1
|
Bickersmith SA, Saavedra MP, Prussing C, Lange RE, Morales JA, Alava F, Vinetz JM, Gamboa D, Moreno M, Conn JE. Effect of spatiotemporal variables on abundance, biting activity and parity of Nyssorhynchus darlingi (Diptera: Culicidae) in peri-Iquitos, Peru. Malar J 2024; 23:112. [PMID: 38641572 PMCID: PMC11031940 DOI: 10.1186/s12936-024-04940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.
Collapse
Affiliation(s)
| | - Marlon P Saavedra
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Rachel E Lange
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Juliana A Morales
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Freddy Alava
- Gerencia Regional de Salud de Loreto (GERESA), Iquitos, Peru
| | - Joseph M Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias E Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA.
| |
Collapse
|
2
|
Wilke ABB, Vasquez C, Medina J, Unlu I, Beier JC, Ajelli M. Presence and abundance of malaria vector species in Miami-Dade County, Florida. Malar J 2024; 23:24. [PMID: 38238772 PMCID: PMC10797977 DOI: 10.1186/s12936-024-04847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Malaria outbreaks have sporadically occurred in the United States, with Anopheles quadrimaculatus serving as the primary vector in the eastern region. Anopheles crucians, while considered a competent vector, has not been directly implicated in human transmission. Considering the locally acquired Plasmodium vivax cases in Sarasota County, Florida (7 confirmed cases), Cameron County, Texas (one confirmed case), and Maryland (one confirmed case) in the summer of 2023. The hypothesis of this study is that major cities in the United States harbour sufficient natural populations of Anopheles species vectors of malaria, that overlap with human populations that could support local transmission to humans. The objective of this study is to profile the most abundant Anopheles vector species in Miami-Dade County, Florida-An. crucians and An. quadrimaculatus. METHODS This study was based on high-resolution mosquito surveillance data from 2020 to 2022 in Miami-Dade County, Florida. Variations on the relative abundance of An. crucians and An. quadrimaculatus was assessed by dividing the total number of mosquitoes collected by each individual trap in 2022 by the number of mosquitoes collected by the same trap in 2020. In order to identify influential traps, the linear distance in meters between all traps in the surveillance system from 2020 to 2022 was calculated and used to create a 4 km buffer radius around each trap in the surveillance system. RESULTS A total of 36,589 An. crucians and 9943 An. quadrimaculatus were collected during this study by the surveillance system, consisting of 322 CO2-based traps. The findings reveal a highly heterogeneous spatiotemporal distribution of An. crucians and An. quadrimaculatus in Miami-Dade County, highlighting the presence of highly conducive environments in transition zones between natural/rural and urban areas. Anopheles quadrimaculatus, and to a lesser extent An. crucians, pose a considerable risk of malaria transmission during an outbreak, given their high abundance and proximity to humans. CONCLUSIONS Understanding the factors driving the proliferation, population dynamics, and spatial distribution of Anopheles vector species is vital for implementing effective mosquito control and reducing the risk of malaria outbreaks in the United States.
Collapse
Affiliation(s)
- André B B Wilke
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| | | | - Johana Medina
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - Isik Unlu
- Miami-Dade County Mosquito Control Division, Miami, FL, USA
| | - John C Beier
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA.
| |
Collapse
|
3
|
Gunderson AK, Recalde-Coronel C, Zaitchick BF, Yori PP, Rengifo Pinedo S, Paredes Olortegui M, Kosek M, Vinetz JM, Pan WK. A prospective cohort study linking migration, climate, and malaria risk in the Peruvian Amazon. Epidemiol Infect 2023; 151:e202. [PMID: 38031496 PMCID: PMC10753477 DOI: 10.1017/s0950268823001838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Migration is an important risk factor for malaria transmission for malaria transmission, creating networks that connect Plasmodium between communities. This study aims to understand the timing of why people in the Peruvian Amazon migrated and how characteristics of these migrants are associated with malaria risk. A cohort of 2,202 participants was followed for three years (July 2006 - October 2009), with thrice-weekly active surveillance to record infection and recent travel, which included travel destination(s) and duration away. Migration occurred more frequently in the dry season, but the 7-day rolling mean (7DRM) streamflow was positively correlated with migration events (OR 1.25 (95% CI: 1.138, 1.368)). High-frequency and low-frequency migrant populations reported 9.7 (IRR 7.59 (95% CI:.381, 13.160)) and 4.1 (IRR 2.89 (95% CI: 1.636, 5.099)) times more P. vivax cases than those considered non-migrants and 30.7 (IRR 32.42 (95% CI: 7.977, 131.765)) and 7.4 (IRR 7.44 (95% CI: 1.783, 31.066)) times more P. falciparum cases, respectively. High-frequency migrants employed in manual labour within their community were at 2.45 (95% CI: 1.113, 5.416) times higher risk than non-employed low-frequency migrants. This study confirms the importance of migration for malaria risk as well as factors increasing risk among the migratory community, including, sex, occupation, and educational status.
Collapse
Affiliation(s)
- Annika K. Gunderson
- Department of Epidemiology, Gilling School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Cristina Recalde-Coronel
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
- Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Benjamin F. Zaitchick
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo Peñataro Yori
- Asociación Benéfica Prisma, Iquitos, Peru
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Margaret Kosek
- Asociación Benéfica Prisma, Iquitos, Peru
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph M. Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, USA
- International Centers of Excellence for Malaria Research – Amazonia, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- VA Connecticut Healthcare System, West Haven, CT, USA
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - William K. Pan
- Duke Global Health Institute, Duke University, Durham, NC, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Gabaldón Figueira JC, Wagah MG, Adipo LB, Wanjiku C, Maia MF. Topical repellents for malaria prevention. Cochrane Database Syst Rev 2023; 8:CD015422. [PMID: 37602418 PMCID: PMC10440788 DOI: 10.1002/14651858.cd015422.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Insecticide-based interventions, such as long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS), remain the backbone of malaria vector control. These interventions target mosquitoes that prefer to feed and rest indoors, but have limited capacity to prevent transmission that occurs outdoors or outside regular sleeping hours. In low-endemicity areas, malaria elimination will require that these control gaps are addressed, and complementary tools are found. The use of topical repellents may be particularly useful for populations who may not benefit from programmatic malaria control measures, such as refugees, the military, or forest goers. This Cochrane Review aims to measure the effectiveness of topical repellents to prevent malaria infection among high- and non-high-risk populations living in malaria-endemic regions. OBJECTIVES To assess the effect of topical repellents alone or in combination with other background interventions (long-lasting insecticide-treated nets, or indoor residual spraying, or both) for reducing the incidence of malaria in high- and non-high-risk populations living in endemic areas. SEARCH METHODS We searched the following databases up to 11 January 2023: the Cochrane Infectious Diseases Group Specialised Register; CENTRAL (in the Cochrane Library); MEDLINE; Embase; CAB Abstracts; and LILACS. We also searched trial registration platforms and conference proceedings; and contacted organizations and companies for ongoing and unpublished trials. SELECTION CRITERIA We included randomized controlled trials (RCTs) and cluster-randomized controlled trials (cRCTs) of topical repellents proven to repel mosquitoes. We also included non-randomized studies that complied with pre-specified inclusion criteria: controlled before-after studies (CBA), controlled interrupted time series (ITS), and controlled cross-over trials. DATA COLLECTION AND ANALYSIS Four review authors independently assessed trials for inclusion, and extracted the data. Two authors independently assessed the risk of bias (RoB) using the Cochrane RoB 2 tool. A fifth review author resolved any disagreements. We analysed data by conducting a meta-analysis, stratified by whether studies included populations considered to be at high-risk of developing malaria infection (for example, refugees, forest goers, or deployed military troops). We combined results from cRCTs with RCTs by adjusting for clustering and presented results using forest plots. We used the GRADE framework to assess the certainty of the evidence. We only included data on Plasmodium falciparum infections in the meta-analysis. MAIN RESULTS Thirteen articles relating to eight trials met the inclusion criteria and were qualitatively described. We included six trials in the meta-analysis (five cRCTs and one RCT). Effect on malaria incidence Topical repellents may slightly reduce P falciparum infection and clinical incidence when both outcomes are considered together (incidence rate ratio (IRR) 0.74, 95% confidence interval (CI) 0.56 to 0.98; 3 cRCTs and 1 RCT, 61,651 participants; low-certainty evidence); but not when these two outcomes were considered independently. Two cRCTs and one RCT (12,813 participants) evaluated the effect of topical repellents on infection incidence (IRR 0.76, 95% CI 0.56 to 1.02; low-certainty evidence). One cRCT (48,838 participants) evaluated their effect on clinical case incidence (IRR 0.66, 95% CI 0.32 to 1.36; low-certainty evidence). Three studies (2 cRCTs and 1 RCT) included participants belonging to groups considered at high-risk of being infected, while only one cRCT did not include participants at high risk. Adverse events Topical repellents are considered safe. The prevalence of adverse events among participants who used topical repellents was very low (0.6%, 283/47,515) and limited to mild skin reactions. Effect on malaria prevalence Topical repellents may slightly reduce P falciparum prevalence (odds ratio (OR) 0.81, 95% CI 0.67 to 0.97; 3 cRCTs and 1 RCT; 55,366 participants; low-certainty evidence). Two of these studies (1 cRCT and 1 RCT) were carried out in refugee camps, and included exclusively high-risk populations that were not receiving any other background vector control intervention. AUTHORS' CONCLUSIONS There is insufficient evidence to conclude that topical repellents can prevent malaria in settings where other vector control interventions are in place. We found the certainty of evidence for all outcomes to be low, primarily due to the risk of bias. A protective effect was suggested among high-risk populations, specially refugees, who might not have access to other standard vector control measures. More adequately powered clinical trials carried out in refugee camps could provide further information on the potential benefit of topical repellents in this setting. Individually randomized studies are also likely necessary to understand whether topical repellents have an effect on personal protection, and the degree to which diversion to non-protected participants affects overall transmission dynamics. Despite this, the potential additional benefits of topical repellents are most likely limited in contexts where other interventions are available.
Collapse
Affiliation(s)
| | - Martin G Wagah
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Lawrence Babu Adipo
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Caroline Wanjiku
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marta F Maia
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Conn JE, Bickersmith SA, Saavedra MP, Morales JA, Alava F, Diaz Rodriguez GA, del Aguila Morante CR, Tong CG, Alvarez-Antonio C, Daza Huanahui JM, Vinetz JM, Gamboa D. Natural Infection of Nyssorhynchus darlingi and Nyssorhynchus benarrochi B with Plasmodium during the Dry Season in the Understudied Low-Transmission Setting of Datem del Marañon Province, Amazonian Peru. Am J Trop Med Hyg 2023; 109:288-295. [PMID: 37364858 PMCID: PMC10397451 DOI: 10.4269/ajtmh.23-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
The persistence of malaria hotspots in Datem del Marañon Province, Peru, prompted vector control units at the Ministry of Health, Loreto Department, to collaborate with the Amazonian International Center of Excellence for Malaria Research to identify the main vectors in several riverine villages that had annual parasite indices > 15 in 2018-2019. Anophelinae were collected indoors and outdoors for two 12-hour nights/community during the dry season in 2019 using human landing catch. We identified four species: Nyssorhynchus benarrochi B, Nyssorhynchus darlingi, Nyssorhynchus triannulatus, and Anopheles mattogrossensis. The most abundant, Ny. benarrochi B, accounted for 96.3% of the total (7,550/7,844), of which 61.5% were captured outdoors (4,641/7,550). Six mosquitoes, one Ny. benarrochi B and five Ny. darlingi, were infected by Plasmodium falciparum or Plasmodium vivax. Human biting rates ranged from 0.5 to 592.8 bites per person per hour for Ny. benarrochi B and from 0.5 to 32.0 for Ny. darlingi, with entomological inoculation rates as high as 0.50 infective bites per night for Ny. darlingi and 0.25 for Ny. benarrochi B. These data demonstrate the risk of malaria transmission by both species even during the dry season in villages in multiple watersheds in Datem del Marañon province.
Collapse
Affiliation(s)
- Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York
| | | | - Marlon P. Saavedra
- Amazonian International Center of Excellence for Malaria Research, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juliana A. Morales
- Amazonian International Center of Excellence for Malaria Research, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Carlos G. Tong
- Laboratorio de Salud Pública-Gerencia Regional de Salud de Loreto, GERESA, Iquitos, Peru
| | | | - Jesus M. Daza Huanahui
- Red de Salud Datem del Marañon – Gerencia Regional de Salud de Loreto, GERESA, Iquitos, Peru
| | - Joseph M. Vinetz
- Amazonian International Center of Excellence for Malaria Research, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- VA Connecticut Healthcare System, West Haven, Connecticut
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Amazonian International Center of Excellence for Malaria Research, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
6
|
dos Santos NAC, de Carvalho VR, Souza-Neto JA, Alonso DP, Ribolla PEM, Medeiros JF, Araujo MDS. Bacterial Microbiota from Lab-Reared and Field-Captured Anopheles darlingi Midgut and Salivary Gland. Microorganisms 2023; 11:1145. [PMID: 37317119 PMCID: PMC10224351 DOI: 10.3390/microorganisms11051145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Anopheles darlingi is a major malaria vector in the Amazon region and, like other vectors, harbors a community of microorganisms with which it shares a network of interactions. Here, we describe the diversity and bacterial composition from the midguts and salivary glands of lab-reared and field-captured An. darlingi using metagenome sequencing of the 16S rRNA gene. The libraries were built using the amplification of the region V3-V4 16S rRNA gene. The bacterial community from the salivary glands was more diverse and richer than the community from the midguts. However, the salivary glands and midguts only showed dissimilarities in beta diversity between lab-reared mosquitoes. Despite that, intra-variability was observed in the samples. Acinetobacter and Pseudomonas were dominant in the tissues of lab-reared mosquitoes. Sequences of Wolbachia and Asaia were both found in the tissue of lab-reared mosquitoes; however, only Asaia was found in field-captured An. darlingi, but in low abundance. This is the first report on the characterization of microbiota composition from the salivary glands of An. darlingi from lab-reared and field-captured individuals. This study can provide invaluable insights for future investigations regarding mosquito development and interaction between mosquito microbiota and Plasmodium sp.
Collapse
Affiliation(s)
- Najara Akira Costa dos Santos
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Vanessa Rafaela de Carvalho
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (V.R.d.C.); (J.A.S.-N.)
| | - Diego Peres Alonso
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Paulo Eduardo Martins Ribolla
- Department of Biotecnology (IBTEC–Campus Botucatu), Instituto de Biotecnologia da UNESP, Universidade Estadual Paulista (UNESP), Botucatu 18607-440, SP, Brazil; (D.P.A.); (P.E.M.R.)
| | - Jansen Fernandes Medeiros
- Programa de Pós-Graduação em Biologia Experimental, Departament of Medicine, Fundação Universidade Federal de Rondônia/Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil; (N.A.C.d.S.); (J.F.M.)
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária-PIVEM, Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho 76812-245, RO, Brazil
- Programa de Pós-Graduação em Conservação e uso de Recursos Naturais–PPGReN, Departament of Biology, Fundação Universidade Federal de Rondônia, Campus José Ribeiro Filho, Porto Velho 76801-059, RO, Brazil
- Laboratório de Pesquisa Translacional e Clínica, Centro de Pesquisa em Medicina Tropical, Porto Velho 76812-329, RO, Brazil
| |
Collapse
|
7
|
Janko MM, Recalde-Coronel GC, Damasceno CP, Salmón-Mulanovich G, Barbieri AF, Lescano AG, Zaitchik BF, Pan WK. The impact of sustained malaria control in the Loreto region of Peru: a retrospective, observational, spatially-varying interrupted time series analysis of the PAMAFRO program. LANCET REGIONAL HEALTH. AMERICAS 2023; 20:100477. [PMID: 36970494 PMCID: PMC10036736 DOI: 10.1016/j.lana.2023.100477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/23/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Background Although malaria control investments worldwide have resulted in dramatic declines in transmission since 2000, progress has stalled. In the Amazon, malaria resurgence has followed withdrawal of Global Fund support of the Project for Malaria Control in Andean Border Areas (PAMAFRO). We estimate intervention-specific and spatially-explicit effects of the PAMAFRO program on malaria incidence across the Loreto region of Peru, and consider the influence of the environmental risk factors in the presence of interventions. Methods We conducted a retrospective, observational, spatial interrupted time series analysis of malaria incidence rates among people reporting to health posts across Loreto, Peru between the first epidemiological week of January 2001 and the last epidemiological week of December 2016. Model inference is at the smallest administrative unit (district), where the weekly number of diagnosed cases of Plasmodium vivax and Plasmodium falciparum were determined by microscopy. Census data provided population at risk. We include as covariates weekly estimates of minimum temperature and cumulative precipitation in each district, as well as spatially- and temporally-lagged malaria incidence rates. Environmental data were derived from a hydrometeorological model designed for the Amazon. We used Bayesian spatiotemporal modeling techniques to estimate the impact of the PAMAFRO program, variability in environmental effects, and the role of climate anomalies on transmission after PAMAFRO withdrawal. Findings During the PAMAFRO program, incidence of P. vivax declined from 42.8 to 10.1 cases/1000 people/year. Incidence for P. falciparum declined from 14.3 to 2.5 cases/1000 people/year over this same period. The effects of PAMAFRO-supported interventions varied both by geography and species of malaria. Interventions were only effective in districts where interventions were also deployed in surrounding districts. Further, interventions diminished the effects of other prevailing demographic and environmental risk factors. Withdrawal of the program led to a resurgence in transmission. Increasing minimum temperatures and variability and intensity of rainfall events from 2011 onward and accompanying population displacements contributed to this resurgence. Interpretation Malaria control programs must consider the climate and environmental scope of interventions to maximize effectiveness. They must also ensure financial sustainability to maintain local progress and commitment to malaria prevention and elimination efforts, as well as to offset the effects of environmental change that increase transmission risk. Funding National Aeronautics and Space Administration, National Institutes of Health, Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Mark M. Janko
- Duke Global Health Institute, Duke University, Durham, NC, USA
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - G. Cristina Recalde-Coronel
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
- Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | | | | | | | - Andrés G. Lescano
- Clima, Latin American Center of Excellence for Climate Change and Health, and Emerge, Emerging Diseases and Climate Change Research Unit, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Benjamin F. Zaitchik
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - William K. Pan
- Duke Global Health Institute, Duke University, Durham, NC, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Carrasco-Escobar G, Rosado J, Nolasco O, White MT, Mueller I, Castro MC, Rodriguez-Ferruci H, Gamboa D, Llanos-Cuentas A, Vinetz JM, Benmarhnia T. Effect of out-of-village working activities on recent malaria exposure in the Peruvian Amazon using parametric g-formula. Sci Rep 2022; 12:19144. [PMID: 36351988 PMCID: PMC9645738 DOI: 10.1038/s41598-022-23528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
In the Amazon Region of Peru, occupational activities are important drivers of human mobility and may increase the individual risk of being infected while contributing to increasing malaria community-level transmission. Even though out-of-village working activities and other mobility patterns have been identified as determinants of malaria transmission, no studies have quantified the effect of out-of-village working activities on recent malaria exposure and proposed plausible intervention scenarios. Using two population-based cross-sectional studies in the Loreto Department in Peru, and the parametric g-formula method, we simulated various hypothetical scenarios intervening in out-of-village working activities to reflect their potential health benefits. This study estimated that the standardized mean outcome (malaria seroprevalence) in the unexposed population (no out-of-village workers) was 44.6% (95% CI: 41.7%-47.5%) and 66.7% (95% CI: 61.6%-71.8%) in the exposed population resulting in a risk difference of 22.1% (95% CI: 16.3%-27.9%). However, heterogeneous patterns in the effects of interest were observed between peri-urban and rural areas (Cochran's Q test = 15.5, p < 0.001). Heterogeneous patterns were also observed in scenarios of increased prevalence of out-of-village working activities and restriction scenarios by gender (male vs. female) and age (18 and under vs. 19 and older) that inform possible occupational interventions targetting population subgroups. The findings of this study support the hypothesis that targeting out-of-village workers will considerably benefit current malaria elimination strategies in the Amazon Region. Particularly, males and adult populations that carried out out-of-village working activities in rural areas contribute the most to the malaria seropositivity (recent exposure to the parasite) in the Peruvian Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA.
- Health Innovation Lab, Institute of Tropical Medicine "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Jason Rosado
- G5 Épidémiologie Et Analyse Des Maladies Infectieuses, Département de Santé Globale, Institut Pasteur, 75015, Paris, France
| | - Oscar Nolasco
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Michael T White
- G5 Épidémiologie Et Analyse Des Maladies Infectieuses, Département de Santé Globale, Institut Pasteur, 75015, Paris, France
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares Y Moleculares, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, CA, 92037, USA
| |
Collapse
|
9
|
Ferreira MU, Gamboa D, Torres K, Rodriguez-Ferrucci H, Soto-Calle VE, Pardo K, Fontoura PS, Tomko SS, Gazzinelli RT, Conn JE, Castro MC, Llanos-Cuentas A, Vinetz JM. Evidence-Based Malaria Control and Elimination in the Amazon: Input from the International Center of Excellence in Malaria Research Network in Peru and Brazil. Am J Trop Med Hyg 2022; 107:160-167. [PMID: 36228907 PMCID: PMC9662230 DOI: 10.4269/ajtmh.21-1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/15/2022] [Indexed: 11/07/2022] Open
Abstract
Malaria remains endemic in 17 countries in the Americas, where 723,000 cases were reported in 2019. The majority (> 90%) of the regional malaria burden is found within the Amazon Basin, which includes nine countries and territories in South America. Locally generated evidence is critical to provide information to public health decision makers upon which the design of efficient and regionally directed malaria control and elimination programs can be built. Plasmodium vivax is the predominant malaria parasite in the Amazon Basin. This parasite species appears to be more resilient to malaria control strategies worldwide. Asymptomatic Plasmodium infections constitute a potentially infectious reservoir that is typically missed by routine microscopy-based surveillance and often remains untreated. The primary Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, has changed its behavior to feed and rest predominantly outdoors, reducing the efficiency of core vector control measures such as indoor residual spraying and distribution of long-lasting insecticide-treated bed nets. We review public health implications of recent field-based research carried out by the Amazonia International Center of Excellence in Malaria Research in Peru and Brazil. We discuss the relative role of traditional and novel tools and strategies for better malaria control and elimination across the Amazon, including improved diagnostic methods, new anti-relapse medicines, and biological larvicides, and emphasize the need to integrate research and public health policymaking.
Collapse
Affiliation(s)
- Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Address correspondence to Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, Cidade Universitária, 05508-900 São Paulo, Brazil, E-mail: or Dionicia Gamboa, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru, E-mail:
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Address correspondence to Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, Cidade Universitária, 05508-900 São Paulo, Brazil, E-mail: or Dionicia Gamboa, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru, E-mail:
| | - Katherine Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Veronica E. Soto-Calle
- Dirección de Prevención y Control de Enfermedades Metaxénicas y Zoonosis, Ministerio de Salud, Lima, Peru
| | - Karim Pardo
- Universidad de Ciencias Aplicadas and Ejecutiva Adjunta II, Despacho Viceministerial de Salud Pública, Ministerio de Salud, Lima, Peru
| | - Pablo S. Fontoura
- Coordenação-Geral de Arboviroses, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
| | - Sheena S. Tomko
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ricardo T. Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, New York
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
10
|
Torres K, Ferreira MU, Castro MC, Escalante AA, Conn JE, Villasis E, da Silva Araujo M, Almeida G, Rodrigues PT, Corder RM, Fernandes ARJ, Calil PR, Ladeia WA, Garcia-Castillo SS, Gomez J, do Valle Antonelli LR, Gazzinelli RT, Golenbock DT, Llanos-Cuentas A, Gamboa D, Vinetz JM. Malaria Resilience in South America: Epidemiology, Vector Biology, and Immunology Insights from the Amazonian International Center of Excellence in Malaria Research Network in Peru and Brazil. Am J Trop Med Hyg 2022; 107:168-181. [PMID: 36228921 PMCID: PMC9662219 DOI: 10.4269/ajtmh.22-0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.
Collapse
Affiliation(s)
- Katherine Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Ananias A. Escalante
- Department of Biology and Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, New York
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Elizabeth Villasis
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gregorio Almeida
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Anderson R. J. Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Priscila R. Calil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Winni A. Ladeia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Stefano S. Garcia-Castillo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquin Gomez
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ricardo T. Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Douglas T. Golenbock
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Address correspondence to Joseph M. Vinetz, Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, 25 York St., Winchester 403D, PO Box 802022, New Haven, CT 06520. E-mail:
| |
Collapse
|
11
|
Villasis E, Garcia Castillo SS, Guzman M, Torres J, Gomez J, Garro K, Cordova AM, Reategui C, Abanto C, Vinetz J, Gamboa D, Torres K. Epidemiological characteristics of P. vivax asymptomatic infections in the Peruvian Amazon. Front Cell Infect Microbiol 2022; 12:901423. [PMID: 36118037 PMCID: PMC9471197 DOI: 10.3389/fcimb.2022.901423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Herein, we tested the hypothesis that Asymptomatic P. vivax (Pv) infected individuals (Asym) feature different epidemiological, clinical and biochemical characteristics, as well as hematological parameters, potentially predictive of clinical immunity in comparison to symptomatic Pv infected individuals (Sym). Methodology Between 2018 - 2021, we conducted 11 population screenings (PS, Day 0 (D0)) in 13 different riverine communities around Iquitos city, in the Peruvian Amazon, to identify Pv Sym and Asym individuals. A group of these individuals agreed to participate in a nested case - control study to evaluate biochemical and hematological parameters. Pv Asym individuals did not present common malaria symptoms (fever, headache, and chills), had a positive/negative microscopy result, a positive qPCR result, reported no history of antimalarial treatment during the last month, and were followed-up weekly until Day 21 (D21). Control individuals, had a negative malaria microscopy and qPCR result, no history of antimalarial treatment or malaria infections during the last three years, and no history of comorbidities or chronic infections. Results From the 2159 individuals screened during PS, data revealed a low but heterogeneous Pv prevalence across the communities (11.4%), where most infections were Asym (66.7%) and submicroscopic (82.9%). A total of 29 Asym, 49 Sym, and 30 control individuals participated in the nested case - control study (n=78). Ten of the individuals that were initially Asym at D0, experienced malaria symptoms during follow up and therefore, were included in the Sym group. 29 individuals remained Asym throughout all follow-ups. High levels of eosinophils were found in Asym individuals in comparison to Sym and controls. Conclusion For the first-time, key epidemiological, hematological, and biochemical features are reported from Pv Asym infections from the Peruvian Amazon. These results should be considered for the design and reshaping of malaria control measures as the country moves toward malaria elimination.
Collapse
Affiliation(s)
- Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- *Correspondence: Elizabeth Villasis,
| | - Stefano S. Garcia Castillo
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzman
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Julian Torres
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Joaquin Gomez
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Garro
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ana Maria Cordova
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Carolina Reategui
- Laboratorio ICEMR Amazonia y Enfermedades Emergentes, Universidad Peruana Cayetano Heredia, Iquitos, Peru
| | - Caroline Abanto
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph Vinetz
- Laboratorio ICEMR−Amazonia y Enfermedades Infecciosas Emergentes, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
12
|
Carrasco-Escobar G, Matta-Chuquisapon J, Manrique E, Ruiz-Cabrejos J, Barboza JL, Wong D, Henostroza G, Llanos-Cuentas A, Benmarhnia T. Quantifying the effect of human population mobility on malaria risk in the Peruvian Amazon. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211611. [PMID: 35875474 PMCID: PMC9297009 DOI: 10.1098/rsos.211611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The impact of human population movement (HPM) on the epidemiology of vector-borne diseases, such as malaria, has been described. However, there are limited data on the use of new technologies for the study of HPM in endemic areas with difficult access such as the Amazon. In this study conducted in rural Peruvian Amazon, we used self-reported travel surveys and GPS trackers coupled with a Bayesian spatial model to quantify the role of HPM on malaria risk. By using a densely sampled population cohort, this study highlighted the elevated malaria transmission in a riverine community of the Peruvian Amazon. We also found that the high connectivity between Amazon communities for reasons such as work, trading or family plausibly sustains such transmission levels. Finally, by using multiple human mobility metrics including GPS trackers, and adapted causal inference methods we identified for the first time the effect of human mobility patterns on malaria risk in rural Peruvian Amazon. This study provides evidence of the causal effect of HPM on malaria that may help to adapt current malaria control programmes in the Amazon.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Jose Matta-Chuquisapon
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edgar Manrique
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jorge Ruiz-Cabrejos
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose Luis Barboza
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Daniel Wong
- Health Innovation Lab, Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Alejandro Llanos-Cuentas
- Instituto de Medicinal Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| |
Collapse
|
13
|
Piedrahita S, Álvarez N, Naranjo-Diaz N, Bickersmith S, Conn JE, Correa MM. nAnopheles blood meal sources and entomological indicators related to Plasmodium transmission in malaria endemic areas of Colombia. Acta Trop 2022; 233:106567. [PMID: 35714924 DOI: 10.1016/j.actatropica.2022.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Malaria is an important public health problem, caused by Plasmodium parasites which are transmitted by female Anopheles mosquitoes that bite humans to obtain blood. The aim of this work was to identify the blood feeding sources of Anopheles female mosquitoes and calculate their entomological indices in relation to Plasmodium transmission. Mosquitoes were collected in malaria endemic localities of the Bajo Cauca and Pacific regions of Colombia using human landing catch and barrier screens, from 18:00 - 24:00 hr, in 2018-2021. Animal censuses within a radius of ∼250 meters were carried out at each sampling site. A total of 2,018 Anopheles specimens were collected and the most abundant species were Anopheles (Nys.) darlingi and Anopheles (Nys.) nuneztovari. The highest human biting rate was 77.5 bites per person per night (b/p/n) for An. nuneztovari in Córdoba-Pacific and 17.5 b/p/n for An. darlingi in Villa Grande-Bajo Cauca. Both species were active mainly in indoor unwalled rooms of the houses. Only An. nuneztovari from Córdoba-Pacific was infected with Plasmodium, with an entomological inoculation rate of 91.25 infective bites per year. Detection of blood feeding sources demonstrate that humans were the most common host, however, An. nuneztovari showed a preference for feeding on dogs and An. darlingi on pigs, dogs and Galliformes, rather than humans. These results contribute to entomological surveillance information and provide valuable data that can be used to tailor effective control interventions to minimize human-vector contact in these malaria endemic regions.
Collapse
Affiliation(s)
- Stefani Piedrahita
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Natalí Álvarez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Nelson Naranjo-Diaz
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Sara Bickersmith
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Jan E Conn
- New York State Department of Health, Wadsworth Center, Albany, NY, USA; Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, USA
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
14
|
Blood feeding habits of mosquitoes: hardly a bite in South America. Parasitol Res 2022; 121:1829-1852. [PMID: 35562516 PMCID: PMC9106385 DOI: 10.1007/s00436-022-07537-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
Mosquito blood feeding plays a key role in epidemiology. Despite its importance and large number of studies worldwide, less attention has been paid in South America. We summarized some general concepts and methodological issues related to the study of mosquito blood feeding habits, and compiled and analyzed all published information regarding the subject in the continent until 2020. Available literature comprised 152 scientific studies, that pursued different approaches: human landing catches (102 studies), baited trap (19), and blood meal analyses of collected specimens (38). Among the latter, 23 used serological and 15 molecular techniques. Species most frequently studied were those incriminated in malaria transmission, whereas relevant vectors such as Aedes aegypti, Ae. albopictus, and Haemagogus janthinomys were surprisingly neglected. Brazil was the leading country both in number of works and species studied. For over 70% of the species and three out of 13 South American countries there is no single information on mosquito blood feeding habits. Data from baited traps included 143 mosquito species, 83.9% of which were attracted to humans, either exclusively (10.5%) or in combination with other vertebrates (73.4%). Host blood identification of field collected specimens provided data on 102 mosquito species, and 60.8% of these fed on humans (55.9% combined with other vertebrates). Only 17 of the 73 species assessed by both methods yielded similar feeding patterns. Finally, supplementary tables are provided in a comprehensive summary of all information available and information gaps are highlighted for future research in the continent.
Collapse
|
15
|
Rosado J, Carrasco-Escobar G, Nolasco O, Garro K, Rodriguez-Ferruci H, Guzman-Guzman M, Llanos-Cuentas A, Vinetz JM, Nekkab N, White MT, Mueller I, Gamboa D. Malaria transmission structure in the Peruvian Amazon through antibody signatures to Plasmodium vivax. PLoS Negl Trop Dis 2022; 16:e0010415. [PMID: 35533146 PMCID: PMC9119515 DOI: 10.1371/journal.pntd.0010415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/19/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The landscape of malaria transmission in the Peruvian Amazon is temporally and spatially heterogeneous, presenting different micro-geographies with particular epidemiologies. Most cases are asymptomatic and escape routine malaria surveillance based on light microscopy (LM). Following the implementation of control programs in this region, new approaches to stratify transmission and direct efforts at an individual and community level are needed. Antibody responses to serological exposure markers (SEM) to Plasmodium vivax have proven diagnostic performance to identify people exposed in the previous 9 months. METHODOLOGY We measured antibody responses against 8 SEM to identify recently exposed people and determine the transmission dynamics of P. vivax in peri-urban (Iquitos) and riverine (Mazán) communities of Loreto, communities that have seen significant recent reductions in malaria transmission. Socio-demographic, geo-reference, LM and qPCR diagnosis data were collected from two cross-sectional surveys. Spatial and multilevel analyses were implemented to describe the distribution of seropositive cases and the risk factors associated with exposure to P. vivax. PRINCIPAL FINDINGS Low local transmission was detected by qPCR in both Iquitos (5.3%) and Mazán (2.7%); however, seroprevalence indicated a higher level of (past) exposure to P. vivax in Mazán (56.5%) than Iquitos (38.2%). Age and being male were factors associated with high odds of being seropositive in both sites. Higher antibody levels were found in individuals >15 years old. The persistence of long-lived antibodies in these individuals could overestimate the detection of recent exposure. Antibody levels in younger populations (<15 years old) could be a better indicator of recent exposure to P. vivax. CONCLUSIONS The large number of current and past infections detected by SEMs allows for detailed local epidemiological analyses, in contrast to data from qPCR prevalence surveys which did not produce statistically significant associations. Serological surveillance will be increasingly important in the Peruvian Amazon as malaria transmission is reduced by continued control and elimination efforts.
Collapse
Affiliation(s)
- Jason Rosado
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Sorbonne Université, ED 393, Paris, France
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Paris, France
| | - Gabriel Carrasco-Escobar
- School of Public Health, University of California San Diego, La Jolla, California, United States of America
- Health Innovation Laboratory, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Peru
| | - Oscar Nolasco
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Garro
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Narimane Nekkab
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
| | - Michael T. White
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Paris, France
| | - Ivo Mueller
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
16
|
Alvarez MVN, Alonso DP, Kadri SM, Rufalco-Moutinho P, Bernardes IAF, de Mello ACF, Souto AC, Carrasco-Escobar G, Moreno M, Gamboa D, Vinetz JM, Conn JE, Ribolla PEM. Nyssorhynchus darlingi genome-wide studies related to microgeographic dispersion and blood-seeking behavior. Parasit Vectors 2022; 15:106. [PMID: 35346342 PMCID: PMC8961893 DOI: 10.1186/s13071-022-05219-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Brazil, malaria is concentrated in the Amazon Basin, where more than 99% of the annual cases are reported. The main goal of this study was to investigate the population structure and genetic association of the biting behavior of Nyssorhynchus (also known as Anopheles) darlingi, the major malaria vector in the Amazon region of Brazil, using low-coverage genomic sequencing data. METHODS Samples were collected in the municipality of Mâncio Lima, Acre state, Brazil between 2016 and 2017. Different approaches using genotype imputation and no gene imputation for data treatment and low-coverage sequencing genotyping were performed. After the samples were genotyped, population stratification analysis was performed. RESULTS Weak but statistically significant stratification signatures were identified between subpopulations separated by distances of approximately 2-3 km. Genome-wide association studies (GWAS) were performed to compare indoor/outdoor biting behavior and blood-seeking at dusk/dawn. A statistically significant association was observed between biting behavior and single nucleotide polymorphism (SNP) markers adjacent to the gene associated with cytochrome P450 (CYP) 4H14, which is associated with insecticide resistance. A statistically significant association between blood-seeking periodicity and SNP markers adjacent to genes associated with the circadian cycle was also observed. CONCLUSION The data presented here suggest that low-coverage whole-genome sequencing with adequate processing is a powerful tool to genetically characterize vector populations at a microgeographic scale in malaria transmission areas, as well as for use in GWAS. Female mosquitoes entering houses to take a blood meal may be related to a specific CYP4H14 allele, and female timing of blood-seeking is related to circadian rhythm genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares Y Moleculares, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación Y Desarrollo, Facultad de Ciencias Y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT USA
| | - Jan E. Conn
- Wadsworth Center, New York State Department of Health, Albany, NY USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY USA
| | | |
Collapse
|
17
|
Pradhan S, Hore S, Maji SK, Manna S, Maity A, Kundu PK, Maity K, Roy S, Mitra S, Dam P, Mondal R, Ghorai S, Jawed JJ, Dutta S, Das S, Mandal S, Mandal S, Kati A, Sinha S, Maity AB, Dolai TK, Mandal AK, İnce İA. Study of epidemiological behaviour of malaria and its control in the Purulia district of West Bengal, India (2016-2020). Sci Rep 2022; 12:630. [PMID: 35022476 PMCID: PMC8755807 DOI: 10.1038/s41598-021-04399-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Purulia is a malaria-prone district in West Bengal, India, with approximately half of the blocks defined as malaria endemic. We analyzed the malaria case in each block of the Purulia district from January 1, 2016, to December 31, 2020. As per the API, 20 blocks of Purulia were assigned to four different categories (0-3) and mapped using ArcGIS software. An exponential decay model was fitted to forecast the trend of malaria cases for each block of Purulia (2021-2025). There was a sharp decrease in total malaria cases and API from 2016 to 2020 due to the mass distribution of LLINs. The majority of cases (72.63%) were found in ≥ 15-year age group. Males were more prone to malaria (60.09%). Malaria was highly prevalent among Scheduled Tribes (48.44%). Six blocks were reported in Category 3 (high risk) and none in Category 0 (no risk) in 2016, while no blocks were determined to be in Category 3, and three blocks were in Category 0 in 2020. The exponential decay model prediction is oriented towards gaining malaria-free status in thirteen blocks of Purulia by 2025. This study will incite the government to uphold and strengthen the current efforts to meet the malaria elimination goals.
Collapse
Affiliation(s)
- Sayantan Pradhan
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal, 733134, India
- Hematology Department, Nil Ratan Sircar Medical College & Hospital, Kolkata, 700014, India
| | - Samrat Hore
- Department of Statistics, Tripura University, Agartala, Tripura, 799022, India
| | - Suman Kumar Maji
- District Public Health Centre, Deben Mahata Government Medical College and Hospital, Purulia, West Bengal, 723101, India
| | - Simi Manna
- Department of Bio-Medical Laboratory Science & Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Abhijit Maity
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal, 733134, India
| | - Pratip Kumar Kundu
- Calcutta School of Tropical Medicine, College Square, Kolkata, West Bengal, 700073, India
| | - Krishna Maity
- Department of Statistics, VisvaBharati University, Bolpur, West Bengal, 731204, India
| | - Stabak Roy
- Department of Geography and Disaster Management, Tripura University, Agartala, Tripura, 799022, India
| | - Saptarshi Mitra
- Department of Geography and Disaster Management, Tripura University, Agartala, Tripura, 799022, India
| | - Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal, 733134, India
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal, 733134, India
| | - Suvankar Ghorai
- Department of Microbiology, Raiganj University, North Dinajpur, West Bengal, 733134, India
| | - Junaid Jibran Jawed
- School of Biotechnology, Presidency University - 2nd Campus, Kolkata, West Bengal, 700156, India
| | - Subhadeep Dutta
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal, 733134, India
| | - Sandip Das
- Department of Botany, School of Sciences, Durgapur Regional Centre, Netaji Subhas Open University, West Burdwan, Kolkata, West Bengal, 713214, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, Kolkata, 700019, India
| | - Sanjib Mandal
- Department of Economics, Raiganj University, North Dinajpur, West Bengal, 733134, India
| | - Ahmet Kati
- Department of Biotechnology, Institution of Health Sciences, University of Health Sciences, Uskudar, Istanbul, 34668, Turkey
| | - Sangram Sinha
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hoogly, West Bengal, 712405, India
| | - Amit Bikram Maity
- Department of Otorhinolaryngology, Deben Mahata Government Medical College and Hospital, Purulia, West Bengal, 723101, India
| | - Tuphan Kanti Dolai
- Hematology Department, Nil Ratan Sircar Medical College & Hospital, Kolkata, 700014, India.
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, North Dinajpur, West Bengal, 733134, India.
- Centre for Nanotechnology Sciences, Raiganj University, North Dinajpur, West Bengal, 733134, India.
| | - İkbal Agah İnce
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul, 34752, Turkey.
| |
Collapse
|
18
|
Yovogan B, Sovi A, Padonou GG, Adoha CJ, Akinro B, Chitou S, Accrombessi M, Dangbénon E, Akpovi H, Messenger LA, Ossè R, Hounto AO, Cook J, Kleinschmidt I, Ngufor C, Rowland M, Protopopoff N, Akogbéto MC. Pre-intervention characteristics of the mosquito species in Benin in preparation for a randomized controlled trial assessing the efficacy of dual active-ingredient long-lasting insecticidal nets for controlling insecticide-resistant malaria vectors. PLoS One 2021; 16:e0251742. [PMID: 34014982 PMCID: PMC8136630 DOI: 10.1371/journal.pone.0251742] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/01/2021] [Indexed: 11/18/2022] Open
Abstract
Background This study provides detailed characteristics of vector populations in preparation for a three-arm cluster randomized controlled trial (RCT) aiming to compare the community impact of dual active-ingredient (AI) long-lasting insecticidal nets (LLINs) that combine two novel insecticide classes–chlorfenapyr or pyriproxifen–with alpha-cypermethrin to improve the prevention of malaria transmitted by insecticide-resistant vectors compared to standard pyrethroid LLINs. Methods The study was carried out in 60 villages across Cove, Zangnanando and Ouinhi districts, southern Benin. Mosquito collections were performed using human landing catches (HLCs). After morphological identification, a sub-sample of Anopheles gambiae s.l. were dissected for parity, analyzed by PCR for species and presence of L1014F kdr mutation and by ELISA-CSP to identify Plasmodium falciparum sporozoite infection. WHO susceptibility tube tests were performed by exposing adult An. gambiae s.l., collected as larvae from each district, to 0.05% alphacypermethrin, 0.75% permethrin, 0.1% bendiocarb and 0.25% pirimiphos-methyl. Synergist assays were also conducted with exposure first to 4% PBO followed by alpha-cypermethrin. Results An. gambiae s.l. (n = 10807) was the main malaria vector complex found followed by Anopheles funestus s.l. (n = 397) and Anopheles nili (n = 82). An. gambiae s.l. was comprised of An. coluzzii (53.9%) and An. gambiae s.s. (46.1%), both displaying a frequency of the L1014F kdr mutation >80%. Although more than 80% of people slept under standard LLIN, human biting rate (HBR) in An. gambiae s.l. was higher indoors [26.5 bite/person/night (95% CI: 25.2–27.9)] than outdoors [18.5 b/p/n (95% CI: 17.4–19.6)], as were the trends for sporozoite rate (SR) [2.9% (95% CI: 1.7–4.8) vs 1.8% (95% CI: 0.6–3.8)] and entomological inoculation rate (EIR) [21.6 infected bites/person/month (95% CI: 20.4–22.8) vs 5.4 (95% CI: 4.8–6.0)]. Parous rate was 81.6% (95%CI: 75.4–88.4). An. gambiae s.l. was resistant to alpha-cypermethrin and permethrin but, fully susceptible to bendiocarb and pirimiphos-methyl. PBO pre-exposure followed by alpha-cypermethrin treatment induced a higher 24 hours mortality compared to alphacypermethrin alone but not exceeding 40%. Conclusions Despite a high usage of standard pyrethroid LLINs, the study area is characterized by intense malaria transmission. The main vectors An. coluzzii and An. gambiae s.s. were both highly resistant to pyrethroids and displayed multiple resistance mechanisms, L1014F kdr mutation and mixed function oxidases. These conditions of the study area make it an appropriate site to conduct the trial that aims to assess the effect of novel dual-AI LLINs on malaria transmitted by insecticide-resistant vectors.
Collapse
Affiliation(s)
- Boulais Yovogan
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté d’Agronomie, Université de Parakou, Parakou, Benin
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Gil G. Padonou
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Constantin J. Adoha
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Saïd Chitou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Manfred Accrombessi
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Institut de Recherche Clinique du Bénin, Abomey-Calavi, Benin
| | | | - Hilaire Akpovi
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- American Society for Microbiology, Washington, DC, United States of America
| | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Ecole de Gestion et d’Exploitation des Systèmes d’Elevage, Université Nationale d’Agriculture, Kétou, Benin
| | - Aurore Ogouyemi Hounto
- Programme Nationale de Lutte Contre Le Paludisme (PNLP), Cotonou, Benin
- Faculté des Sciences de la Santé, Université d’Abomey-Calavi, Cotonou, Benin
| | - Jackie Cook
- Medical Research Council (MRC) Tropical International Statistics and Epidemiology Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Immo Kleinschmidt
- Medical Research Council (MRC) Tropical International Statistics and Epidemiology Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
- Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Corine Ngufor
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mark Rowland
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Natacha Protopopoff
- Faculty of Infectious and Tropical Diseases, Disease Control Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
19
|
Morales Viteri D, Herrera-Varela M, Albuja M, Quiroga C, Diaz G, del Aguila Morante C, Ramirez D, Vinetz JM, Bickersmith SA, Conn JE. New Records of Anopheles benarrochi B (Diptera: Culicidae) in Malaria Hotspots in the Amazon Regions of Ecuador and Peru. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1234-1240. [PMID: 33511394 PMCID: PMC8349109 DOI: 10.1093/jme/tjaa293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The increase in malaria transmission in the Amazon region motivated vector control units of the Ministry of Health of Ecuador and Peru to investigate Anopheles (Diptera: Culicidae) species present in transmission hotspots. Mosquitoes were collected using prokopack aspirators and CDC light traps (Ecuador) and human landing catch in Peru. In Ecuador, 84 Anopheles were captured from Pastaza, Morona Santiago, and Orellana provinces and identified morphologically [An. (An.) apicimacula Dyar and Knab, An. (Nys.) near benarrochi, An. (Nys.) near oswaldoi, An. (Nys.) near strodei, An. (An.) nimbus (Theobald, 1902), and An. (Nyssorhynchus) sp.]. In Peru, 1,150 Anopheles were collected in Andoas District. A subsample of 166 specimens was stored under silica and identified as An. near oswaldoi, An. darlingi, and An. (An.) mattogrossensis Lutz and Neiva. COI barcode region sequences were obtained for 137 adults (107 from Peru, 30 from Ecuador) identified by ITS2 PCR-RFLP as An. benarrochi Gabaldon, Cova Garcia, and Lopez and retained in the final analysis. Haplotypes from the present study plus An. benarrochi B GenBank sequences grouped separately from Brazilian An. benarrochi GenBank sequences by 44 mutation steps, indicating that the present study specimens were An. benarrochi B. Our findings confirm the presence of An. benarrochi B in Ecuador and reported here for the first time from the Amazonian provinces of Orellana and Morona Santiago. Furthermore, we confirm that the species collected in Andoas District in the Datem del Maranon Province, Peru, is An. benarrochi B, and we observed that it is highly anthropophilic. Overall, the known distribution of An. benarrochi B has been extended and includes southern Colombia, much of Peru and eastern Ecuador.
Collapse
Affiliation(s)
- Diego Morales Viteri
- Instituto Nacional de Investigación en Salud Pública, Centro de Referencia Nacional de Vectores, Quito, Ecuador
| | - Manuela Herrera-Varela
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacio ´n y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maribel Albuja
- Instituto Nacional de Investigación en Salud Pública, Centro de Referencia Nacional de Vectores, Quito, Ecuador
| | | | - Gloria Diaz
- Unidad de Entomología, Laboratorio Referencial Regional de Salud Pública de Loreto, Dirección Regional de Salud (DIRESA), Loreto, Peru
| | - Clara del Aguila Morante
- Unidad de Entomología, Laboratorio Referencial Regional de Salud Pública de Loreto, Dirección Regional de Salud (DIRESA), Loreto, Peru
| | - Dario Ramirez
- Unidad de Entomología, Laboratorio Referencial Regional de Salud Pública de Loreto, Dirección Regional de Salud (DIRESA), Loreto, Peru
| | - Joseph M Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacio ´n y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Yale University School of Medicine, New Haven, CT
| | | | - Jan E Conn
- Department of Health, Wadsworth Center, New York State, Albany, NY
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY
| |
Collapse
|
20
|
Oliveira TMP, Laporta GZ, Bergo ES, Chaves LSM, Antunes JLF, Bickersmith SA, Conn JE, Massad E, Sallum MAM. Vector role and human biting activity of Anophelinae mosquitoes in different landscapes in the Brazilian Amazon. Parasit Vectors 2021; 14:236. [PMID: 33957959 PMCID: PMC8101188 DOI: 10.1186/s13071-021-04725-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Environmental disturbance, deforestation and socioeconomic factors all affect malaria incidence in tropical and subtropical endemic areas. Deforestation is the major driver of habitat loss and fragmentation, which frequently leads to shifts in the composition, abundance and spatial distribution of vector species. The goals of the present study were to: (i) identify anophelines found naturally infected with Plasmodium; (ii) measure the effects of landscape on the number of Nyssorhynchus darlingi, presence of Plasmodium-infected Anophelinae, human biting rate (HBR) and malaria cases; and (iii) determine the frequency and peak biting time of Plasmodium-infected mosquitoes and Ny. darlingi. METHODS Anopheline mosquitoes were collected in peridomestic and forest edge habitats in seven municipalities in four Amazon Brazilian states. Females were identified to species and tested for Plasmodium by real-time PCR. Negative binomial regression was used to measure any association between deforestation and number of Ny. darlingi, number of Plasmodium-infected Anophelinae, HBR and malaria. Peak biting time of Ny. darlingi and Plasmodium-infected Anophelinae were determined in the 12-h collections. Binomial logistic regression measured the association between presence of Plasmodium-infected Anophelinae and landscape metrics and malaria cases. RESULTS Ninety-one females of Ny. darlingi, Ny. rangeli, Ny. benarrochi B and Ny. konderi B were found to be infected with Plasmodium. Analysis showed that the number of malaria cases and the number of Plasmodium-infected Anophelinae were more prevalent in sites with higher edge density and intermediate forest cover (30-70%). The distance of the drainage network to a dwelling was inversely correlated to malaria risk. The peak biting time of Plasmodium-infected Anophelinae was 00:00-03:00 h. The presence of Plasmodium-infected mosquitoes was higher in landscapes with > 13 malaria cases. CONCLUSIONS Nyssorhynchus darlingi, Ny. rangeli, Ny. benarrochi B and Ny. konderi B can be involved in malaria transmission in rural settlements. The highest fraction of Plasmodium-infected Anophelinae was caught from midnight to 03:00 h. In some Amazonian localities, the highest exposure to infectious bites occurs when residents are sleeping, but transmission can occur throughout the night. Forest fragmentation favors increases in both malaria and the occurrence of Plasmodium-infected mosquitoes in peridomestic habitat. The use of insecticide-impregnated mosquito nets can decrease human exposure to infectious Anophelinae and malaria transmission.
Collapse
Affiliation(s)
- Tatiane M P Oliveira
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil.
| | - Gabriel Z Laporta
- Setor de Pós-Graduação, Pesquisa e Inovação, Centro Universitário Saúde ABC (FMABC), Fundação ABC, Santo André, SP, Brazil
| | - Eduardo S Bergo
- Superintendencia de Controle de Endemias, Secretaria de Estado da Saúde, Araraquara, SP, Brazil
| | - Leonardo Suveges Moreira Chaves
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil
| | - José Leopoldo F Antunes
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil
| | | | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
| | - Eduardo Massad
- Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, RJ, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo, SP, 01246-904, Brazil
| |
Collapse
|
21
|
Fouque F, Knox T. Special Programme for Research and Training in Tropical Diseases-coordinated Multicountry Study to Determine the Burden and Causes of Residual Malaria Across Different Regions. J Infect Dis 2021; 223:S91-S98. [PMID: 33906219 PMCID: PMC8079130 DOI: 10.1093/infdis/jiaa605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The burden and causes of residual malaria were investigated between 2015 and 2019 through 5 research projects coordinated by the Special Program for Research and Training in Tropical Diseases (TDR), cosponsored by the United Nations Development Programme, UNICEF, the World Bank, the World Health Organization (WHO) and the WHO Global Malaria Programme. The 5 projects included 10 countries in 4 WHO regions: Africa, the Americas, South-East Asia, and the Western Pacific. The countries represented a range of malaria endemicities, from low to high levels of transmission. The main findings of the projects indicate that overall the core malaria vector control tools (long-lasting insecticidal nets [LLIN] and indoor residual spraying) were not deployed in the optimal way and/or not efficient in many settings of the supported projects. Furthermore, vector biting behavior and human activity-associated factors strongly contributed to malaria persistence. Changes in vector species composition and abundance, with an increase in outdoor biting, were also reported. Some of these factors may be an adaptation of the vectors to the deployment of the tools and/or can be linked to other sectors, such as agricultural practices, environmental changes, social factors, and water management. Human behaviors and sleeping habits that included activities and sleeping outside villages in unprotected dwellings were another part of the problem. The evidence collated demonstrates the need for new approaches, such as the multisectoral one and new vector control tools, all adapted to the local contexts and integrated into current malaria programs.
Collapse
Affiliation(s)
- Florence Fouque
- Research for Implementation Unit, Special Programme for Research and Training in Tropical Diseases, Geneva, Switzerland
| | - Tessa Knox
- World Health Organization, Port Vila, Vanuatu
| |
Collapse
|
22
|
Rosas-Aguirre A, Moreno M, Moreno-Gutierrez D, Llanos-Cuentas A, Saavedra M, Contreras-Mancilla J, Barboza J, Alava F, Aguirre K, Carrasco G, Prussing C, Vinetz J, Conn JE, Speybroeck N, Gamboa D. Integrating Parasitological and Entomological Observations to Understand Malaria Transmission in Riverine Villages in the Peruvian Amazon. J Infect Dis 2021; 223:S99-S110. [PMID: 33906225 PMCID: PMC8079135 DOI: 10.1093/infdis/jiaa496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Remote rural riverine villages account for most of the reported malaria cases in the Peruvian Amazon. As transmission decreases due to intensive standard control efforts, malaria strategies in these villages will need to be more focused and adapted to local epidemiology. METHODS By integrating parasitological, entomological, and environmental observations between January 2016 and June 2017, we provided an in-depth characterization of malaria transmission dynamics in 4 riverine villages of the Mazan district, Loreto department. RESULTS Despite variation across villages, malaria prevalence by polymerase chain reaction in March 2016 was high (>25% in 3 villages), caused by Plasmodium vivax mainly and composed of mostly submicroscopic infections. Housing without complete walls was the main malaria risk factor, while households close to forest edges were more commonly identified as spatial clusters of malaria prevalence. Villages in the basin of the Mazan River had a higher density of adult Anopheles darlingi mosquitoes, and retained higher prevalence and incidence rates compared to villages in the basin of the Napo River despite test-and-treat interventions. CONCLUSIONS High heterogeneity in malaria transmission was found across and within riverine villages, resulting from interactions between the microgeographic landscape driving diverse conditions for vector development, housing structure, and human behavior.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Research Institute of Health and Society, Université catholique de Louvain, Brussels, Belgium.,Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Diamantina Moreno-Gutierrez
- Research Institute of Health and Society, Université catholique de Louvain, Brussels, Belgium.,Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana, Loreto, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marlon Saavedra
- International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan Contreras-Mancilla
- International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jose Barboza
- International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Freddy Alava
- International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kristhian Aguirre
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gabriel Carrasco
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Catharine Prussing
- School of Public Health, Department of Biomedical Sciences, State University of New York, Albany, New York, USA.,Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jan E Conn
- School of Public Health, Department of Biomedical Sciences, State University of New York, Albany, New York, USA.,Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Niko Speybroeck
- Research Institute of Health and Society, Université catholique de Louvain, Brussels, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,International Centers of Excellence for Malaria Research-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
23
|
Rufalco-Moutinho P, Moura Kadri S, Peres Alonso D, Moreno M, Carrasco-Escobar G, Prussing C, Gamboa D, Vinetz JM, Mureb Sallum MA, Conn JE, Martins Ribolla PE. Ecology and larval population dynamics of the primary malaria vector Nyssorhynchus darlingi in a high transmission setting dominated by fish farming in western Amazonian Brazil. PLoS One 2021; 16:e0246215. [PMID: 33831004 PMCID: PMC8031405 DOI: 10.1371/journal.pone.0246215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Vale do Rio Juruá in western Acre, Brazil, is a persistent malaria transmission hotspot partly due to fish farming development that was encouraged to improve local standards of living. Fish ponds can be productive breeding sites for Amazonian malaria vector species, including Nyssorhynchus darlingi, which, combined with high human density and mobility, add to the local malaria burden.This study reports entomological profile of immature and adult Ny. darlingi at three sites in Mâncio Lima, Acre, during the rainy and dry season (February to September, 2017). From 63 fishponds, 10,859 larvae were collected, including 5,512 first-instar Anophelinae larvae and 4,927 second, third and fourth-instars, of which 8.5% (n = 420) were Ny. darlingi. This species was most abundant in not-abandoned fishponds and in the presence of emerging aquatic vegetation. Seasonal analysis of immatures in urban landscapes found no significant difference in the numbers of Ny. darlingi, corresponding to equivalent population density during the rainy to dry transition period. However, in the rural landscape, significantly higher numbers of Ny. darlingi larvae were collected in August (IRR = 5.80, p = 0.037) and September (IRR = 6.62, p = 0.023) (dry season), compared to February (rainy season), suggesting important role of fishponds for vector population maintenance during the seasonal transition in this landscape type. Adult sampling detected mainly Ny. darlingi (~93%), with similar outdoor feeding behavior, but different abundance according to landscape profile: urban site 1 showed higher peaks of human biting rate in May (46 bites/person/hour), than February (4) and September (15), while rural site 3 shows similar HBR during the same sampling period (22, 24 and 21, respectively). This study contributes to a better understanding of the larvae biology of the main malaria vector in the Vale do Rio Juruá region and, ultimately will support vector control efforts.
Collapse
Affiliation(s)
- Paulo Rufalco-Moutinho
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- * E-mail:
| | - Samir Moura Kadri
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Diego Peres Alonso
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Catharine Prussing
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
| | - Dionicia Gamboa
- Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicinal Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States of America
| | - Maria Anice Mureb Sallum
- Faculdade de Saúde Pública, Departamento de Epidemiologia, Universidade de São Paulo, São Paulo, Brazil
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, NY, United States of America
- New York State Department of Health, Wadsworth Center, Albany, NY, United States of America
| | - Paulo Eduardo Martins Ribolla
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Instituto de Biotecnologia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
24
|
Njoroge MM, Fillinger U, Saddler A, Moore S, Takken W, van Loon JJA, Hiscox A. Evaluating putative repellent 'push' and attractive 'pull' components for manipulating the odour orientation of host-seeking malaria vectors in the peri-domestic space. Parasit Vectors 2021; 14:42. [PMID: 33430963 PMCID: PMC7802213 DOI: 10.1186/s13071-020-04556-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background Novel malaria vector control approaches aim to combine tools for maximum protection. This study aimed to evaluate novel and re-evaluate existing putative repellent ‘push’ and attractive ‘pull’ components for manipulating the odour orientation of malaria vectors in the peri-domestic space. Methods Anopheles arabiensis outdoor human landing catches and trap comparisons were implemented in large semi-field systems to (i) test the efficacy of Citriodiol® or transfluthrin-treated fabric strips positioned in house eave gaps as push components for preventing bites; (ii) understand the efficacy of MB5-baited Suna-traps in attracting vectors in the presence of a human being; (iii) assess 2-butanone as a CO2 replacement for trapping; (iv) determine the protection provided by a full push-pull set up. The air concentrations of the chemical constituents of the push–pull set-up were quantified. Results Microencapsulated Citriodiol® eave strips did not provide outdoor protection against host-seeking An. arabiensis. Transfluthrin-treated strips reduced the odds of a mosquito landing on the human volunteer (OR 0.17; 95% CI 0.12–0.23). This impact was lower (OR 0.59; 95% CI 0.52–0.66) during the push-pull experiment, which was associated with low nighttime temperatures likely affecting the transfluthrin vaporisation. The MB5-baited Suna trap supplemented with CO2 attracted only a third of the released mosquitoes in the absence of a human being; however, with a human volunteer in the same system, the trap caught < 1% of all released mosquitoes. The volunteer consistently attracted over two-thirds of all mosquitoes released. This was the case in the absence (‘pull’ only) and in the presence of a spatial repellent (‘push-pull’), indicating that in its current configuration the tested ‘pull’ does not provide a valuable addition to a spatial repellent. The chemical 2-butanone was ineffective in replacing CO2. Transfluthrin was detectable in the air space but with a strong linear reduction in concentrations over 5 m from release. The MB5 constituent chemicals were only irregularly detected, potentially suggesting insufficient release and concentration in the air for attraction. Conclusion This step-by-step evaluation of the selected ‘push’ and ‘pull’ components led to a better understanding of their ability to affect host-seeking behaviours of the malaria vector An. arabiensis in the peri-domestic space and helps to gauge the impact such tools would have when used in the field for monitoring or control.![]()
Collapse
Affiliation(s)
- Margaret Mendi Njoroge
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.
| | - Adam Saddler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Sarah Moore
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 833, Basel, Switzerland.,University of Basel, Petersplatz 1, Basel, Switzerland.,Department of Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Willem Takken
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Alexandra Hiscox
- International Centre of Insect Physiology and Ecology (icipe), Human Health Theme, Nairobi, 00100, Kenya.,Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.,London School of Hygiene and Tropical Medicine, ARCTEC, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
25
|
Host feeding patterns of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon. Acta Trop 2021; 213:105751. [PMID: 33166514 DOI: 10.1016/j.actatropica.2020.105751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Nyssorhynchus darlingi (Root) is the dominant malaria vector in the Brazilian Amazon River basin, with additional Anophelinae Grassi species involved in local and regional transmission. Mosquito blood-feeding behavior is an essential component to define the mosquito-human contact rate and shape the transmission cycle of vector-borne diseases. However, there is little information on the host preferences and blood-feeding behavior of Anophelinae vectors in rural Amazonian landscapes. The barrier screen sampling (BSS) method was employed to sample females from 34 peridomestic habitats in 27 rural communities from 11 municipalities in the Brazilian Amazon states of Acre, Amazonas, Pará and Rondônia, from August 2015 to November 2017. Nyssorhynchus darlingi comprised 97.94% of the females collected resting on barrier screens, and DNA sequence comparison detected 9 vertebrate hosts species. The HBI index ranged from 0.03-1.00. Results revealed the plasticity of Ny. darlingi in blood-feeding on a wide range of mainly mammalian hosts. In addition, the identification of blood meal sources using silica-dried females is appropriate for studies of human malaria vectors in remote locations.
Collapse
|
26
|
Stresman G, Whittaker C, Slater HC, Bousema T, Cook J. Quantifying Plasmodium falciparum infections clustering within households to inform household-based intervention strategies for malaria control programs: An observational study and meta-analysis from 41 malaria-endemic countries. PLoS Med 2020; 17:e1003370. [PMID: 33119589 PMCID: PMC7595326 DOI: 10.1371/journal.pmed.1003370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/11/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Reactive malaria strategies are predicated on the assumption that individuals infected with malaria are clustered within households or neighbourhoods. Despite the widespread programmatic implementation of reactive strategies, little empirical evidence exists as to whether such strategies are appropriate and, if so, how they should be most effectively implemented. METHODS AND FINDINGS We collated 2 different datasets to assess clustering of malaria infections within households: (i) demographic health survey (DHS) data, integrating household information and patent malaria infection, recent fever, and recent treatment status in children; and (ii) data from cross-sectional and reactive detection studies containing information on the household and malaria infection status (patent and subpatent) of all-aged individuals. Both datasets were used to assess the odds of infections clustering within index households, where index households were defined based on whether they contained infections detectable through one of 3 programmatic strategies: (a) Reactive Case Detection (RACD) classifed by confirmed clinical cases, (b) Mass Screen and Treat (MSAT) classifed by febrile, symptomatic infections, and (c) Mass Test and Treat (MTAT) classifed by infections detectable using routine diagnostics. Data included 59,050 infections in 208,140 children under 7 years old (median age = 2 years, minimum = 2, maximum = 7) by microscopy/rapid diagnostic test (RDT) from 57 DHSs conducted between November 2006 and December 2018 from 23 African countries. Data representing 11,349 infections across all ages (median age = 22 years, minimum = 0.5, maximum = 100) detected by molecular tools in 132,590 individuals in 43 studies published between April 2006 and May 2019 in 20 African, American, Asian, and Middle Eastern countries were obtained from the published literature. Extensive clustering was observed-overall, there was a 20.40 greater (95% credible interval [CrI] 0.35-20.45; P < 0.001) odds of patent infections (according to the DHS data) and 5.13 greater odds (95% CI 3.85-6.84; P < 0.001) of molecularly detected infections (from the published literature) detected within households in which a programmatically detectable infection resides. The strongest degree of clustering identified by polymerase chain reaction (PCR)/ loop mediated isothermal amplification (LAMP) was observed using the MTAT strategy (odds ratio [OR] = 6.79, 95% CI 4.42-10.43) but was not significantly different when compared to MSAT (OR = 5.2, 95% CI 3.22-8.37; P-difference = 0.883) and RACD (OR = 4.08, 95% CI 2.55-6.53; P-difference = 0.29). Across both datasets, clustering became more prominent when transmission was low. However, limitations to our analysis include not accounting for any malaria control interventions in place, malaria seasonality, or the likely heterogeneity of transmission within study sites. Clustering may thus have been underestimated. CONCLUSIONS In areas where malaria transmission is peri-domestic, there are programmatic options for identifying households where residual infections are likely to be found. Combining these detection strategies with presumptively treating residents of index households over a sustained time period could contribute to malaria elimination efforts.
Collapse
Affiliation(s)
- Gillian Stresman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Charlie Whittaker
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research and MRC Centre for Outbreak Analysis and Modelling, Imperial College London, London, United Kingdom
| | - Hannah C. Slater
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- PATH, Seattle, Washington, United States of America
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jackie Cook
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
27
|
Chan EYY, Sham TST, Shahzada TS, Dubois C, Huang Z, Liu S, Hung KK, Tse SL, Kwok KO, Chung PH, Kayano R, Shaw R. Narrative Review on Health-EDRM Primary Prevention Measures for Vector-Borne Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5981. [PMID: 32824754 PMCID: PMC7459832 DOI: 10.3390/ijerph17165981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 01/01/2023]
Abstract
Climate change is expanding the global at-risk population for vector-borne diseases (VBDs). The World Health Organization (WHO) health emergency and disaster risk management (health-EDRM) framework emphasises the importance of primary prevention of biological hazards and its value in protecting against VBDs. The framework encourages stakeholder coordination and information sharing, though there is still a need to reinforce prevention and recovery within disaster management. This keyword-search based narrative literature review searched databases PubMed, Google Scholar, Embase and Medline between January 2000 and May 2020, and identified 134 publications. In total, 10 health-EDRM primary prevention measures are summarised at three levels (personal, environmental and household). Enabling factor, limiting factors, co-benefits and strength of evidence were identified. Current studies on primary prevention measures for VBDs focus on health risk-reduction, with minimal evaluation of actual disease reduction. Although prevention against mosquito-borne diseases, notably malaria, has been well-studied, research on other vectors and VBDs remains limited. Other gaps included the limited evidence pertaining to prevention in resource-poor settings and the efficacy of alternatives, discrepancies amongst agencies' recommendations, and limited studies on the impact of technological advancements and habitat change on VBD prevalence. Health-EDRM primary prevention measures for VBDs require high-priority research to facilitate multifaceted, multi-sectoral, coordinated responses that will enable effective risk mitigation.
Collapse
Affiliation(s)
- Emily Ying Yang Chan
- Collaborating Centre for Oxford University and CUHK for Disaster and Medical Humanitarian Response (CCOUC), The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.H.); (S.L.); (K.K.C.H.)
- Nuffield Department of Medicine, University of Oxford, Oxford OX37BN, UK
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.S.T.S.); (T.S.S.); (S.L.A.T.); (K.O.K.); (P.-H.C.)
- GX Foundation, Hong Kong SAR, China;
- Accident & Emergency Medicine Academic Unit, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Tiffany Sze Tung Sham
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.S.T.S.); (T.S.S.); (S.L.A.T.); (K.O.K.); (P.-H.C.)
- GX Foundation, Hong Kong SAR, China;
| | - Tayyab Salim Shahzada
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.S.T.S.); (T.S.S.); (S.L.A.T.); (K.O.K.); (P.-H.C.)
- GX Foundation, Hong Kong SAR, China;
| | | | - Zhe Huang
- Collaborating Centre for Oxford University and CUHK for Disaster and Medical Humanitarian Response (CCOUC), The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.H.); (S.L.); (K.K.C.H.)
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.S.T.S.); (T.S.S.); (S.L.A.T.); (K.O.K.); (P.-H.C.)
| | - Sida Liu
- Collaborating Centre for Oxford University and CUHK for Disaster and Medical Humanitarian Response (CCOUC), The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.H.); (S.L.); (K.K.C.H.)
- GX Foundation, Hong Kong SAR, China;
| | - Kevin K.C. Hung
- Collaborating Centre for Oxford University and CUHK for Disaster and Medical Humanitarian Response (CCOUC), The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.H.); (S.L.); (K.K.C.H.)
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.S.T.S.); (T.S.S.); (S.L.A.T.); (K.O.K.); (P.-H.C.)
- Accident & Emergency Medicine Academic Unit, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Shelly L.A. Tse
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.S.T.S.); (T.S.S.); (S.L.A.T.); (K.O.K.); (P.-H.C.)
| | - Kin On Kwok
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.S.T.S.); (T.S.S.); (S.L.A.T.); (K.O.K.); (P.-H.C.)
| | - Pui-Hong Chung
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (T.S.T.S.); (T.S.S.); (S.L.A.T.); (K.O.K.); (P.-H.C.)
| | - Ryoma Kayano
- World Health Organization Centre for Health Development, Kobe 651-0073, Japan;
| | - Rajib Shaw
- Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan;
| |
Collapse
|
28
|
Escobar D, Ascencio K, Ortiz A, Palma A, Sánchez A, Fontecha G. Blood Meal Sources of Anopheles spp. in Malaria Endemic Areas of Honduras. INSECTS 2020; 11:insects11070450. [PMID: 32708582 PMCID: PMC7412045 DOI: 10.3390/insects11070450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 11/18/2022]
Abstract
Malaria remains a life-threatening disease in many tropical countries. Honduras has successfully reduced malaria transmission as different control methods have been applied, focusing mainly on indoor mosquitoes. The selective pressure exerted by the use of insecticides inside the households could modify the feeding behavior of the mosquitoes, forcing them to search for available animal hosts outside the houses. These animal hosts in the peridomicile could consequently become an important factor in maintaining vector populations in endemic areas. Herein, we investigated the blood meal sources and Plasmodium spp. infection on anophelines collected outdoors in endemic areas of Honduras. Individual PCR reactions with species-specific primers were used to detect five feeding sources on 181 visibly engorged mosquitoes. In addition, a subset of these mosquitoes was chosen for pathogen analysis by a nested PCR approach. Most mosquitoes fed on multiple hosts (2 to 4), and 24.9% of mosquitoes had fed on a single host, animal or human. Chicken and bovine were the most frequent blood meal sources (29.5% and 27.5%, respectively). The average human blood index (HBI) was 22.1%. None of the mosquitoes were found to be infected with Plasmodium spp. Our results show the opportunistic and zoophilic behavior of Anopheles mosquitoes in Honduras.
Collapse
Affiliation(s)
- Denis Escobar
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Krisnaya Ascencio
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Andrés Ortiz
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Adalid Palma
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
| | - Ana Sánchez
- Department of Health Sciences, Brock University, St. Catharines, ON L2V 5A2, Canada;
| | - Gustavo Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa 11101, Honduras; (D.E.); (K.A.); (A.O.); (A.P.)
- Correspondence: ; Tel.: +504-33935443
| |
Collapse
|