1
|
Karakasis P, Theofilis P, Patoulias D, Vlachakis PK, Antoniadis AP, Fragakis N. Diabetes-Driven Atherosclerosis: Updated Mechanistic Insights and Novel Therapeutic Strategies. Int J Mol Sci 2025; 26:2196. [PMID: 40076813 PMCID: PMC11900163 DOI: 10.3390/ijms26052196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The global rise in diabetes prevalence has significantly contributed to the increasing burden of atherosclerotic cardiovascular disease (ASCVD), a leading cause of morbidity and mortality in this population. Diabetes accelerates atherosclerosis through mechanisms such as hyperglycemia, oxidative stress, chronic inflammation, and epigenetic dysregulation, leading to unstable plaques and an elevated risk of cardiovascular events. Despite advancements in controlling traditional risk factors like dyslipidemia and hypertension, a considerable residual cardiovascular risk persists, highlighting the need for innovative therapeutic approaches. Emerging treatments, including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, epigenetic modulators, and RNA-based therapies, are showing promise in addressing the unique challenges of diabetes-associated ASCVD. Precision medicine strategies, such as nanoparticle-based drug delivery and cell-specific therapies, offer further potential for mitigating cardiovascular complications. Advances in multiomics and systems biology continue to deepen our understanding of the molecular mechanisms driving diabetes-associated atherosclerosis. This review synthesizes recent advances in understanding the pathophysiology and treatment of diabetes-related atherosclerosis, offering a roadmap for future research and precision medicine approaches to mitigate cardiovascular risk in this growing population.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Panagiotis Theofilis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, Faculty of Medicine, School of Health Sciences Aristotle, University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panayotis K. Vlachakis
- First Cardiology Department, School of Medicine, Hippokration General Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece; (P.T.); (P.K.V.)
| | - Antonios P. Antoniadis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| | - Nikolaos Fragakis
- Second Department of Cardiology, Medical School, Hippokration General Hospital, Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54124 Thessaloniki, Greece; (A.P.A.); (N.F.)
| |
Collapse
|
2
|
Zhang Y, Desai N, Connolly D. The Use of Apabetalone in Reducing Cardiovascular Outcomes, Based on the Current Evidence and Trials. Eur Cardiol 2025; 20:e04. [PMID: 40134629 PMCID: PMC11934121 DOI: 10.15420/ecr.2023.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/18/2024] [Indexed: 03/27/2025] Open
Abstract
The use of apabetalone, a novel therapeutic agent targeting epigenetic regulation, has been the source of much interest in its ability to subvert major adverse cardiovascular events. Derived from BETonMACE, clinical trials have explored its potential benefits in improving cardiovascular health. Apabetalone operates through selective inhibition of bromodomain and extra-terminal domain proteins, influencing gene expression and cellular pathways implicated in cardiovascular disease progression to influence lipid metabolism, downplay oxidative burden and reduce inflammation. The BETonMACE trial recruited patients with type 2 diabetes and recent acute coronary syndrome events. The primary endpoint was the composite of cardiovascular death, MI and stroke. This article explores the various clinical research and outcomes related to apabetalone and its use in the context of its proposed mechanism.
Collapse
Affiliation(s)
- Yimeng Zhang
- Department of Cardiology, Sandwell and West Birmingham Trust West Midlands, UK
| | - Nimai Desai
- Department of Cardiology, Sandwell and West Birmingham Trust West Midlands, UK
| | - Derek Connolly
- Department of Cardiology, Sandwell and West Birmingham Trust West Midlands, UK
| |
Collapse
|
3
|
Tioka L, Diez RC, Sönnerborg A, van de Klundert MAA. Latency Reversing Agents and the Road to a HIV Cure. Pathogens 2025; 14:232. [PMID: 40137717 PMCID: PMC11944434 DOI: 10.3390/pathogens14030232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
HIV-1 infection cannot be cured due to the presence of HIV-1 latently infected cells. These cells do not produce the virus, but they can resume virus production at any time in the absence of antiretroviral therapy. Therefore, people living with HIV (PLWH) need to take lifelong therapy. Strategies have been coined to eradicate the viral reservoir by reactivating HIV-1 latently infected cells and subsequently killing them. Various latency reversing agents (LRAs) that can reactivate HIV-1 in vitro and ex vivo have been identified. The most potent LRAs also strongly activate T cells and therefore cannot be applied in vivo. Many LRAs that reactivate HIV in the absence of general T cell activation have been identified and have been tested in clinical trials. Although some LRAs could reduce the reservoir size in clinical trials, so far, they have failed to eradicate the reservoir. More recently, immune modulators have been applied in PLWH, and the first results seem to indicate that these may reduce the reservoir and possibly improve immunological control after therapy interruption. Potentially, combinations of LRAs and immune modulators could reduce the reservoir size, and in the future, immunological control may enable PLWH to live without developing HIV-related disease in the absence of therapy.
Collapse
Affiliation(s)
- Louis Tioka
- Faculty of Medicine, Erlangen-Nürnberg, Friedrich-Alexander-Universität, 91054 Erlangen, Germany
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rafael Ceña Diez
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 17177 Stockholm, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | | |
Collapse
|
4
|
Trepanier CM, Burke-Kleinman J, Hou G, Rubianto J, Strauss BH, Bendeck MP, Santerre JP. Delivery of N-Cadherin Targeting Peptides to Vascular Tissues by Surface-Modified Polyurethane Nanoparticles via a Drug-Coated Balloon. ACS Biomater Sci Eng 2025; 11:1013-1024. [PMID: 39808426 DOI: 10.1021/acsbiomaterials.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration in vitro and limit intimal thickening in early animal PTA models. To enable successful tissue transfer in the current work, a nanoparticle excipient system previously demonstrated to be an effective carrier of NCad in vitro was integrated with customized DCB coating methodologies designed to prevent therapeutic loss during delivery. DCB design took into consideration four components: (1) the angioplasty balloon; (2) a poly(ethylene oxide) (PEO) monolayer acting as a hydrophilic spacer between the balloon surface and the nanoparticles to assist with improved nanoparticle release; (3) surface-modified degradable polar hydrophobic ionic polyurethane (D-PHI) nanoparticles loaded with NCad to facilitate the transport of the therapeutic peptide into vascular tissue; and (4) a PEO sacrificial coating applied over the nanoparticle excipient layer to prevent premature losses during transit to the artery. The nanoparticle-DCB platform successfully delivered NCad to rat carotid tissue, with superior efficacy and increased permeation within the vessel wall compared with soluble NCad infusion alone. Nanoscale technologies in conjunction with enhanced DCB design properties hold promise in advancing the localized delivery of preventive restenosis therapies in vascular disease.
Collapse
Affiliation(s)
- Chantal M Trepanier
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada
| | - Jonah Burke-Kleinman
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Guangpei Hou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonathan Rubianto
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada
| | - Bradley H Strauss
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Schulich Heart Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Michelle P Bendeck
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E3, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
5
|
Lyu K, Ren Y, Mou J, Yang Y, Pan Y, Zhang H, Li Y, Cao D, Chen L, Chen D, Guo D, Xiong B. Structure-Based Rational Design and Evaluation of BET-Aurora Kinase Dual-Inhibitors for Treatment of Cancers. J Med Chem 2025; 68:1344-1364. [PMID: 39844725 DOI: 10.1021/acs.jmedchem.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Simultaneous inhibition of the bromodomain and extra-terminal domain and Aurora kinases is a promising anticancer therapeutic strategy. Based on our previous study on BET-kinase dual inhibitors, we employed the molecular docking approach to design novel dual BET-Aurora kinase A inhibitors. Through several rounds of optimization and with the guidance of the solved cocrystal structure of BRD4 bound to inhibitor 27, we finally obtained a series of highly potent dual BET-Aurora kinase A inhibitors. Compound 38 exhibited strong affinity toward both BRD4 and Aurora kinase A. It also showed good antiproliferative activities on diverse cancer cell lines, good pharmacokinetic profiles, and favorable antitumor efficacy in renal cell cancer and colon cancer xenograft models with TGI of 45.99% and 53.06%, respectively. The development of compound 38 reinforces the concept that a rational design may achieve dual inhibitors targeting specific kinases and bromodomain proteins.
Collapse
Affiliation(s)
- Kaikai Lyu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ying Ren
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yunfang Yang
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Yaoyao Pan
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Huijie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yanlian Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lin Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Danqi Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221006, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
6
|
Khan AW, Jandeleit-Dahm KAM. Atherosclerosis in diabetes mellitus: novel mechanisms and mechanism-based therapeutic approaches. Nat Rev Cardiol 2025:10.1038/s41569-024-01115-w. [PMID: 39805949 DOI: 10.1038/s41569-024-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Atherosclerosis is a disease of large and medium arteries that can lead to life-threatening cardiovascular and cerebrovascular consequences, such as myocardial infarction and stroke. Moreover, atherosclerosis is a major contributor to cardiovascular-related mortality in individuals with diabetes mellitus. Diabetes aggravates the pathobiological mechanisms that underlie the development of atherosclerosis. Currently available anti-atherosclerotic drugs or strategies solely focus on optimal control of systemic risk factors, including hyperglycaemia and dyslipidaemia, but do not adequately target the diabetes-exacerbated mechanisms of atherosclerotic cardiovascular disease, highlighting the need for targeted, mechanism-based therapies. This Review focuses on emerging pathological mechanisms and related novel therapeutic targets in atherosclerotic cardiovascular disease in patients with diabetes.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
7
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2025; 55:e14326. [PMID: 39370572 PMCID: PMC11628670 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Raul D. Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor)University of Sao Paulo Medical School HospitalSao PauloBrazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Stefano Carugo
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
8
|
Ha AW, Meliton LN, Chen W, Wang L, Maienschein‐Cline M, Jacobson JR, Letsiou E, Dudek SM. Epigenetic mechanisms mediate cytochrome P450 1A1 expression and lung endothelial injury caused by MRSA in vitro and in vivo. FASEB J 2024; 38:e70205. [PMID: 39588951 PMCID: PMC11590412 DOI: 10.1096/fj.202401812r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of severe pneumonia and acute respiratory distress syndrome (ARDS). To advance our mechanistic understanding of this important pathogen, we characterized the effects of MRSA-induced epigenetic modification of histone 3 lysine 9 acetylation (H3K9ac), an activator of gene transcription, on lung endothelial cells (EC), a critical site of ARDS pathophysiology. Chromatin immunoprecipitation and sequencing (ChIP-seq) analysis revealed that MRSA induces H3K9ac in the promoter regions of multiple genes, with the highest ranked peak annotated to the CYP1A1 gene. Subsequent experiments confirm that MRSA increases CYP1A1 protein and mRNA expression, and its enzymatic activity in EC. Epigenetic inhibitors (C646, RVX-208) reduce MRSA-induced CYP1A1 expression and inflammatory responses, including cytokine release and adhesion molecule expression. Inhibition of the Aryl hydrocarbon receptor (Ahr), a known mediator of CYP1A1 expression, blocks MRSA-induced upregulation of CYP1A1 mRNA and protein expression, enzyme activity, and cytokine release. Reduction of CYP1A1 protein expression by siRNA or inhibition of its activity by rhapontigenin attenuated MRSA-induced EC permeability and inflammatory responses. In a mouse model of MRSA-induced acute lung injury (ALI), inhibition of CYP1A1 activity by rhapontigenin improved multiple indices of ALI, including bronchoalveolar lavage (BAL) protein concentration, cytokine levels, and markers of endothelial damage. Analysis of publicly available data suggests upregulation of CYP1A1 expression in ARDS patients compared to ICU controls. In summary, these studies provide new insights into MRSA-induced lung injury and identify a novel functional role for epigenetic upregulation of CYP1A1 in lung EC during ARDS pathogenesis.
Collapse
Affiliation(s)
- Alison W. Ha
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lucille N. Meliton
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lichun Wang
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Mark Maienschein‐Cline
- Research Informatics Core, Research Resources CenterUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
9
|
DeVaughn H, Rich HE, Shadid A, Vaidya PK, Doursout MF, Shivshankar P. Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology. Int J Mol Sci 2024; 25:12823. [PMID: 39684535 PMCID: PMC11641342 DOI: 10.3390/ijms252312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation. Pulmonary hypertension is a disease with a poor prognosis and an average life expectancy of 2-3 years that leads to vascular remodeling of the pulmonary arteries; the pulmonary arteries are essential to host homeostasis, as they divert deoxygenated blood from the right ventricle of the heart to the lungs for gas exchange. This review focuses on direct links between the complement system's involvement in pulmonary hypertension, along with autoimmune conditions, and the reliance on the complement system for vascular remodeling processes of the pulmonary artery. Furthermore, circadian rhythmicity is highlighted as the disrupted homeostatic mechanism in the inflammatory consequences in the vascular remodeling within the pulmonary arteries, which could potentially open new therapeutic cues. The current treatment options for pulmonary hypertension are discussed with clinical trials using complement inhibitors and potential therapeutic targets that impact immune cell functions and complement activation, which could alleviate symptoms and block the progression of the disease. Further research on complement's involvement in interstitial lung diseases and pulmonary hypertension could prove beneficial for our understanding of these various diseases and potential treatment options to prevent vascular remodeling of the pulmonary arteries.
Collapse
Affiliation(s)
- Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Priyanka K. Vaidya
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
| | - Marie-Francoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX 77030, USA;
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA; (H.D.); (H.E.R.); (A.S.); (P.K.V.)
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
10
|
Damiano G, Rinaldi R, Raucci A, Molinari C, Sforza A, Pirola S, Paneni F, Genovese S, Pompilio G, Vinci MC. Epigenetic mechanisms in cardiovascular complications of diabetes: towards future therapies. Mol Med 2024; 30:161. [PMID: 39333854 PMCID: PMC11428340 DOI: 10.1186/s10020-024-00939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The pathophysiological mechanisms of cardiovascular disease and microvascular complications in diabetes have been extensively studied, but effective methods of prevention and treatment are still lacking. In recent years, DNA methylation, histone modifications, and non-coding RNAs have arisen as possible mechanisms involved in the development, maintenance, and progression of micro- and macro-vascular complications of diabetes. Epigenetic changes have the characteristic of being heritable or deletable. For this reason, they are now being studied as a therapeutic target for the treatment of diabetes and the prevention or for slowing down its complications, aiming to alleviate the personal and social burden of the disease.This review addresses current knowledge of the pathophysiological links between diabetes and cardiovascular complications, focusing on the role of epigenetic modifications, including DNA methylation and histone modifications. In addition, although the treatment of complications of diabetes with "epidrugs" is still far from being a reality and faces several challenges, we present the most promising molecules and approaches in this field.
Collapse
Affiliation(s)
- Giulia Damiano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Raffaella Rinaldi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Angela Raucci
- Unit of Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Chiara Molinari
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Annalisa Sforza
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
| | - Sergio Pirola
- Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich and University of Zürich, Zürich, Switzerland
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Stefano Genovese
- Diabetes, Endocrine and Metabolic Diseases Unit, Centro Cardiologico Monzino IRCCS, Milano, 20138, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milano, 20100, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milano, 20138, Italy.
| |
Collapse
|
11
|
Aziz M, Jandeleit-Dahm KA, Khan AW. Interplay between epigenetic mechanisms and transcription factors in atherosclerosis. Atherosclerosis 2024; 395:117615. [PMID: 38917706 DOI: 10.1016/j.atherosclerosis.2024.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
Cardiovascular diseases (CVD), including coronary heart disease and stroke, comprise the number one cause of mortality worldwide. A major contributor to CVD is atherosclerosis, which is a low-grade inflammatory disease of vasculature that involves a pathological build-up of plaque within the arterial walls. Studies have shown that regulation of gene expression via transcription factors and epigenetic mechanisms play a fundamental role in transcriptomic changes linked to the development of atherosclerosis. Chromatin remodeling is a reversible phenomenon and studies have supported the clinical application of chromatin-modifying agents for the prevention and treatment of CVD. In addition, pre-clinical studies have identified multiple transcription factors as potential therapeutic targets in combating atherosclerotic CVD. Although interaction between transcription factors and epigenetic mechanisms facilitate gene regulation, a limited number of studies appreciate this crosstalk in the context of CVD. Here, we reviewed this gene regulatory mechanism underappreciated in atherosclerosis, which will highlight the mechanisms underlying novel therapeutics targeting epigenetic modifiers and transcription factors in atherosclerosis.
Collapse
Affiliation(s)
- Misbah Aziz
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Karin Am Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia; German Diabetes Centre, Leibniz Centre for Diabetes Research at the Heinrich Heine University, Dusseldorf, Germany
| | - Abdul Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
12
|
Rios FJ, de Ciuceis C, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Lopreiato M, Mavraganis G, Mengozzi A, Montezano AC, Stavropoulos K, Winklewski PJ, Wolf J, Costantino S, Doumas M, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Virdis A. Mechanisms of Vascular Inflammation and Potential Therapeutic Targets: A Position Paper From the ESH Working Group on Small Arteries. Hypertension 2024; 81:1218-1232. [PMID: 38511317 DOI: 10.1161/hypertensionaha.123.22483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - George Pavlidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
| | - Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Marcin Hellmann
- Cardiac Diagnostics (M.H.), Medical University of Gdansk, Poland
| | - Stefano Masi
- Institute of Cardiovascular Science, University College London, United Kingdom (S.M.)
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Mariarosaria Lopreiato
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa (A.M.)
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Konstantinos Stavropoulos
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Greece (K. Stavropoulos)
| | - Pawel J Winklewski
- Departments of Human Physiology (P.J.W.), Medical University of Gdansk, Poland
| | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Sarah Costantino
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
| | - Michael Doumas
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Greece (A.L., E.G.)
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (F.Q.-T., G.G.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute, University of Edinburgh, United Kingdom (R.N., T.J.G.)
- Department of Internal Medicine, Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland (R.N., T.J.G.)
| | - Ignatios Ikonomidis
- Medical School (G.P., I.I.), National and Kapodistrian University of Athens
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2-Cardiology Department, Attikon Hospital, Athens, Greece (G.P., I.I.)
| | - Krzysztof Narkiewicz
- Department of Hypertension and Diabetology, Center of Translational Medicine (E.D., J.W., K.N.) and M.D.)
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, Department of Cardiology, University Hospital Zurich, University of Zurich, Switzerland (A.M., F.P.)
- University Heart Center (S.C., F.P.), University Hospital Zurich, Switzerland
- Department of Research and Education (F.P.), University Hospital Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia (C.d.C., C.A.-R., D.R.)
- Division of Medicine, Spedali Civili di Brescia, Italy (D.R.)
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School (G.G., G.M., K. Stamatelopoulos), National and Kapodistrian University of Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, United Kingdom (S.T.-C., K. Stellos)
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim (K. Stellos), Heidelberg University, Germany
- Department of Cardiology, University Hospital Mannheim (K. Stellos), Heidelberg University, Germany
- German Centre for Cardiovascular Research, Heidelberg/Mannheim Partner Site (K. Stellos)
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada (F.J.R., L.L.C., A.C.M., R.M.T.)
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Italy (S.M., M.L., A.M., S.T., A.V.)
| |
Collapse
|
13
|
Di Fiore V, Cappelli F, Del Punta L, De Biase N, Armenia S, Maremmani D, Lomonaco T, Biagini D, Lenzi A, Mazzola M, Tricò D, Masi S, Mengozzi A, Pugliese NR. Novel Techniques, Biomarkers and Molecular Targets to Address Cardiometabolic Diseases. J Clin Med 2024; 13:2883. [PMID: 38792427 PMCID: PMC11122330 DOI: 10.3390/jcm13102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiometabolic diseases (CMDs) are interrelated and multifactorial conditions, including arterial hypertension, type 2 diabetes, heart failure, coronary artery disease, and stroke. Due to the burden of cardiovascular morbidity and mortality associated with CMDs' increasing prevalence, there is a critical need for novel diagnostic and therapeutic strategies in their management. In clinical practice, innovative methods such as epicardial adipose tissue evaluation, ventricular-arterial coupling, and exercise tolerance studies could help to elucidate the multifaceted mechanisms associated with CMDs. Similarly, epigenetic changes involving noncoding RNAs, chromatin modulation, and cellular senescence could represent both novel biomarkers and targets for CMDs. Despite the promising data available, significant challenges remain in translating basic research findings into clinical practice, highlighting the need for further investigation into the complex pathophysiology underlying CMDs.
Collapse
Affiliation(s)
- Valerio Di Fiore
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Federica Cappelli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Lavinia Del Punta
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Davide Maremmani
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; (T.L.)
| | - Matteo Mazzola
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| | - Nicola Riccardo Pugliese
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56124 Pisa, Italy (F.C.)
| |
Collapse
|
14
|
Rosenthal ZC, Fass DM, Payne NC, She A, Patnaik D, Hennig KM, Tesla R, Werthmann GC, Guhl C, Reis SA, Wang X, Chen Y, Placzek M, Williams NS, Hooker J, Herz J, Mazitschek R, Haggarty SJ. Epigenetic modulation through BET bromodomain inhibitors as a novel therapeutic strategy for progranulin-deficient frontotemporal dementia. Sci Rep 2024; 14:9064. [PMID: 38643236 PMCID: PMC11032351 DOI: 10.1038/s41598-024-59110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.
Collapse
Affiliation(s)
- Zachary C Rosenthal
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - N Connor Payne
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Angela She
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Krista M Hennig
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Tesla
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gordon C Werthmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Surya A Reis
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yueting Chen
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Placzek
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacob Hooker
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Choi HS, Choi AY, Kopp JB, Winkler CA, Cho SK. Review of COVID-19 Therapeutics by Mechanism: From Discovery to Approval. J Korean Med Sci 2024; 39:e134. [PMID: 38622939 PMCID: PMC11018982 DOI: 10.3346/jkms.2024.39.e134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
The global research and pharmaceutical community rapidly mobilized to develop treatments for coronavirus disease 2019 (COVID-19). Existing treatments have been repurposed and new drugs have emerged. Here we summarize mechanisms and clinical trials of COVID-19 therapeutics approved or in development. Two reviewers, working independently, reviewed published data for approved COVID-19 vaccines and drugs, as well as developmental pipelines, using databases from the following organizations: United States Food and Drug Administration (US-FDA), European Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency (PMDA), and ClinicalTrials.gov. In all, 387 drugs were found for initial review. After removing unrelated trials and drugs, 66 drugs were selected, including 17 approved drugs and 49 drugs under development. These drugs were classified into six categories: 1) drugs targeting the viral life cycle 2) Anti-severe acute respiratory syndrome coronavirus 2 Monoclonal Antibodies, 3) immunomodulators, 4) anti-coagulants, 5) COVID-19-induced neuropathy drugs, and 6) other therapeutics. Among the 49 drugs under development are the following: 6 drugs targeting the viral life cycle, 12 immunosuppression drugs, 2 immunostimulants, 2 HIF-PHD targeting drugs, 3 GM-CSF targeting drugs, 5 anti-coagulants, 2 COVID-19-induced neuropathy drugs, and 17 others. This review provides insight into mechanisms of action, properties, and indications for COVID-19 medications.
Collapse
Affiliation(s)
- Hee Sun Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - A Young Choi
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases, Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cheryl A Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Sung Kweon Cho
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
16
|
Dhulkifle H, Diab MI, Algonaiah M, Korashy HM, Maayah ZH. Apabetalone (RVX-208): A Potential Epigenetic Therapy for the Treatment of Cardiovascular, Renal, Neurological, Viral, and Cancer Disorders. ACS Pharmacol Transl Sci 2024; 7:546-559. [PMID: 38481679 PMCID: PMC10928887 DOI: 10.1021/acsptsci.3c00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/25/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2025]
Abstract
Bromodomain and extra-terminal domain proteins (BET proteins) are epigenetic reader proteins that have been implicated in regulating gene expression through binding to chromatin and interaction with transcription factors. These proteins are located in the nucleus and are responsible for recognizing acetylated lysine residues on histones, reading epigenetic messages, recruiting key transcription factors, and thereby regulating gene expression. BET proteins control the transcription of genes responsible for maladaptive effects in inflammation, cancer, and renal and cardiovascular diseases. Given the multifaceted role of BET proteins in the pathogenesis of various diseases, several small molecule inhibitors of BET proteins have been developed as potential therapeutic targets for treating different diseases in recent years. However, while many nonselective BET inhibitors are indicated for the treatment of cancer, a selective BET inhibitor, apabetalone, is the only oral BET inhibitor in phase III clinical trials for the treatment of cardiovascular diseases and others. Thus, this review aims to present and discuss the preclinical and clinical evidence for the beneficial effects and mechanism of action of apabetalone for treating various diseases.
Collapse
Affiliation(s)
- Hevna Dhulkifle
- Department
of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Mohammad Issam Diab
- Department
of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Majed Algonaiah
- Department
of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hesham M. Korashy
- Department
of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Zaid H. Maayah
- Department
of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
17
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
18
|
Tzani A, Haemmig S, Cheng HS, Perez-Cremades D, Augusto Heuschkel M, Jamaiyar A, Singh S, Aikawa M, Yu P, Wang T, Ye S, Feinberg MW, Plutzky J. FAM222A, Part of the BET-Regulated Basal Endothelial Transcriptome, Is a Novel Determinant of Endothelial Biology and Angiogenesis-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:143-155. [PMID: 37942611 PMCID: PMC10840377 DOI: 10.1161/atvbaha.123.319909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND BETs (bromodomain and extraterminal domain-containing epigenetic reader proteins), including BRD4 (bromodomain-containing protein 4), orchestrate transcriptional programs induced by pathogenic stimuli, as intensively studied in cardiovascular disease and elsewhere. In endothelial cells (ECs), BRD4 directs induced proinflammatory, proatherosclerotic transcriptional responses; BET inhibitors, like JQ1, repress these effects and decrease atherosclerosis. While BET effects in pathogenic conditions have prompted therapeutic BET inhibitor development, BET action under basal conditions, including ECs, has remained understudied. To understand BET action in basal endothelial transcriptional programs, we first analyzed EC RNA-Seq data in the absence versus presence of JQ1 before using BET regulation to identify novel determinants of EC biology and function. METHODS RNA-Seq datasets of human umbilical vein ECs without and with JQ1 treatment were analyzed. After identifying C12orf34, also known as FAM222A (family with sequence similarity 222 member A), as a previously unreported, basally expressed, potently JQ1-induced EC gene, FAM222A was studied in endothelial and angiogenic responses in vitro using small-interference RNA silencing and lentiviral overexpression, in vitro, ex vivo and in vivo, including aortic sprouting, matrigel plug assays, and murine neonatal oxygen-induced retinopathy. RESULTS Resting EC RNA-Seq data indicate BETs direct transcriptional programs underlying core endothelial properties including migration, proliferation, and angiogenesis. BET inhibition in resting ECs also significantly induced a subset of mRNAs, including FAM222A-a unique BRD4-regulated gene with no reported EC role. Silencing endothelial FAM222A significantly decreased cellular proliferation, migration, network formation, aorta sprouting, and Matrigel plug vascularization through coordinated modulation of VEGF (vascular endothelial growth factor) and NOTCH mediator expression in vitro, ex vivo, in vivo; lentiviral FAM222A overexpression had opposite effects. In vivo, siFAM222A significantly repressed retinal revascularization in neonatal murine oxygen-induced retinopathy through similar angiogenic signaling modulation. CONCLUSIONS BET control over the basal endothelial transcriptome includes FAM222A, a novel, BRD4-regulated, key determinant of endothelial biology and angiogenesis.
Collapse
Affiliation(s)
- Aspasia Tzani
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Stefan Haemmig
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Henry S. Cheng
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Daniel Perez-Cremades
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Marina Augusto Heuschkel
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Anurag Jamaiyar
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Sasha Singh
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Masanori Aikawa
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Paul Yu
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Tianxi Wang
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Sun Ye
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Mark W. Feinberg
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Jorge Plutzky
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|
19
|
Liu ZB, Fan XY, Wang CW, Ye X, Wu CJ. Potentially active compounds that improve PAD through angiogenesis: A review. Biomed Pharmacother 2023; 168:115634. [PMID: 37879211 DOI: 10.1016/j.biopha.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Peripheral arterial disease (PAD) has been historically neglected, which has resulted in a lack of effective drugs in clinical practice. However, with the increasing prevalence of diseases like atherosclerosis and diabetes, the incidence of PAD is rising and cannot be ignored. Researchers are exploring the potential of promoting angiogenesis through exogenous compounds to improve PAD. This paper focuses on the therapeutic effect of natural products (Salidroside, Astragaloside IV, etc.) and synthetic compounds (Cilostazol, Dapagliflozin, etc.). Specifically, it examines how they can promote autocrine secretion of vascular endothelial cells, enhance cell paracrine interactions, and regulate endothelial progenitor cell function. The activation of these effects may be closely related to PI3K, AMPK, and other pathways. Overall, these exogenous compounds have promising therapeutic potential for PAD. This study aims to summarize the potential active compounds, provide a variety of options for the search for drugs for the treatment of PAD, and bring light to the treatment of patients.
Collapse
Affiliation(s)
- Zi-Bo Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin-Yun Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen-Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xun Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
Mengozzi A, de Ciuceis C, Dell'oro R, Georgiopoulos G, Lazaridis A, Nosalski R, Pavlidis G, Tual-Chalot S, Agabiti-Rosei C, Anyfanti P, Camargo LL, Dąbrowska E, Quarti-Trevano F, Hellmann M, Masi S, Mavraganis G, Montezano AC, Rios FJ, Winklewski PJ, Wolf J, Costantino S, Gkaliagkousi E, Grassi G, Guzik TJ, Ikonomidis I, Narkiewicz K, Paneni F, Rizzoni D, Stamatelopoulos K, Stellos K, Taddei S, Touyz RM, Triantafyllou A, Virdis A. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. J Hypertens 2023; 41:1521-1543. [PMID: 37382158 DOI: 10.1097/hjh.0000000000003503] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa
| | - Carolina de Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
| | - Raffaella Dell'oro
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Georgios Georgiopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Antonios Lazaridis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - George Pavlidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Edyta Dąbrowska
- Department of Hypertension and Diabetology, Center of Translational Medicine
- Center of Translational Medicine
| | - Fosca Quarti-Trevano
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University, Gdansk, Poland
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, London, UK
| | - Georgios Mavraganis
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Francesco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | | | - Jacek Wolf
- Department of Hypertension and Diabetology, Center of Translational Medicine
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
| | - Eugenia Gkaliagkousi
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences; Queen's Medical Research Institute; University of Edinburgh, University of Edinburgh, Edinburgh, UK
- Department of Internal Medicine
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Ignatios Ikonomidis
- Preventive Cardiology Laboratory and Clinic of Cardiometabolic Diseases, 2 Cardiology Department, Attikon Hospital, Athens
- Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia
- Division of Medicine, Spedali Civili di Brescia, Montichiari, Brescia, Italy
| | - Kimon Stamatelopoulos
- Angiology and Endothelial Pathophysiology Unit, Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, Athens
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site
- Department of Cardiology, University Hospital Mannheim, Heidelberg University, Manheim, Germany
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, Canada
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Sun Z, Fan J, Dang Y, Zhao Y. Enhancer in cancer pathogenesis and treatment. Genet Mol Biol 2023; 46:e20220313. [PMID: 37548349 PMCID: PMC10405138 DOI: 10.1590/1678-4685-gmb-2022-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Enhancers are essential cis-acting regulatory elements that determine cell identity and tumor progression. Enhancer function is dependent on the physical interaction between the enhancer and its target promoter inside its local chromatin environment. Enhancer reprogramming is an important mechanism in cancer pathogenesis and can be driven by both cis and trans factors. Super enhancers are acquired at oncogenes in numerous cancer types and represent potential targets for cancer treatment. BET and CDK inhibitors act through mechanisms of enhancer function and have shown promising results in therapy for various types of cancer. Genome editing is another way to reprogram enhancers in cancer treatment. The relationship between enhancers and cancer has been revised by several authors in the past few years, which mainly focuses on the mechanisms by which enhancers can impact cancer. Here, we emphasize SE's role in cancer pathogenesis and the new therapies involving epigenetic regulators (BETi and CDKi). We suggest that understanding mechanisms of activity would aid clinical success for these anti-cancer agents.
Collapse
Affiliation(s)
- Zhuo Sun
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| | - Jinbo Fan
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
| | - Yixiong Dang
- Xi’an Medical University, School of Public Health, Weiyang District, Xi’an, 710021 Shaanxi, China
| | - Yufeng Zhao
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| |
Collapse
|
22
|
Gilham D, Wasiak S, Rakai BD, Fu L, Tsujikawa LM, Sarsons CD, Carestia A, Lebioda K, Johansson JO, Sweeney M, Kalantar-Zadeh K, Kulikowski E. Apabetalone Downregulates Fibrotic, Inflammatory and Calcific Processes in Renal Mesangial Cells and Patients with Renal Impairment. Biomedicines 2023; 11:1663. [PMID: 37371758 DOI: 10.3390/biomedicines11061663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Epigenetic mechanisms are implicated in transcriptional programs driving chronic kidney disease (CKD). Apabetalone is an orally available inhibitor of bromodomain and extraterminal (BET) proteins, which are epigenetic readers that modulate gene expression. In the phase 3 BETonMACE trial, apabetalone reduced risk of major adverse cardiac events (MACE) by 50% in the CKD subpopulation, indicating favorable effects along the kidney-heart axis. Activation of human renal mesangial cells (HRMCs) to a contractile phenotype that overproduces extracellular matrix (ECM) and inflammatory cytokines, and promotes calcification, frequently accompanies CKD to drive pathology. Here, we show apabetalone downregulated HRMC activation with TGF-β1 stimulation by suppressing TGF-β1-induced α-smooth muscle actin (α-SMA) expression, α-SMA assembly into stress fibers, enhanced contraction, collagen overproduction, and expression of key drivers of fibrosis, inflammation, or calcification including thrombospondin, fibronectin, periostin, SPARC, interleukin 6, and alkaline phosphatase. Lipopolysaccharide-stimulated expression of inflammatory genes IL6, IL1B, and PTGS2 was also suppressed. Transcriptomics confirmed apabetalone affected gene sets of ECM remodeling and integrins. Clinical translation of in vitro results was indicated in CKD patients where a single dose of apabetalone reduced plasma levels of key pro-fibrotic and inflammatory markers, and indicated inhibition of TGF-β1 signaling. While plasma proteins cannot be traced to the kidney alone, anti-fibrotic and anti-inflammatory effects of apabetalone identified in this study are consistent with the observed decrease in cardiovascular risk in CKD patients.
Collapse
Affiliation(s)
- Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Brooke D Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Laura M Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | | | - Agostina Carestia
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Kenneth Lebioda
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Jan O Johansson
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA 94105, USA
| | - Michael Sweeney
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA 94105, USA
| | - Kamyar Kalantar-Zadeh
- Harbor-UCLA Medical Center, University of California Los Angeles, 1000 W Carson St, Torrance, CA 90502, USA
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| |
Collapse
|
23
|
Dual mechanism: Epigenetic inhibitor apabetalone reduces SARS-CoV-2 Delta and Omicron variant spike binding and attenuates SARS-CoV-2 RNA induced inflammation. Int Immunopharmacol 2023; 117:109929. [PMID: 36857935 PMCID: PMC9946890 DOI: 10.1016/j.intimp.2023.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
The SARS-CoV-2 virus initiates infection via interactions between the viral spike protein and the ACE2 receptors on host cells. Variants of concern have mutations in the spike protein that enhance ACE2 binding affinity, leading to increased virulence and transmission. Viral RNAs released after entry into host cells trigger interferon-I (IFN-I) mediated inflammatory responses for viral clearance and resolution of infection. However, overreactive host IFN-I responses and pro-inflammatory signals drive COVID-19 pathophysiology and disease severity during acute infection. These immune abnormalities also lead to the development of post-COVID syndrome if persistent. Novel therapeutics are urgently required to reduce short- and long-term pathologic consequences associated with SARS-CoV-2 infection. Apabetalone, an inhibitor of epigenetic regulators of the BET protein family, is a candidate for COVID-19 treatment via a dual mechanism of action. In vitro, apabetalone downregulates ACE2 gene expression to limit SARS-CoV-2 entry and propagation. In pre-clinical models and patients treated for cardiovascular disease, apabetalone inhibits expression of inflammatory mediators involved in the pathologic cytokine storm (CS) stimulated by various cytokines. Here we show apabetalone treatment of human lung epithelial cells reduces binding of viral spike protein regardless of mutations found in the highly contagious Delta variant and heavily mutated Omicron. Additionally, we demonstrate that apabetalone counters expression of pro-inflammatory factors with roles in CS and IFN-I signaling in lung cells stimulated with SARS-CoV-2 RNA. Our results support clinical evaluation of apabetalone to treat COVID-19 and post-COVID syndrome regardless of the SARS-CoV-2 variant.
Collapse
|
24
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
25
|
Rayego-Mateos S, Rodrigues-Diez RR, Fernandez-Fernandez B, Mora-Fernández C, Marchant V, Donate-Correa J, Navarro-González JF, Ortiz A, Ruiz-Ortega M. Targeting inflammation to treat diabetic kidney disease: the road to 2030. Kidney Int 2023; 103:282-296. [PMID: 36470394 DOI: 10.1016/j.kint.2022.10.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 12/07/2022]
Abstract
Diabetic kidney disease (DKD) is one of the fastest growing causes of chronic kidney disease and associated morbidity and mortality. Preclinical research has demonstrated the involvement of inflammation in its pathogenesis and in the progression of kidney damage, supporting clinical trials designed to explore anti-inflammatory strategies. However, the recent success of sodium-glucose cotransporter-2 inhibitors and the nonsteroidal mineralocorticoid receptor antagonist finerenone has changed both guidelines and standard of care, rendering obsolete older studies directly targeting inflammatory mediators and the clinical development was discontinued for most anti-inflammatory drugs undergoing clinical trials for DKD in 2016. Given the contribution of inflammation to the pathogenesis of DKD, we review the impact on kidney inflammation of the current standard of care, therapies undergoing clinical trials, or repositioned drugs for DKD. Moreover, we review recent advances in the molecular regulation of inflammation in DKD and discuss potential novel therapeutic strategies with clinical relevance. Finally, we provide a road map for future research aimed at integrating the growing knowledge on inflammation and DKD into clinical practice to foster improvement of patient outcomes.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain
| | - Raul R Rodrigues-Diez
- Ricord2040, Instituto de Salud Carlos II, Spain; Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, Oviedo, Asturias, Spain
| | - Beatriz Fernandez-Fernandez
- Ricord2040, Instituto de Salud Carlos II, Spain; Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Carmen Mora-Fernández
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain
| | - Javier Donate-Correa
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Juan F Navarro-González
- Ricord2040, Instituto de Salud Carlos II, Spain; Research Unit, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Nephrology Service, University Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz
- Ricord2040, Instituto de Salud Carlos II, Spain; Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain; Ricord2040, Instituto de Salud Carlos II, Spain.
| |
Collapse
|
26
|
Ding M, Shao Y, Sun D, Meng S, Zang Y, Zhou Y, Li J, Lu W, Zhu S. Design, synthesis, and biological evaluation of BRD4 degraders. Bioorg Med Chem 2023; 78:117134. [PMID: 36563515 DOI: 10.1016/j.bmc.2022.117134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Epigenetic proteins are one of the important targets in the current research fields of cancer therapy. A family of bromodomain-containing (BRD) and extra terminal domain (BET) proteins act as epigenetic readers to regulate the expression of key oncogenes and anti-apoptotic proteins. Recently, although BET degraders based on PROTAC technology have achieved significant antitumor effects, the lack of selectivity for BET protein degradation has not been fully addressed. Herein, a series of small molecule BRD4 PROTACs were designed and synthesized. Most of the degraders were effective in inhibiting MM.1S and MV-4-11 cell lines, especially in MV-4-11. Among them, degrader 8b could induce the degradation of BRD4 and exhibited a time- and concentration-dependent depletion manner and there was a significant depletion of BRD4, laying a foundation for effectively treating leukemia and multiple myeloma. Moreover, 8b could also effectively prevent the activation of MRC5 cells by inducing the degradation of BRD4 protein, which preliminarily proves that the BRD4 degrader based on the PROTAC concept has great potential for the treatment of pulmonary fibrosis. Taken together, these findings laid a foundation for BRD4 degraders as an effective strategy for treating related diseases.
Collapse
Affiliation(s)
- Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yingying Shao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Danwen Sun
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Suorina Meng
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, PR China; Lingang Laboratory, Shanghai 201203, PR China
| | - Yi Zang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, PR China; Lingang Laboratory, Shanghai 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, PR China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, PR China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
27
|
Wasiak S, Fu L, Daze E, Gilham D, Rakai BD, Stotz SC, Tsujikawa LM, Sarsons CD, Studer D, Rinker KD, Jahagirdar R, Wong NCW, Sweeney M, Johansson JO, Kulikowski E. The BET inhibitor apabetalone decreases neuroendothelial proinflammatory activation in vitro and in a mouse model of systemic inflammation. Transl Neurosci 2023; 14:20220332. [PMID: 38222824 PMCID: PMC10787226 DOI: 10.1515/tnsci-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
Brain vascular inflammation is characterized by endothelial activation and immune cell recruitment to the blood vessel wall, potentially causing a breach in the blood - brain barrier, brain parenchyma inflammation, and a decline of cognitive function. The clinical-stage small molecule, apabetalone, reduces circulating vascular endothelial inflammation markers and improves cognitive scores in elderly patients by targeting epigenetic regulators of gene transcription, bromodomain and extraterminal proteins. However, the effect of apabetalone on cytokine-activated brain vascular endothelial cells (BMVECs) is unknown. Here, we show that apabetalone treatment of BMVECs reduces hallmarks of in vitro endothelial activation, including monocyte chemoattractant protein-1 (MCP-1) and RANTES chemokine secretion, cell surface expression of endothelial cell adhesion molecule VCAM-1, as well as endothelial capture of THP-1 monocytes in static and shear stress conditions. Apabetalone pretreatment of THP-1 downregulates cell surface expression of chemokine receptors CCR1, CCR2, and CCR5, and of the VCAM-1 cognate receptor, integrin α4. Consequently, apabetalone reduces THP-1 chemoattraction towards soluble CCR ligands MCP-1 and RANTES, and THP-1 adhesion to activated BMVECs. In a mouse model of brain inflammation, apabetalone counters lipopolysaccharide-induced transcription of endothelial and myeloid cell markers, consistent with decreased neuroendothelial inflammation. In conclusion, apabetalone decreases proinflammatory activation of brain endothelial cells and monocytes in vitro and in the mouse brain during systemic inflammation.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Li Fu
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Emily Daze
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Dean Gilham
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Brooke D. Rakai
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Stephanie C. Stotz
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Laura M. Tsujikawa
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Chris D. Sarsons
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Deborah Studer
- Department of Biomedical Engineering, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Kristina D. Rinker
- Department of Biomedical Engineering, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Ravi Jahagirdar
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Norman C. W. Wong
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Michael Sweeney
- Resverlogix Corp., 535 Mission Street, 14th Floor, San Francisco, CA, 94105, USA
| | - Jan O. Johansson
- Resverlogix Corp., 535 Mission Street, 14th Floor, San Francisco, CA, 94105, USA
| | - Ewelina Kulikowski
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| |
Collapse
|
28
|
Cummings J, Leisgang Osse AM, Kinney J. Geroscience and Alzheimer's Disease Drug Development. J Prev Alzheimers Dis 2023; 10:620-632. [PMID: 37874083 PMCID: PMC10720397 DOI: 10.14283/jpad.2023.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Age is the most important risk factor for Alzheimer's disease (AD). The acceptable age range for participation in AD clinical trials is 50 to 90, and this 40-year span incorporates enormous age-related change. Clinical trial participants tend to be younger and healthier than the general population. They are also younger than the general population of AD patients. Drug development from a geroscience perspective would take greater account of effects of aging on clinical trial outcomes. The AD clinical trial pipeline has diversified beyond the canonical targets of amyloid beta protein and tau. Many of these interventions apply to age-related disorders. Anti-inflammatory agents and bioenergetic and metabolic therapies are among the well represented classes in the pipeline and are applicable to AD and non-AD age-related conditions. Drug development strategies can be adjusted to better inform outcomes of trials regarding aged individuals. Inclusion of older individuals in the multiple ascending dose trials of Phase 1, use of geriatric-related clinical outcomes and biomarkers in Phase 2, and extension of these Phase 2 learnings to Phase 3 will result in a more comprehensive understanding of AD therapies and their relationship to aging. Clinical trials can employ a more comprehensive geriatric assessment approach and biomarkers more relevant to aging at baseline and as exploratory outcomes. Greater attention to the role of aging and its influence in AD clinical trials can result in better understanding of the generalizability of clinical trial findings to the older AD population.
Collapse
Affiliation(s)
- J Cummings
- Jeffrey Cummings, 1380 Opal valley street, Henderson, Nevada 89052, USA,
| | | | | |
Collapse
|
29
|
Innate Immunity in Cardiovascular Diseases-Identification of Novel Molecular Players and Targets. J Clin Med 2023; 12:jcm12010335. [PMID: 36615135 PMCID: PMC9821340 DOI: 10.3390/jcm12010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
During the past few years, unexpected developments have driven studies in the field of clinical immunology. One driver of immense impact was the outbreak of a pandemic caused by the novel virus SARS-CoV-2. Excellent recent reviews address diverse aspects of immunological re-search into cardiovascular diseases. Here, we specifically focus on selected studies taking advantage of advanced state-of-the-art molecular genetic methods ranging from genome-wide epi/transcriptome mapping and variant scanning to optogenetics and chemogenetics. First, we discuss the emerging clinical relevance of advanced diagnostics for cardiovascular diseases, including those associated with COVID-19-with a focus on the role of inflammation in cardiomyopathies and arrhythmias. Second, we consider newly identified immunological interactions at organ and system levels which affect cardiovascular pathogenesis. Thus, studies into immune influences arising from the intestinal system are moving towards therapeutic exploitation. Further, powerful new research tools have enabled novel insight into brain-immune system interactions at unprecedented resolution. This latter line of investigation emphasizes the strength of influence of emotional stress-acting through defined brain regions-upon viral and cardiovascular disorders. Several challenges need to be overcome before the full impact of these far-reaching new findings will hit the clinical arena.
Collapse
|
30
|
Wasiak S, Tsujikawa LM, Daze E, Gilham D, Stotz SC, Rakai BD, Sarsons CD, Fu L, Azhar S, Jahagirdar R, Sweeney M, Johansson JO, Wong NCW, Kulikowski E. Epigenetic BET reader inhibitor apabetalone (RVX-208) counters proinflammatory aortic gene expression in a diet induced obesity mouse model and in human endothelial cells. Atherosclerosis 2023; 364:10-19. [PMID: 36455344 DOI: 10.1016/j.atherosclerosis.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS Obese patients are at risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). A lipid-rich diet promotes arterial changes by inducing hypertension, oxidative stress, and inflammation. Bromodomain and extraterminal (BET) proteins contribute to endothelial and immune cell activation in vitro and in atherosclerosis mouse models. We aim to determine if BET inhibition can reduce lipid-rich diet-induced vascular inflammation in mice. METHODS Body weight, serum glucose and lipid levels were measured in mice fed a high-fat diet (HFD) or low-fat diet (LFD) for 6 weeks and at study termination. BET inhibitors apabetalone and JQ1 were co-administered with the HFD for additional 16 weeks. Aortic gene expression was analyzed post necropsy by PCR, Nanostring nCounter® Inflammation Panel and bioinformatics pathway analysis. Transcription changes and BRD4 chromatin occupancy were analyzed in primary human endothelial cells in response to TNFα and apabetalone. RESULTS HFD induced weight gain, visceral obesity, high fasting blood glucose, glucose intolerance and insulin resistance compared to LFD controls. HFD upregulated the aortic expression of 47 genes involved in inflammation, innate immunity, cytoskeleton and complement pathways. Apabetalone and JQ1 treatment reduced HFD-induced aortic expression of proinflammatory genes. Congruently, bioinformatics predicted enhanced signaling by TNFα in the HFD versus LFD aorta, which was countered by BETi treatment. TNFα-stimulated human endothelial cells had increased expression of HFD-sensitive genes and higher BRD4 chromatin occupancy, which was countered by apabetalone treatment. CONCLUSIONS HFD induces vascular inflammation in mice through TNFα signaling. Apabetalone treatment reduces this proinflammatory phenotype, providing mechanistic insight into how BET inhibitors may reduce CVD risk in obese patients.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Laura M Tsujikawa
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Emily Daze
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Dean Gilham
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Stephanie C Stotz
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Brooke D Rakai
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Chris D Sarsons
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Salman Azhar
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Ravi Jahagirdar
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Michael Sweeney
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA, 94105
| | - Jan O Johansson
- Resverlogix Inc., 535 Mission St, 14th Floor, San Francisco, CA, 94105
| | - Norman C W Wong
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Ewelina Kulikowski
- Resverlogix Corp., 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada.
| |
Collapse
|
31
|
Small Molecule BRD4 Inhibitors Apabetalone and JQ1 Rescues Endothelial Cells Dysfunction, Protects Monolayer Integrity and Reduces Midkine Expression. Molecules 2022; 27:molecules27217453. [PMID: 36364277 PMCID: PMC9692972 DOI: 10.3390/molecules27217453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
NF-κB signaling is a key regulator of inflammation and atherosclerosis. NF-κB cooperates with bromodomain-containing protein 4 (BRD4), a transcriptional and epigenetic regulator, in endothelial inflammation. This study aimed to investigate whether BRD4 inhibition would prevent the proinflammatory response towards TNF-α in endothelial cells. We used TNF-α treatment of human umbilical cord-derived vascular endothelial cells to create an in vitro inflammatory model system. Two small molecule inhibitors of BRD4—namely, RVX208 (Apabetalone), which is in clinical trials for the treatment of atherosclerosis, and JQ1—were used to analyze the effect of BRD4 inhibition on endothelial inflammation and barrier integrity. BRD4 inhibition reduced the expression of proinflammatory markers such as SELE, VCAM-I, and IL6 in endothelial cells and prevented TNF-α-induced endothelial tight junction hyperpermeability. Endothelial inflammation was associated with increased expression of the heparin-binding growth factor midkine. BRD4 inhibition reduced midkine expression and normalized endothelial permeability upon TNF-α treatment. In conclusion, we identified that TNF-α increased midkine expression and compromised tight junction integrity in endothelial cells, which was preventable by pharmacological BRD4 inhibition.
Collapse
|
32
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
33
|
Influence of Shear Stress, Inflammation and BRD4 Inhibition on Human Endothelial Cells: A Holistic Proteomic Approach. Cells 2022; 11:cells11193086. [PMID: 36231049 PMCID: PMC9563250 DOI: 10.3390/cells11193086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is an important risk factor in the development of cardiovascular diseases. In addition to increased plasma lipid concentrations, irregular/oscillatory shear stress and inflammatory processes trigger atherosclerosis. Inhibitors of the transcription modulatory bromo- and extra-terminal domain (BET) protein family (BETi) could offer a possible therapeutic approach due to their epigenetic mechanism and anti-inflammatory properties. In this study, the influence of laminar shear stress, inflammation and BETi treatment on human endothelial cells was investigated using global protein expression profiling by ion mobility separation-enhanced data independent acquisition mass spectrometry (IMS-DIA-MS). For this purpose, primary human umbilical cord derived vascular endothelial cells were treated with TNFα to mimic inflammation and exposed to laminar shear stress in the presence or absence of the BRD4 inhibitor JQ1. IMS-DIA-MS detected over 4037 proteins expressed in endothelial cells. Inflammation, shear stress and BETi led to pronounced changes in protein expression patterns with JQ1 having the greatest effect. To our knowledge, this is the first proteomics study on primary endothelial cells, which provides an extensive database for the effects of shear stress, inflammation and BETi on the endothelial proteome.
Collapse
|
34
|
Toth PP, Schwartz GG, Nicholls SJ, Khan A, Szarek M, Ginsberg HN, Johansson JO, Kalantar-Zadeh K, Kulikowski E, Lebioda K, Wong NC, Sweeney M, Ray KK. Reduction in the risk of major adverse cardiovascular events with the BET protein inhibitor apabetalone in patients with recent acute coronary syndrome, type 2 diabetes, and moderate to high likelihood of non-alcoholic fatty liver disease. Am J Prev Cardiol 2022; 11:100372. [PMID: 36039183 PMCID: PMC9419281 DOI: 10.1016/j.ajpc.2022.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is common among patients with type 2 diabetes mellitus (T2DM) and is associated with increased risk for coronary atherosclerosis and acute cardiovascular (CV) events. We employed the validated, non-invasive Angulo NAFLD fibrosis score (FS) in an intervention study in patients with T2DM and recent acute coronary syndrome (ACS) to determine the association of FS with CV risk and treatment response to apabetalone. Apabetalone is a novel selective inhibitor of the second bromodomain of bromodomain and extra-terminal (BET) proteins, epigenetic regulators of gene expression. Methods The Phase 3 BETonMACE trial compared apabetalone with placebo in 2,425 patients with T2DM and recent ACS. In this post hoc analysis, we evaluated the impact of apabetalone therapy on CV risk, defined as a composite of major adverse cardiovascular events (MACE: CV death, non-fatal myocardial infarction [MI], or stroke) and hospitalization for heart failure (HHF) in two patient categories of FS that reflect the likelihood of underlying NAFLD. Patients were initially classified into three mutually exclusive categories according to a baseline Angulo FS <-1.455 (F0-F2), -1.455 to 0.675 (indeterminant), and >0.675 (F3-F4), where F0 through F4 connote fibrosis severity none, mild, moderate, severe, and cirrhosis, respectively. The composite of ischemic MACE and HHF in the placebo group was higher in indeterminant and F3-F4 categories compared to the F0-F2 category (17.2% vs 15.0% vs 9.7%). Therefore, for the present analysis, the former two categories were combined into an elevated NAFLD CVD risk group (FS+) that was compared with the F0-F2 group (lower NAFLD risk, FS0-2). Results In 73.7% of patients, FS was elevated and consistent with a moderate-to-high likelihood of advanced liver fibrosis (FS+); 26.3% of patients had a lower FS (FS0-2). In the placebo group, FS+ patients had a higher incidence of ischemic MACE and HHF (15.4%) than FS0-2 patients (9.7%). In FS+ patients, addition of apabetalone to standard of care treatment lowered the rate of ischemic MACE compared with placebo (HR = 0.79; 95% CI 0.60-1.05; p=0.10), HHF (HR = 0.53; 95% CI 0.33-0.86; p=0.01), and the composite of ischemic MACE and HHF (HR = 0.76; 95% CI 0.59-0.98; p=0.03). In contrast, there was no apparent benefit of apabetalone in FS0-2 patients (HR 1.24; 95% CI 0.75-2.07; p=0.40; HR 1.12; 95% CI 0.30-4.14; p=0.87; and HR 1.13; 95% CI 0.69-1.86; p=0.62, respectively). Over a median duration of 26.5 months, FS increased from baseline in both treatment groups, but the increase was smaller in patients assigned to apabetalone than to placebo (p=0.04). Conclusions Amongst patients with T2DM, recent ACS, and a moderate-to-high likelihood of advanced liver fibrosis, apabetalone was associated with a significantly lower rate of ischemic MACE and HHF and attenuated the increase in hepatic FS over time.
Collapse
|
35
|
Roles of Bromodomain Extra Terminal Proteins in Metabolic Signaling and Diseases. Pharmaceuticals (Basel) 2022; 15:ph15081032. [PMID: 36015180 PMCID: PMC9414451 DOI: 10.3390/ph15081032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
BET proteins, which recognize and bind to acetylated histones, play a key role in transcriptional regulation. The development of chemical BET inhibitors in 2010 greatly facilitated the study of these proteins. BETs play crucial roles in cancer, inflammation, heart failure, and fibrosis. In particular, BETs may be involved in regulating metabolic processes, such as adipogenesis and metaflammation, which are under tight transcriptional regulation. In addition, acetyl-CoA links energy metabolism with epigenetic modification through lysine acetylation, which creates docking sites for BET. Given this, it is possible that the ambient energy status may dictate metabolic gene transcription via a BET-dependent mechanism. Indeed, recent studies have reported that various BET proteins are involved in both metabolic signaling regulation and disease. Here, we discuss some of the most recent information on BET proteins and their regulation of the metabolism in both cellular and animal models. Further, we summarize data from some randomized clinical trials evaluating BET inhibitors for the treatment of metabolic diseases.
Collapse
|
36
|
Tsujikawa LM, Kharenko OA, Stotz SC, Rakai BD, Sarsons CD, Gilham D, Wasiak S, Fu L, Sweeney M, Johansson JO, Wong NCW, Kulikowski E. Breaking boundaries: Pan BETi disrupt 3D chromatin structure, BD2-selective BETi are strictly epigenetic transcriptional regulators. Biomed Pharmacother 2022; 152:113230. [PMID: 35687908 DOI: 10.1016/j.biopha.2022.113230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Bromodomain and extraterminal proteins (BETs) are more than just epigenetic regulators of transcription. Here we highlight a new role for the BET protein BRD4 in the maintenance of higher order chromatin structure at Topologically Associating Domain Boundaries (TADBs). BD2-selective and pan (non-selective) BET inhibitors (BETi) differentially support chromatin structure, selectively affecting transcription and cell viability. METHODS Using RNA-seq and BRD4 ChIP-seq, the differential effect of BETi treatment on the transcriptome and BRD4 chromatin occupancy of human aortic endothelial cells from diabetic patients (dHAECs) stimulated with TNFα was evaluated. Chromatin decondensation and DNA fragmentation was assessed by immunofluorescence imaging and quantification. Key dHAEC findings were verified in proliferating monocyte-like THP-1 cells using real time-PCR, BRD4 co-immunoprecipitation studies, western blots, proliferation and apoptosis assays. FINDINGS We discovered that 1) BRD4 co-localizes with Ying-Yang 1 (YY1) at TADBs, critical chromatin structure complexes proximal to many DNA repair genes. 2) BD2-selective BETi enrich BRD4/YY1 associations, while pan-BETi do not. 3) Failure to support chromatin structures through BRD4/YY1 enrichment inhibits DNA repair gene transcription, which induces DNA damage responses, and causes widespread chromatin decondensation, DNA fragmentation, and apoptosis. 4) BD2-selective BETi maintain high order chromatin structure and cell viability, while reducing deleterious pro-inflammatory transcription. INTERPRETATION BRD4 plays a previously unrecognized role at TADBs. BETi differentially impact TADB stability. Our results provide translational insight for the development of BETi as therapeutics for a range of diseases including CVD, chronic kidney disease, cancer, and COVID-19.
Collapse
Affiliation(s)
- Laura M Tsujikawa
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Olesya A Kharenko
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Stephanie C Stotz
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Brooke D Rakai
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Christopher D Sarsons
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Dean Gilham
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Sylwia Wasiak
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Li Fu
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Michael Sweeney
- Resverlogix Corporation, Suite 4010, 44 Montgomery Street, San Francisco, CA 94104, USA.
| | - Jan O Johansson
- Resverlogix Corporation, Suite 4010, 44 Montgomery Street, San Francisco, CA 94104, USA.
| | - Norman C W Wong
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| | - Ewelina Kulikowski
- Resverlogix Corporation, Suite 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada.
| |
Collapse
|
37
|
Gorica E, Mohammed SA, Ambrosini S, Calderone V, Costantino S, Paneni F. Epi-Drugs in Heart Failure. Front Cardiovasc Med 2022; 9:923014. [PMID: 35911511 PMCID: PMC9326055 DOI: 10.3389/fcvm.2022.923014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Unveiling the secrets of genome's flexibility does not only foster new research in the field, but also gives rise to the exploration and development of novel epigenetic-based therapies as an approach to alleviate disease phenotypes. A better understanding of chromatin biology (DNA/histone complexes) and non-coding RNAs (ncRNAs) has enabled the development of epigenetic drugs able to modulate transcriptional programs implicated in cardiovascular diseases. This particularly applies to heart failure, where epigenetic networks have shown to underpin several pathological features, such as left ventricular hypertrophy, fibrosis, cardiomyocyte apoptosis and microvascular dysfunction. Targeting epigenetic signals might represent a promising approach, especially in patients with heart failure with preserved ejection fraction (HFpEF), where prognosis remains poor and breakthrough therapies have yet to be approved. In this setting, epigenetics can be employed for the development of customized therapeutic approaches thus paving the way for personalized medicine. Even though the beneficial effects of epi-drugs are gaining attention, the number of epigenetic compounds used in the clinical practice remains low suggesting that more selective epi-drugs are needed. From DNA-methylation changes to non-coding RNAs, we can establish brand-new regulations for drug targets with the aim of restoring healthy epigenomes and transcriptional programs in the failing heart. In the present review, we bring the timeline of epi-drug discovery and development, thus highlighting the emerging role of epigenetic therapies in heart failure.
Collapse
Affiliation(s)
- Era Gorica
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Shafeeq A. Mohammed
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Fu L, Wasiak S, Tsujikawa LM, Rakai BD, Stotz SC, Wong NCW, Johansson JO, Sweeney M, Mohan CM, Khan A, Kulikowski E. Inhibition of epigenetic reader proteins by apabetalone counters inflammation in activated innate immune cells from Fabry disease patients receiving enzyme replacement therapy. Pharmacol Res Perspect 2022; 10:e00949. [PMID: 35417091 PMCID: PMC9007222 DOI: 10.1002/prp2.949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Fabry disease (FD) is a rare X‐linked disorder of lipid metabolism, characterized by the accumulation of globotriaosylceramide (Gb3) due to defective the lysosomal enzyme, α‐galactosidase. Gb3 deposits activate immune‐mediated systemic inflammation, ultimately leading to life‐threatening consequences in multiple organs such as the heart and kidneys. Enzyme replacement therapy (ERT), the standard of care, is less effective with advanced tissue injury and inflammation in patients with FD. Here, we showed that MCP‐1 and TNF‐α cytokine levels were almost doubled in plasma from ERT‐treated FD patients. Chemokine receptor CCR2 surface expression was increased by twofold on monocytes from patients with low eGFR. We also observed an increase in IL12B transcripts in unstimulated peripheral blood mononuclear cells (PBMCs) over a 2‐year period of continuous ERT. Apabetalone is a clinical‐stage oral bromodomain and extra terminal protein inhibitor (BETi), which has beneficial effects on cardiovascular and kidney disease related pathways including inflammation. Here, we demonstrate that apabetalone, a BD2‐selective BETi, dose dependently reduced the production of MCP‐1 and IL‐12 in stimulated PBMCs through transcriptional regulation of their encoding genes. Reactive oxygen species production was diminished by up to 80% in stimulated neutrophils following apabetalone treatment, corresponding with inhibition of NOX2 transcription. This study elucidates that inhibition of BET proteins by BD2‐selective apabetalone alleviates inflammatory processes and oxidative stress in innate immune cells in general and in FD. These results suggest potential benefit of BD2‐selective apabetalone in controlling inflammation and oxidative stress in FD, which will be further investigated in clinical trials.
Collapse
Affiliation(s)
- Li Fu
- Resverlogix Corp, Calgary, AB, Canada
| | | | | | | | | | | | | | | | - Connie M Mohan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Metabolics and Genetics in Calgary (M.A.G.I.C.) Clinic Ltd., Calgary, AB, Canada
| | | |
Collapse
|
39
|
Singh MB, Babigian CJ, Sartor GC. Domain-selective BET inhibition attenuates transcriptional and behavioral responses to cocaine. Neuropharmacology 2022; 210:109040. [PMID: 35314160 PMCID: PMC8986626 DOI: 10.1016/j.neuropharm.2022.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
Epigenetic pharmacotherapies have emerged as a promising treatment option for substance use disorder (SUD) due to their ability to reverse maladaptive transcriptional and behavioral responses to drugs of abuse. In particular, inhibitors of bromodomain and extra terminal domain (BET) reader proteins have been shown to reduce cocaine- and opioid-seeking behaviors in rodents. However, only pan-BET inhibitors, small molecules that bind to both bromodomains (BD1 and BD2) with all BET proteins, have been investigated in animal models of SUD. Given the potential side effects associated with pan-BET inhibitors, safer and more selective strategies are needed to advance BET therapeutics as a potential treatment for SUD. Here, we show that RVX-208, a clinically tested, BD2-selective BET inhibitor, dose-dependently reduced cocaine conditioned place preference in male and female mice, similar to the pan-BET inhibitor JQ1. In other behavioral experiments, RVX-208 treatment did not alter distance traveled, anxiety-like behavior, or novel object recognition memory. At the transcriptional level, RVX-208 attenuated the expression of multiple cocaine-induced genes in the nucleus accumbens in a sex-dependent manner. RVX-208 produced a distinct transcriptional response in stimulated primary neurons compared to JQ1 but had little effect on gene expression in non-stimulated neurons. Together, these data indicate that targeting domain-specific BET mechanisms may be an effective and safer strategy to reduce cocaine-induced neurobehavioral adaptations.
Collapse
Affiliation(s)
- Mandakini B Singh
- Department of Pharmaceutical Sciences , University of Connecticut, Storrs, CT, 06269, United States
| | - Christopher J Babigian
- Department of Pharmaceutical Sciences , University of Connecticut, Storrs, CT, 06269, United States
| | - Gregory C Sartor
- Department of Pharmaceutical Sciences , University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
40
|
Alkaline Phosphatase: An Old Friend as Treatment Target for Cardiovascular and Mineral Bone Disorders in Chronic Kidney Disease. Nutrients 2022; 14:nu14102124. [PMID: 35631265 PMCID: PMC9144546 DOI: 10.3390/nu14102124] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Alkaline phosphatase (ALP) is an evolutionary conserved enzyme and widely used biomarker in clinical practice. Tissue-nonspecific alkaline phosphatase (TNALP) is one of four human isozymes that are expressed as distinct TNALP isoforms after posttranslational modifications, mainly in bone, liver, and kidney tissues. Beyond the well-known effects on bone mineralization, the bone ALP (BALP) isoforms (B/I, B1, B1x, and B2) are also involved in the pathogenesis of ectopic calcification. This narrative review summarizes the recent clinical investigations and mechanisms that link ALP and BALP to inflammation, metabolic syndrome, vascular calcification, endothelial dysfunction, fibrosis, cardiovascular disease, and mortality. The association between ALP, vitamin K, bone metabolism, and fracture risk in patients with chronic kidney disease (CKD) is also discussed. Recent advances in different pharmacological strategies are highlighted, with the potential to modulate the expression of ALP directly and indirectly in CKD–mineral and bone disorder (CKD-MBD), e.g., epigenetic modulation, phosphate binders, calcimimetics, vitamin D, and other anti-fracture treatments. We conclude that the significant evidence for ALP as a pathogenic factor and risk marker in CKD-MBD supports the inclusion of concrete treatment targets for ALP in clinical guidelines. While a target value below 120 U/L is associated with improved survival, further experimental and clinical research should explore interventional strategies with optimal risk–benefit profiles. The future holds great promise for novel drug therapies modulating ALP.
Collapse
|
41
|
Struble LR, Smith AL, Lutz WE, Grubbs G, Sagar S, Bayles KW, Radhakrishnan P, Khurana S, El‐Gamal D, Borgstahl GEO. Insect cell expression and purification of recombinant SARS-COV-2 spike proteins that demonstrate ACE2 binding. Protein Sci 2022; 31:e4300. [PMID: 35481636 PMCID: PMC8996471 DOI: 10.1002/pro.4300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection has led to socio-economic shutdowns and the loss of over 5 million lives worldwide. There is a need for the identification of therapeutic targets to treat COVID-19. SARS-CoV-2 spike is a target of interest for the development of therapeutic targets. We developed a robust SARS-CoV-2 S spike expression and purification protocol from insect cells and studied four recombinant SARS-CoV-2 spike protein constructs based on the original SARS-CoV-2 sequence using a baculovirus expression system: a spike protein receptor-binding domain that includes the SD1 domain (RBD) coupled to a fluorescent tag (S-RBD-eGFP), spike ectodomain coupled to a fluorescent tag (S-Ecto-eGFP), spike ectodomain with six proline mutations and a foldon domain (S-Ecto-HexaPro(+F)), and spike ectodomain with six proline mutations without the foldon domain (S-Ecto-HexaPro(-F)). We tested the yield of purified protein expressed from the insect cell lines Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tni) and compared it to previous research using mammalian cell lines to determine changes in protein yield. We demonstrated quick and inexpensive production of functional glycosylated spike protein of high purity capable of recognizing and binding to the angiotensin converting enzyme 2 (ACE2) receptor. To further confirm functionality, we demonstrate binding of eGFP fused construct of the spike ectodomain (S-Ecto-eGFP) to surface ACE2 receptors on lung epithelial cells by flow cytometry analysis and show that it can be decreased by means of receptor manipulation (blockade or downregulation).
Collapse
Affiliation(s)
- Lucas R. Struble
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
| | - Audrey L. Smith
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
| | - William E. Lutz
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER)FDASilver SpringMarylandUSA
| | - Satish Sagar
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
| | - Kenneth W. Bayles
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred and Pamela Buffet Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER)FDASilver SpringMarylandUSA
| | - Dalia El‐Gamal
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
- Fred and Pamela Buffet Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Media CenterOmahaNebraskaUSA
- Fred and Pamela Buffet Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
42
|
Ambrosini S, Gorica E, Mohammed SA, Costantino S, Ruschitzka F, Paneni F. Epigenetic remodeling in heart failure with preserved ejection fraction. Curr Opin Cardiol 2022; 37:219-226. [PMID: 35275888 PMCID: PMC9415220 DOI: 10.1097/hco.0000000000000961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we critically address the role of epigenetic processing and its therapeutic modulation in heart failure with preserved ejection fraction (HFpEF). RECENT FINDINGS HFpEF associates with a poor prognosis and the identification of novel molecular targets and therapeutic approaches are in high demand. Emerging evidence indicates a key involvement of epigenetic signals in the regulation of transcriptional programs underpinning features of HFpEF. The growing understanding of chromatin dynamics has led to the development of selective epigenetic drugs able to reset transcriptional changes thus delaying or preventing the progression toward HFpEF. Epigenetic information in the setting of HFpEF can be employed to: (i) dissect novel epigenetic networks and chromatin marks contributing to HFpEF; (ii) unveil circulating and cell-specific epigenetic biomarkers; (iii) build predictive models by using computational epigenetics and deep machine learning; (iv) develop new chromatin modifying drugs for personalized management of HFpEF. SUMMARY Acquired epigenetic signatures during the lifetime can contribute to derail molecular pathways involved in HFpEF. A scrutiny investigation of the individual epigenetic landscape will offer opportunities to develop personalized epigenetic biomarkers and therapies to fight HFpEF in the decades to come.
Collapse
Affiliation(s)
- Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Era Gorica
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- University Heart Center, Cardiology
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Prandi FR, Lecis D, Illuminato F, Milite M, Celotto R, Lerakis S, Romeo F, Barillà F. Epigenetic Modifications and Non-Coding RNA in Diabetes-Mellitus-Induced Coronary Artery Disease: Pathophysiological Link and New Therapeutic Frontiers. Int J Mol Sci 2022; 23:4589. [PMID: 35562979 PMCID: PMC9105558 DOI: 10.3390/ijms23094589] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a glucose metabolism disorder characterized by chronic hyperglycemia resulting from a deficit of insulin production and/or action. DM affects more than 1 in 10 adults, and it is associated with an increased risk of cardiovascular morbidity and mortality. Cardiovascular disease (CVD) accounts for two thirds of the overall deaths in diabetic patients, with coronary artery disease (CAD) and ischemic cardiomyopathy as the main contributors. Hyperglycemic damage on vascular endothelial cells leading to endothelial dysfunction represents the main initiating factor in the pathogenesis of diabetic vascular complications; however, the underlying pathophysiological mechanisms are still not entirely understood. This review addresses the current knowledge on the pathophysiological links between DM and CAD with a focus on the role of epigenetic modifications, including DNA methylation, histone modifications and noncoding RNA control. Increased knowledge of epigenetic mechanisms has contributed to the development of new pharmacological treatments ("epidrugs") with epigenetic targets, although these approaches present several challenges. Specific epigenetic biomarkers may also be used to predict or detect the development and progression of diabetes complications. Further studies on diabetes and CAD epigenetics are needed in order to identify possible new therapeutic targets and advance personalized medicine with the prediction of individual drug responses and minimization of adverse effects.
Collapse
Affiliation(s)
- Francesca Romana Prandi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Dalgisio Lecis
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Federica Illuminato
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Marialucia Milite
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Roberto Celotto
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Stamatios Lerakis
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Francesco Romeo
- Department of Departmental Faculty of Medicine, Unicamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| |
Collapse
|
44
|
Mohammed SA, Albiero M, Ambrosini S, Gorica E, Karsai G, Caravaggi CM, Masi S, Camici GG, Wenzl FA, Calderone V, Madeddu P, Sciarretta S, Matter CM, Spinetti G, Lüscher TF, Ruschitzka F, Costantino S, Fadini GP, Paneni F. The BET Protein Inhibitor Apabetalone Rescues Diabetes-Induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1. Antioxid Redox Signal 2022; 36:667-684. [PMID: 34913726 DOI: 10.1089/ars.2021.0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aims: Therapeutic modulation of blood vessel growth holds promise for the prevention of limb ischemia in diabetic (DM) patients with peripheral artery disease (PAD). Epigenetic changes, namely, posttranslational histone modifications, participate in angiogenic response suggesting that chromatin-modifying drugs could be beneficial in this setting. Apabetalone (APA), a selective inhibitor of bromodomain (BRD) and bromodomain and extraterminal containing protein family (BET) proteins, prevents bromodomain-containing protein 4 (BRD4) interactions with chromatin thus modulating transcriptional programs in different organs. We sought to investigate whether APA affects angiogenic response in diabetes. Results: Compared with vehicle, APA restored tube formation and migration in human aortic endothelial cells (HAECs) exposed to high-glucose (HG) levels. Expression profiling of angiogenesis genes showed that APA prevents HG-induced upregulation of the antiangiogenic molecule thrombospondin-1 (THBS1). ChIP-seq and chromatin immunoprecipitation (ChIP) assays in HG-treated HAECs showed the enrichment of both BRD4 and active marks (H3K27ac) on THBS1 promoter, whereas BRD4 inhibition by APA prevented chromatin accessibility and THBS1 transcription. Mechanistically, we show that THBS1 inhibits angiogenesis by suppressing vascular endothelial growth factor A (VEGFA) signaling, while APA prevents these detrimental changes. In diabetic mice with hind limb ischemia, epigenetic editing by APA restored the THBS1/VEGFA axis, thus improving limb vascularization and perfusion, compared with vehicle-treated animals. Finally, epigenetic regulation of THBS1 by BRD4/H3K27ac was also reported in DM patients with PAD compared with nondiabetic controls. Innovation: This is the first study showing that BET protein inhibition by APA restores angiogenic response in experimental diabetes. Conclusions: Our findings set the stage for preclinical studies and exploratory clinical trials testing APA in diabetic PAD. Antioxid. Redox Signal. 36, 667-684.
Collapse
Affiliation(s)
- Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Mattia Albiero
- Department of Medicine, University of Padua, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Era Gorica
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Gaia Spinetti
- Cardiovascular Physiopathology-Regenerative Medicine Laboratory, IRCCS MultiMedica, Milan, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Royal Brompton and Harefield Hospital Trust, London, United Kingdom
| | - Frank Ruschitzka
- University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
45
|
Dhuguru J, Ghoneim OA. Quinazoline Based HDAC Dual Inhibitors as Potential Anti-Cancer Agents. Molecules 2022; 27:2294. [PMID: 35408693 PMCID: PMC9000668 DOI: 10.3390/molecules27072294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the most devastating disease and second leading cause of death around the world. Despite scientific advancements in the diagnosis and treatment of cancer which can include targeted therapy, chemotherapy, endocrine therapy, immunotherapy, radiotherapy and surgery in some cases, cancer cells appear to outsmart and evade almost any method of treatment by developing drug resistance. Quinazolines are the most versatile, ubiquitous and privileged nitrogen bearing heterocyclic compounds with a wide array of biological and pharmacological applications. Most of the anti-cancer agents featuring quinazoline pharmacophore have shown promising therapeutic activity. Therefore, extensive research is underway to explore the potential of these privileged scaffolds. In this context, a molecular hybridization approach to develop hybrid drugs has become a popular tool in the field of drug discovery, especially after witnessing the successful results during the past decade. Histone deacetylases (HDACs) have emerged as an important anti-cancer target in the recent years given its role in cellular growth, gene regulation, and metabolism. Dual inhibitors, especially based on HDAC in particular, have become the center stage of current cancer drug development. Given the growing significance of dual HDAC inhibitors, in this review, we intend to compile the development of quinazoline based HDAC dual inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Jyothi Dhuguru
- Mitchell Cancer Institute, University of South Alabama, 1660 SpringHill Ave., Mobile, AL 36604, USA
| | - Ola A. Ghoneim
- College of Pharmacy and Health Sciences, Western New England University, 1215 Wilbraham Road, Springfield, MA 01119, USA;
| |
Collapse
|
46
|
Chen J, Tang P, Wang Y, Wang J, Yang C, Li Y, Yang G, Wu F, Zhang J, Ouyang L. Targeting Bromodomain-Selective Inhibitors of BET Proteins in Drug Discovery and Development. J Med Chem 2022; 65:5184-5211. [PMID: 35324195 DOI: 10.1021/acs.jmedchem.1c01835] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blocking the interactions between bromodomain and extraterminal (BET) proteins and acetylated lysines of histones by small molecules has important implications for the treatment of cancers and other diseases. Many pan-BET inhibitors have shown satisfactory results in clinical trials, but their potential for poor tolerability and toxicity persist. However, recently reported studies illustrate that some BET bromodomain (BET-BD1 or BET-BD2)-selective inhibitors have advantage over pan-inhibitors, including reduced toxicity concerns. Furthermore, some selective BET inhibitors have similar or even better therapeutic efficacy in inflammatory diseases or cancers. Therefore, the development of selective BET inhibitors has become a hot spot for medicinal chemists. Here, we summarize the known selective BET-BD1 and BET-BD2 inhibitors and review the methods for enhancing the selectivity and potency of these inhibitors based on their different modes of interactions with BET-BD1 or BET-BD2. Finally, we discuss prospective strategies that selectively target the bromodomains of BET proteins.
Collapse
Affiliation(s)
- Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Gaoxia Yang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fengbo Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
47
|
Inflammation, Aging, and Cardiovascular Disease: JACC Review Topic of the Week. J Am Coll Cardiol 2022; 79:837-847. [PMID: 35210039 PMCID: PMC8881676 DOI: 10.1016/j.jacc.2021.12.017] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023]
Abstract
Aging and inflammation both contribute pivotally to cardiovascular (CV) and cerebrovascular disease, the leading causes of death and disability worldwide. The concept of inflamm-aging recognizes that low-grade inflammatory pathways observed in the elderly contribute to CV risk. Understanding the mechanisms that link inflammation and aging could reveal new therapeutic targets and offer options to cope with the growing aging population worldwide. This review reports recent scientific advances in the pathways through which inflamm-aging mediates age-dependent decline in CV function and disease onset and considers critically the translational potential of such concepts into everyday clinical practice.
Collapse
|
48
|
Babigian CJ, Wiedner HJ, Wahlestedt C, Sartor GC. JQ1 attenuates psychostimulant- but not opioid-induced conditioned place preference. Behav Brain Res 2022; 418:113644. [PMID: 34757001 PMCID: PMC8671323 DOI: 10.1016/j.bbr.2021.113644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Epigenetic mechanisms play important roles in the neurobiology of substance use disorder. In particular, bromodomain and extra-terminal domain (BET) proteins, a class of histone acetylation readers, have been found to regulate cocaine conditioned behaviors, but their role in the behavioral response to other drugs of abuse remains unclear. To address this knowledge gap, we examined the effects of the BET inhibitor, JQ1, on nicotine, amphetamine, morphine, and oxycodone conditioned place preference (CPP). Similar to previous cocaine studies, systemic administration of JQ1 caused a dose-dependent reduction in the acquisition of amphetamine and nicotine CPP in male mice. However, in opioid studies, JQ1 did not alter morphine or oxycodone CPP. Investigating the effects of JQ1 on other types of learning and memory, we found that JQ1 did not alter the acquisition of contextual fear conditioning. Together, these results indicate that BET proteins play an important role in the acquisition of psychostimulant-induced CPP but not the acquisition of opioid-induced CPP nor contextual fear conditioning.
Collapse
Affiliation(s)
- CJ Babigian
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269
| | - HJ Wiedner
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136,Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
| | - GC Sartor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269,Correspondence to: Gregory C. Sartor, Ph.D., Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville road, Storrs, CT 06269, , Telephone: 860-486-3655
| |
Collapse
|
49
|
Goettsch C, Strzelecka-Kiliszek A, Bessueille L, Quillard T, Mechtouff L, Pikula S, Canet-Soulas E, Luis MJ, Fonta C, Magne D. TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res 2022; 118:84-96. [PMID: 33070177 PMCID: PMC8752354 DOI: 10.1093/cvr/cvaa299] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.
Collapse
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen
University, Aachen, Germany
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| | - Thibaut Quillard
- PHY-OS Laboratory, UMR 1238 INSERM, Université de Nantes, CHU
de Nantes, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France
- CREATIS Laboratory, CNRS UMR 5220, Inserm U1044, Université Claude Bernard
Lyon 1, Lyon, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude
Bernard Lyon 1, Lyon, France
| | - Millan Jose Luis
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery
Institute, La Jolla, CA 92037, USA
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de
Toulouse, France
| | - David Magne
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| |
Collapse
|
50
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|