricultural Economics, Texas A&M University, College Station, TX, 77843, USA
| | - Man Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.,Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX, 77843, USA
| | - Susie Y Dai
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.,Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX, 77843, USA
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA. .,Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
31
|
Lemes AC, Egea MB, de Oliveira Filho JG, Gautério GV, Ribeiro BD, Coelho MAZ. Biological Approaches for Extraction of Bioactive Compounds From Agro-industrial By-products: A Review. Front Bioeng Biotechnol 2022; 9:802543. [PMID: 35155407 PMCID: PMC8829320 DOI: 10.3389/fbioe.2021.802543] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Bioactive compounds can provide health benefits beyond the nutritional value and are originally present or added to food matrices. However, because they are part of the food matrices, most bioactive compounds remain in agroindustrial by-products. Agro-industrial by-products are generated in large quantities throughout the food production chain and can—when not properly treated—affect the environment, the profit, and the proper and nutritional distribution of food to people. Thus, it is important to adopt processes that increase the use of these agroindustrial by-products, including biological approaches, which can enhance the extraction and obtention of bioactive compounds, which enables their application in food and pharmaceutical industries. Biological processes have several advantages compared to nonbiological processes, including the provision of extracts with high quality and bioactivity, as well as extracts that present low toxicity and environmental impact. Among biological approaches, extraction from enzymes and fermentation stand out as tools for obtaining bioactive compounds from various agro-industrial wastes. In this sense, this article provides an overview of the main bioactive components found in agroindustrial by-products and the biological strategies for their extraction. We also provide information to enhance the use of these bioactive compounds, especially for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Ailton Cesar Lemes, ; Maria Alice Zarur Coelho,
| | | | | | - Gabrielle Victoria Gautério
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bernardo Dias Ribeiro
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Maria Alice Zarur Coelho
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- *Correspondence: Ailton Cesar Lemes, ; Maria Alice Zarur Coelho,
| |
Collapse
|
32
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
33
|
Verma KK, Song XP, Joshi A, Tian DD, Rajput VD, Singh M, Arora J, Minkina T, Li YR. Recent Trends in Nano-Fertilizers for Sustainable Agriculture under Climate Change for Global Food Security. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:173. [PMID: 35010126 PMCID: PMC8746782 DOI: 10.3390/nano12010173] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/17/2022]
Abstract
Nano-fertilizers (NFs) significantly improve soil quality and plant growth performance and enhance crop production with quality fruits/grains. The management of macro-micronutrients is a big task globally, as it relies predominantly on synthetic chemical fertilizers which may not be environmentally friendly for human beings and may be expensive for farmers. NFs may enhance nutrient uptake and plant production by regulating the availability of fertilizers in the rhizosphere; extend stress resistance by improving nutritional capacity; and increase plant defense mechanisms. They may also substitute for synthetic fertilizers for sustainable agriculture, being found more suitable for stimulation of plant development. They are associated with mitigating environmental stresses and enhancing tolerance abilities under adverse atmospheric eco-variables. Recent trends in NFs explored relevant agri-technology to fill the gaps and assure long-term beneficial agriculture strategies to safeguard food security globally. Accordingly, nanoparticles are emerging as a cutting-edge agri-technology for agri-improvement in the near future. Interestingly, they do confer stress resistance capabilities to crop plants. The effective and appropriate mechanisms are revealed in this article to update researchers widely.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Dan-Dan Tian
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow 226007, Uttar Pradesh, India;
| | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India; (A.J.); (J.A.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.)
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
- College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
34
|
Ma X, Hua MZ, Ji C, Zhang J, Shi R, Xiao Y, Liu X, He X, Zheng W, Lu X. Rapid screening and quantification of heavy metals in traditional Chinese herbal medicines using monochromatic excitation energy dispersive X-ray fluorescence spectrometry. Analyst 2022; 147:3628-3633. [DOI: 10.1039/d2an00752e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of heavy metal residues in herbal medicines by a high-sensitivity X-ray fluorescence method that couples monochromatic excitation energy dispersive X-ray fluorescence spectrometry and the fast fundamental parameters method.
Collapse
Affiliation(s)
- Xing Ma
- Laboratory for Quality Control and Traceability of Food, Tianjin Normal University, Tianjin 300387, China
- The Animal, Plant & Foodstuff Inspection Center of Tianjin Customs, Tianjin 300387, China
| | - Marti Z. Hua
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus. 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Chao Ji
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Zhang
- The Animal, Plant & Foodstuff Inspection Center of Tianjin Customs, Tianjin 300387, China
| | - Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Yabing Xiao
- The Animal, Plant & Foodstuff Inspection Center of Tianjin Customs, Tianjin 300387, China
| | - Xiaojing Liu
- Beijing Ancoren Technology, Beijing 100000, China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Wenjie Zheng
- Laboratory for Quality Control and Traceability of Food, Tianjin Normal University, Tianjin 300387, China
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus. 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
35
|
Ashokkumar V, Venkatkarthick R, Jayashree S, Chuetor S, Dharmaraj S, Kumar G, Chen WH, Ngamcharussrivichai C. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review. BIORESOURCE TECHNOLOGY 2022; 344:126195. [PMID: 34710596 DOI: 10.1016/j.biortech.2021.126195] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass is a highly renewable, economical, and carbon-neutral feedstock containing sugar-rich moieties that can be processed to produce second-generation biofuels and bio-sourced compounds. However, due to their heterogeneous multi-scale structure, the lignocellulosic materials have major limitations to valorization and exhibit recalcitrance to saccharification or hydrolysis by enzymes. In this context, this review focuses on the latest methods available and state-of-the-art technologies in the pretreatment of lignocellulosic biomass, which aids the disintegration of the complex materials into monomeric units. In addition, this review deals with the genetic engineering techniques to develop advanced strategies for fermentation processes or microbial cell factories to generate desired products in native or modified hosts. Further, it also intends to bridge the gap in developing various economically feasible lignocellulosic products and chemicals using biorefining technologies.
Collapse
Affiliation(s)
- Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | | | - Shanmugam Jayashree
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, Tamil Nadu 600086, India
| | - Santi Chuetor
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
36
|
The Response of Antioxidant System of Drought-Stressed Green Pea (Pisum sativum L.) Affected by Watering and Foliar Spray with Silica Nanoparticles. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abiotic stress caused by drought impairs plant growth and reduces yields. This study aimed to investigate the impact of silica nanoparticles (SiO2 NPs) through the adverse effects of drought on the growth, oxidative stress, and antioxidative response of pea ‘Respect’. Pea plants were grown in a greenhouse before being watered (100 ± 1 mL per pot) or foliar sprayed (ca. 14 ± 0.5 mL plant−1) with suspensions containing SiO2 NPs (0, 12.5 ppm, 25 ppm, and 50 ppm) and were exposed to drought stress for 10 days. Drought stress was created by maintaining 30% of the soil moisture while the control was 80%. The growth parameters of pea grown under drought stress conditions were improved by spraying or watering plants with SiO2 NPs (12.5, 25, and 50 ppm). At drought stress, peas treated with SiO2 NPs (50 ppm) increased their relative water content by 29%, specific leaf area by 17%, and decreased root/shoot ratio by 4% as compared to plant non-treated with SiO2 NPs. In addition, spraying or watering of SiO2 NPs increased peas tolerance to drought by increasing the activity of antioxidant enzymes at least three times including catalase, ascorbate peroxidase, glutathione reductase, and superoxide dismutase, as well as reducing hydrogen peroxide and lipid peroxidation in plant tissue. It was observed the increase in total phenolic compounds and non-enzymatic antioxidant activity (DPPH, ABTS, FRAP) in peas treated with SiO2 NPs under drought stress. The physiological response of peas to drought and the effects of SiO2 NPs studied in this experiment based on the use of the concentration of 50 ppm nanoparticles can protect peas from the damaging effects of drought and could help reduce global food shortages.
Collapse
|
37
|
Combining analytical approaches for better lignocellulosic biomass degradation: a way of improving fungal enzymatic cocktails? Biotechnol Lett 2021; 43:2283-2298. [PMID: 34708264 DOI: 10.1007/s10529-021-03201-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE In this study, a combinatory approach was undertaken to assay the efficiency of fungal enzymatic cocktails from different fermentation conditions to degrade different lignocellulosic biomasses with the aim of finely characterizing fungal enzymatic cocktails. METHODS Enzymatic assays (AZO and pNP-linked substrates and ABTS) were used to assess the composition of the fungal enzymatic cocktails for cellulase, xylanase and laccase activities. Comparisons were made with a new range of chromogenic substrates based on complex biomass (CBS substrates). The saccharification efficiency of the cocktails was evaluated as a quantification of the sugar monomers released from the different biomasses after incubation with the enzymatic cocktails. RESULTS The results obtained showed striking differences between the AZO and pNP-linked substrates and the CBS substrates for the same enzymatic cocktails. On AZO and pNP-linked substrates, different hydrolysis profiles were observed between the different fungi species with Aspergillus oryzae being the most efficient. However, the results on CBS substrates were more contrasted depending on the biomass tested. Altogether, the results highlighted that assessing laccase activities and taking into account the complexity of the biomass to degrade were key in order to provide the best enzymatic cocktails. CONCLUSION The complementary experiments performed in this study showed that different approaches needed to be taken in order to accurately assess the ability of an enzymatic cocktail to be efficient when it comes to lignocellulosic biomass degradation. The saccharification assay proved to be essential to validate the data obtained from both simple and complex substrates.
Collapse
|
38
|
Damayanti D, Supriyadi D, Amelia D, Saputri DR, Devi YLL, Auriyani WA, Wu HS. Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers (Basel) 2021; 13:2886. [PMID: 34502925 PMCID: PMC8433819 DOI: 10.3390/polym13172886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/05/2022] Open
Abstract
The increasing demand for petroleum-based polyethylene terephthalate (PET) grows population impacts daily. A greener and more sustainable raw material, lignocellulose, is a promising replacement of petroleum-based raw materials to convert into bio-PET. This paper reviews the recent development of lignocellulose conversion into bio-PET through bioethanol reaction pathways. This review addresses lignocellulose properties, bioethanol production processes, separation processes of bioethanol, and the production of bio-terephthalic acid and bio-polyethylene terephthalate. The article also discusses the current industries that manufacture alcohol-based raw materials for bio-PET or bio-PET products. In the future, the production of bio-PET from biomass will increase due to the scarcity of petroleum-based raw materials.
Collapse
Affiliation(s)
- Damayanti Damayanti
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Didik Supriyadi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Devita Amelia
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Desi Riana Saputri
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Yuniar Luthfia Listya Devi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Wika Atro Auriyani
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Ho Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
| |
Collapse
|
39
|
Morales-Huerta JC, Hernández-Meléndez O, Hernández-Luna MG, Manero O, Bárzana E, Vivaldo-Lima E. An Experimental and Modeling Study on the Pretreatment and Alkaline Hydrolysis of Blue Agave Bagasse in Twin-Screw Extruders. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan Carlos Morales-Huerta
- Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, CU 04510, México City, México
| | - Oscar Hernández-Meléndez
- Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, CU 04510, México City, México
| | - Martín Guillermo Hernández-Luna
- Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, CU 04510, México City, México
| | - Octavio Manero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CU 04510, México City, México
| | - Eduardo Bárzana
- Facultad de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, CU 04510, México City, México
| | - Eduardo Vivaldo-Lima
- Facultad de Química, Departamento de Ingeniería Química, Universidad Nacional Autónoma de México, CU 04510, México City, México
| |
Collapse
|
40
|
Hemicellulosic biomass conversion by Moroccan hot spring Bacillus paralicheniformis CCMM B940 evidenced by glycoside hydrolase activities and whole genome sequencing. 3 Biotech 2021; 11:379. [PMID: 34447652 PMCID: PMC8298745 DOI: 10.1007/s13205-021-02919-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Thermophilic bacteria, especially from the genus Bacillus, constitute a huge potential source of novel enzymes that could be relevant for biotechnological applications. In this work, we described the cellulose and hemicellulose-related enzymatic activities of the hot spring Bacillus aerius CCMM B940 from the Moroccan Coordinated Collections of Microorganisms (CCMM), and revealed its potential for hemicellulosic biomass utilization. Indeed, B940 was able to degrade complex polysaccharides such as xylan and lichenan and exhibited activity towards carboxymethylcellulose. The strain was also able to grow on agriculture waste such as orange and apple peels as the sole carbon source. Whole-genome sequencing allowed the reclassification of CCMM B940 previously known as B. aerius into Bacillus paralicheniformis since the former species name has been rejected. The draft genome reported here is composed of 38 contigs resulting in a genome of 4,315,004 bp and an average G + C content of 45.87%, and is an important resource for illuminating the molecular mechanisms of carbohydrate metabolism. The annotated genomic sequences evidenced more than 52 genes encoding glycoside hydrolases and pectate lyases belonging to 27 different families of CAZymes that are involved in the degradation of plant cell wall carbohydrates. Genomic predictions in addition to in vitro experiments have revealed broad hydrolytic capabilities of the strain, thus reinforcing its relevance for biotechnology applications.
Collapse
|
41
|
Ali A, Ellinger B, Brandt SC, Betzel C, Rühl M, Wrenger C, Schlüter H, Schäfer W, Brognaro H, Gand M. Genome and Secretome Analysis of Staphylotrichum longicolleum DSM105789 Cultured on Agro-Residual and Chitinous Biomass. Microorganisms 2021; 9:1581. [PMID: 34442660 PMCID: PMC8398502 DOI: 10.3390/microorganisms9081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylotrichum longicolleum FW57 (DSM105789) is a prolific chitinolytic fungus isolated from wood, with a chitinase activity of 0.11 ± 0.01 U/mg. We selected this strain for genome sequencing and annotation, and compiled its growth characteristics on four different chitinous substrates as well as two agro-industrial waste products. We found that the enzymatic mixture secreted by FW57 was not only able to digest pre-treated sugarcane bagasse, but also untreated sugarcane bagasse and maize leaves. The efficiency was comparable to a commercial enzymatic cocktail, highlighting the potential of the S. longicolleum enzyme mixture as an alternative pretreatment method. To further characterize the enzymes, which efficiently digested polymers such as cellulose, hemicellulose, pectin, starch, and lignin, we performed in-depth mass spectrometry-based secretome analysis using tryptic peptides from in-gel and in-solution digestions. Depending on the growth conditions, we were able to detect from 442 to 1092 proteins, which were annotated to identify from 134 to 224 putative carbohydrate-active enzymes (CAZymes) in five different families: glycoside hydrolases, auxiliary activities, carbohydrate esterases, polysaccharide lyases, glycosyl transferases, and proteins containing a carbohydrate-binding module, as well as combinations thereof. The FW57 enzyme mixture could be used to replace commercial enzyme cocktails for the digestion of agro-residual substrates.
Collapse
Affiliation(s)
- Arslan Ali
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, University Road, Karachi 75270, Pakistan
- Institute of Clinical Chemistry and Laboratory Medicine, Diagnostic Center, Section Mass Spectrometry & Proteomics, Campus Research, Martinistr. 2, N27, Medical Center Hamburg-Eppendorf, Universität Hamburg, 20246 Hamburg, Germany
| | - Bernhard Ellinger
- Department ScreeningPort, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany;
| | - Sophie C. Brandt
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany; (S.C.B.); (W.S.)
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Department Biology and Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany;
| | - Carsten Wrenger
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Biomedical Science Institute, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo CEP 05508-900, Brazil
| | - Hartmut Schlüter
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Institute of Clinical Chemistry and Laboratory Medicine, Diagnostic Center, Section Mass Spectrometry & Proteomics, Campus Research, Martinistr. 2, N27, Medical Center Hamburg-Eppendorf, Universität Hamburg, 20246 Hamburg, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany; (S.C.B.); (W.S.)
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Biomedical Science Institute, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo CEP 05508-900, Brazil
| | - Martin Gand
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany; (S.C.B.); (W.S.)
- Institute of Food Chemistry and Food Biotechnology, Department Biology and Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany;
| |
Collapse
|
42
|
Toumpanaki E, Shah DU, Eichhorn SJ. Beyond What Meets the Eye: Imaging and Imagining Wood Mechanical-Structural Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001613. [PMID: 32830395 PMCID: PMC11469293 DOI: 10.1002/adma.202001613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Indexed: 05/20/2023]
Abstract
Wood presents a hierarchical structure, containing features at all length scales: from the tracheids or vessels that make up its cellular structure, through to the microfibrils within the cell walls, down to the molecular architecture of the cellulose, lignin, and hemicelluloses that comprise its chemical makeup. This structure renders it with high mechanical (e.g., modulus and strength) and interesting physical (e.g., optical) properties. A better understanding of this structure, and how it plays a role in governing mechanical and other physical parameters, will help to better exploit this sustainable resource. Here, recent developments on the use of advanced imaging techniques for studying the structural properties of wood in relation to its mechanical properties are explored. The focus is on synchrotron nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray tomographical imaging, Raman and infrared spectroscopies, confocal microscopy, electron microscopy, and atomic force microscopy. Critical discussion on the role of imaging techniques and how fields are developing rapidly to incorporate both spatial and temporal ranges of analysis is presented.
Collapse
Affiliation(s)
- Eleni Toumpanaki
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolUniversity WalkBristolBS8 1TRUK
| | - Darshil U. Shah
- Department of ArchitectureCentre for Natural Materials InnovationUniversity of CambridgeCambridgeCB2 1PXUK
| | - Stephen J. Eichhorn
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolUniversity WalkBristolBS8 1TRUK
| |
Collapse
|
43
|
Zhang F, Zheng J, Li Z, Cai Z, Wang F, Yang D. Purification, Characterization, and Self-Assembly of the Polysaccharide from Allium schoenoprasum. Foods 2021; 10:foods10061352. [PMID: 34208119 PMCID: PMC8230776 DOI: 10.3390/foods10061352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The major polysaccharide component from the stalk of Allium schoenoprasum (AssP) was extracted and purified. Gel filtration chromatography purified AssP exhibited a molecular weight of around 1.7 kDa, which was verified by MALDI-ToF-MS. The monosaccharide analysis revealed its composition as rhamnose: arabinose: galactose: glucose: mannose: fructose with a molar ratio of 0.03:2.46:3.71:3.35:1.00:9.93, respectively. The Congo-red assay indicated that there was no tertiary structure of this polysaccharide, however, it self-assembled into a homogenous nanoparticle with a diameter of ~600 nm as revealed by the dynamic light scattering measurement. The solution behavior of this polysaccharide was simulated. The association of this polysaccharide was both time dependent and concentration dependent. AssP forms spherical particles spontaneously as time passes by, and when the AssP concentration increased, the spherical particles increased their sizes and eventually merged into cylindrical micelles. The diversity of AssP hydrodynamic behavior endowed potential versatility in its future applications.
Collapse
Affiliation(s)
- Fengrui Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
| | - Jun Zheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
| | - Zeyu Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
| | - Zixuan Cai
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Fengqiao Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (F.Z.); (J.Z.); (Z.L.); (Z.C.); (F.W.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
- Correspondence: ; Tel.: +86-010-6273-7129
| |
Collapse
|
44
|
Zafar A, Aftab MN, Saleem MA. Pilot scale production of recombinant hemicellulases and their saccharification potential. Prep Biochem Biotechnol 2021; 50:1063-1075. [PMID: 32594842 DOI: 10.1080/10826068.2020.1783679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Synergistic saccharification ability of hemicellulases (endo-xylanase and β-xylosidase) was evaluated in this study for the bioethanol production from plant biomass. Endo-xylanase and β-xylosidase genes from Bacillus licheniformis were cloned and expressed in Escherichia coli BL21 (DE3). Maximum endo-xylanase production was obtained at 200 rpm agitation speed, air supply rate 2.0 vvm, 70% volume of the medium, 20% dissolved oxygen level and with 3% inoculum size. The optimal conditions for maximum production of recombinant β-xylosidase enzyme at pilot scale were 200 rpm agitation speed, 25% dissolved oxygen level, 2.5 vvm aeration rate, 70% volume of the medium with 2% inoculum size. Furthermore, the saccharification potential of these recombinant enzymes was checked for the production of xylose sugar by bioconversion of plant biomass by optimizing individually as well as synergistically by optimizing various parameters. Maximum saccharification (93%) of plant biomass was observed when both enzymes were used at a time with 8% sugarcane bagasse as a substrate and 200 units of each enzyme after incubation of 6 hr at 50 °C and 120 rpm. The results obtained in this study suggested these recombinant hemicellulases as potential candidates for the conversion of complex agricultural residues into simple sugars for ultimate use in the biofuel industry.
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
45
|
Lykholat YV, Khromykh NO, Didur OO, Gaponov OO, Nazarenko MM, Lykholat TY. Altering maize (Zea mays) seedlings’ growth and lignification processes by action of novel synthesized compounds. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Effective management of the course of crop vegetation and adaptation to biotic and abiotic stresses is a prerequisite for stable grain production and requires replenishment of the arsenal of plant growth regulators. The effect of novel synthesized cage amides on maize seedlings morphogenesis has been tested. Seeds of a mid-early maize hybrid 'DN Galatea' after the pre-sowing treatment with 0.01% solutions of test compounds were grown in distilled water. The roots and shoots sections of 10-day-old maize seedlings were stained with phloroglucinol solution to reveal the lignin-containing anatomical structures. The effects of nine different test compounds, exceeding the well-known effects of the phytohormone auxin, promoted the maize seedlings’ linear growth, increased wet weight of roots and shoots, and dry biomass accumulation both in seedlings roots and shoots. Several test compounds activated the dry weight accumulation process without significantly affecting the root and shoot length. In the maize seedlings’ roots, an increase in the diameter and number of the xylem vessels was found, as well as an increase in the lignin-containing layer thickness of the endoderm cells in the root cortex. In the maize seedlings’ shoots, the test compounds caused an increase in the thickness of the lignin-containing outer layer of the seedlings’ first leaf. In general, the test compounds’ effect on seedling roots can potentially enhance root formation; increase efficiency of the roots water-conducting system and the tissues’ strength, thus reducing the likelihood of root lodging in maize plants. The effects of the test compounds revealed in the seedlings’ shoots reflect the activation of the shoots’ structure formation and may have a positive value for enhancing the strength of the plant stems and counteracting the stem lodging of the maize plants.
Collapse
|
46
|
Sinitsyn AP, Sinitsyna OA. Bioconversion of Renewable Plant Biomass. Second-Generation Biofuels: Raw Materials, Biomass Pretreatment, Enzymes, Processes, and Cost Analysis. BIOCHEMISTRY (MOSCOW) 2021; 86:S166-S195. [PMID: 33827407 DOI: 10.1134/s0006297921140121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review discusses various aspects of renewable plant biomass conversion and production of the second-generation biofuels, including the types of plant biomass, its composition and reaction ability in the enzymatic hydrolysis, and various pretreatment methods for increasing the biomass reactivity. Conversion of plant biomass into sugars requires the use of a complex of enzymes, the composition of which should be adapted to the biomass type and the pretreatment method. The efficiency of enzymatic hydrolysis can be increased by optimizing the composition of the enzymatic complex and by increasing the catalytic activity and operational stability of its constituent enzymes. The availability of active enzyme producers also plays an important role. Examples of practical implementation and scaling of processes for the production of second-generation biofuels are presented together with the cost analysis of bioethanol production.
Collapse
Affiliation(s)
- Arkadij P Sinitsyn
- Bakh Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga A Sinitsyna
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
47
|
Li H, Hu Q, Hong X, Jiang Z, Ni H, Li Q, Zhu Y. Molecular cloning and characterization of a thermostable and halotolerant endo-β-1,4-glucanase from Microbulbifer sp. ALW1. 3 Biotech 2021; 11:250. [PMID: 33968593 PMCID: PMC8088414 DOI: 10.1007/s13205-021-02801-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/19/2021] [Indexed: 01/20/2023] Open
Abstract
The bacterium Microbulbifer sp. ALW1 was previously characterized with the capability to break down the cell wall of brown algae into fine pieces. The biological functions of strain ALW1 were yet to be elucidated. In this study, a gene, namely MaCel5A, was isolated from the ALW1 strain genome, encoding an endo-β-1,4-glucanase. MaCel5A was phylogenetically categorized under the glycoside hydrolase family GH5, with the highest identity to a putative cellulase of Microbulbifer thermotolerans. The recombinant MaCel5A protein purified from heterologous expression in E. coli exhibited maximum activity at 50 °C and pH 6.0, respectively, and functioned selectively toward carboxymethyl cellulose and barley β-glucan. Recombinant MaCel5A demonstrated considerable tolerance to the exposure to high temperature up to 80 °C for 30 min retaining 49% residual activity. In addition, MaCel5A showed moderate stability against pH 5.0-11.0 and strong stability in the presence of nonionic surfactant. MaCel5A exhibited strong halo-stability and halotolerance. The activity of the enzyme increased about tenfold at 0.5 M NaCl, and about fivefold even at 4.0 M NaCl compared to the enzyme activity without the addition of salt. The two conserved glutamic acid residues in MaCel5A featured the typical catalytic acid/base and nucleophile machinery of glycoside hydrolases. These characteristics highlight the industrial application potential of MaCel5A.
Collapse
Affiliation(s)
- Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008 China
| | - Qingsong Hu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
| | - Xuan Hong
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008 China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021 China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021 China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021 China
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021 China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021 China
| |
Collapse
|
48
|
DeVree BT, Steiner LM, Głazowska S, Ruhnow F, Herburger K, Persson S, Mravec J. Current and future advances in fluorescence-based visualization of plant cell wall components and cell wall biosynthetic machineries. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:78. [PMID: 33781321 PMCID: PMC8008654 DOI: 10.1186/s13068-021-01922-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 05/18/2023]
Abstract
Plant cell wall-derived biomass serves as a renewable source of energy and materials with increasing importance. The cell walls are biomacromolecular assemblies defined by a fine arrangement of different classes of polysaccharides, proteoglycans, and aromatic polymers and are one of the most complex structures in Nature. One of the most challenging tasks of cell biology and biomass biotechnology research is to image the structure and organization of this complex matrix, as well as to visualize the compartmentalized, multiplayer biosynthetic machineries that build the elaborate cell wall architecture. Better knowledge of the plant cells, cell walls, and whole tissue is essential for bioengineering efforts and for designing efficient strategies of industrial deconstruction of the cell wall-derived biomass and its saccharification. Cell wall-directed molecular probes and analysis by light microscopy, which is capable of imaging with a high level of specificity, little sample processing, and often in real time, are important tools to understand cell wall assemblies. This review provides a comprehensive overview about the possibilities for fluorescence label-based imaging techniques and a variety of probing methods, discussing both well-established and emerging tools. Examples of applications of these tools are provided. We also list and discuss the advantages and limitations of the methods. Specifically, we elaborate on what are the most important considerations when applying a particular technique for plants, the potential for future development, and how the plant cell wall field might be inspired by advances in the biomedical and general cell biology fields.
Collapse
Affiliation(s)
- Brian T DeVree
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Lisa M Steiner
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Felix Ruhnow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Staffan Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
49
|
Xu H, Zhao Y, Suo Y, Guo Y, Man Y, Jing Y, He X, Lin J. A label-free, fast and high-specificity technique for plant cell wall imaging and composition analysis. PLANT METHODS 2021; 17:29. [PMID: 33741013 PMCID: PMC7980347 DOI: 10.1186/s13007-021-00730-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND New cell wall imaging tools permit direct visualization of the molecular architecture of cell walls and provide detailed chemical information on wall polymers, which will aid efforts to use these polymers in multiple applications; however, detailed imaging and quantification of the native composition and architecture in the cell wall remains challenging. RESULTS Here, we describe a label-free imaging technology, coherent Raman scattering (CRS) microscopy, including coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy, which can be used to visualize the major structures and chemical composition of plant cell walls. We outline the major steps of the procedure, including sample preparation, setting the mapping parameters, analysis of spectral data, and image generation. Applying this rapid approach will help researchers understand the highly heterogeneous structures and organization of plant cell walls. CONCLUSIONS This method can potentially be incorporated into label-free microanalyses of plant cell wall chemical composition based on the in situ vibrations of molecules.
Collapse
Affiliation(s)
- Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuanyuan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Yuanzhen Suo
- School of Life Sciences, Peking University, Beijing, 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing, 100871, China
| | - Yayu Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Xinqiang He
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 10083, China.
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
50
|
Zhu N, Zhao C, Wei Y, Sun C, Wu D, Chen K. Biosynthetic labeling with 3-O-propargylcaffeyl alcohol reveals in vivo cell-specific patterned lignification in loquat fruits during development and postharvest storage. HORTICULTURE RESEARCH 2021; 8:61. [PMID: 33750769 PMCID: PMC7943773 DOI: 10.1038/s41438-021-00497-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 05/31/2023]
Abstract
Lignification is a major cell wall modification that often results in the formation of sophisticated subcellular patterns during plant development or in response to environmental stresses. Precise localization of the spatiotemporal deposition of lignin is of great importance for revealing the lignification regulatory mechanism of individual cells. In loquat fruits, lignification typically increases the flesh lignin content and firmness, reducing their edibility and processing quality. However, the precise localization of the spatiotemporal active zones of lignification inside loquat fruit flesh remains poorly understood, and little is known about the contribution of patterned lignification to cell wall structure dynamics and the subsequent fruit-quality deterioration. Here, we performed an emerging bioorthogonal chemistry imaging technique to trace the in vivo patterned lignification dynamics in cells of loquat fruit flesh during development and storage. In developing fruits, lignified cells (LCs) and vascular bundles (VBs) were the zones of active lignification, and ring-like LCs deposited lignin at both the inner wall layer and the outer periphery sides. The domino effect of the generation of LCs was preliminarily visualized. In mature fruits, the newly formed lignin in the flesh of fruits during storage was specifically deposited in the corners and middle lamellae of parenchyma cells surrounding the VBs, resulting in the development of a reticular structure. Based on the findings, distinct spatiotemporal patterned lignification modes for different flesh cells in loquat fruits were proposed. These findings provide loquat lignification dynamics together with spatiotemporal data that can improve our understanding of the lignification process in planta.
Collapse
Affiliation(s)
- Nan Zhu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| | - Chenning Zhao
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| | - Yuqing Wei
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| | - Chongde Sun
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China.
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, 310058, Hangzhou, P. R. China
| |
Collapse
|