1
|
Köck P, Badek A, Meyer M, Klaassen AL, Walter M, Kindler J. Cannabinoids for treating psychiatric disorders in youth: a systematic review of randomized controlled trials. Child Adolesc Psychiatry Ment Health 2024; 18:158. [PMID: 39696457 DOI: 10.1186/s13034-024-00846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Cannabinoids have been of increasing interest mainly due to their putative efficacy in a wide array of psychiatric, psychosomatic, and neurological conditions. AIMS This systematic review aims to synthesize results from randomized placebo-controlled trials regarding the efficacy and the dosage of cannabinoids as therapeutics in psychiatric disorders in children, adolescents, and young adults. METHODS All publications up to June 30th, 2024, were included from PubMed and Embase. Eligibility criteria in accordance with the PRISMA-guidelines was applied. RCTs providing pre- and post-treatment parameters on cannabinoid therapies for mental disorders in comparison to controls in an age range from 0 to 25 years were included. Effect sizes were calculated as Hedges' g for primary outcomes, and a multilevel random-effects meta-analysis was conducted to account for dependent outcomes from same study populations. RESULTS We identified 7603 records, of which 8 independent clinical trials (reported in 9 publications) met the pre-established eligibility criteria, comprising 474 unique participants (245 treatment, 229 control). Analysis of 13 primary outcomes (of 7 clinical trials) revealed a modest positive overall effect for symptom improvement or normalization of brain physiology (Hedges' g = 0.308, 95% CI: 0.167, 0.448). Autism spectrum disorder studies showed the most consistent evidence (g = 0.264, 95% CI: 0.107, 0.421), while other conditions showed wider confidence intervals. Age-stratified analysis showed that adult populations (mean age 23.3 years, n = 5 outcomes) demonstrated higher effect sizes (g = 0.463, SD = 0.402) compared to pediatric populations (mean age 11.8 years, n = 8 outcomes; g = 0.318, SD = 0.212). Whole plant preparations (g = 0.328, 95% CI: 0.083, 0.573) and pharmaceutical cannabinoids (g = 0.292, 95% CI: 0.069, 0.515) showed comparable effects. CBD dosages ranged from 17.5 mg to 600 mg per day, with no significant correlation between dosage and effect size (ρ = -0.014, p = 0.963). Mild to moderate side effects were reported, but no serious adverse events. Risk of bias assessment ranged from low (n = 3) to high (n = 5). CONCLUSION While meta-analysis of effect sizes for primary outcomes revealed modest positive effects, particularly for autism spectrum disorders, the current evidence remains insufficient to broadly recommend cannabinoids for treating mental disorders in youth populations. Larger, controlled studies with standardized outcomes are needed to establish definitive clinical recommendations.
Collapse
Affiliation(s)
- Patrick Köck
- Department of Psychosomatics and Psychotherapy, Clinic Barmelweid, Barmelweid, Switzerland
| | - Andrzej Badek
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maximilian Meyer
- Department of Psychiatry, University Clinics of Psychiatry Basel, University of Basel, Basel, Switzerland
| | - Arndt-Lukas Klaassen
- Department of Anesthesiology & Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Marc Walter
- Clinic of Psychiatry and Psychotherapy, Psychiatric Services Aargau, Windisch, Switzerland
| | - Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
- Child and Adolescent Psychiatry, Psychiatry Baselland, Liestal, Switzerland.
| |
Collapse
|
2
|
Pedrazzi JFC, Sales AJ, Ponciano RSM, Ferreira LG, Ferreira FR, Campos AC, Hallak JEC, Zuardi AW, Del Bel EA, Guimarães FS, Crippa JA. Acute cannabidiol treatment reverses behavioral impairments induced by embryonic valproic acid exposure in male mice. Pharmacol Biochem Behav 2024; 247:173919. [PMID: 39615556 DOI: 10.1016/j.pbb.2024.173919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024]
Abstract
Cannabidiol (CBD), the major non-psychotomimetic compound of the Cannabis sativa plant, has shown promising effects in addressing various symptoms associated with autism spectrum disorder (ASD). This neurodevelopmental disorder typically impacts cognitive, behavioral, social communication, and motor skills domains. However, effective treatments for the wide range of symptoms associated with the disorder are limited and may trigger undesirable effects. Embryonic exposure to valproic acid (VPA, 500 mg/kg at 12° day embryonic age) in rodents is a consolidated environmental model for studying behavioral and molecular characteristics related to ASD. Therefore, this study aimed to evaluate whether acute CBD could reverse behavioral impairments in adult mice (eight weeks) exposed to VPA in the embryonic period in four distinct trials. In independent groups of animals, the following assays were conducted: I) Pre-Pulse Inhibition Test (PPI), II) Marble Burying, III) Social Interaction, IV) Actimeter Test, and V) Novel Object Recognition Test (NOR). In the PPI paradigm, mice exposed to VPA showed PPI impairment, and CBD (30 and 60 mg/kg) reversed this disruption. CBD (60 mg/kg) respectively decreased the number of buried marbles, improved social interaction time, but failed to reduce stereotyped-like movements in the VPA group. In NOR test CBD at both doses reversed the impairment in index of recognition induced in VPA group. These findings suggest that acute CBD administration can ameliorate behavioral impairments associated with ASD in a well-established animal model for studying this neurodevelopmental disorder.
Collapse
Affiliation(s)
- J F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - A J Sales
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - R S M Ponciano
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - L G Ferreira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F R Ferreira
- Research Group in Neurodevelopment and Psychiatric Disorder, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - A C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J E C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A W Zuardi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - E A Del Bel
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Jawed B, Esposito JE, Pulcini R, Zakir SK, Botteghi M, Gaudio F, Savio D, Martinotti C, Martinotti S, Toniato E. The Evolving Role of Cannabidiol-Rich Cannabis in People with Autism Spectrum Disorder: A Systematic Review. Int J Mol Sci 2024; 25:12453. [PMID: 39596518 PMCID: PMC11595093 DOI: 10.3390/ijms252212453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disease and lifelong condition. The treatment gap in ASD has led to growing interest in alternative therapies, particularly in phytocannabinoids, which are naturally present in Cannabis sativa. Studies indicate that treatment with cannabidiol (CBD)-rich cannabis may possess the potential to improve fundamental ASD symptoms as well as comorbid symptoms. This systematic review aims to assess the safety and efficacy of CBD-rich cannabis in alleviating the symptoms of ASD in both children and adults, addressing the treatment gap and growing interest in CBD as an alternative treatment. A comprehensive literature search was conducted in February 2024 using the PUBMED and Scopus databases while following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search focused on studies from 2020 onward involving human populations diagnosed with ASD and treated with CBD. Four studies met the inclusion criteria and were analyzed. The review included 353 participants with ASD from studies conducted in Israel, Turkey, and Brazil. The studies varied in design, sample size, dose, and treatment duration. Dosages of CBD were often combined with trace amounts of THC. Improvements were noted in behavioral symptoms, social responsiveness, and communication, but cognitive benefits were less consistent. Adverse effects ranged in severity. Mild effects such as somnolence and decreased appetite were common, while more concerning effects, including increased aggression, led to some cases of treatment discontinuation. CBD-rich cannabis shows promise in improving behavioral symptoms associated with ASD. However, variations in study designs, dosages, and outcome measures highlight the need for standardized assessment tools and further research to understand pharmacological interactions and optimize treatment protocols. Despite the mild adverse effects observed, larger, well-controlled trials are necessary to establish comprehensive safety and efficacy profiles.
Collapse
Affiliation(s)
- Bilal Jawed
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, LUM University, 70021 Acquaviva delle Fonti, Italy; (B.J.); (S.K.Z.); (S.M.)
- PhD Program in Science and Technology in Sustainable Development, G.d’Annunzio University, 66100 Chieti, Italy; (R.P.); (C.M.)
| | - Jessica Elisabetta Esposito
- Department of Innovative Technology in Medicine and Dentistry, G.d’Annunzio University, 66100 Chieti, Italy;
- PhD Program in Innovative Technologies in Clinical Medicine and Dentistry, G.d’Annunzio University, 66100 Chieti, Italy
| | - Riccardo Pulcini
- PhD Program in Science and Technology in Sustainable Development, G.d’Annunzio University, 66100 Chieti, Italy; (R.P.); (C.M.)
- Department of Innovative Technology in Medicine and Dentistry, G.d’Annunzio University, 66100 Chieti, Italy;
| | - Syed Khuram Zakir
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, LUM University, 70021 Acquaviva delle Fonti, Italy; (B.J.); (S.K.Z.); (S.M.)
- PhD Program in Science and Technology in Sustainable Development, G.d’Annunzio University, 66100 Chieti, Italy; (R.P.); (C.M.)
| | - Matteo Botteghi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | - Francesco Gaudio
- Unit of Hematology, Miulli Generale Hospital, LUM University, 70021 Acquaviva delle Fonti, Italy;
| | - Daniele Savio
- Research & Development Unit, R&D Solution Srl, 13030 Greggio, Italy;
| | - Caterina Martinotti
- PhD Program in Science and Technology in Sustainable Development, G.d’Annunzio University, 66100 Chieti, Italy; (R.P.); (C.M.)
- Department of Innovative Technology in Medicine and Dentistry, G.d’Annunzio University, 66100 Chieti, Italy;
| | - Stefano Martinotti
- Unit of Clinical Pathology and Microbiology, Miulli Generale Hospital, LUM University, 70021 Acquaviva delle Fonti, Italy; (B.J.); (S.K.Z.); (S.M.)
| | - Elena Toniato
- Department of Innovative Technology in Medicine and Dentistry, G.d’Annunzio University, 66100 Chieti, Italy;
| |
Collapse
|
4
|
Sher-Censor E, Harel M, Oppenheim D, Aran A. Parental Representations and Emotional Availability: The Case of Children with Autism and Severe Behavior Problems. J Autism Dev Disord 2024:10.1007/s10803-024-06629-3. [PMID: 39538042 DOI: 10.1007/s10803-024-06629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Studies suggest that parents' emotional availability (EA) is associated with children's wellbeing, including in the case of children with autism. Our study extended prior research by examining the role of parents' representations in fostering parental EA and by focusing on fathers and on children with autism and severe behavior problems. We expected that parents' positive representations would be associated with higher EA and compared mothers' and fathers' representations and EA. Participants were 79 mothers and 69 fathers (child age range = 61-173 months, 21.95% girls). Representation assessments included the Reaction to Diagnosis Questionnaire, tapping resolution with respect to the child's diagnosis, and the coherence and positive comments in parents' Five Minute Speech Samples about the child. Parents' EA was coded from parent-child play interactions. Controlling for children's autism symptoms and adaptive functioning, mothers' resolution with respect to the child's diagnosis and positive comments (but not coherence) were associated with their EA, and fathers' coherence (but not positive comments and resolution) was associated with their EA. Mothers expressed more positive comments than fathers, and the resolution and EA scores of mothers and fathers were significantly correlated. Our results highlight the importance of considering both parents' representations and EA when studying and working with families of children with autism and severe behavior problems.
Collapse
Affiliation(s)
- Efrat Sher-Censor
- School of Psychological Sciences and the Center for the Study of Child Development, Rabin Building, The University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Moria Harel
- School of Psychological Sciences and the Center for the Study of Child Development, Rabin Building, The University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel
- Neuropediatric Unit, Shaare Zedek Medical Center, 9103102, Jerusalem, Israel
| | - David Oppenheim
- School of Psychological Sciences and the Center for the Study of Child Development, Rabin Building, The University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel
| | - Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, 9103102, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| |
Collapse
|
5
|
Ross-Munro E, Isikgel E, Fleiss B. Evaluation of the Efficacy of a Full-Spectrum Low-THC Cannabis Plant Extract Using In Vitro Models of Inflammation and Excitotoxicity. Biomolecules 2024; 14:1434. [PMID: 39595610 PMCID: PMC11592195 DOI: 10.3390/biom14111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Evidence has accumulated that Cannabis-derived compounds have the potential to treat neuroinflammatory changes present in neurodevelopmental conditions such as autism spectrum disorder. However, research is needed on the specific brain health benefits of strains of whole Cannabis extract that are ready for commercial production. Here, we explore the anti-inflammatory and neuroprotective effects of NTI-164, a genetically unique high-cannabidiol (CBD), low-Δ9-tetrahydrocannabinol extract, and also CBD alone on BV-2 microglia and SHSY-5Y neurons. Inflammation-induced up-regulation of microglial inflammatory markers was significantly attenuated by NTI-164, but not by CBD. NTI-164 promoted undifferentiated neuron proliferation and differentiated neuron survival under excitotoxic conditions. These effects suggest the potential for NTI-164 as a treatment for neuropathologies.
Collapse
Affiliation(s)
- Emily Ross-Munro
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Esra Isikgel
- Fenix Innovation Group Pty Ltd., Melbourne, VIC 3149, Australia;
| | - Bobbi Fleiss
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
6
|
Chhabra M, Ben-Eltriki M, Mansell H, Lê ML, Huntsman RJ, Finkelstein Y, Kelly LE. Cannabinoids Used for Medical Purposes in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr 2024; 178:1124-1135. [PMID: 39283619 PMCID: PMC11406456 DOI: 10.1001/jamapediatrics.2024.3045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/24/2024] [Indexed: 09/22/2024]
Abstract
Importance Cannabinoids are increasingly used for medical purposes in children. Evidence of the safety of cannabinoids in this context is sparse, creating a need for reliable information to close this knowledge gap. Objective To study the adverse event profile of cannabinoids used for medical purposes in children and adolescents. Data Sources For this systematic review and meta-analysis, MEDLINE, Embase, PsycINFO, and the Cochrane Library were searched for randomized clinical trials published from database inception to March 1, 2024, for subject terms and keywords focused on cannabis and children and adolescents. Search results were restricted to human studies in French or English. Study Selection Two reviewers independently performed the title, abstract, and full-text review, data extraction, and quality assessment. Included studies enrolled at least 1 individual 18 years or younger, had a natural or pharmaceutical cannabinoid used as an intervention to manage any medical condition, and had an active comparator or placebo. Data Extraction and Synthesis Two reviewers performed data extraction and quality assessment independently. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline and PRISMA-S guideline were used. Data were pooled using a random-effects model. Main Outcomes and Measures The primary outcome was the incidence of withdrawals, withdrawals due to adverse events, overall adverse events, and serious adverse events in the cannabinoid and control arms. Secondary outcomes were the incidence of specific serious adverse events and adverse events based on organ system involvement. Results Of 39 175 citations, 23 RCTs with 3612 participants were included (635 [17.6%] female and 2071 [57.3%] male; data not available from 2 trials); 11 trials (47.8%) included children and adolescents only, and the other 12 trials (52.2%) included children, adolescents, and adults. Interventions included purified cannabidiol (11 [47.8%]), nabilone (4 [17.4%]), tetrahydrocannabinol (3 [13.0%]), cannabis herbal extract (3 [13.0%]), and dexanabinol (2 [8.7%]). The most common indications were epilepsy (9 [39.1%]) and chemotherapy-induced nausea and vomiting (7 [30.4%]). Compared with the control, cannabinoids were associated with an overall increased risk of adverse events (risk ratio [RR], 1.09; 95% CI, 1.02-1.16; I2 = 54%; 12 trials), withdrawals due to adverse events (RR, 3.07; 95% CI, 1.73-5.43; I2 = 0%; 14 trials), and serious adverse events (RR, 1.81; 95% CI, 1.21-2.71; I2 = 59%; 11 trials). Cannabinoid-associated adverse events with higher RRs were diarrhea (RR, 1.82; 95% CI, 1.30-2.54; I2 = 35%; 10 trials), increased serum levels of aspartate aminotransferase (RR, 5.69; 95% CI, 1.74-18.64; I2 = 0%; 5 trials) and alanine aminotransferase (RR, 5.67; 95% CI, 2.23-14.39; I2 = 0%; 6 trials), and somnolence (RR, 2.28; 95% CI, 1.83-2.85; I2 = 8%; 14 trials). Conclusions and Relevance In this systematic review and meta-analysis, cannabinoids used for medical purposes in children and adolescents in RCTs were associated with an increased risk of adverse events. The findings suggest that long-term safety studies, including those exploring cannabinoid-related drug interactions and tools that improve adverse event reporting, are needed.
Collapse
Affiliation(s)
- Manik Chhabra
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohamed Ben-Eltriki
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Holly Mansell
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mê-Linh Lê
- Neil John Maclean Health Sciences Library, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard J. Huntsman
- Division of Pediatric Neurology, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yaron Finkelstein
- Division of Emergency Medicine, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Division of Clinical Pharmacology and Toxicology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lauren E. Kelly
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
8
|
Bortoletto R, Piscitelli F, Basaldella M, Scipioni C, Comacchio C, Fiorino R, Fornasaro S, Barbieri P, Pagliaro D, Sepulcri O, Fabris M, Curcio F, Balestrieri M, Colizzi M. Assessing the biobehavioral effects of ultramicronized-palmitoylethanolamide monotherapy in autistic adults with different severity levels: a report of two cases. Front Psychiatry 2024; 15:1463849. [PMID: 39502301 PMCID: PMC11536324 DOI: 10.3389/fpsyt.2024.1463849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/13/2024] [Indexed: 11/08/2024] Open
Abstract
Despite promise of its supplementation as both monotherapy and add-on treatment in autism spectrum disorder (ASD), the biobehavioral effects of Palmitoylethanolamide (PEA) in autistic adults have never been explored so far. We discussed the cases of two autistic adults with different degrees of severity (level 1 and level 2) presenting with symptoms of psychic distress, who were treated with ultramicronized-PEA (um-PEA) 600 mg/day monotherapy for a sustained period of 4 months. The level 1 autistic patient showed improved depressive symptoms and social engagement at a 12-week follow-up, in parallel to a tendency toward reduced inflammatory response and enhanced endocannabinoid (eCB) signaling, partially relapsing after um-PEA discontinuation at four months. Opposedly, the level 2 autistic patient exhibited a generally stable psychosocial functioning for the initial 12 weeks, consistent with basically unchanged immune and eCBs levels, abruptly deteriorating and leading to antipsychotic initiation afterwards. No significant side effects were reported in both cases during the observation period. The two cases suggest that um-PEA could be an effective option for the treatment of psychic distress in level 1 autistic adults, warranting further investigation of its age- and level-specificity and of the biological underpinnings of its therapeutic effect in ASD.
Collapse
Affiliation(s)
- Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
| | - Marta Basaldella
- Unit of Psychiatry, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Claudia Scipioni
- Unit of Psychiatry, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Carla Comacchio
- Unit of Psychiatry, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Roberta Fiorino
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Institute of Clinical Pathology, Friuli Centrale Health University Authority (ASUFC), Udine, Italy
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Pierluigi Barbieri
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Daniele Pagliaro
- Unit of Psychiatry, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Orietta Sepulcri
- Unit of Psychiatry, Friuli Centrale Health University Authority (ASUFC), Udine, Italy
| | - Martina Fabris
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Institute of Clinical Pathology, Friuli Centrale Health University Authority (ASUFC), Udine, Italy
| | - Francesco Curcio
- Department of Medicine (DMED), University of Udine, Udine, Italy
- Institute of Clinical Pathology, Friuli Centrale Health University Authority (ASUFC), Udine, Italy
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DMED), University of Udine, Udine, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
9
|
Ibsen EWD, Thomsen PH. Cannabinoids as alleviating treatment for core symptoms of autism spectrum disorder in children and adolescents: a systematic review. Nord J Psychiatry 2024; 78:553-560. [PMID: 39037073 DOI: 10.1080/08039488.2024.2381541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder affecting about 1% of children. The disorder is characterized by difficulties within three core symptoms: social interactions, communication, and restricted or repetitive behavior. There is currently no approved psychopharmacological treatment; however, it is hypothesized that ASD symptoms might be ameliorated by manipulating the endocannabinoid (eCB) system.This study aims to review the existing research on cannabinoids as a potential effective treatment for the core symptoms of ASD in children and adolescents. METHODS A literature search was conducted on PubMed, Embase, APA PsychInfo, and Cochrane. The available literature was screened, and studies were included if: the study population consisted of children/adolescents, the treatment involved cannabinoids, and the outcome assessed was the impact on core ASD symptoms. RESULTS The search yielded five studies, two RCTs and three cohort studies. All the included studies reported an effect of the cannabinoid treatment; however, most of these effects were non-significant and not related to core symptoms. Only one study found a significant improvement on all three core symptoms. The risk of bias was rated as "high" or "very high" in four studies and as "low" in one study. DISCUSSION Although the included studies did not find substantial results regarding core ASD symptoms, they all reported that cannabinoid treatment had other positive effects. However, Long term outcome is unknown, and safety aspects are scarcely discussed. CONCLUSION Based on this review, the effect of cannabinoid treatment on ASD core symptoms is not clear; therefore, further studies are required.
Collapse
Affiliation(s)
- Emma Wen Dieperink Ibsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Child and Adolescent Psychiatry, Research Unit, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
| | - Per Hove Thomsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Child and Adolescent Psychiatry, Research Unit, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
| |
Collapse
|
10
|
Simei JLQ, Souza JDR, Lisboa JR, Campos AC, Guimarães FS, Zuardi A, Crippa JAS. Does the "Entourage Effect" in Cannabinoids Exist? A Narrative Scoping Review. Cannabis Cannabinoid Res 2024; 9:1202-1216. [PMID: 37535820 DOI: 10.1089/can.2023.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Background: The concept of an "entourage" effect in the cannabis and cannabinoids' field was first introduced in the late 1990s, during a period when most research on medical cannabinoids focused on the effects of isolated cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabinol. Over the past decade, however, with the increased understanding of the endocannabinoid system, the discovery of other phytocannabinoids and their potential therapeutic uses, the term has gained widespread use in scientific reviews and marketing campaigns. Objective: Critically review the application of the term "entourage effect (EE)" in the literature and its endorsement by certain sectors of the cannabis market. Also, explore the perspectives for further interpretation and elaboration of the term based on current evidence, aiming to contribute to a more nuanced understanding of the concept and its implications for cannabinoid-based medicine. Methods: A comprehensive review of the literature was conducted to evaluate the current state of knowledge regarding the entourage effect. Relevant studies and scientific reviews were analyzed to assess the evidence of clinical efficacy and safety, as well as the regulation of cannabinoid-containing product production. Results: The EE is now recognized as a synergistic phenomenon in which multiple components of cannabis interact to modulate the therapeutic actions of the plant. However, the literature provides limited evidence to support it as a stable and predictable phenomenon. Hence, there is also limited evidence to support clinical efficacy, safety, and appropriate regulation for cannabinoid-containing products based on a "entourage" hypothesis. Conclusion: The EE has significant implications for the medical use of cannabinoid-containing products and their prescription. Nevertheless, a critical evaluation of the term's application is necessary. Further research and evidence are needed to establish the clinical efficacy, safety, and regulatory framework for these products. It's crucial that regulators, the pharmaceutical industry, the media, and health care providers exercise caution and avoid prematurely promoting the entourage effect hypothesis as a scientific proven phenomenon for cannabinoids and other cannabis-derived compound combinations.
Collapse
Affiliation(s)
- João Luís Q Simei
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Diogo R Souza
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Roberto Lisboa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alline C Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| | - José Alexandre S Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- National Institute for Science and Technology-Translational Medicine, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Hauch H, Lisakowski A, Wager J, Zernikow B. Dronabinol Is Not a Game Changer in Pediatric Palliative Care: Results from a Retrospective Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1054. [PMID: 39334587 PMCID: PMC11446414 DOI: 10.3390/children11091054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND/OBJECTIVES Patients with life-limiting conditions (LLCs) often suffer from restlessness, spasticity, pain, and seizures. Dronabinol (DRB) may have a relieving effect; however, data on the effectiveness of DRB in children with LLCs are limited to outpatients. The aim of this study was to assess the efficacy and safety of DRB. METHODS Retrospective analysis of inpatients. RESULTS From 2011 to 2021, 1219 patients were admitted. Of these, 63 patients (63.5% male, age: 10.4 (SD = 6.3) years) were treated with DRB; 96.8% had a neurological disease, and 26 patients were started on DRB (group A), while 37 were admitted with existing DRB (group B). The effective doses were 0.21 (SD = 0.11) in group A and 0.48 (SD = 0.5) mg/kg/BW/day in group B (p = 0.01). Subjective response rates to DRB in both groups (good/moderate effect) were 9.5%/38.1% for spasticity and 1.6%/25.4% for restlessness. However, no reduction in seizures, restlessness, or demand medication was observed in 24 h protocols when patients started DRB in group A. Three patients experienced severe side effects (e.g., respiratory depression). Other side effects included fatigue (22.2%) and behavioral problems (14.3%). CONCLUSIONS Subjective positive effects could not be confirmed by more objective data. Side effects can be severe. Thus, DRB should be started in a well-monitored setting and only with clear indications.
Collapse
Affiliation(s)
- Holger Hauch
- Pediatric Palliative Care Centre, Children’s and Adolescents’ Hospital Datteln, 45711 Datteln, Germany
- Department of Children’s Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, 58455 Witten, Germany
| | - Annika Lisakowski
- Department of Children’s Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, 58455 Witten, Germany
- PedScience Research Institute, 45711 Datteln, Germany
| | - Julia Wager
- Pediatric Palliative Care Centre, Children’s and Adolescents’ Hospital Datteln, 45711 Datteln, Germany
- Department of Children’s Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, 58455 Witten, Germany
- PedScience Research Institute, 45711 Datteln, Germany
| | - Boris Zernikow
- Pediatric Palliative Care Centre, Children’s and Adolescents’ Hospital Datteln, 45711 Datteln, Germany
- Department of Children’s Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, 58455 Witten, Germany
- PedScience Research Institute, 45711 Datteln, Germany
| |
Collapse
|
12
|
Murray CH, Gannon BM, Winsauer PJ, Cooper ZD, Delatte MS. The Development of Cannabinoids as Therapeutic Agents in the United States. Pharmacol Rev 2024; 76:915-955. [PMID: 38849155 PMCID: PMC11331953 DOI: 10.1124/pharmrev.123.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Cannabis is one of the oldest and widely used substances in the world. Cannabinoids within the cannabis plant, known as phytocannabinoids, mediate cannabis' effects through interactions with the body's endogenous cannabinoid system. This endogenous system, the endocannabinoid system, has important roles in physical and mental health. These roles point to the potential to develop cannabinoids as therapeutic agents while underscoring the risks related to interfering with the endogenous system during nonmedical use. This scoping narrative review synthesizes the current evidence for both the therapeutic and adverse effects of the major (i.e., Δ9-tetrahydrocannabinol and cannabidiol) and lesser studied minor phytocannabinoids, from nonclinical to clinical research. We pay particular attention to the areas where evidence is well established, including analgesic effects after acute exposures and neurocognitive risks after acute and chronic use. In addition, drug development considerations for cannabinoids as therapeutic agents within the United States are reviewed. The proposed clinical study design considerations encourage methodological standards for greater scientific rigor and reproducibility to ultimately extend our knowledge of the risks and benefits of cannabinoids for patients and providers. SIGNIFICANCE STATEMENT: This work provides a review of prior research related to phytocannabinoids, including therapeutic potential and known risks in the context of drug development within the United States. We also provide study design considerations for future cannabinoid drug development.
Collapse
Affiliation(s)
- Conor H Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Brenda M Gannon
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Peter J Winsauer
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Ziva D Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| | - Marcus S Delatte
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences (C.H.M.) and Departments of Anesthesiology and Perioperative Medicine (Z.D.C.), David Geffen School of Medicine, University of California, Los Angeles, California; Department of Pharmacology and Toxicology, College of Medicine (B.M.G.) and Office of Research Regulatory Affairs, Division of Research and Innovation (B.M.G.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Departments of Pharmacology and Experimental Therapeutics and Biochemistry and Molecular Biology, School of Medicine (P.J.W.), and Alcohol and Drug Abuse Center of Excellence (P.J.W.) Louisiana State University Health Sciences Center, New Orleans, Louisiana; and Regulatory and Drug Development Consulting, Allucent, Carey, North Carolina (M.S.D.)
| |
Collapse
|
13
|
Banerjee S, Saha D, Sharma R, Jaidee W, Puttarak P, Chaiyakunapruk N, Chaoroensup R. Phytocannabinoids in neuromodulation: From omics to epigenetics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118201. [PMID: 38677573 DOI: 10.1016/j.jep.2024.118201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/27/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Recent developments in metabolomics, transcriptomic and epigenetics open up new horizons regarding the pharmacological understanding of phytocannabinoids as neuromodulators in treating anxiety, depression, epilepsy, Alzheimer's, Parkinson's disease and autism. METHODS The present review is an extensive search in public databases, such as Google Scholar, Scopus, the Web of Science, and PubMed, to collect all the literature about the neurobiological roles of cannabis extract, cannabidiol, 9-tetrahydrocannabinol specially focused on metabolomics, transcriptomic, epigenetic, mechanism of action, in different cell lines, induced animal models and clinical trials. We used bioinformatics, network pharmacology and enrichment analysis to understand the effect of phytocannabinoids in neuromodulation. RESULTS Cannabidomics studies show wide variability of metabolites across different strains and varieties, which determine their medicinal and abusive usage, which is very important for its quality control and regulation. CB receptors interact with other compounds besides cannabidiol and Δ9-tetrahydrocannabinol, like cannabinol and Δ8-tetrahydrocannabinol. Phytocannabinoids interact with cannabinoid and non-cannabinoid receptors (GPCR, ion channels, and PPAR) to improve various neurodegenerative diseases. However, its abuse because of THC is also a problem found across different epigenetic and transcriptomic studies. Network enrichment analysis shows CNR1 expression in the brain and its interacting genes involve different pathways such as Rap1 signalling, dopaminergic synapse, and relaxin signalling. CBD protects against diseases like epilepsy, depression, and Parkinson's by modifying DNA and mitochondrial DNA in the hippocampus. Network pharmacology analysis of 8 phytocannabinoids revealed an interaction with 10 (out of 60) targets related to neurodegenerative diseases, with enrichment of ErbB and PI3K-Akt signalling pathways which helps in ameliorating neuro-inflammation in various neurodegenerative diseases. The effects of phytocannabinoids vary across sex, disease state, and age which suggests the importance of a personalized medicine approach for better success. CONCLUSIONS Phytocannabinoids present a range of promising neuromodulatory effects. It holds promise if utilized in a strategic way towards personalized neuropsychiatric treatment. However, just like any drug irrational usage may lead to unforeseen negative effects. Exploring neuro-epigenetics and systems pharmacology of major and minor phytocannabinoid combinations can lead to success.
Collapse
Affiliation(s)
- Subhadip Banerjee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand
| | - Debolina Saha
- School of Bioscience and Engineering, Jadavpur University, Kolkata, 700032, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Wuttichai Jaidee
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand
| | - Panupong Puttarak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand
| | | | - Rawiwan Chaoroensup
- Medicinal Plant Innovation Center of Mae Fah Luang University, Mae Fah Luang University, ChiangRai, 57100, Thailand; School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
| |
Collapse
|
14
|
Tu G, Jiang N, Chen W, Liu L, Hu M, Liao B. The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals. Rev Neurosci 2024; 0:revneuro-2024-0058. [PMID: 39083671 DOI: 10.1515/revneuro-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Autism spectrum disorder is a pervasive and heterogeneous neurodevelopmental condition characterized by social communication difficulties and rigid, repetitive behaviors. Owing to the complex pathogenesis of autism, effective drugs for treating its core features are lacking. Nonpharmacological approaches, including education, social-communication, behavioral and psychological methods, and exercise interventions, play important roles in supporting the needs of autistic individuals. The advantages of exercise intervention, such as its low cost, easy implementation, and high acceptance, have garnered increasing attention. Exercise interventions can effectively improve the core features and co-occurring conditions of autism, but the underlying neurobiological mechanisms are unclear. Abnormal changes in the gut microbiome, neuroinflammation, neurogenesis, and synaptic plasticity may individually or interactively be responsible for atypical brain structure and connectivity, leading to specific autistic experiences and characteristics. Interestingly, exercise can affect these biological processes and reshape brain network connections, which may explain how exercise alleviates core features and co-occurring conditions in autistic individuals. In this review, we describe the definition, diagnostic approach, epidemiology, and current support strategies for autism; highlight the benefits of exercise interventions; and call for individualized programs for different subtypes of autistic individuals. Finally, the possible neurobiological mechanisms by which exercise improves autistic features are comprehensively summarized to inform the development of optimal exercise interventions and specific targets to meet the needs of autistic individuals.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Nan Jiang
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Weizhong Chen
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Lining Liu
- Graduate School, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, 47878 Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, 47878 Scientific Research Center, Guangzhou Sport University , Guangzhou, Guangdong, 510500, P.R. China
| |
Collapse
|
15
|
David A, Stolar O, Berkovitch M, Kohn E, Hazan A, Waissengreen D, Gal E. Effects of Medical Cannabis Treatment for Autistic Children on Anxiety and Restricted and Repetitive Behaviors and Interests: An Open-Label Study. Cannabis Cannabinoid Res 2024. [PMID: 39047052 DOI: 10.1089/can.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Background: The literature supports the benefits of medical cannabis for core and comorbid symptoms in autistic individuals and anxiety-related symptoms in individuals without autism. However, no study has specifically investigated how cannabidiol (CBD)-rich cannabis affects anxiety subtypes in autistic children or its relationship with restricted and repetitive behaviors and interests (RRBI). Understanding the effects of CBD-rich cannabis treatment on anxiety subtypes and RRBI could offer more precise treatment approaches to managing anxiety symptoms and reducing RRBI frequency in autistic children. Objectives: To examine (1) the impact of CBD-rich cannabis treatment on autistic children's (1a) anxiety levels and subtypes and (1 b) RRBI and subtypes and (2) whether changes in anxiety explain changes in RRBI following cannabis treatment. Method: In this open-label study, we analyzed data from 65 autistic children (5-12 years) who had participated in research on the effects of CBD-rich cannabis on children with autism. Their parents completed the Repetitive Behavior Scale-revised to assess the frequency and severity of six subgroups of their children's recurrent behaviors and the Screen for Child Anxiety-Related Emotional Disorders for symptoms related to five types of anxiety disorders. They completed these assessments at three time points: (T1) before treatment, (T2) after 3 months, and (T3) after 6 months of treatment. Results: The results indicated reduced RRBI and symptoms related to various anxiety subtypes in autistic children following 6 months of CBD-rich cannabis treatment. Specifically, we observed significant differences in the autistic children's overall anxiety and in some anxiety subtypes (i.e., general, social, panic, and separation anxieties). Significant improvements were observed in RRBI, including the total score, and specifically in compulsive, ritualistic, and sameness behaviors. Our findings revealed that reduced anxiety, particularly within the panic- and separation-related subtypes, predicted a subsequent decrease in RRBI, specifically sameness behaviors, following cannabis treatment. Conclusions: The findings of the cannabis treatment's potential benefits for alleviating anxiety symptoms, leading to reduced RRBI, may provide evidence for the meaningful relationship between these variables and for the potential benefits of cannabis treatment for autistic children. We strongly recommend further double-blind, placebo-controlled studies using standardized assessments to validate these findings.
Collapse
Affiliation(s)
- Ayelet David
- Department of Occupational Therapy, Faculty of Social Welfare & Health Sciences, University of Haifa, Haifa, Israel
| | - Orit Stolar
- Child Development Division, Sharon District-Maccabi Healthcare Services, Tel Aviv, Israel
- Clinical Pharmacology and Toxicology, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
- The Andy Lebach Chair of Clinical Pharmacology and Toxicology, Tel-Aviv University, Tel-Aviv, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Ariela Hazan
- Clinical Pharmacology and Toxicology, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | | | - Eynat Gal
- Department of Occupational Therapy, Faculty of Social Welfare & Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
16
|
Doucette ML, Hemraj D, Bruce D, Fisher E, Macfarlan DL. Medical Cannabis Patients Under the Age of 21 in the United States: Description of Demographics and Conditions from a Large Patient Database, 2019-2023. Adolesc Health Med Ther 2024; 15:63-72. [PMID: 39076412 PMCID: PMC11284137 DOI: 10.2147/ahmt.s460560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Existing research on medical cannabis patients has often overlooked those younger than 21. This study aimed to detail the frequency and rate of pediatric medical cannabis patients in the US using a large patient database. Methods Utilizing Leafwell Patient Database data from 2019 to mid-2023, we described demographics and qualifying conditions, employing descriptive statistics and χ2 tests to discern differences between minors (0-17 years) and young adults (18-20 years). We calculated rates per 100,000 population by state. Results Analyzing 13,855 patients, 5.7% were minors and 94.3% were young adults. Anxiety emerged as the primary self-reported condition for both groups, yet differences were seen for other conditions. Differences were observed by race/ethnicity, health insurance status, residency in adult-use states, and number of reported conditions. Notably, both groups reported a similar average number of conditions. Conclusion This study underscores demographic distinctions between minor-aged medical cannabis patients and young adults. There is a need for comprehensive clinical research addressing efficacy, safety, and tailored guidelines specific for pediatric medical cannabis patients. Such insights are pivotal for healthcare providers and policymakers in navigating medical cannabis treatment protocols.
Collapse
Affiliation(s)
| | - Dipak Hemraj
- Health Economics and Outcomes Research, Leafwell, Miami, FL, USA
| | - Douglas Bruce
- Department of Health Sciences, DePaul University, Chicago, IL, USA
| | - Emily Fisher
- Health Economics and Outcomes Research, Leafwell, Miami, FL, USA
| | - D Luke Macfarlan
- Health Economics and Outcomes Research, Leafwell, Miami, FL, USA
| |
Collapse
|
17
|
Pedrazzi JFC, Hassib L, Ferreira FR, Hallak JC, Del-Bel E, Crippa JA. Therapeutic potential of CBD in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:149-203. [PMID: 39029984 DOI: 10.1016/bs.irn.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and interaction, as well as restricted and repetitive patterns of behavior. Despite extensive research, effective pharmacological interventions for ASD remain limited. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has potential therapeutic effects on several neurological and psychiatric disorders. CBD interacts with the endocannabinoid system, a complex cell-signaling system that plays a crucial role in regulating various physiological processes, maintaining homeostasis, participating in social and behavioral processing, and neuronal development and maturation with great relevance to ASD. Furthermore, preliminary findings from clinical trials indicate that CBD may have a modulatory effect on specific ASD symptoms and comorbidities in humans. Interestingly, emerging evidence suggests that CBD may influence the gut microbiota, with implications for the bidirectional communication between the gut and the central nervous system. CBD is a safe drug with low induction of side effects. As it has a multi-target pharmacological profile, it becomes a candidate compound for treating the central symptoms and comorbidities of ASD.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lucas Hassib
- Department of Mental Health, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Jaime C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
18
|
Dallabrida KG, de Oliveira Bender JM, Chade ES, Rodrigues N, Sampaio TB. Endocannabinoid System Changes throughout Life: Implications and Therapeutic Potential for Autism, ADHD, and Alzheimer's Disease. Brain Sci 2024; 14:592. [PMID: 38928592 PMCID: PMC11202267 DOI: 10.3390/brainsci14060592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The endocannabinoid system has been linked to various physiological and pathological processes, because it plays a neuromodulator role in the central nervous system. In this sense, cannabinoids have been used off-label for neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHA), as well as in Alzheimer's disease (AD), a more prevalent neurodegenerative disease. Thus, this study aims, through a comprehensive literature review, to arrive at a better understanding of the impact of cannabinoids in the therapeutic treatment of patients with ASD, ADHD, and Alzheimer's disease (AD). Overall, cannabis products rich in CBD displayed a higher therapeutic potential for ASD children, while cannabis products rich in THC have been tested more for AD therapy. For ADHD, the clinical studies are incipient and inconclusive, but promising. In general, the main limitations of the clinical studies are the lack of standardization of the cannabis-based products consumed by the participants, a lack of scientific rigor, and the small number of participants.
Collapse
Affiliation(s)
| | | | - Ellen Schavarski Chade
- Department of Pharmacy, State University of Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Nathalia Rodrigues
- Department of Medicine, State University of Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | | |
Collapse
|
19
|
Sampaio L, Campos RMP, Karhson D, Iannotti FA. Editorial: Insights on cannabinoid translational science and medicine: the endocannabinoidome as a target for clinical practice. Front Neurosci 2024; 18:1432892. [PMID: 38887370 PMCID: PMC11180839 DOI: 10.3389/fnins.2024.1432892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Luzia Sampaio
- Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Debra Karhson
- Department of Psychology, University of New Orleans, New Orleans, LA, United States
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
| |
Collapse
|
20
|
Patti MA, Croen LA, Dickerson AS, Joseph RM, Ames JL, Ladd-Acosta C, Ozonoff S, Schmidt RJ, Volk HE, Hipwell AE, Magee KE, Karagas M, McEvoy C, Landa R, Elliott MR, Mitchell DK, D'Sa V, Deoni S, Pievsky M, Wu PC, Barry F, Stanford JB, Bilder DA, Trasande L, Bush NR, Lyall K. Reproducibility between preschool and school-age Social Responsiveness Scale forms in the Environmental influences on Child Health Outcomes program. Autism Res 2024; 17:1187-1204. [PMID: 38794898 PMCID: PMC11186723 DOI: 10.1002/aur.3147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/12/2024] [Indexed: 05/26/2024]
Abstract
Evidence suggests core autism trait consistency in older children, but development of these traits is variable in early childhood. The Social Responsiveness Scale (SRS) measures autism-related traits and broader autism phenotype, with two age-dependent forms in childhood (preschool, 2.5-4.5 years; school age, 4-18 years). Score consistency has been observed within forms, though reliability across forms has not been evaluated. Using data from the Environmental Influences on Child Health Outcomes (ECHO) program (n = 853), preschool, and school-age SRS scores were collected via maternal report when children were an average of 3.0 and 5.8 years, respectively. We compared reproducibility of SRS total scores (T-scores) and agreement above a clinically meaningful cutoff (T-scores ≥ 60) and examined predictors of discordance in cutoff scores across forms. Participant scores across forms were similar (mean difference: 3.3 points; standard deviation: 7), though preschool scores were on average lower than school-age scores. Most children (88%) were classified below the cutoff on both forms, and overall concordance was high (92%). However, discordance was higher in cohorts following younger siblings of autistic children (16%). Proportions of children with an autism diagnoses were also higher among those with discordant scores (27%) than among those with concordant scores (4%). Our findings indicate SRS scores are broadly reproducible across preschool and school-age forms, particularly for capturing broader, nonclinical traits, but also suggest that greater variability of autism-related traits in preschool-age children may reduce reliability with later school-age scores for those in the clinical range.
Collapse
Grants
- UH3OD023285 NIH ECHO Program, funded by the office of the Director, NIH
- UG3 OD023342 NIH HHS
- UH3OD023288 NIH ECHO Program, funded by the office of the Director, NIH
- U24OD023319 NIH ECHO Program, funded by the office of the Director, NIH
- UH3OD023244 NIH ECHO Program, funded by the office of the Director, NIH
- UH3OD023313 NIH ECHO Program, funded by the office of the Director, NIH
- UH3OD023305 NIH ECHO Program, funded by the office of the Director, NIH
- UH3OD023275 NIH ECHO Program, funded by the office of the Director, NIH
- UH3OD023328 NIH ECHO Program, funded by the office of the Director, NIH
- UH3OD023342 NIH ECHO Program, funded by the office of the Director, NIH
- U2C OD023375 NIH HHS
- UH3OD023271 NIH ECHO Program, funded by the office of the Director, NIH
- U24OD023382 NIH ECHO Program, funded by the office of the Director, NIH
- UH3OD023249 NIH ECHO Program, funded by the office of the Director, NIH
- U2COD023375 NIH ECHO Program, funded by the office of the Director, NIH
- UH3 OD023342 NIH HHS
Collapse
Affiliation(s)
- Marisa A Patti
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer L Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sally Ozonoff
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis, Sacramento, California, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, MIND Institute, University of California Davis, Sacramento, California, USA
| | - Heather E Volk
- Wendy Klag Center for Autism and Developmental Disabilities Research, Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelsey E Magee
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Margaret Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Cindy McEvoy
- Department of Pediatrics, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Rebecca Landa
- Center for Autism Services, Science and Innovation, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael R Elliott
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Daphne Koinis Mitchell
- Bradley-Hasbro Research Center and the Department of Pediatrics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Viren D'Sa
- Bradley-Hasbro Research Center and the Department of Pediatrics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Sean Deoni
- Bradley-Hasbro Research Center and the Department of Pediatrics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Michelle Pievsky
- Department of Psychiatry and Human Behavior, Hasbro Children's Hospital, Providence, Rhode Island, USA
| | - Pei-Chi Wu
- Bradley-Hasbro Research Center and the Department of Pediatrics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Fatoumata Barry
- Bradley-Hasbro Research Center and the Department of Pediatrics, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Joseph B Stanford
- Department of Family and Preventive Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Deborah A Bilder
- Department of Psychiatry, University of Utah Huntsman Mental Health Institute, Salt Lake City, Utah, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, Department of Pediatrics, University of California, San Francisco, California, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Mazza JADS, Ferreira LS, Martins-Vieira ADF, Beserra DDL, Rodrigues VA, Malcher-Lopes R, Caixeta FV. Clinical and Family Implications of Cannabidiol (CBD)-Dominant Full-Spectrum Phytocannabinoid Extract in Children and Adolescents with Moderate to Severe Non-Syndromic Autism Spectrum Disorder (ASD): An Observational Study on Neurobehavioral Management. Pharmaceuticals (Basel) 2024; 17:686. [PMID: 38931353 PMCID: PMC11206937 DOI: 10.3390/ph17060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Autism Spectrum Disorder (ASD) encompasses a wide range of neurodevelopmental conditions characterized by deficits in social interaction, communication and behavior. Current pharmacological options are limited and feature significant side effects. In this study, we conducted a retrospective, observational, and cross-sectional cohort study to evaluate the effects of Cannabidiol (CBD)-dominant, full-spectrum cannabis extract, containing Tetrahydrocannabinol (THC) in a ratio of 33:1 (CBD:THC), on non-syndromic children and adolescents (5-18 years old) with moderate to severe ASD. Thirty volunteers were recruited, underwent neuropsychological evaluations and were treated with individualized doses of CBD-dominant extract. Clinical assessments were conducted by the designated clinician. Additionally, parents or caregivers were independently interviewed to assess perceived treatment effects. We found significant improvements in various symptomatic and non-symptomatic aspects of ASD, with minimal untoward effects, as reported by both clinical assessments and parental perceptions. The observed improvements included increased communicative skills, attention, learning, eye contact, diminished aggression and irritability, and an overall increase in both the patient's and family's quality of life. Despite its limitations, our findings suggest that treatment with full-spectrum CBD-dominant extract may be a safe and effective option for core and comorbid symptoms of ASD, and it may also increase overall quality of life for individuals with ASD and their families.
Collapse
Affiliation(s)
- Jeanne Alves de Souza Mazza
- University Hospital of Brasilia, Campus Darcy Ribeiro, Brasilia 70840-901, Brazil; (J.A.d.S.M.); (L.S.F.); (D.D.L.B.); (V.A.R.)
| | - Lisiane Seguti Ferreira
- University Hospital of Brasilia, Campus Darcy Ribeiro, Brasilia 70840-901, Brazil; (J.A.d.S.M.); (L.S.F.); (D.D.L.B.); (V.A.R.)
| | - Alice de Faria Martins-Vieira
- Department of Physiological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, Brazil; (A.d.F.M.-V.); (R.M.-L.)
| | - Doris Day Lopes Beserra
- University Hospital of Brasilia, Campus Darcy Ribeiro, Brasilia 70840-901, Brazil; (J.A.d.S.M.); (L.S.F.); (D.D.L.B.); (V.A.R.)
| | - Victor Alves Rodrigues
- University Hospital of Brasilia, Campus Darcy Ribeiro, Brasilia 70840-901, Brazil; (J.A.d.S.M.); (L.S.F.); (D.D.L.B.); (V.A.R.)
| | - Renato Malcher-Lopes
- Department of Physiological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, Brazil; (A.d.F.M.-V.); (R.M.-L.)
| | - Fabio V. Caixeta
- Department of Physiological Sciences, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-900, Brazil; (A.d.F.M.-V.); (R.M.-L.)
| |
Collapse
|
22
|
Shrader SH, Mellen N, Cai J, Barnes GN, Song ZH. Cannabidiol is a behavioral modulator in BTBR mouse model of idiopathic autism. Front Neurosci 2024; 18:1359810. [PMID: 38784096 PMCID: PMC11112039 DOI: 10.3389/fnins.2024.1359810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction The prevalence of Autism Spectrum Disorder (ASD) has drastically risen over the last two decades and is currently estimated to affect 1 in 36 children in the U.S., according to the center for disease control (CDC). This heterogenous neurodevelopmental disorder is characterized by impaired social interactions, communication deficits, and repetitive behaviors plus restricted interest. Autistic individuals also commonly present with a myriad of comorbidities, such as attention deficit hyperactivity disorder, anxiety, and seizures. To date, a pharmacological intervention for the treatment of core autistic symptoms has not been identified. Cannabidiol (CBD), the major nonpsychoactive constituent of Cannabis sativa, is suggested to have multiple therapeutic applications, but its effect(s) on idiopathic autism is unknown. We hypothesized that CBD will effectively attenuate the autism-like behaviors and autism-associated comorbid behaviors in BTBR T+Itpr3tf/J (BTBR) mice, an established mouse model of idiopathic ASD. Methods Male BTBR mice were injected intraperitoneally with either vehicle, 20 mg/kg CBD or 50 mg/kg CBD daily for two weeks beginning at postnatal day 21 ± 3. On the final treatment day, a battery of behavioral assays were used to evaluate the effects of CBD on the BTBR mice, as compared to age-matched, vehicle-treated C57BL/6 J mice. Results High dose (50 mg/kg) CBD treatment attenuated the elevated repetitive self-grooming behavior and hyperlocomotion in BTBR mice. The social deficits exhibited by the control BTBR mice were rescued by the 20 mg/kg CBD treatment. Discussion Our data indicate that different doses for CBD are needed for treating specific ASD-like behaviors. Together, our results suggest that CBD may be an effective drug to ameliorate repetitive/restricted behaviors, social deficits, and autism-associated hyperactivity.
Collapse
Affiliation(s)
- Sarah H. Shrader
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Nicholas Mellen
- Departments of Neurology and Autism Center, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Gregory N. Barnes
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- Departments of Neurology and Autism Center, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY, United States
| | - Zhao-Hui Song
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
23
|
Kelly LE, Rieder MJ, Finkelstein Y. Medical cannabis for children: Evidence and recommendations. Paediatr Child Health 2024; 29:104-121. [PMID: 38586483 PMCID: PMC10996577 DOI: 10.1093/pch/pxad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/20/2023] [Indexed: 04/09/2024] Open
Abstract
Interest in using cannabis products for a medical purpose in children under the age of 18 years is increasing. There are many medical cannabis products available that can include cannabidiol (CBD) or delta-9-tetrahydrocannabinol (THC), or both. Despite many therapeutic claims, there are few rigorous studies to inform the dosing, safety, and efficacy of medical cannabis in paediatric clinical practice. This statement reviews the current evidence and provides recommendations for using medical cannabis in children. Longer-term (2-year) reports support the sustained tolerability and efficacy of cannabidiol therapy for patients with Lennox-Gastaut and Dravet syndromes. CBD-enriched cannabis extracts containing small amounts of THC have been evaluated in a small number of paediatric patients, and further research is needed to inform clinical practice guidelines. Given the widespread use of medical cannabis in Canada, paediatricians should be prepared to engage in open, ongoing discussions with families about its potential benefits and risks, and develop individualized plans that monitor efficacy, reduce harms, and mitigate drug-drug interactions.
Collapse
Affiliation(s)
- Lauren E Kelly
- Canadian Paediatric Society, Drug Therapy Committee, Ottawa, Ontario, Canada
| | - Michael J Rieder
- Canadian Paediatric Society, Drug Therapy Committee, Ottawa, Ontario, Canada
| | - Yaron Finkelstein
- Canadian Paediatric Society, Drug Therapy Committee, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Kelly LE, Rieder MJ, Finkelstein Y. Les données probantes et les recommandations sur le cannabis à des fins médicales chez les enfants. Paediatr Child Health 2024; 29:104-121. [PMID: 38586491 PMCID: PMC10996578 DOI: 10.1093/pch/pxad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/20/2023] [Indexed: 04/09/2024] Open
Abstract
L'intérêt envers l'utilisation des produits du cannabis à des fins médicales chez les enfants de moins de 18 ans augmente. De nombreux produits du cannabis à des fins médicales contiennent du cannabidiol, du delta-9-tétrahydrocannabinol ou ces deux produits. Malgré les nombreuses prétentions thérapeutiques, peu d'études rigoureuses guident la posologie, l'innocuité et l'efficacité du cannabis à des fins médicales en pédiatrie clinique. Le présent document de principes passe en revue les données probantes à jour et expose les recommandations sur l'utilisation du cannabis à des fins médicales chez les enfants. Les rapports à plus long terme (deux ans) souscrivent à la tolérabilité et à l'efficacité soutenues d'un traitement au cannabidiol chez les patients ayant le syndrome de Lennox-Gastaut ou le syndrome de Dravet. Les extraits de cannabis enrichis de cannabidiol qui renferment de petites quantités de delta-9-tétrahydrocannabinol ont été évalués auprès d'un petit nombre de patients d'âge pédiatrique, et d'autres recherches devront être réalisées pour éclairer les guides de pratique clinique. Étant donné l'utilisation répandue du cannabis à des fins médicales au Canada, les pédiatres devraient être prêts à participer à des échanges ouverts et continus avec les familles au sujet de ses avantages potentiels et de ses risques, ainsi qu'à préparer des plans individuels en vue d'en surveiller l'efficacité, de réduire les méfaits et de limiter les interactions médicamenteuses.
Collapse
Affiliation(s)
- Lauren E Kelly
- Société canadienne de pédiatrie, comité de la pharmacologie, Ottawa (Ontario)Canada
| | - Michael J Rieder
- Société canadienne de pédiatrie, comité de la pharmacologie, Ottawa (Ontario)Canada
| | - Yaron Finkelstein
- Société canadienne de pédiatrie, comité de la pharmacologie, Ottawa (Ontario)Canada
| |
Collapse
|
25
|
Müller-Vahl KR. Cannabinoids in the Treatment of Selected Mental Illnesses: Practical Approach and Overview of the Literature. PHARMACOPSYCHIATRY 2024; 57:104-114. [PMID: 38428836 PMCID: PMC11076106 DOI: 10.1055/a-2256-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024]
Abstract
Although an increasing number of patients suffering from mental illnesses self-medicate with cannabis, current knowledge about the efficacy and safety of cannabis-based medicine in psychiatry is still extremely limited. So far, no cannabis-based finished product has been approved for the treatment of a mental illness. There is increasing evidence that cannabinoids may improve symptoms in autism spectrum disorder (ASD), Tourette syndrome (TS), anxiety disorders, and post-traumatic stress disorder (PTSD). According to surveys, patients often use cannabinoids to improve mood, sleep, and symptoms of attention deficit/hyperactivity disorder (ADHD). There is evidence suggesting that tetrahydrocannabinol (THC) and THC-containing cannabis extracts, such as nabiximols, can be used as substitutes in patients with cannabis use disorder.Preliminary evidence also suggests an involvement of the endocannabinoid system (ECS) in the pathophysiology of TS, ADHD, and PTSD. Since the ECS is the most important neuromodulatory system in the brain, it possibly induces beneficial effects of cannabinoids by alterations in other neurotransmitter systems. Finally, the ECS is an important stress management system. Thus, cannabinoids may improve symptoms in patients with mental illnesses by reducing stress.Practically, cannabis-based treatment in patients with psychiatric disorders does not differ from other indications. The starting dose of THC-containing products should be low (1-2.5 mg THC/day), and the dose should be up-titrated slowly (by 1-2.5 mg every 3-5 days). The average daily dose is 10-20 mg THC. In contrast, cannabidiol (CBD) is mainly used in high doses>400 mg/day.
Collapse
Affiliation(s)
- Kirsten R. Müller-Vahl
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover
Medical School, Hannover, Germany
| |
Collapse
|
26
|
Manduca A, Buzzelli V, Rava A, Feo A, Carbone E, Schiavi S, Peruzzi B, D'Oria V, Pezzullo M, Pasquadibisceglie A, Polticelli F, Micale V, Kuchar M, Trezza V. Cannabidiol and positive effects on object recognition memory in an in vivo model of Fragile X Syndrome: Obligatory role of hippocampal GPR55 receptors. Pharmacol Res 2024; 203:107176. [PMID: 38583687 DOI: 10.1016/j.phrs.2024.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Antonia Manduca
- Dept. Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Dept. Science, Roma Tre University, Rome, Italy; Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | | | | | | | | | - Barbara Peruzzi
- Bone Physiopathology Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Pezzullo
- Histology Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Vincenzo Micale
- Dept. Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Dept. Chemistry of Natural Compounds, University of Chemistry and Technologies, Prague, Czech Republic; Psychedelic Research Center, National Institute of Mental Health, Klecany, Czech Republic
| | - Viviana Trezza
- Dept. Science, Roma Tre University, Rome, Italy; Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
27
|
Aishworiya R, Valica T, Hagerman R, Restrepo B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:198-211. [PMID: 38680976 PMCID: PMC11046717 DOI: 10.1176/appi.focus.24022006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
While behavioral interventions remain the mainstay of treatment of autism spectrum disorder (ASD), several potential targeted treatments addressing the underlying neurophysiology of ASD have emerged in the last few years. These are promising for the potential to, in future, become part of the mainstay treatment in addressing the core symptoms of ASD. Although it is likely that the development of future targeted treatments will be influenced by the underlying heterogeneity in etiology, associated genetic mechanisms influencing ASD are likely to be the first targets of treatments and even gene therapy in the future for ASD. In this article, we provide a review of current psychopharmacological treatment in ASD including those used to address common comorbidities of the condition and upcoming new targeted approaches in autism management. Medications including metformin, arbaclofen, cannabidiol, oxytocin, bumetanide, lovastatin, trofinetide, and dietary supplements including sulforophane and N-acetylcysteine are discussed. Commonly used medications to address the comorbidities associated with ASD including atypical antipsychotics, serotoninergic agents, alpha-2 agonists, and stimulant medications are also reviewed. Targeted treatments in Fragile X syndrome (FXS), the most common genetic disorder leading to ASD, provide a model for new treatments that may be helpful for other forms of ASD. Appeared originally in Neurotherapeutics 2022; 19:248-262.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Tatiana Valica
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| | - Bibiana Restrepo
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, 2825 50th Street, Sacramento, CA 95817, USA (Aishworiya, Valica, Hagerman, Restrepo); Khoo Teck Puat-National University Children's Medical Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore (Aishworiya); Association for Children With Autism, Chisinau, Moldova (Valica); Department of Pediatrics, University of California Davis School of Medicine, 4610 X St, Sacramento, CA 95817, USA (Hagerman, Restrepo)
| |
Collapse
|
28
|
Zhuang H, Liang Z, Ma G, Qureshi A, Ran X, Feng C, Liu X, Yan X, Shen L. Autism spectrum disorder: pathogenesis, biomarker, and intervention therapy. MedComm (Beijing) 2024; 5:e497. [PMID: 38434761 PMCID: PMC10908366 DOI: 10.1002/mco2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Autism spectrum disorder (ASD) has become a common neurodevelopmental disorder. The heterogeneity of ASD poses great challenges for its research and clinical translation. On the basis of reviewing the heterogeneity of ASD, this review systematically summarized the current status and progress of pathogenesis, diagnostic markers, and interventions for ASD. We provided an overview of the ASD molecular mechanisms identified by multi-omics studies and convergent mechanism in different genetic backgrounds. The comorbidities, mechanisms associated with important physiological and metabolic abnormalities (i.e., inflammation, immunity, oxidative stress, and mitochondrial dysfunction), and gut microbial disorder in ASD were reviewed. The non-targeted omics and targeting studies of diagnostic markers for ASD were also reviewed. Moreover, we summarized the progress and methods of behavioral and educational interventions, intervention methods related to technological devices, and research on medical interventions and potential drug targets. This review highlighted the application of high-throughput omics methods in ASD research and emphasized the importance of seeking homogeneity from heterogeneity and exploring the convergence of disease mechanisms, biomarkers, and intervention approaches, and proposes that taking into account individuality and commonality may be the key to achieve accurate diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Zhiyuan Liang
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Guanwei Ma
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Ayesha Qureshi
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xiaoqian Ran
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Chengyun Feng
- Maternal and Child Health Hospital of BaoanShenzhenP. R. China
| | - Xukun Liu
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Xi Yan
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
| | - Liming Shen
- College of Life Science and OceanographyShenzhen UniversityShenzhenP. R. China
- Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research InstitutionsShenzhenP. R. China
| |
Collapse
|
29
|
Aran A, Cayam Rand D. Cannabinoid treatment for the symptoms of autism spectrum disorder. Expert Opin Emerg Drugs 2024; 29:65-79. [PMID: 38226593 DOI: 10.1080/14728214.2024.2306290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting approximately 3% of school-age children. The core symptoms are deficits in social communication and restricted and repetitive patterns of behavior. Associated problems in cognition, language, behavior, sleep and mood are prevalent. Currently, no established pharmacological treatment exists for core ASD symptoms. Risperidone and aripiprazole are used to manage associated irritability, but their effectiveness is limited and adverse events are common. AREAS COVERED This mini-review summarizes existing scientific literature and ongoing clinical trials concerning cannabinoid treatment for ASD. Uncontrolled case series have documented improvements in both core ASD symptoms and related behavioral challenges in children treated with cannabis extracts rich in cannabidiol (CBD). Placebo-controlled studies involving CBD-rich cannabis extracts and/or pure CBD in children with ASD have demonstrated mixed efficacy results. A similar outcome was observed in a placebo-controlled study of pure CBD addressing social avoidance in Fragile X syndrome. Importantly, these studies have shown relatively high safety and tolerability. EXPERT OPINION While current clinical data suggest the potential of CBD and CBD-rich cannabis extract in managing core and behavioral deficits in ASD, it is prudent to await the results of ongoing placebo-controlled trials before considering CBD treatment for ASD.
Collapse
Affiliation(s)
- Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Israel School of Medicine, Hebrew university of Jerusalem, Jerusalem, Israel
| | - Dalit Cayam Rand
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Israel School of Medicine, Hebrew university of Jerusalem, Jerusalem, Israel
| |
Collapse
|
30
|
Rice LJ, Cannon L, Dadlani N, Cheung MMY, Einfeld SL, Efron D, Dossetor DR, Elliott EJ. Efficacy of cannabinoids in neurodevelopmental and neuropsychiatric disorders among children and adolescents: a systematic review. Eur Child Adolesc Psychiatry 2024; 33:505-526. [PMID: 36864363 PMCID: PMC10869397 DOI: 10.1007/s00787-023-02169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
A better understanding of the endocannabinoid system and a relaxation in regulatory control of cannabis globally has increased interest in the medicinal use of cannabinoid-based products (CBP). We provide a systematic review of the rationale and current clinical trial evidence for CBP in the treatment of neuropsychiatric and neurodevelopmental disorders in children and adolescents. A systematic search of MEDLINE, Embase, PsycINFO, and the Cochrane Central Register of Trials was performed to identify articles published after 1980 about CBP for medical purposes in individuals aged 18 years or younger with selected neuropsychiatric or neurodevelopmental conditions. Risk of bias and quality of evidence was assessed for each article. Of 4466 articles screened, 18 were eligible for inclusion, addressing eight conditions (anxiety disorders (n = 1); autism spectrum disorder (n = 5); foetal alcohol spectrum disorder (n = 1); fragile X syndrome (n = 2); intellectual disability (n = 1); mood disorders (n = 2); post-traumatic stress disorder (n = 3); and Tourette syndrome (n = 3)). Only one randomised controlled trial (RCT) was identified. The remaining seventeen articles included one open-label trial, three uncontrolled before-and-after trials, two case series and 11 case reports, thus the risk of bias was high. Despite growing community and scientific interest, our systematic review identified limited and generally poor-quality evidence for the efficacy of CBP in neuropsychiatric and neurodevelopmental disorders in children and adolescents. Large rigorous RCTs are required to inform clinical care. In the meantime, clinicians must balance patient expectations with the limited evidence available.
Collapse
Affiliation(s)
- Lauren J Rice
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia.
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia.
- The University of Sydney, Faculty of Medicine and Health, Brain and Mind Centre, Sydney, NSW, Australia.
| | - Lisa Cannon
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia
- Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia
| | - Navin Dadlani
- The University of Sydney, Faculty of Medicine and Health, Brain and Mind Centre, Sydney, NSW, Australia
| | - Melissa Mei Yin Cheung
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia
| | - Stewart L Einfeld
- The University of Sydney, Faculty of Medicine and Health, Brain and Mind Centre, Sydney, NSW, Australia
| | - Daryl Efron
- Department of General Paediatrics, Health Services, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David R Dossetor
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia
| | - Elizabeth J Elliott
- The University of Sydney, Faculty of Medicine and Health, Specialty of Child and Adolescent Health, Sydney, NSW, Australia
- Sydney Children's Hospitals Network, Kids Research, Sydney, Australia
| |
Collapse
|
31
|
Doucette ML, Hemraj D, Casarett DJ, Macfarlan DL, Fisher E. Use of Cannabis-Based Medical Products for Pediatric Health Conditions: A Systematic Review of the Recent Literature. Med Cannabis Cannabinoids 2024; 7:257-267. [PMID: 39659365 PMCID: PMC11631168 DOI: 10.1159/000542550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Cannabis policy is rapidly changing in the USA and across the globe, with 24 states legalizing cannabis for adult use and 38 states making medical cannabis available for those with qualified conditions. Building on prior evidence, we reviewed the recently published literature (from the past 5 years) focused on the treatment effects of naturally derived medical cannabis products within the pediatric population. Methods We conducted a systematic literature review of three electronic databases using MeSH terms and free-text. A study was eligible for inclusion if it investigated the efficacy of medical cannabis for any condition, it was published in 2019 or later, and the mean age of participants was under 21. We excluded studies that tested the effect of pharmaceutical cannabis-derived drug products. Results We identified a total of 10 studies that met our inclusion/exclusion criteria. Of the 10, 2 utilized a double-arm randomized control trial (RCT) design, 3 used a single-arm trial design, and the remaining were observational studies, a case series, or a qualitative design. Aside from autism spectrum disorder (ASD) (n = 4), studies focused on cancer, treatment-resistant epilepsy, and Sturge-Weber syndrome (SWS). Four of the five single- or double-arm trials used a CBD:THC compound in a specific ratio as treatment. Both RCTs found significant improvement in ASD-related validated measures. Other studies found general improvements in validated measures of efficacy for SWS and epilepsy. Minimal adverse events were reported. Conclusion In the pediatric population, emerging evidence, combined with existing literature, suggests medical cannabis may be beneficial for quality-of-life symptoms related to specific conditions, like cancer, ASD, treatment-resistant epilepsy, and SWS. More clinical trial data are necessary to establish medical cannabis as an addition to established medical guidelines.
Collapse
Affiliation(s)
| | - Dipak Hemraj
- Health Economics and Outcomes Research Division, Leafwell, Miami, FL, USA
| | | | - D. Luke Macfarlan
- Health Economics and Outcomes Research Division, Leafwell, Miami, FL, USA
| | - Emily Fisher
- Health Economics and Outcomes Research Division, Leafwell, Miami, FL, USA
| |
Collapse
|
32
|
David A, Stolar O, Berkovitch M, Kohn E, Waisman-Nitzan M, Hartmann I, Gal E. Characteristics for Medical Cannabis Treatment Adherence among Autistic Children and Their Families: A Mixed-Methods Analysis. Med Cannabis Cannabinoids 2024; 7:68-79. [PMID: 39015610 PMCID: PMC11250072 DOI: 10.1159/000538901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Medical cannabis treatment for autistic children has recently become popular, and studies have focused on examining the treatment's effects on children's symptom presentation, reported side effects, and dropout rates. However, no previous study has investigated the factors influencing adherence and dropout rates in cannabis treatment. Method This explanatory sequential mixed-methods study explored these factors by examining the characteristics of 87 autistic children and their families and deepening parents' perspectives and experiences of the 6-month CBD-rich cannabis treatment's benefits and barriers. Results We found this treatment to have a high (75%) adherence rate, relatively mild side effects, and substantial reported benefits for the children and families. However, this treatment was not free of barriers; the intake regime, some side effects, and in some cases, unrealistic parental expectations made adherence difficult for some families. Conclusion Our results highlight the importance of providing professional guidance and knowledge to parents of autistic children, enhancing their understanding of the impact of CBD-rich cannabis treatment on their children and expected related challenges, and coordinating realistic treatment expectations. We hope that addressing these important aspects will influence parents' ability to adhere to and enjoy the benefits of cannabis treatment for their autistic children.
Collapse
Affiliation(s)
- Ayelet David
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Orit Stolar
- Child Development Centers, Sharon District-Maccabi HealthCare Services, Ramat Hasharon, Israel
- Clinical Pharmacology and Toxicology, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
- The Andy Lebach Chair of Clinical Pharmacology and Toxicology, Tel-Aviv University, Tel-Aviv, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Michal Waisman-Nitzan
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Inbar Hartmann
- Child Development Center, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel
| | - Eynat Gal
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
33
|
Baumer NT, Capone G. Psychopharmacological treatments in Down syndrome and autism spectrum disorder: State of the research and practical considerations. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:e32069. [PMID: 37870763 DOI: 10.1002/ajmg.c.32069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
Individuals with Down syndrome (DS) or Autism Spectrum Disorder (ASD), and especially those with both DS and co-occurring ASD (DS + ASD) commonly display behavioral and psychiatric symptoms that can impact quality of life and places increased burden on caregivers. While the mainstay of treatment in DS and ASD is focused on educational and behavioral therapies, pharmacological treatments can be used to reduce symptom burden. There is a paucity of evidence and limited clinical trials in DS and DS + ASD. Some scientific evidence is available, primarily in open label studies and case series that can guide treatment choices. Additionally, clinical decisions are often extrapolated from evidence and experience from those with ASD, or intellectual disability in those without DS. This article reviews current research in pharmacological treatment in DS, ASD, and DS + ASD, reviews co-occurring neurodevelopmental and mental health diagnoses in individuals with DS + ASD across the lifespan, and describes practical approaches to psychopharmacological management.
Collapse
Affiliation(s)
- Nicole T Baumer
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - George Capone
- Department of Pediatrics, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Iffland M, Livingstone N, Jorgensen M, Hazell P, Gillies D. Pharmacological intervention for irritability, aggression, and self-injury in autism spectrum disorder (ASD). Cochrane Database Syst Rev 2023; 10:CD011769. [PMID: 37811711 PMCID: PMC10561353 DOI: 10.1002/14651858.cd011769.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Pharmacological interventions are frequently used for people with autism spectrum disorder (ASD) to manage behaviours of concern, including irritability, aggression, and self-injury. Some pharmacological interventions might help treat some behaviours of concern, but can also have adverse effects (AEs). OBJECTIVES To assess the effectiveness and AEs of pharmacological interventions for managing the behaviours of irritability, aggression, and self-injury in ASD. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, 11 other databases and two trials registers up to June 2022. We also searched reference lists of relevant studies, and contacted study authors, experts and pharmaceutical companies. SELECTION CRITERIA We included randomised controlled trials of participants of any age with a clinical diagnosis of ASD, that compared any pharmacological intervention to an alternative drug, standard care, placebo, or wait-list control. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Primary outcomes were behaviours of concern in ASD, (irritability, aggression and self-injury); and AEs. Secondary outcomes were quality of life, and tolerability and acceptability. Two review authors independently assessed each study for risk of bias, and used GRADE to judge the certainty of the evidence for each outcome. MAIN RESULTS We included 131 studies involving 7014 participants in this review. We identified 26 studies as awaiting classification and 25 as ongoing. Most studies involved children (53 studies involved only children under 13 years), children and adolescents (37 studies), adolescents only (2 studies) children and adults (16 studies), or adults only (23 studies). All included studies compared a pharmacological intervention to a placebo or to another pharmacological intervention. Atypical antipsychotics versus placebo At short-term follow-up (up to 6 months), atypical antipsychotics probably reduce irritability compared to placebo (standardised mean difference (SMD) -0.90, 95% confidence interval (CI) -1.25 to -0.55, 12 studies, 973 participants; moderate-certainty evidence), which may indicate a large effect. However, there was no clear evidence of a difference in aggression between groups (SMD -0.44, 95% CI -0.89 to 0.01; 1 study, 77 participants; very low-certainty evidence). Atypical antipsychotics may also reduce self-injury (SMD -1.43, 95% CI -2.24 to -0.61; 1 study, 30 participants; low-certainty evidence), possibly indicating a large effect. There may be higher rates of neurological AEs (dizziness, fatigue, sedation, somnolence, and tremor) in the intervention group (low-certainty evidence), but there was no clear evidence of an effect on other neurological AEs. Increased appetite may be higher in the intervention group (low-certainty evidence), but we found no clear evidence of an effect on other metabolic AEs. There was no clear evidence of differences between groups in musculoskeletal or psychological AEs. Neurohormones versus placebo At short-term follow-up, neurohormones may have minimal to no clear effect on irritability when compared to placebo (SMD -0.18, 95% CI -0.37 to -0.00; 8 studies; 466 participants; very low-certainty evidence), although the evidence is very uncertain. No data were reported for aggression or self -injury. Neurohormones may reduce the risk of headaches slightly in the intervention group, although the evidence is very uncertain. There was no clear evidence of an effect of neurohormones on any other neurological AEs, nor on any psychological, metabolic, or musculoskeletal AEs (low- and very low-certainty evidence). Attention-deficit hyperactivity disorder (ADHD)-related medications versus placebo At short-term follow-up, ADHD-related medications may reduce irritability slightly (SMD -0.20, 95% CI -0.40 to -0.01; 10 studies, 400 participants; low-certainty evidence), which may indicate a small effect. However, there was no clear evidence that ADHD-related medications have an effect on self-injury (SMD -0.62, 95% CI -1.63 to 0.39; 1 study, 16 participants; very low-certainty evidence). No data were reported for aggression. Rates of neurological AEs (drowsiness, emotional AEs, fatigue, headache, insomnia, and irritability), metabolic AEs (decreased appetite) and psychological AEs (depression) may be higher in the intervention group, although the evidence is very uncertain (very low-certainty evidence). There was no evidence of a difference between groups for any other metabolic, neurological, or psychological AEs (very low-certainty evidence). No data were reported for musculoskeletal AEs. Antidepressants versus placebo At short-term follow-up, there was no clear evidence that antidepressants have an effect on irritability (SMD -0.06, 95% CI -0.30 to 0.18; 3 studies, 267 participants; low-certainty evidence). No data for aggression or self-injury were reported or could be included in the analysis. Rates of metabolic AEs (decreased energy) may be higher in participants receiving antidepressants (very low-certainty evidence), although no other metabolic AEs showed clear evidence of a difference. Rates of neurological AEs (decreased attention) and psychological AEs (impulsive behaviour and stereotypy) may also be higher in the intervention group (very low-certainty evidence) although the evidence is very uncertain. There was no clear evidence of any difference in the other metabolic, neurological, or psychological AEs (very low-certainty evidence), nor between groups in musculoskeletal AEs (very low-certainty evidence). Risk of bias We rated most of the studies across the four comparisons at unclear overall risk of bias due to having multiple domains rated as unclear, very few rated as low across all domains, and most having at least one domain rated as high risk of bias. AUTHORS' CONCLUSIONS Evidence suggests that atypical antipsychotics probably reduce irritability, ADHD-related medications may reduce irritability slightly, and neurohormones may have little to no effect on irritability in the short term in people with ASD. There was some evidence that atypical antipsychotics may reduce self-injury in the short term, although the evidence is uncertain. There was no clear evidence that antidepressants had an effect on irritability. There was also little to no difference in aggression between atypical antipsychotics and placebo, or self-injury between ADHD-related medications and placebo. However, there was some evidence that atypical antipsychotics may result in a large reduction in self-injury, although the evidence is uncertain. No data were reported (or could be used) for self-injury or aggression for neurohormones versus placebo. Studies reported a wide range of potential AEs. Atypical antipsychotics and ADHD-related medications in particular were associated with an increased risk of metabolic and neurological AEs, although the evidence is uncertain for atypical antipsychotics and very uncertain for ADHD-related medications. The other drug classes had minimal or no associated AEs.
Collapse
Affiliation(s)
- Michelle Iffland
- Senior Practitioner Branch, NDIS Quality and Safeguards Commission, Penrith, Australia
| | - Nuala Livingstone
- Cochrane Evidence Production and Methods Directorate , Cochrane, London, UK
| | - Mikaela Jorgensen
- Senior Practitioner Branch, NDIS Quality and Safeguards Commission, Penrith, Australia
| | - Philip Hazell
- Speciality of Psychiatry, University of Sydney School of Medicine, Sydney, Australia
| | - Donna Gillies
- Senior Practitioner Branch, NDIS Quality and Safeguards Commission, Penrith, Australia
- Sydney, Australia
| |
Collapse
|
35
|
Parrella NF, Hill AT, Enticott PG, Barhoun P, Bower IS, Ford TC. A systematic review of cannabidiol trials in neurodevelopmental disorders. Pharmacol Biochem Behav 2023; 230:173607. [PMID: 37543051 DOI: 10.1016/j.pbb.2023.173607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Cannabis-derived compounds, such as cannabidiol (CBD) and delta-9-trans-tetrahydrocannabinol (THC), are increasingly prescribed for a range of clinical indications. These phyto-cannabinoids have multiple biological targets, including the body's endocannabinoid system. There is growing scientific interest in the use of CBD, a non-intoxicating compound, to ameliorate symptoms associated with neurodevelopmental disorders. However, its suitability as a pharmaceutical intervention has not been reliably established in these clinical populations. This systematic review examines the nine published randomised controlled trials (RCTs) that have probed the safety and efficacy of CBD in individuals diagnosed with attention deficit hyperactivity disorder, autism spectrum disorder, intellectual disability, Tourette Syndrome, and complex motor disorders. Studies were identified systematically through searching four databases: Medline, CINAHL complete, PsycINFO, and EMBASE. Inclusion criteria were randomised controlled trials involving CBD and participants with neurodevelopmental disorders. No publication year or language restrictions were applied. Relevant data were extracted from the identified list of eligible articles. After extraction, data were cross-checked between the authors to ensure consistency. Several trials indicate potential efficacy, although this possibility is currently too inconsistent across RCTs to confidently guide clinical usage. Study characteristics, treatment properties, and outcomes varied greatly across the included trials. The material lack of comparable RCTs leaves CBD's suitability as a pharmacological treatment for neurodevelopmental disorders largely undetermined. A stronger evidence base is urgently required to establish safety and efficacy profiles and guide the ever-expanding clinical uptake of cannabis-derived compounds in neurodevelopmental disorders. Prospero registration number: CRD42021267839.
Collapse
Affiliation(s)
- Nina-Francecsa Parrella
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia.
| | - Aron Thomas Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria 3145, Australia
| | - Peter Gregory Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria 3145, Australia
| | - Pamela Barhoun
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia
| | - Isabella Simone Bower
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia; Behaviour, Brain, and Body Research Centre: Justice and Society, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Talitha Caitlyn Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria 3125, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
36
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
37
|
Montagner PSS, Medeiros W, da Silva LCR, Borges CN, Brasil-Neto J, de Deus Silva Barbosa V, Caixeta FV, Malcher-Lopes R. Individually tailored dosage regimen of full-spectrum Cannabis extracts for autistic core and comorbid symptoms: a real-life report of multi-symptomatic benefits. Front Psychiatry 2023; 14:1210155. [PMID: 37671290 PMCID: PMC10475955 DOI: 10.3389/fpsyt.2023.1210155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023] Open
Abstract
Autism Spectrum Disorders (ASD) may significantly impact the well-being of patients and their families. The therapeutic use of cannabis for ASD has gained interest due to its promising results and low side effects, but a consensus on treatment guidelines is lacking. In this study, we conducted a retrospective analysis of 20 patients with autistic symptoms who were treated with full-spectrum cannabis extracts (FCEs) in a response-based, individually-tailored dosage regimen. The daily dosage and relative proportions of cannabidiol (CBD) and tetrahydrocannabinol (THC) were adjusted based on treatment results following periodic clinical evaluation. Most patients (80%) were treated for a minimum of 6 months. We have used a novel, detailed online patient- or caregiver-reported outcome survey that inquired about core and comorbid symptoms, and quality of life. We also reviewed patients' clinical files, and no individual condition within the autistic spectrum was excluded. This real-life approach enabled us to gain a clearer appraisal of the ample scope of benefits that FCEs can provide for ASD patients and their families. Eighteen patients started with a CBD-rich FCE titrating protocol, and in three of them, the CBD-rich (CBD-dominant) FCE was gradually complemented with low doses of a THC-rich (THC-dominant) FCE based on observed effects. Two other patients have used throughout treatment a blend of two FCEs, one CBD-rich and the other THC-rich. The outcomes were mainly positive for most symptoms, and only one patient from each of the two above-mentioned situations displayed important side effects one who has used only CBD-rich FCE throughout the treatment, and another who has used a blend of CBD-Rich and THC-rich FCEs. Therefore, after FCE treatment, 18 out of 20 patients showed improvement in most core and comorbid symptoms of autism, and in quality of life for patients and their families. For them, side effects were mild and infrequent. Additionally, we show, for the first time, that allotriophagy (Pica) can be treated by FCEs. Other medications were reduced or completely discontinued in most cases. Based on our findings, we propose guidelines for individually tailored dosage regimens that may be adapted to locally available qualified FCEs and guide further clinical trials.
Collapse
Affiliation(s)
| | - Wesley Medeiros
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Leandro Cruz Ramires da Silva
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Brazilian Association of Medical Cannabis Patients, Ama-Me, Belo Horizonte, Brazil
| | - Clarissa Nogueira Borges
- Specialized Educational Care Division for Gifted Students of the Department of Education of the Federal District, Brasília, Brazil
| | | | - Vinícius de Deus Silva Barbosa
- Medical Cannabis Center–Syrian-Lebanese Hospital, São Paulo, Brazil
- National Association for Inclusion of the Autistic People, São Paulo, Brazil
| | - Fabio V. Caixeta
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| | - Renato Malcher-Lopes
- Laboratory of Neuroscience and Behavior, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, Brazil
| |
Collapse
|
38
|
Siani-Rose M, McKee R, Cox S, Goldstein B, Abrams D, Taylor M, Kurek I. The Potential of Salivary Lipid-Based Cannabis-Responsive Biomarkers to Evaluate Medical Cannabis Treatment in Children with Autism Spectrum Disorder. Cannabis Cannabinoid Res 2023; 8:642-656. [PMID: 35343818 DOI: 10.1089/can.2021.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is a group of heterogeneous neurodevelopmental conditions affecting social communication and social interaction. Medical cannabis (MC) treatment shows promising results as an approach to reduce behavioral difficulties, as determined mainly by subjective observations. We have recently shown the potential of cannabis-responsive biomarkers detected in saliva of children with ASD to objectively quantify the impact of successful MC treatment using a metabolomics approach. Since the pathology of ASD is associated with abnormal lipid metabolism, we used lipidomics on the same samples to (1) expand the repertoire of cannabis-responsive biomarkers and (2) provide preliminary insight into the role of MC on lipid metabolism. Materials and Methods: Saliva samples collected from children with ASD (n=15) treated with MC (both before and at the time of maximal impact of treatment) and an age-matched group of typically developing (TD) children (n=9) were subjected to untargeted lipidomics. The study was observational. Each child from the ASD group was receiving a unique individualized MC treatment regimen using off-the-shelf products as permitted by California law under physician supervision for at least 1 year. Doses of tetrahydrocannabinol (THC) ranged from 0.05 to 50 mg and cannabidiol (CBD) from 7.5 to 200 mg per treatment. The ASD group was evaluated for signs of improvement using parental brief Likert scale surveys. Results: Twenty-two potential lipid-based cannabis-responsive biomarkers exhibiting a shift toward the TD physiological levels in children with ASD after MC treatment were identified. Members from all five lipid subclasses known to be present in saliva were characterized. Preliminary lipid association network analysis suggests involvement of two subnetworks previously linked to (1) inflammation and/or redox regulation and (2) oxidative stress. The significant changes in sphingomyelin in this study and in N-acetyl-aspartate (NAA) previously detected in the metabolomics analysis of the same saliva samples may indicate a role of MC in neuron function. Conclusions: Our findings suggest that lipid metabolites in saliva can potentially serve as cannabis-responsive biomarkers and objectively quantify the impact of MC treatment, and indicate a possible mechanism of action for MC. This preliminary study requires further investigation with a larger population and appropriate clinical trial monitoring.
Collapse
Affiliation(s)
| | - Robert McKee
- Cannformatics, Inc., San Francisco, California, USA
| | - Stephany Cox
- Cannformatics, Inc., San Francisco, California, USA
| | | | | | | | - Itzhak Kurek
- Cannformatics, Inc., San Francisco, California, USA
| |
Collapse
|
39
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Gryczka K, Kurant D, Szambelan M, Malinowski B, Falkowski M, Zabrzyński J, Słupski M. The Use of Cannabidiol in Metabolic Syndrome-An Opportunity to Improve the Patient's Health or Much Ado about Nothing? J Clin Med 2023; 12:4620. [PMID: 37510734 PMCID: PMC10380672 DOI: 10.3390/jcm12144620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis-derived therapies are gaining popularity in the medical world. More and more perfect forms of cannabinoids are sought, which could be used in the treatment of many common diseases, including metabolic syndrome, whose occurrence is also increasing. The purpose of this review was to investigate the usefulness of cannabinoids, mainly cannabidiol (CBD), in individuals with obesity, impaired glucose and lipid metabolism, high blood pressure, and non-alcoholic fatty liver disease (NAFLD). We summarised the most recent research on the broad topic of cannabis-derived influence on metabolic syndrome components. Since there is a lot of work on the effects of Δ9-THC (Δ9-tetrahydrocannabinol) on metabolism and far less on cannabidiol, we felt it needed to be sorted out and summarised in this review. The research results on the use of cannabidiol in obesity are contraindicatory. When it comes to glucose homeostasis, it appears that CBD maintains it, sensitises adipose tissue to insulin, and reduces fasting glucose levels, so it seems to be a potential target in this kind of metabolic disorder, but some research results are inconclusive. CBD shows some promising results in the treatment of various lipid disorders. Some studies have proven its positive effect by decreasing LDL and increasing HDL as well. Despite their probable efficacy, CBD and its derivatives will likely remain an adjunctive treatment rather than a mainstay of therapy. Studies have also shown that CBD in patients with hypertension has positive effects, even though the hypotensive properties of cannabidiol are small. However, CBD can be used to prevent blood pressure surges, stabilise them, and have a protective effect on blood vessels. Results from preclinical studies have shown that the effect of cannabidiol on NAFLD may be potentially beneficial in the treatment of the metabolic syndrome and its components. Nevertheless, there is limited data on CBD and NAFLD in human studies. Because of the numerous confounding factors, the conclusions are unclear, and more research in this field is required.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Michal Falkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Jan Zabrzyński
- Department of Orthopedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
40
|
Cairns EA, Benson MJ, Bedoya-Pérez MA, Macphail SL, Mohan A, Cohen R, Sachdev PS, McGregor IS. Medicinal cannabis for psychiatry-related conditions: an overview of current Australian prescribing. Front Pharmacol 2023; 14:1142680. [PMID: 37346297 PMCID: PMC10279775 DOI: 10.3389/fphar.2023.1142680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Objective: Evidence is accumulating that components of the Cannabis sativa plant may have therapeutic potential in treating psychiatric disorders. Medicinal cannabis (MC) products are legally available for prescription in Australia, primarily through the Therapeutic Goods Administration (TGA) Special Access Scheme B (SAS-B). Here we investigated recent prescribing practices for psychiatric indications under SAS-B by Australian doctors. Methods: The dataset, obtained from the TGA, included information on MC applications made by doctors through the SAS-B process between 1st November 2016 and 30th September 2022 inclusive. Details included the primary conditions treated, patient demographics, prescriber location, product type (e.g., oil, flower or capsule) and the general cannabinoid content of products. The conditions treated were categorized according to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition, text revision (DSM-5-TR). Trends in prescribing for conditions over time were analyzed via polynomial regression, and relationships between categorical variables determined via correspondence analyses. Results: Approximately 300,000 SAS-B approvals to prescribe MC had been issued in the time period under investigation. This included approvals for 38 different DSM-5-TR defined psychiatric conditions (33.9% of total approvals). The majority of approvals were for anxiety disorders (66.7% of psychiatry-related prescribing), sleep-wake disorders (18.2%), trauma- and stressor-related disorders (5.8%), and neurodevelopmental disorders (4.4%). Oil products were most prescribed (53.0%), followed by flower (31.2%) and other inhaled products (12.4%). CBD-dominant products comprised around 20% of total prescribing and were particularly prevalent in the treatment of autism spectrum disorder. The largest proportion of approvals was for patients aged 25-39 years (46.2% of approvals). Recent dramatic increases in prescribing for attention deficit hyperactivity disorder were identified. Conclusion: A significant proportion of MC prescribing in Australia is for psychiatry-related indications. This prescribing often appears somewhat "experimental", given it involves conditions (e.g., ADHD, depression) for which definitive clinical evidence of MC efficacy is lacking. The high prevalence of THC-containing products being prescribed is of possible concern given the psychiatric problems associated with this drug. Evidence-based clinical guidance around the use of MC products in psychiatry is lacking and would clearly be of benefit to prescribers.
Collapse
Affiliation(s)
- Elizabeth A. Cairns
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Melissa J. Benson
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Miguel A. Bedoya-Pérez
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Sara L. Macphail
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Adith Mohan
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, Australia
| | - Rhys Cohen
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, Australia
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Aran A, Harel M, Ovadia A, Shalgy S, Cayam-Rand D. Mediators of Placebo Response to Cannabinoid Treatment in Children with Autism Spectrum Disorder. J Clin Med 2023; 12:jcm12093098. [PMID: 37176538 PMCID: PMC10179251 DOI: 10.3390/jcm12093098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The placebo response has a substantial impact on treatment outcome. However, data regarding mediators of the placebo response in children with autism spectrum disorder (ASD) are sparse. This retrospective study investigated possible mediators of the placebo response among participants of a placebo-controlled trial of cannabinoid treatment for behavioral problems in children with ASD (CBA trial, age 5-21 years). We used a specifically designed questionnaire to explore possible mediators of the placebo response in 88 participants of the CBA trial who received a placebo and had valid outcome scores. The parents of 67 participants completed the questionnaire. The placebo response was positively associated with the child's comprehension of the treatment purpose (p = 0.037). There was also a trend for participants who had a relative aggravation of symptoms before treatment onset to improve following placebo treatment (p = 0.053). No other domains, including parental expectations, previous positive experience with similar treatments (behavioral conditioning), parental locus of control, quality of the patient-physician relationships, and adherence to study medications were associated with placebo-response. This finding suggests that efforts to explain the treatment purpose to children with disabilities may enhance treatment efficacy in clinical practice and decrease differences in the placebo response between study arms. Contrary to our hypothesis, parental expectations regarding cannabinoid treatment were not associated with the placebo response.
Collapse
Affiliation(s)
- Adi Aran
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Moria Harel
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Aminadav Ovadia
- Psychology Department, Yezreel Valley College, Yezreel Valley 1930600, Israel
| | - Shulamit Shalgy
- Psychology Department, Yezreel Valley College, Yezreel Valley 1930600, Israel
| | - Dalit Cayam-Rand
- Neuropediatric Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| |
Collapse
|
42
|
Efron D, Taylor K. Medicinal Cannabis for Paediatric Developmental, Behavioural and Mental Health Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085430. [PMID: 37107712 PMCID: PMC10138057 DOI: 10.3390/ijerph20085430] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/11/2023]
Abstract
Parents of children with developmental, behavioural and mental health disorders are increasingly asking whether medicinal cannabis might be a therapeutic option for their child. This paper presents the current evidence for medicinal cannabis in this population. Preliminary evidence from open-label studies suggests the potential for medicinal cannabis to ameliorate some symptoms in children with autism spectrum disorder. However, only one double-blind placebo-controlled trial has been completed, with inconclusive findings. Synthetic, transdermal cannabidiol gel has demonstrated efficacy for reducing social avoidance in a sub-group of children with Fragile X syndrome. Studies of medicinal cannabis are planned or underway for children and/or adolescents with autism, intellectual disability, Tourette's syndrome, anxiety, psychosis, anorexia nervosa and a number of specific neurodevelopmental syndromes. High quality evidence from double-blind placebo-controlled trials is needed to guide clinical practice.
Collapse
Affiliation(s)
- Daryl Efron
- Murdoch Children’s Research Institute, 50 Flemington Rd, Parkville, VIC 3052, Australia;
- The Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence:
| | - Kaitlyn Taylor
- Murdoch Children’s Research Institute, 50 Flemington Rd, Parkville, VIC 3052, Australia;
| |
Collapse
|
43
|
Castillo-Arellano J, Canseco-Alba A, Cutler SJ, León F. The Polypharmacological Effects of Cannabidiol. Molecules 2023; 28:3271. [PMID: 37050032 PMCID: PMC10096752 DOI: 10.3390/molecules28073271] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Cannabidiol (CBD) is a major phytocannabinoid present in Cannabis sativa (Linneo, 1753). This naturally occurring secondary metabolite does not induce intoxication or exhibit the characteristic profile of drugs of abuse from cannabis like Δ9-tetrahydrocannabinol (∆9-THC) does. In contrast to ∆9-THC, our knowledge of the neuro-molecular mechanisms of CBD is limited, and its pharmacology, which appears to be complex, has not yet been fully elucidated. The study of the pharmacological effects of CBD has grown exponentially in recent years, making it necessary to generate frequently updated reports on this important metabolite. In this article, a rationalized integration of the mechanisms of action of CBD on molecular targets and pharmacological implications in animal models and human diseases, such as epilepsy, pain, neuropsychiatric disorders, Alzheimer's disease, and inflammatory diseases, are presented. We identify around 56 different molecular targets for CBD, including enzymes and ion channels/metabotropic receptors involved in neurologic conditions. Herein, we compiled the knowledge found in the scientific literature on the multiple mechanisms of actions of CBD. The in vitro and in vivo findings are essential for fully understanding the polypharmacological nature of this natural product.
Collapse
Affiliation(s)
- Jorge Castillo-Arellano
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Ana Canseco-Alba
- Laboratory of Reticular Formation Physiology, National Institute of Neurology and Neurosurgery of Mexico (INNN), Mexico City 14269, Mexico
| | - Stephen J. Cutler
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
44
|
Abstract
IMPORTANCE Autism spectrum disorder (ASD), characterized by deficits in social communication and the presence of restricted, repetitive behaviors or interests, is a neurodevelopmental disorder affecting approximately 2.3% children aged 8 years in the US and approximately 2.2% of adults. This review summarizes evidence on the diagnosis and treatment of ASD. OBSERVATIONS The estimated prevalence of ASD has been increasing in the US, from 1.1% in 2008 to 2.3% in 2018, which is likely associated with changes in diagnostic criteria, improved performance of screening and diagnostic tools, and increased public awareness. No biomarkers specific to the diagnosis of ASD have been identified. Common early signs and symptoms of ASD in a child's first 2 years of life include no response to name when called, no or limited use of gestures in communication, and lack of imaginative play. The criterion standard for the diagnosis of ASD is a comprehensive evaluation with a multidisciplinary team of clinicians and is based on semistructured direct observation of the child's behavior and semistructured caregiver interview focused on the individual's development and behaviors using standardized measures, such as the Autism Diagnostic Observation Schedule-Second Edition and the Autism Diagnostic Interview. These diagnostic measures have sensitivity of 91% and 80% and specificity of 76% and 72%, respectively. Compared with people without ASD, individuals with ASD have higher rates of depression (20% vs 7%), anxiety (11% vs 5%), sleep difficulties (13% vs 5%), and epilepsy (21% with co-occurring intellectual disability vs 0.8%). Intensive behavioral interventions, such as the Early Start Denver Model, are beneficial in children 5 years or younger for improvement in language, play, and social communication (small to medium effect size based on standardized mean difference). Pharmacotherapy is indicated for co-occurring psychiatric conditions, such as emotion dysregulation or attention-deficit/hyperactivity disorder. Risperidone and aripiprazole can improve irritability and aggression (standardized mean difference of 1.1, consistent with a large effect size) compared with placebo. Psychostimulants are effective for attention-deficit/hyperactivity disorder (standardized mean difference of 0.6, consistent with a moderate effect size) compared with placebo. These medications are associated with adverse effects including, most commonly, changes in appetite, weight, and sleep. CONCLUSIONS AND RELEVANCE ASD affects approximately 2.3% of children aged 8 years and approximately 2.2% of adults in the US. First-line therapy consists of behavioral interventions, while co-occurring psychiatric conditions, such as anxiety or aggression, may be treated with specific behavioral therapy or medication.
Collapse
Affiliation(s)
- Tomoya Hirota
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco
| | - Bryan H King
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
45
|
Boyacıoğlu Ö, Korkusuz P. Cannabinoids as Prospective Anti-Cancer Drugs: Mechanism of Action in Healthy and Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:145-169. [PMID: 36396926 DOI: 10.1007/5584_2022_748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endogenous and exogenous cannabinoids modulate many physiological and pathological processes by binding classical cannabinoid receptors 1 (CB1) or 2 (CB2) or non-cannabinoid receptors. Cannabinoids are known to exert antiproliferative, apoptotic, anti-migratory and anti-invasive effect on cancer cells by inducing or inhibiting various signaling cascades. In this chapter, we specifically emphasize the latest research works about the alterations in endocannabinoid system (ECS) components in malignancies and cancer cell proliferation, migration, invasion, angiogenesis, autophagy, and death by cannabinoid administration, emphasizing their mechanism of action, and give a future perspective for clinical use.
Collapse
Affiliation(s)
- Özge Boyacıoğlu
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Atılım University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
46
|
de Gier C, Scharinger C, Stark RH, Steurer P, Klier CM. Tetrahydrocannabinol in Pediatrics: Room for Improvement? Med Cannabis Cannabinoids 2023; 6:125-129. [PMID: 37900897 PMCID: PMC10601896 DOI: 10.1159/000533607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/11/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The use of medical cannabis in pediatrics is not common in clinical practice, and there is a lack of prospective studies, especially in pediatric subpopulations. This study aimed to provide data on the off-label administration of tetrahydrocannabinol (∆9-THC) in a pediatric tertiary center in Austria. Methods A retrospective data analysis was performed to assess the use of ∆9-THC at the Department of Pediatrics and Adolescent Medicine at the Comprehensive Center of Pediatrics (Medical University Vienna) from 2016 to 2018. The use of ∆9-THC in the Pediatric Department at the Medical University Vienna between 2016 and 2018 was analyzed using a retrospective design. Results The most common diagnoses of patients receiving ∆9-THC were brain cancer and genetic diseases, including inborn metabolic disorders. The 32 patients who had received ∆9-THC had an arithmetic mean of 9.42 diagnoses and were treated with an arithmetic mean of 13.52 other drugs. Eleven of the 32 patients died by the end of the study period, indicating palliative use. Conclusion The data shows that only severely ill patients were treated with ∆9-THC. A lack of information on the drug's indications, duration, and dosage was noticed in the files, which could represent problems for patient safety.
Collapse
Affiliation(s)
- Charlotte de Gier
- Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department for Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christian Scharinger
- Department of Child and Adolescent Psychiatry, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Rosa H Stark
- Department of Child and Adolescent Psychiatry, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Philipp Steurer
- Clinical Division of Pediatric Psychosomatics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Claudia M Klier
- Clinical Division of Pediatric Psychosomatics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
de Camargo RW, de Novais Júnior LR, da Silva LM, Meneguzzo V, Daros GC, da Silva MG, de Bitencourt RM. Implications of the endocannabinoid system and the therapeutic action of cannabinoids in autism spectrum disorder: A literature review. Pharmacol Biochem Behav 2022; 221:173492. [PMID: 36379443 DOI: 10.1016/j.pbb.2022.173492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, onset in early childhood and associated with cognitive, social, behavioral, and sensory impairments. The pathophysiology is still unclear, and it is believed that genetic and environmental factors are fully capable of influencing ASD, especially cell signaling and microglial functions. Furthermore, the endocannabinoid system (ECS) participates in the modulation of various brain processes and is also involved in the pathophysiological mechanisms of this condition. Due to the health and quality of life impacts of autism for the patient and his/her family and the lack of effective medications, the literature has elucidated the possibility that Cannabis phytocannabinoids act favorably on ASD symptoms, probably through the modulation of neurotransmitters, in addition to endogenous ligands derived from arachidonic acid, metabolizing enzymes and even transporters of the membrane. These findings support the notion that there are links between key features of ASD and ECS due to the favorable actions of cannabidiol (CBD) and other cannabinoids on symptoms related to behavioral and cognitive disorders, as well as deficits in communication and social interaction, hyperactivity, anxiety and sleep disorders. Thus, phytocannabinoids emerge as therapeutic alternatives for ASD.
Collapse
Affiliation(s)
- Rick Wilhiam de Camargo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| | | | - Larissa Mendes da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Guilherme Cabreira Daros
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | | |
Collapse
|
48
|
Raz N, Heller I, Lombardi T, Marino G, Davidson EM, Eyal AM. Terpene-Enriched CBD oil for treating autism-derived symptoms unresponsive to pure CBD: Case report. Front Pharmacol 2022; 13:979403. [PMID: 36386202 PMCID: PMC9649447 DOI: 10.3389/fphar.2022.979403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/17/2022] [Indexed: 09/07/2023] Open
Abstract
Cannabidiol (CBD) rich products are successfully used in some countries for treating symptoms associated with autism spectrum disorder (ASD). Yet, CBD provides insufficient intervention in some individuals, or for some characterizing symptoms of ASD, raising the need for improved compositions. The current study presents a case wherein pure CBD was sufficient for treating ASD during childhood and early adolescence. However, it became insufficient during puberty accompanied by increased hyperactivity, agitation, and frequent severe aggressive behavior. Increasing the CBD dose did not result in significant improvement. Enriching the pure CBD with a carefully selected blend of anxiolytic and calming terpenes, resulted in gradual elimination of those aggressive events. Importantly, this was achieved with a significantly reduced CBD dose, being less than one-half the amount used when treating with pure CBD. This case demonstrates a strong improvement in efficacy due to terpene enrichment, where pure CBD was not sufficient. Combined with terpenes' high safety index and the ease with which they can be incorporated into cannabinoid-containing products, terpene-enriched CBD products may provide a preferred approach for treating ASD and related conditions. The careful selection of terpenes to be added enables maximizing the efficacy and tailoring the composition to particular and changing needs of ASD subjects, e.g., at different times of the day (daytime vs nighttime products).
Collapse
Affiliation(s)
- Noa Raz
- Bazelet Medical Cannabis Group, Or Akiva, Israel
| | - Iso Heller
- Bazelet Medical Cannabis Group, Or Akiva, Israel
| | | | - Giorgio Marino
- Neurology and Psychiatry Private Clinic, SIPI, Naples–Campania, Italy
| | - Elyad M. Davidson
- Department of Anesthesiology, CCM and Pain Relief, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | | |
Collapse
|
49
|
Raz N, Eyal AM, Davidson EM. Optimal Treatment with Cannabis Extracts Formulations Is Gained via Knowledge of Their Terpene Content and via Enrichment with Specifically Selected Monoterpenes and Monoterpenoids. Molecules 2022; 27:molecules27206920. [PMID: 36296511 PMCID: PMC9608144 DOI: 10.3390/molecules27206920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Differences between therapeutic effects of medical cannabis inflorescences and those of their extracts are generally attributed to the differences in administration form and in the resultant pharmacokinetics. We hypothesized that difference may further extend to the composition of the actually consumed drug. Cannabinoid and terpene contents were compared between commercial cannabis inflorescences (n = 19) and decarboxylated extracts (n = 12), and between inflorescences and decarboxylated extracts produced from them (n = 10). While cannabinoid content was preserved in the extracts, a significant loss of terpenes was evident, mainly in the more volatile monoterpenes and monoterpenoids (representing a loss of about 90%). This loss changes the total terpene content, the proportion of monoterpenes out of the total terpenes, and the monoterpene/cannabinoid ratio. Terpene deficiency might impair extracts’ pharmacological efficacy and might contribute to the patients’ preference to inflorescences-smoking. This argues against the validity of terms such as “whole plant” and “full spectrum” extracts and creates a misleading assumption that extracts represent the pharmacological profile of the sourced inflorescences. Furthermore, it reduces the diversity in extracts, such as loss of differences between sativa-type and indica-type. Enriching cannabis extracts with selected terpenes may provide a suitable solution, generating a safe, precise, and reproducible drug with tailored cannabinoid and terpene contents. Careful selection of terpenes to be added enables tailor-made extracts, adjusted for various medicinal aims and for different populations.
Collapse
Affiliation(s)
- Noa Raz
- Bazelet Medical Cannabis Group, Or Akiva 3065101, Israel
- Correspondence:
| | - Aharon M. Eyal
- Bazelet Medical Cannabis Group, Or Akiva 3065101, Israel
| | - Elyad M. Davidson
- Department of Anesthesiology, CCM and Pain Relief, Hadassah Hebrew University Hospital, Jerusalem 9112001, Israel
| |
Collapse
|
50
|
de Freitas FD, Pimenta S, Soares S, Gonzaga D, Vaz-Matos I, Prior C. The role of cannabinoids in neurodevelopmental disorders of children and adolescents. Rev Neurol 2022; 75:189-197. [PMID: 36169325 PMCID: PMC10280762 DOI: 10.33588/rn.7507.2022123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Neurodevelopmental disorders have a multifactorial etiology that results from the interaction between biological and environmental factors. The biological basis of many of these disorders is only partially understood, which makes therapeutic interventions, especially pharmacological ones, particularly difficult. The impact of medical cannabis on neurological and psychiatric disorders has been studied for a long time. This study aimed to review the currently available clinical and pre-clinical studies regarding the use of cannabinoids in pediatric neurodevelopmental disorders and to draw attention to the potential therapeutic role of cannabidiol in this field. DEVELOPMENT Cannabidiol is an endocannabinoid system modulator and exerts its effects on both developing and mature brains through numerous mechanisms. Cannabidiol holds a relatively high toxicity limit and current literature suggests that it may have anxiolytic, antipsychotic, and neuroprotective properties. Clinical evidence suggests that early treatment with cannabidiol might be a promising therapy for neurodevelopmental disorders, including intellectual disability, autism spectrum disorders, tics, and attention/deficit hyperactivity disorder. CONCLUSIONS This review hopefully draws attention to an emerging body of evidence concerning cannabidiol's significant potential to safely improve many of the common symptoms affecting children and adolescents with neurodevelopmental disorders, especially autism spectrum disorder.
Collapse
Affiliation(s)
- Francisca Dias de Freitas
- Departamento de Pediatría. Hospital da Senhora da Oliveira. GuimarãesHospital da Senhora da OliveiraHospital da Senhora da OliveiraPortoPortugal
| | - Sofia Pimenta
- Departamento de Pediatría. Centro Hospitalar do Tâmega e Sousa. PenafielCentro Hospitalar do Tâmega e SousaCentro Hospitalar do Tâmega e SousaPortoPortugal
| | - Sara Soares
- Unidad de Neurodesarrollo. Departamento de Pediatría. Centro Materno-Infantil do Norte-Centro Hospitalar Universitário do Porto. Porto, PortugalCentro Materno-Infantil do Norte-Centro Hospitalar Universitário do PortoCentro Materno-Infantil do Norte-Centro Hospitalar Universitário do PortoPortoPortugal
| | - Diana Gonzaga
- Unidad de Neurodesarrollo. Departamento de Pediatría. Centro Materno-Infantil do Norte-Centro Hospitalar Universitário do Porto. Porto, PortugalCentro Materno-Infantil do Norte-Centro Hospitalar Universitário do PortoCentro Materno-Infantil do Norte-Centro Hospitalar Universitário do PortoPortoPortugal
| | - Inês Vaz-Matos
- Unidad de Neurodesarrollo. Departamento de Pediatría. Centro Materno-Infantil do Norte-Centro Hospitalar Universitário do Porto. Porto, PortugalCentro Materno-Infantil do Norte-Centro Hospitalar Universitário do PortoCentro Materno-Infantil do Norte-Centro Hospitalar Universitário do PortoPortoPortugal
| | - Catarina Prior
- Unidad de Neurodesarrollo. Departamento de Pediatría. Centro Materno-Infantil do Norte-Centro Hospitalar Universitário do Porto. Porto, PortugalCentro Materno-Infantil do Norte-Centro Hospitalar Universitário do PortoCentro Materno-Infantil do Norte-Centro Hospitalar Universitário do PortoPortoPortugal
| |
Collapse
|