1
|
Emamalipour M, Shamdani S, Mansoori B, Uzan G, Naserian S. The implications of the TNFα-TNFR2 immune checkpoint signaling pathway in cancer treatment: From immunoregulation to angiogenesis. Int J Cancer 2025; 156:7-19. [PMID: 39140321 DOI: 10.1002/ijc.35130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Despite the tremendous advances that have been made in biomedical research, cancer remains one of the leading causes of death worldwide. Several therapeutic approaches have been suggested and applied to treat cancer with impressive results. Immunotherapy based on targeting immune checkpoint signaling pathways proved to be one of the most efficient. In this review article, we will focus on the recently discovered TNFα-TNFR2 signaling pathway, which controls the immunological and pro-angiogenic properties of many immunoregulatory and pro-angiogenic cells such as endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs), and regulatory T cells (Tregs). Due to their biological properties, these cells can play a major role in cancer progression and metastasis. Therefore, we will discuss the advantages and disadvantages of an anti-TNFR2 treatment that could carry two faces under one hood. It interrupts the immunosuppressive and pro-angiogenic behaviors of the above-mentioned cells and interferes with tumor growth and survival.
Collapse
Affiliation(s)
| | - Sara Shamdani
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Behzad Mansoori
- The Wistar Institute, Molecular & Cellular Oncogenesis Program, Philadelphia, Pennsylvania, USA
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sina Naserian
- CellMedEx, Saint Maur Des Fossés, France
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| |
Collapse
|
2
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
3
|
Xing C, Zhang X, Wang D, Chen H, Gao X, Sun C, Guo W, Roshan S, Li Y, Hang Z, Cai S, Lei T, Bi W, Hou L, Li L, Wu Y, Li L, Zeng Z, Du H. Neuroprotective effects of mesenchymal stromal cells in mouse models of Alzheimer's Disease: The Mediating role of gut microbes and their metabolites via the Microbiome-Gut-Brain axis. Brain Behav Immun 2024; 122:510-526. [PMID: 39191350 DOI: 10.1016/j.bbi.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024] Open
Abstract
The intricacy and multifaceted nature of Alzheimer's disease (AD) necessitate therapies that target multiple aspects of the disease. Mesenchymal stromal cells (MSCs) emerge as potential agents to mitigate AD symptoms; however, whether their therapeutic efficacy involves modulation of gut microbiota and the microbiome-gut-brain axis (MGBA) remains unexplored. In this study, we evaluated the effects of three distinct MSCs types-derived from the umbilical cord (UCMSC), dental pulp (SHED), and adipose tissue (ADSC)-in an APP/PS1 mouse model of AD. In comparison to saline control, MSCs administration resulted in a significant reduction of behavioral disturbances, amyloid plaques, and phosphorylated tau in the hippocampus and frontal cortex, accompanied by an increase in neuronal count and Nissl body density across AD-afflicted brain regions. Through 16S rRNA gene sequencing, we identified partial restoration of gut microbial balance in AD mice post-MSCs treatment, evidenced by the elevation of neuroprotective Akkermansia and reduction of the AD-associated Sphingomonas. To examine whether gut microbiota involved in MSCs efficacy in treating AD, SHED with better anti-inflammatory and gut microbiota recovery effects among three MSCs, and another AD model 5 × FAD mice with earlier and more pathological proteins in brain than APP/PS1, were selected for further studies. Antibiotic-mediated gut microbial inactivation attenuated MSCs efficacy in 5 × FAD mice, implicating the involvement of gut microbiota in the therapeutic mechanism. Functional analysis of altered gut microbiota and targeted bile acid metabolism profiling revealed a significant enhancement in bile acid variety following MSCs therapy. A chief bile acid constituent, taurocholic acid (TCA), was orally administered to AD mice and similarly abated AD symptoms. Nonetheless, the disruption of intestinal neuronal integrity with enterotoxin abrogated the ameliorative impact of both MSCs and TCA treatments. Collectively, our findings substantiate that MSCs confer therapeutic benefits in AD within a paradigm that primarily involves regulation of gut microbiota and their metabolites through the MGBA.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoshuang Zhang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Donghui Wang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Hongyu Chen
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Xiaoyu Gao
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Chunbin Sun
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wenhua Guo
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China; Reproductive Center, Peking University Third Hospital, Beijing, China
| | - Shah Roshan
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Yingxian Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Zhongci Hang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Shanglin Cai
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Tong Lei
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Wangyu Bi
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Liangxuan Hou
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Luping Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Yawen Wu
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Liang Li
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China
| | - Zehua Zeng
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China.
| | - Hongwu Du
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 XueYuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
4
|
Hu S, Liang Y, Pan X. Exosomes: A promising new strategy for treating osteoporosis in the future. J Drug Deliv Sci Technol 2024; 97:105571. [DOI: 10.1016/j.jddst.2024.105571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Velikova T, Dekova T, Miteva DG. Controversies regarding transplantation of mesenchymal stem cells. World J Transplant 2024; 14:90554. [PMID: 38947963 PMCID: PMC11212595 DOI: 10.5500/wjt.v14.i2.90554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 06/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tantalized regenerative medicine with their therapeutic potential, yet a cloud of controversies looms over their clinical transplantation. This comprehensive review navigates the intricate landscape of MSC controversies, drawing upon 15 years of clinical experience and research. We delve into the fundamental properties of MSCs, exploring their unique immunomodulatory capabilities and surface markers. The heart of our inquiry lies in the controversial applications of MSC transplantation, including the perennial debate between autologous and allogeneic sources, concerns about efficacy, and lingering safety apprehensions. Moreover, we unravel the enigmatic mechanisms surrounding MSC transplantation, such as homing, integration, and the delicate balance between differentiation and paracrine effects. We also assess the current status of clinical trials and the ever-evolving regulatory landscape. As we peer into the future, we examine emerging trends, envisioning personalized medicine and innovative delivery methods. Our review provides a balanced and informed perspective on the controversies, offering readers a clear understanding of the complexities, challenges, and potential solutions in MSC transplantation.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tereza Dekova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | |
Collapse
|
6
|
Xiang Y, Li X, Huang Y, Gao S, Wei P, Wu L, Dong J. ADSCs encapsulated in Gelatin methacrylate substrate promotes the repair of peripheral nerve injury by SIRT6/PGC-1α pathway. Regen Ther 2024; 26:671-682. [PMID: 39281107 PMCID: PMC11402067 DOI: 10.1016/j.reth.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Peripheral nerve injury is a prevalent disease but the spontaneous recovery of nerve function is protracted and incomplete. Given the damaging of stem cells and fragile of intra-neural structures in the course of stem cell transplantation, our study tried to investigate whether encapsulating adipose derived mesenchymal stem cells (ADSCs) with GelMA could achieve better repair in peripheral nerve injury. PC-12 cells were cultured on the surface of GelMA encapsulating ADSCs and 3D co-culture system was constructed. CCK-8, Real-Time PCR, ELISA, Immunofluorescent Assay and Western Blot were used to evaluate the functionality of this system. Ultimately, nerve conduit containing the 3D co-culture system was linked between the two ends of an injured nerve. ADSCs encapsulated in 5% GeIMA had a better activity than 10% GeIMA. Furthermore, the viability of PC-12 cells was also better in this 3D co-culture system than in co-culture system with ADSCs without GeIMA. The expression of SIRT6 and PGC-1α in PC-12 cells were prominently promoted, and the entry to nuclear of PGC-1α was more obvious in this 3D co-culture system. After silencing of SIRT6, the protein expression level of PGC-1α was inhibited, and the activity of PC-12 cells was significantly reduced, suggesting that ADSCs encapsulated in GelMA upregulated the expression of SIRT6 to induce the level of PGC-1α protein, thereby achieving an impact on the activity of PC-12 cells. In vivo, nerve conduit containing the 3D co-culture system significantly promoted the repair of damaged peripheral nerves. In conclusion, our study demonstrated that 5% GelMA enhanced ADSCs activity, thereby promoting the activity of nerve cells and repair of damaged peripheral nerves by SIRT6/PGC-1α pathway.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
- Department of Plastic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xin Li
- Jiaxing Shuguang Cosmetic Hospital, Cosmetic Surgery Department, Jiaxing, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Suyue Gao
- Department of Burns and Wound Repair, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peng Wei
- Department of Plastic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lijun Wu
- Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Soochow, China
| |
Collapse
|
7
|
Sirpilla O, Sakemura RL, Hefazi M, Huynh TN, Can I, Girsch JH, Tapper EE, Cox MJ, Schick KJ, Manriquez-Roman C, Yun K, Stewart CM, Ogbodo EJ, Kimball BL, Mai LK, Gutierrez-Ruiz OL, Rodriguez ML, Gluscevic M, Larson DP, Abel AM, Wierson WA, Olivier G, Siegler EL, Kenderian SS. Mesenchymal stromal cells with chimaeric antigen receptors for enhanced immunosuppression. Nat Biomed Eng 2024; 8:443-460. [PMID: 38561490 DOI: 10.1038/s41551-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.
Collapse
Affiliation(s)
- Olivia Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - R Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Truc N Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - James H Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Erin E Tapper
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Michelle J Cox
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Kendall J Schick
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Claudia Manriquez-Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Ekene J Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Long K Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Omar L Gutierrez-Ruiz
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Makena L Rodriguez
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Martina Gluscevic
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Daniel P Larson
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Alex M Abel
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Wesley A Wierson
- LifEngine Animal Health Laboratories Incorporated, Rochester, MN, USA
| | - Gloria Olivier
- Department of Business Development, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Najar M, Bouhtit F, Rahmani S, Bouali A, Melki R, Najimi M, Lewalle P, Merimi M. The immunogenic profile and immunomodulatory function of mesenchymal stromal / stem cells in the presence of Ptychotis verticillata. Heliyon 2024; 10:e24822. [PMID: 38317994 PMCID: PMC10838760 DOI: 10.1016/j.heliyon.2024.e24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are considered to be a promising immunotherapeutic tool due to their easy accessibility, culture expansion possibilities, safety profile, and immunomodulatory properties. Although several studies have demonstrated the therapeutic effects of MSCs, their efficacy needs to be improved while also preserving their safety. It has been suggested that cell homeostasis may be particularly sensitive to plant extracts. The impact of natural compounds on immunity is thus a fascinating and growing field. Ptychotis verticillata and its bioactive molecules, carvacrol and thymol, are potential candidates for improving MSC therapeutic effects. They can be used as immunotherapeutic agents to regulate MSC functions and behavior during immunomodulation. Depending on their concentrations and incubation time, these compounds strengthened the immunomodulatory functions of MSCs while maintaining their immune-evasive profile. Incubating MSCs with carvacrol and thymol does not alter their hypoimmunogenicity, as no induction of the allogeneic immune response was observed. MSCs also showed enhanced abilities to reduce the proliferation of activated T cells. Thus, MSCs are immunologically responsive to bioactive molecules derived from PV. The bioactivity may depend on the whole phyto-complex of the oil. These findings may contribute to the development of safe and efficient immunotherapeutic MSCs by using medicinal plant-derived active molecules.
Collapse
Affiliation(s)
- Mehdi Najar
- Faculty of Medicine, ULB721, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), University of Montreal, Montreal H2X 0A9, QC, Canada
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Saida Rahmani
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Abderrahim Bouali
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Rahma Melki
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|
10
|
Chansaenroj A, Kornsuthisopon C, Suwittayarak R, Rochanavibhata S, Loi LK, Lin YC, Osathanon T. IWP-2 modulates the immunomodulatory properties of human dental pulp stem cells in vitro. Int Endod J 2024; 57:219-236. [PMID: 37971040 DOI: 10.1111/iej.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/19/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
AIM To investigate the effect of IWP-2, Wnt inhibitor, on human dental pulp stem cells (hDPSCs) responses. METHODOLOGY hDPSCs were isolated from human dental pulp tissues. Cells were treated with 25 μM IWP-2 for 24 h, and subsequently, the gene expression profile was examined using high-throughput RNA sequencing. The mRNA expression was analysed using qPCR. The effect of IWP-2 was investigated in both normal and LPS-induced hDPSCs (inflamed hDPSCs). CD4+ T cells and CD14+ monocyte-derived macrophages were cultured with conditioned media of IWP-2 treated hDPSCs to observe the immunosuppressive property. RESULTS RNA sequencing indicated that IWP-2 significantly downregulated several KEGG pathways, including cytokine-cytokine receptor interaction, IL-17 signalling pathway, and TNF signalling pathway. In both normal and inflamed conditions, IWP-2 markedly upregulated TGFB1 mRNA expression while the mRNA expression of pro-inflammatory cytokines, TNFA, IL1B, IFNG, and IL6, was inhibited. In the inhibition experiment, the pretreatment with p38, MAPK, or PI3K inhibitors abolished the effects of IWP-2 in LPS-induced inflammation. In terms of immune cells, IWP-2-treated-inflamed hDPSCs conditioned media attenuated T cell proliferation and regulated regulatory T cell differentiation. In addition, the migratory property of macrophage was decreased after being exposed to IWP-2-treated inflamed hDPSCs conditioned media. CONCLUSION IWP-2 suppressed inflammatory cytokine expression in both normal and inflamed hDPSCs. Moreover, hDPSCs exerted the immunosuppressive property after IWP-2 treatment. These results suggest the role of Wnt in inflammatory responses and immunomodulation in dental pulp tissues.
Collapse
Affiliation(s)
- Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lai-Keng Loi
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Anany MA, Haack S, Lang I, Dahlhoff J, Vargas JG, Steinfatt T, Päckert L, Weisenberger D, Zaitseva O, Medler J, Kucka K, Zhang T, Van Belle T, van Rompaey L, Beilhack A, Wajant H. Generic design principles for antibody-based tumour necrosis factor (TNF) receptor 2 (TNFR2) agonists with FcγR-independent agonism. Theranostics 2024; 14:496-509. [PMID: 38169605 PMCID: PMC10758050 DOI: 10.7150/thno.84404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024] Open
Abstract
Background: Selective TNFR2 activation can be used to treat immune pathologies by activating and expanding regulatory T-cells (Tregs) but may also restore anti-tumour immunity by co-stimulating CD8+ T-cells. Oligomerized TNFR2-specific TNF mutants or anti-TNFR2 antibodies can activate TNFR2 but suffer either from poor production and pharmacokinetics or in the case of anti-TNFR2 antibodies typically from the need of FcγR binding to elicit maximal agonistic activity. Methods: To identify the major factor(s) determining FcγR-independent agonism of anti-TNFR2 antibodies, we systematically investigated a comprehensive panel of anti-TNFR2 antibodies and antibody-based constructs differing in the characteristics of their TNFR2 binding domains but also in the number and positioning of the latter. Results: We identified the domain architecture of the constructs as the pivotal factor enabling FcγR-independent, thus intrinsic TNFR2-agonism. Anti-TNFR2 antibody formats with either TNFR2 binding sites on opposing sites of the antibody scaffold or six or more TNFR2 binding sites in similar orientation regularly showed strong FcγR-independent agonism. The affinity of the TNFR2 binding domain and the epitope recognized in TNFR2, however, were found to be of only secondary importance for agonistic activity. Conclusion: Generic design principles enable the generation of highly active bona fide TNFR2 agonists from nearly any TNFR2-specific antibody.
Collapse
Affiliation(s)
- Mohamed A. Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Center, Dokki, Giza, Egypt
| | - Stefanie Haack
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Julia Dahlhoff
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Juan Gamboa Vargas
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Tim Steinfatt
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Lea Päckert
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Weisenberger
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Juliane Medler
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kirstin Kucka
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Tengyu Zhang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | | | - Andreas Beilhack
- Department of Internal Medicine II, Interdisciplinary Center for Clinical Research (IZKF) laboratory Würzburg, Center for Experimental Molecular Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Kim MS, Kong D, Han M, Roh K, Koo H, Lee S, Kang KS. Canine amniotic membrane-derived mesenchymal stem cells ameliorate atopic dermatitis through regeneration and immunomodulation. Vet Res Commun 2023; 47:2055-2070. [PMID: 37421548 DOI: 10.1007/s11259-023-10155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Mesenchymal stem cells (MSCs) are a promising tool for treating immune disorders. However, the immunomodulatory effects of canine MSCs compared with other commercialized biologics for treating immune disorders have not been well studied. In this study we investigated the characteristics and immunomodulatory effects of canine amnion membrane (cAM)-MSCs. We examined gene expression of immune modulation and T lymphocytes from activated canine peripheral blood mononuclear cell (PBMC) proliferation. As a result, we confirmed that cAM-MSCs upregulated immune modulation genes (TGF-β1, IDO1 and PTGES2) and suppressed the proliferation capacity of T cells. Moreover, we confirmed the therapeutic effect of cAM-MSCs compared with oclacitinib (OCL), the most commonly used Janus kinase (JAK) inhibitor, as a treatment for canine atopic dermatitis (AD) using a mouse AD model. As a result, we confirmed that cAM-MSCs with PBS treatment groups (passage 4, 6 and 8) compared with PBS only (PBS) though scores of dermatologic signs, tissue pathologic changes and inflammatory cytokines were significantly reduced. In particular, cAM-MSCs were more effective than OCL in the recovery of wound dysfunction, regulation of mast cell activity and expression level of immune modulation protein. Interestingly, subcutaneous injection of cAM-MSCs induced weight recovery, but oral administration of oclacitinib induced weight loss as a side effect. In conclusion, this study suggests that cAM-MSCs can be developed as a safe canine treatment for atopic dermatitis without side effects through effective regeneration and immunomodulation.
Collapse
Affiliation(s)
- Min Soo Kim
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myounghee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyounghwan Roh
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Hojun Koo
- Smile Veterinary Clinic, Jungbu-daero, Cheoin-gu, yongin-si, Gyeonggi-do, 1510, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Wang H, Li C, Ren G, Yang C, Sun J, Zhao L, Sun W, Ju J, Xu D. Updated insight into the role of Th2-associated immunity in systemic lupus erythematosus. Autoimmun Rev 2023; 22:103213. [PMID: 36252932 DOI: 10.1016/j.autrev.2022.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 12/27/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple organs involvement, abundant autoantibodies, complement activation, and immune complexes depositions. By regulating inflammation and immune homeostasis, cytokines have been well documented to participate in the pathogenesis of SLE. A number of studies have shown that T helper 2 (Th2)-associated immunity plays an important role in autoimmune diseases, including SLE. Key molecules underlying Th2-related immunity are expected to serve as promising targets for the diagnosis and targeted treatment of SLE. Current progress in SLE pathogenesis and biological treatment strategies has been reviewed, focusing on the latest development in Th2-associated immunity.
Collapse
Affiliation(s)
- Hui Wang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, China
| | - Chaoran Li
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, China
| | - Guifang Ren
- Hospital Office of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, China
| | - Chunjuan Yang
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, China
| | - Jiamei Sun
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, China
| | - Wenchang Sun
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, China
| | - Jiyu Ju
- Department of Immunology, Weifang Medical University, Weifang 261053, China.
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, China; Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang 261000, China.
| |
Collapse
|
14
|
Kartikasari AER, Cassar E, Razqan MAM, Szydzik C, Huertas CS, Mitchell A, Plebanski M. Elevation of circulating TNF receptor 2 in cancer: A systematic meta-analysis for its potential as a diagnostic cancer biomarker. Front Immunol 2022; 13:918254. [PMID: 36466914 PMCID: PMC9708892 DOI: 10.3389/fimmu.2022.918254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/27/2022] [Indexed: 08/18/2023] Open
Abstract
High Tumor Necrosis Factor Receptor 2 (TNFR2) expression is characteristic of diverse malignant cells during tumorigenesis. The protein is also expressed by many immunosuppressive cells during cancer development, allowing cancer immune escape. A growing body of evidence further suggests a correlation between the circulating form of this protein and cancer development. Here we conducted a systematic meta-analysis of cancer studies published up until 1st October 2022, in which the circulating soluble TNFR2 (sTNFR2) concentrations in patients with cancers were recorded and their association with cancer risk was assessed. Of the 14,615 identified articles, 44 studies provided data on the correlation between cancer risk and the level of circulating sTNFR2. The pooled means comparison showed a consistently significant increase in the levels of sTNFR2 in diverse cancers when compared to healthy controls. These included colorectal cancer, ovarian cancer, breast cancer, non-Hodgkin's lymphoma, Hodgkin's lymphoma, lung cancer, hepatocarcinoma, and glioblastoma. In a random-effect meta-analysis, the cancer-specific odd ratios (OR) showed significant correlations between increased circulating sTNFR2 levels and the risk of colorectal cancer, non-Hodgkin's lymphoma, and hepatocarcinoma at 1.59 (95% CI:1.20-2.11), 1.98 (95% CI:1.49-2.64) and 4.32 (95% CI:2.25-8.31) respectively. The overall result showed an association between circulating levels of sTNFR2 and the risk of developing cancer at 1.76 (95% CI:1.53-2.02). This meta-analysis supports sTNFR2 as a potential diagnostic biomarker for cancer, albeit with different predictive strengths for different cancer types. This is consistent with a potential key role for TNFR2 involvement in cancer development.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Emily Cassar
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| | - Mohammed A. M. Razqan
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Crispin Szydzik
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPaC), School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Theme, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, VIC, Australia
| |
Collapse
|
15
|
Jung N, Park S, Kong T, Park H, Seo WM, Lee S, Kang KS. LC-MS/MS-based serum proteomics reveals a distinctive signature in a rheumatoid arthritis mouse model after treatment with mesenchymal stem cells. PLoS One 2022; 17:e0277218. [PMID: 36331907 PMCID: PMC9635733 DOI: 10.1371/journal.pone.0277218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known to be able to modulate immune responses, possess tissue-protective properties, and exhibit healing capacities with therapeutic potential for various diseases. The ability of MSCs to secrete various cytokines and growth factors provides new insights into autoimmune-diseases such as rheumatoid arthritis (RA). RA is a systemic autoimmune disease that affects the lining of synovial joints, causing stiffness, pain, inflammation, and joint erosion. In recent years, MSCs-based therapies have been widely proposed as promising therapies in the treatment of RA. However, the mechanism involved in disease-specific therapeutic effects of MSCs on RA remains unclear. To clarify the mechanism involved in effects of MSCs on RA, proteomic profiling was performed using an RA mouse model before and after treatment with MSCs. In this study, treatment efficacy of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) was confirmed using a type II collagen-induced arthritis (CIA) mouse model. Results of measuring incidence rates of arthritis and clinical arthritis index (CAI) revealed that mice administrated with hUCB-MSCs had a significant reduction in arthritis severity. Proteins that might affect disease progression and therapeutic efficacy of hUCB-MSC were identified through LC-MS/MS analysis using serum samples. In addition, L-1000 analysis was performed for hUCB-MSC culture medium. To analysis data obtained from LC–MS/MS and L-1000, tools such as ExDEGA, MEV, and DAVID GO were used. Results showed that various factors secreted from hUCB-MSCs might play roles in therapeutic effects of MSCs on RA, with platelet activation possibly playing a pivotal role. Results of this study also suggest that SERPINE1 and THBS1 among substances secreted by hUCB-MSC might be key factors that can inhibit platelet activation. This paper is expected to improve our understanding of mechanisms involved in treatment effects of stem cells on rheumatoid arthritis.
Collapse
Affiliation(s)
- Namhee Jung
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Geumcheon-gu, Seoul, South Korea
| | - Soyoung Park
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Geumcheon-gu, Seoul, South Korea
| | - TaeHo Kong
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Geumcheon-gu, Seoul, South Korea
| | - Hwanhee Park
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Geumcheon-gu, Seoul, South Korea
| | - Woo Min Seo
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Geumcheon-gu, Seoul, South Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Geumcheon-gu, Seoul, South Korea
- * E-mail: (SL); (KSK)
| | - Kyung-Sun Kang
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Geumcheon-gu, Seoul, South Korea
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- * E-mail: (SL); (KSK)
| |
Collapse
|
16
|
Nachmias B, Zimran E, Avni B. Mesenchymal stroma/stem cells: Haematologists' friend or foe? Br J Haematol 2022; 199:175-189. [PMID: 35667616 PMCID: PMC9796884 DOI: 10.1111/bjh.18292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
Mesenchymal stromal cells (MSCs) are non-haematopoietic cells found in fetal and adult organs, that play important roles in tissue repair, inflammation and immune modulation. MSCs residing in the bone marrow interact closely with haematopoietic cells and comprise an important component of the microenvironment supporting haematopoiesis, in both health and disease states. Since their identification in 1970, basic scientific and preclinical research efforts have shed light on the role of MSCs in the regulation of haematopoiesis and evoked interest in their clinical application in haematopoietic stem cell transplantation (HSCT) and malignant haematology. Over the last two decades, these research efforts have led to numerous clinical trials, which have established the safety of MSC therapy; however, the optimal mode of administration and the benefit remain inconclusive. In this paper, we will review the clinical experience with use of MSCs in HSCT for enhancement of engraftment, prevention and treatment of graft-versus-host disease and haemorrhagic cystitis. Then, we will discuss the contradictory evidence regarding tumour-promoting versus tumour-suppressing effects of MSCs in haematological malignancies, which may have relevance for future clinical applications.
Collapse
Affiliation(s)
- Boaz Nachmias
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Eran Zimran
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| | - Batia Avni
- Division of Hematology and Bone Marrow Transplantation & Cancer ImmunotherapyHadassah Medical Center and Hebrew UniversityJerusalemIsrael
| |
Collapse
|
17
|
Park HJ, Lee SW, Park YH, Kim TC, Van Kaer L, Hong S. CD1d-independent NK1.1+ Treg cells are IL2-inducible Foxp3+ T cells co-expressing immunosuppressive and cytotoxic molecules. Front Immunol 2022; 13:951592. [PMID: 36177042 PMCID: PMC9513232 DOI: 10.3389/fimmu.2022.951592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Treg) play pivotal roles in maintaining self-tolerance and preventing immunological diseases such as allergy and autoimmunity through their immunosuppressive properties. Although Treg cells are heterogeneous populations with distinct suppressive functions, expression of natural killer (NK) cell receptors (NKR) by these cells remains incompletely explored. Here we identified that a small population of Foxp3+CD4+ Treg cells in mice expresses the NK1.1 NKR. Furthermore, we found that rare NK1.1+ subpopulations among CD4+ Treg cells develop normally in the spleen but not the thymus through CD1d-independent pathways. Compared with NK1.1- conventional Treg cells, these NK1.1+ Treg cells express elevated Treg cell phenotypic hallmarks, pro-inflammatory cytokines, and NK cell-related cytolytic mediators. Our results suggest that NK1.1+ Treg cells are phenotypically hybrid cells sharing functional properties of both NK and Treg cells. Interestingly, NK1.1+ Treg cells preferentially expanded in response to recombinant IL2 stimulation in vitro, consistent with their increased IL2Rαβ expression. Moreover, DO11.10 T cell receptor transgenic NK1.1+ Treg cells were expanded in an ovalbumin antigen-specific manner. In the context of lipopolysaccharide-induced systemic inflammation, NK1.1+ Treg cells downregulated immunosuppressive molecules but upregulated TNFα production, indicating their plastic adaptation towards a more pro-inflammatory rather than regulatory phenotype. Collectively, we propose that NK1.1+ Treg cells might play a unique role in controlling inflammatory immune responses such as infection and autoimmunity.
Collapse
Affiliation(s)
- Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, South Korea
- *Correspondence: Seokmann Hong,
| |
Collapse
|
18
|
Che Z, Ye Z, Zhang X, Lin B, Yang W, Liang Y, Zeng J. Mesenchymal stem/stromal cells in the pathogenesis and regenerative therapy of inflammatory bowel diseases. Front Immunol 2022; 13:952071. [PMID: 35990688 PMCID: PMC9386516 DOI: 10.3389/fimmu.2022.952071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) represent a group of chronic inflammatory disorders of the gastrointestinal (GI) tract including ulcerative colitis (UC), Crohn’s disease (CD), and unclassified IBDs. The pathogenesis of IBDs is related to genetic susceptibility, environmental factors, and dysbiosis that can lead to the dysfunction of immune responses and dysregulated homeostasis of local mucosal tissues characterized by severe inflammatory responses and tissue damage in GI tract. To date, extensive studies have indicated that IBDs cannot be completely cured and easy to relapse, thus prompting researchers to find novel and more effective therapeutics for this disease. Due to their potent multipotent differentiation and immunomodulatory capabilities, mesenchymal stem/stromal cells (MSCs) not only play an important role in regulating immune and tissue homeostasis but also display potent therapeutic effects on various inflammatory diseases, including IBDs, in both preclinical and clinical studies. In this review, we present a comprehensive overview on the pathological mechanisms, the currently available therapeutics, particularly, the potential application of MSCs-based regenerative therapy for IBDs.
Collapse
Affiliation(s)
- Zhengping Che
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xueying Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| | - Weiqing Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yanfang Liang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, School of Basic Medicine, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
- Dongguan Metabolite Analysis Engineering Technology Center of Cells for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan, China
- *Correspondence: Jincheng Zeng, ; Yanfang Liang,
| |
Collapse
|
19
|
Farhangnia P, Dehrouyeh S, Safdarian AR, Farahani SV, Gorgani M, Rezaei N, Akbarpour M, Delbandi AA. Recent advances in passive immunotherapies for COVID-19: The Evidence-Based approaches and clinical trials. Int Immunopharmacol 2022; 109:108786. [PMID: 35483235 PMCID: PMC9021130 DOI: 10.1016/j.intimp.2022.108786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing a global pandemic called COVID-19. Currently, there is no definitive treatment for this emerging disease. Global efforts resulted in developing multiple platforms of COVID-19 vaccines, but their efficacy in humans should be wholly investigated in the long-term clinical and epidemiological follow-ups. Despite the international efforts, COVID-19 vaccination accompanies challenges, including financial and political obstacles, serious adverse effects (AEs), the impossibility of using vaccines in certain groups of people in the community, and viral evasion due to emerging novel variants of SARS-CoV-2 in many countries. For these reasons, passive immunotherapy has been considered a complementary remedy and a promising way to manage COVID-19. These approaches arebased on reduced inflammation due to inhibiting cytokine storm phenomena, immunomodulation,preventing acute respiratory distress syndrome (ARDS), viral neutralization, anddecreased viral load. This article highlights passive immunotherapy and immunomodulation approaches in managing and treating COVID-19 patients and discusses relevant clinical trials (CTs).
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Shiva Dehrouyeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Amir Reza Safdarian
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Soheila Vasheghani Farahani
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Chicago, United States; Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, United States.
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
21
|
Notoginsenoside R1 Promotes Migration, Adhesin, Spreading, and Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stromal Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113403. [PMID: 35684342 PMCID: PMC9182421 DOI: 10.3390/molecules27113403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/18/2022]
Abstract
Cellular activities, such as attachment, spreading, proliferation, migration, and differentiation are indispensable for the success of bone tissue engineering. Mesenchymal stromal cells (MSCs) are the key precursor cells to regenerate bone. Bioactive compounds from natural products had shown bone regenerative potential. Notoginsenoside R1 (NGR1) is a primary bioactive natural compound that regulates various biological activities, including cardiovascular protection, neuro-protection, and anti-cancer effects. However, the effect of NGR1 on migration, adhesion, spreading, and osteogenic differentiation of MSCs required for bone tissue engineering application has not been tested properly. In this study, we aimed to analyze the effect of NGR1 on the cellular activities of MSCs. Since human adipose-derived stromal cells (hASCs) are commonly used MSCs for bone tissue engineering, we used hASCs as a model of MSCs. The optimal concentration of 0.05 μg/mL NGR1 was biocompatible and promoted migration and osteogenic differentiation of hASCs. Pro-angiogenic factor VEGF expression was upregulated in NGR1-treated hASCs. NGR1 enhanced the adhesion and spreading of hASCs on the bio-inert glass surface. NGR1 robustly promoted hASCs adhesion and survival in 3D-printed TCP scaffold both in vitro and in vivo. NGR1 mitigated LPS-induced expression of inflammatory markers IL-1β, IL-6, and TNF-α in hASCs as well as inhibited the RANKL/OPG expression ratio. In conclusion, the biocompatible NGR1 promoted the migration, adhesion, spreading, osteogenic differentiation, and anti-inflammatory properties of hASCs.
Collapse
|
22
|
Signaling pathway(s) of TNFR2 required for the immunoregulatory effect of CD4 +Foxp3 + regulatory T cells. Int Immunopharmacol 2022; 108:108823. [PMID: 35623290 DOI: 10.1016/j.intimp.2022.108823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
CD4+Foxp3+ regulatory T cells (Tregs), a subpopulation of CD4+ T cells, are engaged in maintaining the periphery tolerance and preventing autoimmunity. Recent studies showed that tumor necrosis factor receptor 2 (TNFR2) is preferentially expressed by Tregs and the expression of this receptor identifies the maximally suppressive Tregs. That is, TNFR2 is a liable phenotypic and functional surface marker of Tregs. Moreover, TNF activates and expands Tregs through TNFR2. However, it is very interesting which signaling pathway(s) of TNFR2 is required for the inhibitory effect of Tregs. Compelling evidence shows three TNFR2 signaling pathways in Tregs, including NF-κB, MAPK and PI3K-Akt pathways. Here, we summarize and discuss the latest progress in the studies on the downstream signaling pathways of TNF-TNFR2 for controlling Treg homeostasis, differentiation and proliferation.
Collapse
|
23
|
Yan S, Zhang C, Ji X, Wu G, Huang X, Zhang Y, Zhang Y. MSC-ACE2 Ameliorates Streptococcus uberis-Induced Inflammatory Injury in Mammary Epithelial Cells by Upregulating the IL-10/STAT3/SOCS3 Pathway. Front Immunol 2022; 13:870780. [PMID: 35677060 PMCID: PMC9167935 DOI: 10.3389/fimmu.2022.870780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the dairy industry, Streptococcus uberis (S. uberis) is one of the most important pathogenic bacteria associated with mastitis in milk-producing cows, causing vast economic loss. To date, the only real effective method of treating and preventing streptococcal mastitis is antimicrobial therapy. In many inflammatory diseases, mesenchymal stem cells (MSCs) and angiotensin-converting enzyme 2 (ACE2) play an anti-inflammatory and anti-injurious role. Accordingly, we hypothesized that MSCs overexpressing ACE2 (MSC-ACE2) would ameliorate the inflammatory injury caused by S. uberis in mammary epithelial cells more efficiently than MSC alone. By activating the transcription 3/suppressor of cytokine signaling 3 (IL-10/STAT3/SOCS3) signaling pathway, MSC-ACE2 inhibited the NF-κB, MAPKs, apoptosis, and pyroptosis passways. Moreover, MSC-ACE2 overturned the downregulation of Occludin, Zonula occludens 1 (ZO-1), and Claudin-3 expression levels caused by S. uberis, suggesting that MSC-ACE2 promotes the repair of the blood-milk barrier. MSC-ACE2 demonstrated greater effectiveness than MSC alone, as expected. Based on these results, MSC-ACE2 effectively inhibits EpH4-Ev cell's inflammatory responses induced by S. uberis, and would be an effective therapeutic tool for treating streptococcal mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuanshu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Li M, Zhang X, Bai X, Liang T. Targeting TNFR2: A Novel Breakthrough in the Treatment of Cancer. Front Oncol 2022; 12:862154. [PMID: 35494080 PMCID: PMC9048045 DOI: 10.3389/fonc.2022.862154] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor (TNF) receptor type II (TNFR2) is expressed in various tumor cells and some immune cells, such as regulatory T cells and myeloid-derived suppressing cells. TNFR2 contributes a lot to the tumor microenvironment. For example, it directly promotes the occurrence and growth of some tumor cells, activates immunosuppressive cells, and supports immune escape. Existing studies have proved the importance of TNFR2 in cancer treatment. Here, we reviewed the activation mechanism of TNFR2 and its role in signal transduction in the tumor microenvironment. We summarized the expression and function of TNFR2 within different immune cells and the potential opportunities and challenges of targeting TNFR2 in immunotherapy. Finally, the advantages and limitations of TNFR2 to treat tumor-related diseases are discussed, and the problems that may be encountered in the clinical development and application of targeted anti-TNFR2 agonists and inhibitors are analyzed.
Collapse
Affiliation(s)
- Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- *Correspondence: Tingbo Liang, ; Xueli Bai,
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Tingbo Liang, ; Xueli Bai,
| |
Collapse
|
25
|
Sun W, Yan S, Yang C, Yang J, Wang H, Li C, Zhang L, Zhao L, Zhang J, Cheng M, Li X, Xu D. Mesenchymal Stem Cells-derived Exosomes Ameliorate Lupus by Inducing M2 Macrophage Polarization and Regulatory T Cell Expansion in MRL/lpr Mice. Immunol Invest 2022; 51:1785-1803. [PMID: 35332841 DOI: 10.1080/08820139.2022.2055478] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies have implicated that the transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) effectively alleviates systemic lupus erythematosus (SLE) primarily due to immunomodulatory effects. However, little is known about the role of hUC-MSC-derived exosomes in SLE. This study is carried out to investigate the modifying effects of hUC-MSC-exosomes on the differentiation and function of immune cells in SLE. hUC-MSC-derived exosomes were extracted from the cultural supernatant of hUC-MSCs by ultrahigh speed centrifugation. Quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and flow cytometry were performed to estimate the effect of hUC-MSC-derived exosomes on macrophage and regulatory T cell (Treg) polarization. In vivo, hUC-MSC-exosomes were injected intravenously into 28-week-old MRL/lpr mice. We had found that exosomes derived from hUC-MSC restrained the proliferation and inflammation of macrophages in vitro. Besides, MSC-exosomes inhibited CD68+M1 and HLA-DR+M1 but promoted CD206+M2 and CD163+M2 in vitro. Moreover, MRL/lpr mice administrated by intravenous injection of MSC-exosomes had less infiltration of CD14+CD11c+M1 cells but more CD14+CD163+M2 cells as well as Tregs in spleens compared with those in MRL/lpr mice treated by PBS. Additionally, MSC-exosomes could alleviate nephritis, liver and lung injuries of MRL/lpr mice. The survival of lupus mice could be improved after MSC-exosome treatment. This study has suggested that MSC-derived exosomes exert anti-inflammatory and immunomodulatory effects in SLE. MSC-exosomes ameliorate nephritis and other key organ injuries by inducing M2 macrophages and Tregs polarization. As natural nanocarriers, MSC-exosomes may serve as a promising cell-free therapeutic strategy for SLE.Abbreviations: SLE: Systemic lupus erythematosus; hUC-MSCs: Human umbilical cord mesenchymal stem cells; MSCs: Mesenchymal stem cells; qRT-PCR: Quantitative real-time polymerase chain reaction; ELISA: Enzyme-linked immunosorbent assay; Tregs: Regulatory cells; TNF-α: Tumor necrosis factor alfa; IL: Interleukin; COVID-19: Coronavirus disease 2019; pTHP-1: PMA-induced THP-1 macrophages; TEM: Transmission electron microscopy; LPS: Lipopolysaccharide; EVs: Extracellular vesicles; TRAF1: Tumor necrosis factor receptor-associated factor 1; IRAK1: Interferon-α-interleukin-1 receptor-associated kinase 1; NF-κB: Nuclear factor-κB; BLyS: B lymphocyte stimulator; APRIL: A proliferation-inducing ligand.
Collapse
Affiliation(s)
- Wenchang Sun
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Chunjuan Yang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Jinghan Yang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Hui Wang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Chaoran Li
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Jiaojiao Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Nephrology of Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
26
|
Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, Li J, Chen S, Wang Q, Wang Y, Peng J, Tang J. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther 2022; 13:18. [PMID: 35033187 PMCID: PMC8760713 DOI: 10.1186/s13287-021-02690-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.
Collapse
Affiliation(s)
- Xiangling Li
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Tieyuan Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Fanqi Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Jian Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Junyang Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Qi Wang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yi Wang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.
| | - Jinshu Tang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
27
|
Suo F, Zhou X, Setroikromo R, Quax WJ. Receptor Specificity Engineering of TNF Superfamily Ligands. Pharmaceutics 2022; 14:181. [PMID: 35057080 PMCID: PMC8781899 DOI: 10.3390/pharmaceutics14010181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) ligand family has nine ligands that show promiscuity in binding multiple receptors. As different receptors transduce into diverse pathways, the study on the functional role of natural ligands is very complex. In this review, we discuss the TNF ligands engineering for receptor specificity and summarize the performance of the ligand variants in vivo and in vitro. Those variants have an increased binding affinity to specific receptors to enhance the cell signal conduction and have reduced side effects due to a lowered binding to untargeted receptors. Refining receptor specificity is a promising research strategy for improving the application of multi-receptor ligands. Further, the settled variants also provide experimental guidance for engineering receptor specificity on other proteins with multiple receptors.
Collapse
Affiliation(s)
- Fengzhi Suo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xinyu Zhou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
28
|
Genç D, Günaydın B, Sezgin S, Aladağ A, Tarhan EF. Immunoregulatory effects of dental mesenchymal stem cells on T and B lymphocyte responses in primary Sjögren's syndrome. Immunotherapy 2022; 14:225-247. [PMID: 35012368 DOI: 10.2217/imt-2021-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: In this article, the authors investigate the modulatory effects of dental mesenchymal stem cells (MSCs) on lymphocyte responses in primary Sjögren's syndrome (pSS), which is an autoimmune disease resulting from keratoconjunctivitis sicca and xerostomia. Methods: Mononuclear cells isolated from pSS patients cultured with or without dental MSCs and analyzed for lymphocyte responses via flow cytometry. Results: Dental-follicle (DF)- and dental-pulp (DP)-MSCs downregulated CD4+ T lymphocyte proliferation by increasing Fas-ligand expression on T lymphocytes and FoxP3 expressing Tregs, and decreasing intracellular IFN-γ and IL-17 secretion in pSS patients. DF-MSCs decreased the plasma B cell ratio in the favor of naive B cell population in pSS patients' mononuclear cells. Conclusion: DF- and DP-MSCs can be the new cellular therapeutic candidates for the regulation of immune responses in pSS.
Collapse
Affiliation(s)
- Deniz Genç
- Muğla Sıtkı Koçman University, Faculty of Health Sciences, Muğla, 48000, Turkey.,Muğla Sıtkı Koçman University, Research Laboratories Center, Muğla, 48000, Turkey
| | - Burcu Günaydın
- Department of Histology & Embryology, Muğla Sıtkı Koçman University, Institute of Health Sciences, Muğla, 48000, Turkey
| | - Serhat Sezgin
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Muğla, 48000, Turkey
| | - Akın Aladağ
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Muğla, 48000, Turkey
| | - Emine Figen Tarhan
- Department of Rheumatology, Muğla Sıtkı Koçman University, Faculty of Medicine, Muğla, 48000, Turkey
| |
Collapse
|
29
|
Zhang SY, Ren JY, Yang B. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World J Stem Cells 2021; 13:1625-1646. [PMID: 34909115 PMCID: PMC8641023 DOI: 10.4252/wjsc.v13.i11.1625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted intense interest in the field of dental tissue regeneration. Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures. MSCs possess distinct inherent properties of self-renewal, immunomodulation, proangiogenic potential, and multilineage potency, as well as being readily available and easy to culture. However, major issues, including poor engraftment and low survival rates in vivo, remain to be resolved before large-scale application is feasible in clinical treatments. Thus, some recent investigations have sought ways to optimize MSC functions in vitro and in vivo. Currently, priming culture conditions, pretreatment with mechanical and physical stimuli, preconditioning with cytokines and growth factors, and genetic modification of MSCs are considered to be the main strategies; all of which could contribute to improving MSC efficacy in dental regenerative medicine. Research in this field has made tremendous progress and continues to gather interest and stimulate innovation. In this review, we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration, antiapoptotic effect, proangiogenic potential, and regenerative properties. Challenges in current approaches associated with MSC modification and possible future solutions are also indicated. We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration.
Collapse
Affiliation(s)
- Si-Yuan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yin Ren
- Department of Oral Radiology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
30
|
Segués A, van Duijnhoven SMJ, Parade M, Driessen L, Vukovic N, Zaiss D, Sijts AJAM, Berraondo P, van Elsas A. Generation and characterization of novel co-stimulatory anti-mouse TNFR2 antibodies. J Immunol Methods 2021; 499:113173. [PMID: 34699840 DOI: 10.1016/j.jim.2021.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models. Here, we describe the generation, production, purification, and characterization of a panel of novel antibodies targeting mouse TNFR2. The antibodies display functional differences in binding affinity and potency to block TNFα. Furthermore, epitope binding showed that the anti-mTNFR2 antibodies target different domains on the TNFR2 protein, associated with varying capacity to enhance CD8+ T-cell activation and costimulation. Moreover, the anti-TNFR2 antibodies demonstrate binding to isolated splenic mouse Tregs ex vivo and activated CD8+ cells, reinforcing their potential use to establish TNFR2-dependent immune modulation in translational models of autoimmunity and cancer.
Collapse
Affiliation(s)
- Aina Segués
- Aduro Biotech Europe, Oss, the Netherlands; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | | | | | | | - Nataša Vukovic
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Dietmar Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom; Institute of Immune Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Alice J A M Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Pedro Berraondo
- Division of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
31
|
Razazian M, Khosravi M, Bahiraii S, Uzan G, Shamdani S, Naserian S. Differences and similarities between mesenchymal stem cell and endothelial progenitor cell immunoregulatory properties against T cells. World J Stem Cells 2021; 13:971-984. [PMID: 34567420 PMCID: PMC8422932 DOI: 10.4252/wjsc.v13.i8.971] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-marrow-derived mesenchymal stem cells and endothelial progenitor cells have some interesting biological properties that make them unique for cell therapy of degenerative and cardiovascular disorders. Although both cell populations have been already studied and used for their regenerative potentials, recently their special immunoregulatory features have brought much more attention. Mesenchymal stem cells and endothelial progenitor cells have both proangiogenic functions and have been shown to suppress the immune response, particularly T cell proliferation, activation, and cytokine production. This makes them suitable choices for allogeneic stem cell transplantation. Nevertheless, these two cells do not have equal immunoregulatory activities. Many elements including their extraction sources, age/passage, expression of different markers, secretion of bioactive mediators, and some others could change the efficiency of their immunosuppressive function. However, to our knowledge, no publication has yet compared mesenchymal stem cells and endothelial progenitor cells for their immunological interaction with T cells. This review aims to specifically compare the immunoregulatory effect of these two populations including their T cell suppression, deactivation, cytokine production, and regulatory T cells induction capacities. Moreover, it evaluates the implications of the tumor necrosis factor alpha-tumor necrosis factor receptor 2 axis as an emerging immune checkpoint signaling pathway controlling most of their immunological properties.
Collapse
Affiliation(s)
- Mehdi Razazian
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
| | - Maryam Khosravi
- Microenvironment & Immunity Unit, Institut Pasteur, Paris 75724, France
- Institut national de la santé et de la recherche médicale (Inserm) Unit 1224, Paris 75724, France
| | - Sheyda Bahiraii
- Department of Pharmacognosy, University of Vienna, Vienna 1090, Austria
| | - Georges Uzan
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
| | - Sara Shamdani
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
- CellMedEx; Saint Maur Des Fossés 94100, France
| | - Sina Naserian
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
- CellMedEx; Saint Maur Des Fossés 94100, France.
| |
Collapse
|
32
|
Yang Y, Islam MS, Hu Y, Chen X. TNFR2: Role in Cancer Immunology and Immunotherapy. Immunotargets Ther 2021; 10:103-122. [PMID: 33907692 PMCID: PMC8071081 DOI: 10.2147/itt.s255224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) and anti-PD-1/PD-L1 (programmed death-1/programmed death-ligand 1), represent a turning point in the cancer immunotherapy. However, only a minor fraction of patients could derive benefit from such therapy. Therefore, new strategies targeting additional immune regulatory mechanisms are urgently needed. CD4+Foxp3+ regulatory T cells (Tregs) represent a major cellular mechanism in cancer immune evasion. There is compelling evidence that tumor necrosis factor (TNF) receptor type II (TNFR2) plays a decisive role in the activation and expansion of Tregs and other types of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs). Furthermore, TNFR2 is also expressed by some tumor cells. Emerging experimental evidence indicates that TNFR2 may be a therapeutic target to enhance naturally occurring or immunotherapeutic-triggered anti-tumor immune responses. In this article, we discuss recent advances in the understanding of the mechanistic basis underlying the Treg-boosting effect of TNFR2. The role of TNFR2-expressing highly suppressive Tregs in tumor immune evasion and their possible contribution to the non-responsiveness to checkpoint treatment are analyzed. Moreover, the role of TNFR2 expression on tumor cells and the impact of TNFR2 signaling on other types of cells that shape the immunological landscape in the tumor microenvironment, such as MDSCs, MSCs, ECs, EPCs, CD8+ CTLs, and NK cells, are also discussed. The reports revealing the effect of TNFR2-targeting pharmacological agents in the experimental cancer immunotherapy are summarized. We also discuss the potential opportunities and challenges for TNFR2-targeting immunotherapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Md Sahidul Islam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| |
Collapse
|