1
|
Marei HE, Bedair K, Hasan A, Al-Mansoori L, Caratelli S, Sconocchia G, Gaiba A, Cenciarelli C. Current status and innovative developments of CAR-T-cell therapy for the treatment of breast cancer. Cancer Cell Int 2025; 25:3. [PMID: 39755633 DOI: 10.1186/s12935-024-03615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Breast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy. The T cell-based immunotherapy known as chimeric antigen receptor (CAR) T cell treatment, which uses the patient's immune cells to fight cancer, has demonstrated remarkable efficacy in treating hematologic malignancies; nevertheless, the treatment effects in solid tumors, like breast cancer, have not lived up to expectations. We discuss in detail the role of tumor-associated antigens in breast cancer, current clinical trials, barriers to the intended therapeutic effects of CAR-T cell therapy, and potential ways to increase treatment efficacy. Finally, our review aims to stimulate readers' curiosity by summarizing the most recent advancements in CAR-T cell therapy for breast cancer.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Khaled Bedair
- Department of Social Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Layla Al-Mansoori
- Biomedical Research Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | - Alice Gaiba
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | |
Collapse
|
2
|
Feng X, Zhang H, Yang S, Cui D, Wu Y, Qi X, Su Z. From stem cells to pancreatic β-cells: strategies, applications, and potential treatments for diabetes. Mol Cell Biochem 2025; 480:173-190. [PMID: 38642274 DOI: 10.1007/s11010-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Abstract
Loss and functional failure of pancreatic β-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for β-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional β-cells. In this review, we first introduce the development of functional β-cells and their heterogeneity and then turn to highlight recent advances in the generation of β-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.
Collapse
Affiliation(s)
- Xingrong Feng
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Daxin Cui
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Yanting Wu
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Xiaocun Qi
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China.
| |
Collapse
|
3
|
Lee J, Park SE, Kim M, Kim H, Kwon JY, Jeon HB, Chang JW, Lee J. Safety and Tolerability of Wharton's Jelly-Derived Mesenchymal Stem Cells for Patients With Duchenne Muscular Dystrophy: A Phase 1 Clinical Study. J Clin Neurol 2025; 21:40-52. [PMID: 39778566 PMCID: PMC11711273 DOI: 10.3988/jcn.2024.0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND AND PURPOSE This study was an open-label, dose-escalation, phase 1 clinical trial to determine the safety and dose of EN001 for patients with Duchenne muscular dystrophy (DMD). EN001, developed by ENCell, are allogeneic early-passage Wharton's jelly-derived mesenchymal stem cells that originate at the umbilical cord, with preclinical studies demonstrating their high therapeutic efficacy for DMD. METHODS This phase 1 clinical trial explored the safety and tolerability of EN001 as a potential treatment option for patients with DMD. Six pediatric participants with DMD were divided into two subgroups of equal size: low-dose EN001 (5.0×10⁵ cells/kg) and high-dose EN001 (2.5×10⁶ cells/kg). All participants were monitored for 12 weeks after EN001 administration to assess its safety. Dose-limiting toxicity (DLT) was evaluated across 2 weeks post administration. Exploratory efficacy was evaluated by measuring serum creatine kinase levels, and functional evaluations-including spirometry, myometry, the North Star Ambulatory Assessment, and the 6-minute walk test-were conducted at week 12 and compared with the baseline values. RESULTS No participants experienced serious adverse events related to EN001 injection during the 12-week follow-up period. Mild adverse events included injection-related local erythema, edema, parosmia, and headache, but DLT was not observed. Functional evaluations at week 12 revealed no significant changes from baseline. CONCLUSIONS These results demonstrated that EN001 are safe and well tolerated for patients with DMD, and did not cause serious adverse events. The efficacy of EN001 could be confirmed through larger-scale future studies that incorporate repeated dosing and have a randomized controlled trial design.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Eon Park
- Cell and Gene Therapy Research Institute, ENCell Co. Ltd., Seoul, Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Mira Kim
- Clinical Development Department, ENCell Co. Ltd., Seoul, Korea
| | - Hyeongseop Kim
- Cell and Gene Therapy Research Institute, ENCell Co. Ltd., Seoul, Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
| | - Jeong-Yi Kwon
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Bae Jeon
- Cell and Gene Therapy Research Institute, ENCell Co. Ltd., Seoul, Korea
| | - Jong Wook Chang
- Cell and Gene Therapy Research Institute, ENCell Co. Ltd., Seoul, Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Cell & Gene Therapy Institute, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
4
|
Heidari Z, Fallahi J, Sisakht M, Safari F, Hosseini K, Bahmanimehr A, Savardashtaki A, Khajeh S, Tabei SMB, Razban V. Impact of Tissue Factor Gene Knockout on Coagulation Properties of Umbilical Cord-Derived Multipotent Mesenchymal Stromal/Stem Cells. Cell Biochem Funct 2024; 42:e70021. [PMID: 39660566 DOI: 10.1002/cbf.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Multipotent mesenchymal stromal/stem cells (MSCs) refer to a population of stem cells that exhibit distinct progenitor cell characteristics including the potential for differentiation into a wide range of cell types. MSCs have become a promising candidate for cell therapy and tissue regeneration due to their unique properties, such as their ability to differentiate into multiple cell types, their capacity for expansion, self-renewal, and immune-regulatory effects. However, reports have brought attention to thrombosis-related complications associated with MSCs therapy in the last decade. As tissue factor (TF) is a powerful coagulation activator expressed by MSCs that stimulates the extrinsic coagulation pathway, we investigated the thrombotic properties of human umbilical cord MSCs (HUCMSCs) after knocking out the TF gene. MSCs populations that obtained from umbilical cord were cultured and expanded in the appropriate medium cell culture. The identity of the MSCs was verified through flow cytometry, and their ability to differentiate into osteogenic and adipogenic lineages. Two gRNAs for Exons 1 and 2 of the TF gene have been designed and cloned into px458 vector's backbone (pSpCas9 (BB)-2A-GFP). Following transfecting of gRNAs into HUCMSCs and successfully knocking out the TF gene using GAP-PCR, the impact of normal and knockout HUCMSCs on coagulation was assessed through prothrombin time (PT), D-dimer level, clotting time (CT), and turbidity assay. Furthermore, the impact of TF knockout (TFKO) on MMP19 expression was assessed. Our results revealed that the PT was prolonged and D-dimer level was decreased in TFKO group compared to normal HUCMSCs. These findings suggest that TF gene plays a crucial role in regulating coagulation in HUCMSCs. Also, a significant reduction in MMP19 expression was observed within the TFKO group.
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Hosseini
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ardeshir Bahmanimehr
- Thalassemia and Hemophilia Genetic, PND Research Center, Dastgheib Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Orthopedic & Rehabilitation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Oh SJ, Kim H, Park SE, Kim JH, Kim YJ, Choi SJ, Oh SY, Jeon HB, Chang JW. Synergistic effect of Wharton's jelly-derived mesenchymal stem cells and insulin on Schwann cell proliferation in Charcot-Marie-Tooth disease type 1A treatment. Neurobiol Dis 2024; 203:106725. [PMID: 39536952 DOI: 10.1016/j.nbd.2024.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating disease caused by PMP22 duplication and an exceedingly rare hereditary peripheral neuropathy, with an incidence of 1 in 2500. Currently, no cure exists for CMT1A; however, various therapeutic approaches are under development. Considering the known therapeutic effects of mesenchymal stem cells (MSCs) and the relation of blood sugar levels with nerve damage in CMT, this study aimed to confirm the therapeutic effects of MSCs and insulin on CMT, using both in-vitro and in-vivo models. CMT1A in-vitro models were exposed to Wharton's jelly-derived MSCs (WJ-MSCs) or insulin, and the resulting proliferation changes were measured. CMT1A mice were treated with WJ-MSCs or insulin, and their phenotypic changes were observed. We observed improvements in myelination of Schwann cells in vitro and motor function in vivo. Insulin also showed therapeutic efficacy by promoting Schwann cell proliferation. Furthermore, combination therapy using insulin and WJ-MSCs was more effective than WJ-MSCs or insulin alone. Insulin promoted the proliferation of Schwann cells and WJ-MSCs through activation of the ATK and PI3K-MAPK signaling pathways. Overall, this study is the first to confirm the therapeutic efficacy of WJ-MSCs and insulin in CMT1A, and their synergistic effect without causing insulin resistance.
Collapse
Affiliation(s)
- Shin Ji Oh
- Cell & Gene Therapy Research Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Hyeongseop Kim
- Cell & Gene Therapy Research Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Sang Eon Park
- Cell & Gene Therapy Research Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jeong Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hong Bae Jeon
- Cell & Gene Therapy Research Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea.
| | - Jong Wook Chang
- Cell & Gene Therapy Research Institute, ENCell Co. Ltd., Seoul 06072, Republic of Korea; Cell and Gene Therapy Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
6
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
7
|
Wang X, Liu D. Macrophage Polarization: A Novel Target and Strategy for Pathological Scarring. Tissue Eng Regen Med 2024; 21:1109-1124. [PMID: 39352458 PMCID: PMC11589044 DOI: 10.1007/s13770-024-00669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Abnormal scarring imposes considerable challenges and burdens on the lives of patients and healthcare system. Macrophages at the wound site are found to be of great concern to overall wound healing. There have been many studies indicating an inextricably link between dysfunctional macrophages and fibrotic scars. Macrophages are not only related to pathogen destruction and phagocytosis of apoptotic cells, but also involved in angiogenesis, keratinization and collagen deposition. These abundant cell functions are attributed to specific heterogeneity and plasticity of macrophages, which also add an extra layer of complexity to correlational researches. METHODS This article summarizes current understanding of macrophage polarization in scar formation and several prevention and treatment strategies on pathological scarring related to regulation of macrophage behaviors by utilizing databases such as PubMed, Google Scholar and so on. RESULTS There are many studies proving that macrophages participate in the course of wound healing by converting their predominant phenotype. The potential of macrophages in managing hypertrophic scars and keloid lesions have been underscored. CONCLUSION Macrophage polarization offers new prevention strategies for pathological scarring. Learning about and targeting at macrophages may be helpful in achieving optimum wound healing.
Collapse
Affiliation(s)
- Xinyi Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
- Queen Mary Academy, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
8
|
Li Y, Yuan K, Deng C, Tang H, Wang J, Dai X, Zhang B, Sun Z, Ren G, Zhang H, Wang G. Biliary stents for active materials and surface modification: Recent advances and future perspectives. Bioact Mater 2024; 42:587-612. [PMID: 39314863 PMCID: PMC11417150 DOI: 10.1016/j.bioactmat.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Demand for biliary stents has expanded with the increasing incidence of biliary disease. The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures. However, these stents are nondegradable and prone to restenosis. Surgical removal or replacement of the nondegradable stents is necessary in cases of disease resolution or restenosis. To overcome these shortcomings, improvements were made to the materials and surfaces used for the stents. First, this paper reviews the advantages and limitations of nondegradable stents. Second, emphasis is placed on biodegradable polymer and biodegradable metal stents, along with functional coatings. This also encompasses tissue engineering & 3D-printed stents were highlighted. Finally, the future perspectives of biliary stents, including pro-epithelialization coatings, multifunctional coated stents, biodegradable shape memory stents, and 4D bioprinting, were discussed.
Collapse
Affiliation(s)
- Yuechuan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Hui Tang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Jinxuan Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Bing Zhang
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziru Sun
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Guiying Ren
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Santi L, Beretta S, Berti M, Savoia EO, Passerini L, Mancino M, De Ponti G, Alberti G, Quaranta P, Basso-Ricci L, Avanzini MA, Merelli I, Scala S, Ferrari S, Aiuti A, Bernardo ME, Crippa S. Transcriptomic analysis of BM-MSCs identified EGR1 as a transcription factor to fully exploit their therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119818. [PMID: 39168411 PMCID: PMC11480207 DOI: 10.1016/j.bbamcr.2024.119818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Bone marrow-mesenchymal stromal cells (BM-MSCs) are key components of the BM niche, where they regulate hematopoietic stem progenitor cell (HSPC) homeostasis by direct contact and secreting soluble factors. BM-MSCs also protect the BM niche from excessive inflammation by releasing anti-inflammatory factors and modulating immune cell activity. Thanks to these properties, BM-MSCs were successfully employed in pre-clinical HSPC transplantation models, increasing the rate of HSPC engraftment, accelerating the hematological reconstitution, and reducing the risk of graft failure. However, their clinical use requires extensive in vitro expansion, potentially altering their biological and functional properties. In this work, we analyzed the transcriptomic profile of human BM-MSCs sorted as CD45-, CD105+, CD73+, and CD90+ cells from the BM aspirates of heathy-donors and corresponding ex-vivo expanded BM-MSCs. We found the expression of immune and inflammatory genes downregulated upon cell culture and selected the transcription factor EGR1 to restore the MSC properties. We overexpressed EGR1 in BM-MSCs and performed in vitro tests to study the functional properties of EGR1-overexpressing BM-MSCs. We concluded that EGR1 increased the MSC response to inflammatory stimuli and immune cell control and potentiated the MSC hematopoietic supportive activity in co-culture assay, suggesting that the EGR1-based reprogramming may improve the BM-MSC clinical use.
Collapse
Affiliation(s)
- Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Evelyn Oliva Savoia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marilena Mancino
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaia Alberti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy.
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
10
|
Aliniay-Sharafshadehi S, Yousefi MH, Ghodratie M, Kashfi M, Afkhami H, Ghoreyshiamiri SM. Exploring the therapeutic potential of different sources of mesenchymal stem cells: a novel approach to combat burn wound infections. Front Microbiol 2024; 15:1495011. [PMID: 39678916 PMCID: PMC11638218 DOI: 10.3389/fmicb.2024.1495011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
The most prevalent and harmful injuries are burns, which are still a major global health problem. Burn injuries can cause issues because they boost the inflammatory and metabolic response, which can cause organ malfunction and systemic failure. On the other hand, a burn wound infection creates an environment that is conducive to the growth of bacteria and might put the patient at risk for sepsis. In addition, scarring is unavoidable, and this results in patients having functional and cosmetic issues. Wound healing is an amazing phenomenon with a complex mechanism that deals with different types of cells and biomolecules. Cell therapy using stem cells is one of the most challenging treatment methods that accelerates the healing of burn wounds. Since 2000, the use of mesenchymal stem cells (MSCs) in regenerative medicine and wound healing has increased. They can be extracted from various tissues, such as bone marrow, fat, the umbilical cord, and the amniotic membrane. According to studies, stem cell therapy for burn wounds increases angiogenesis, has anti-inflammatory properties, slows the progression of fibrosis, and has an excellent ability to differentiate and regenerate damaged tissue. Figuring out the main preclinical and clinical problems that stop people from using MSCs and then suggesting the right ways to improve therapy could help show the benefits of MSCs and move stem cell-based therapy forward. This review's objective was to assess mesenchymal stem cell therapy's contribution to the promotion of burn wound healing.
Collapse
Affiliation(s)
- Shahrzad Aliniay-Sharafshadehi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Ghodratie
- Department of Medical Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mojtaba Kashfi
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
11
|
Ding Y, Lin F, Liang XT. Resilience and challenges: Evaluating the impact of stress conditions on mesenchymal stem cells across different passages. World J Stem Cells 2024; 16:974-977. [DOI: 10.4252/wjsc.v16.i11.974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
This article discussed a study by Almahasneh et al, which investigated how high glucose and severe hypoxia affected mesenchymal stem cells (MSCs) at different passages. This research provides insights into the resilience of higher-passage MSCs under stress conditions, challenging the common use of lower passage MSCs in clinical settings. While this study offers valuable perspectives on the adaptability of MSCs, it relies mainly on in vitro results from a single cell line, limiting broader applicability. It highlights the need for more comprehensive in vivo studies to validate these findings and better understand MSC behavior in clinical scenarios.
Collapse
Affiliation(s)
- Yue Ding
- Department of Organ Transplantation, Naval Medical University, Shanghai 200000, China
| | - Fang Lin
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Shanghai 200000, China
| | - Xiao-Ting Liang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200000, China
| |
Collapse
|
12
|
Oeller M, Schally T, Zimmermann G, Lauth W, Schallmoser K, Rohde E, Laner-Plamberger S. Heparin Differentially Regulates the Expression of Specific miRNAs in Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:12589. [PMID: 39684301 DOI: 10.3390/ijms252312589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
In regenerative medicine, stromal cells are supposed to play an important role by modulating immune responses and differentiating into various tissue types. The aim of this study was to investigate the influence of heparin, frequently used as an anticoagulant in human platelet lysate (HPL)-supplemented cell cultures, on the expression of non-coding RNA species, particularly microRNAs (miRNA), which are pivotal regulators of gene expression. Through genomic analysis and quantitative RT-PCR, we assessed the differential impact of heparin on miRNA expression in various stromal cell types, derived from human bone marrow, umbilical cord and white adipose tissue. Our results demonstrate that heparin significantly alters miRNA expression, with distinct up- and downregulation patterns depending on the original tissue source of human stromal cells. Furthermore, our analyses indicate that these heparin-induced alterations in miRNA expression profiles influence critical cellular processes, including proliferation, apoptosis and differentiation. In conclusion, our study highlights that heparin not only fulfills its primary role as an efficient anticoagulant but can also modulate important regulatory pathways in stromal cells by influencing miRNA expression. This may alter cellular properties and thus influence stromal cell-based therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Michaela Oeller
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| | - Tanja Schally
- GMP Laboratory, PMU Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
- Research Program Biomedical Data Science, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
- Department of Artificial Intelligence and Human Interfaces, Faculty of Digital and Analytical Sciences, Paris Lodron University Salzburg, Jakob Haringer Straße 2, 5020 Salzburg, Austria
| | - Wanda Lauth
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
- Research Program Biomedical Data Science, PMU Salzburg, Strubergasse 16, 5020 Salzburg, Austria
| | - Katharina Schallmoser
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| | - Eva Rohde
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
- GMP Laboratory, PMU Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Sandra Laner-Plamberger
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU) Salzburg, Muellner Hauptstraße 48, 5020 Salzburg, Austria
| |
Collapse
|
13
|
Hassanpour Khodaei S, Sabetkam S, Kalarestaghi H, Dizaji Asl K, Mazloumi Z, Bahramloo M, Norouzi N, Naderali E, Rafat A. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: attractive therapeutic approaches for female reproductive dysfunction. Mol Biol Rep 2024; 52:10. [PMID: 39576370 DOI: 10.1007/s11033-024-10106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Infertility is a reproductive health problem in the male or female reproductive system. Traditional assisted reproductive technology (ART) has been unable to solve various cases of infertility for years. Clinical researchers have sought to treat infertility using new methods that are more effective and noninvasive than the old methods. Recently, Mesenchymal stem cells (MSCs) and MSCs-derived Exosomes (MSC-Exos) via paracrine activity play an important role in treating various causes of infertility and improving pregnancy outcomes. In this review, we focus on the roles of MSCs and MSC-Exos cell therapy in female infertility in the different types of female reproductive disorders.
Collapse
Affiliation(s)
- Sepideh Hassanpour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Famagusta, Turkey
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Kyrenia, Northern Cyprus
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Zeinab Mazloumi
- Department of Medical Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadmahdi Bahramloo
- Department of Medical Sciences, Student Research Committee, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nahid Norouzi
- Nursing Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Naderali
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Xu L, Ren W, Long Y, Yang B, Chen L, Chen W, Chen S, Cao Y, Wu D, Qu J, Li H, Yu Y, Zhang A, Wang S, Wang H, Chen T, Fan G, Li Q, Chen Z. Antisenescence Expansion of Mesenchymal Stem Cells Using Piezoelectric β-Poly(vinylidene fluoride) Film-Based Culture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63207-63224. [PMID: 39503875 DOI: 10.1021/acsami.4c12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Regenerative therapies based on mesenchymal stem cells (MSCs) show promise in treating a wide range of disorders. However, the replicative senescence of MSCs during in vitro expansion poses a challenge to obtaining a substantial quantity of high-quality MSCs. In this investigation, a piezoelectric β-poly(vinylidene fluoride) film-based culture plate (β-CP) was developed with an antisenescence effect on cultured human umbilical cord-derived MSCs. Compared to traditional tissue culture plates (TCPs) and α-poly(vinylidene fluoride) film-based culture plates, the senescence markers of p21, p53, interleukin-6 and insulin-like growth factor-binding protein-7, stemness markers of OCT4 and NANOG, and telomere length of MSCs cultured on β-CPs were significantly improved. Additionally, MSCs at passage 18 cultured on β-CPs showed significantly better multipotency and pro-angiogenic capacities in vitro, and higher wound healing abilities in a mouse model. Mechanistically, β-CPs rejuvenated senescent MSCs by improving mitochondrial functions and mitigating oxidative and glycoxidative stresses. Overall, this study presents β-CPs as a promising approach for efficient and straightforward antisenescence expansion of MSCs while preserving their stemness, thereby holding great potential for large-scale production of MSCs for clinical application in cell therapies.
Collapse
Affiliation(s)
- Liuyue Xu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenxiang Ren
- Center for Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yaoying Long
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bianlei Yang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Chen
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Wenlan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyi Chen
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiao Qu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - He Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yali Yu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anyuan Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shan Wang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ting Chen
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning 437100, China
| | - Guifen Fan
- School of Optical and Electronic Information, Key Lab of Functional Materials for Electronic Information(B), MOE, Huazhong University of Science and Technology, Wuhan 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou 325035, China
| | - Qiubai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhichao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Liu L, Hao X, Zhang J, Li S, Han S, Qian P, Zhang Y, Yu H, Kang Y, Yin Y, Zhang W, Chen J, Yu Y, Jiang H, Chai J, Yin H, Chai W. The wound healing of deep partial-thickness burn in Bama miniature pigs is accelerated by a higher dose of hUCMSCs. Stem Cell Res Ther 2024; 15:437. [PMID: 39563365 PMCID: PMC11575178 DOI: 10.1186/s13287-024-04063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Deep partial-thickness burns have a significant impact on both the physical and mental health of patients. Our previous study demonstrated human Umbilical Cord Mesenchymal stem cells (hUCMSCs) could enhance the healing of severe burns in small animal burn models, such as rats. Furthermore, our team has developed a deep partial-thickness burn model in Bama miniature pigs, which can be utilized for assessing drug efficacy in preclinical trials for wound healing. Therefore, this study further determine the optimal dosage of hUCMSCs in future clinical practice by comparing the efficacy of low-to-high doses of hUCMSCs on deep partial-thickness burn wounds in Bama miniature pigs. MATERIALS AND METHODS The male Bama miniature pigs (N = 8, weight: 23-28 kg and length: 71-75 cm) were used to establish deep partial-thickness burn models, which used a continuous pressure of 1 kg and contact times of 35 s by the invented electronic burn instrument at 100℃ to prepare 10 round burn wounds with diameter of 5 cm according to our previous report. And then, 0 × 10^7, 1 × 10^7, 2 × 10^7, 5 × 10^7 and 1 × 10^8 doses of hUCMSCs were respectively injected into burn wounds of their corresponding groups. After treatment for 7, 14 and 21 days, the burned wound tissues were obtained for histological evaluation, including HE staining for histopathological changes, immunohistochemistry for neutrophil (MPO+) infiltration and microvessel (CD31+) quantity, as well as Masson staining for collagen deposition. The levels of inflammatory factors TNF-α, IL-1β, IL-10 and angiogenesis factors angiopoietin-2 (Ang-2), vascular endothelial growth factor (VEGF), as well as collagen type-I/type-III of the wound tissues were quantified by ELISA. RESULTS All of doses hUCMSCs can significantly increase wound healing rate and shorten healing time of the deep partial-thickness burn pigs in a dose-dependent manner. Furthermore, all of doses hUCMSCs can significantly promote epithelialization and decreased inflammatory reaction of wound, including infiltration of inflammatory cells and levels inflammatory factors. Meanwhile, the amounts of microvessel were increased in all of doses hUCMSCs group than those in the burn group. Furthermore, the collagen structure was disordered and partially necrotized, and ratios of collagen type-I and type-III were significantly decreased in burn group (4:1 in normal skin tissue), and those of all hUCMSCs groups were significantly improved in a dose-dependent manner. In a word, 1 × 10^8 dose of hUCMSCs could regenerate the deep partial-thickness burn wounds most efficaciously compared to other dosages groups and the burn group. CONCLUSION This regenerative cell therapy study using hUCMSCs demonstrates the best efficacy toward a high dose, that is dose of 1 × 10^8 of hUCMSCs was used as a reference therapeutic dose for treating 20 cm2 deep partial-thickness burns wound in future clinical practice.
Collapse
Affiliation(s)
- Lingying Liu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China.
- Hebei North University, Zhangjiakou, Hebei, 075000, China.
| | - Xingxia Hao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Jing Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Shaozeng Li
- Department of Clinical Laboratory, The Fourth Medical Center Affiliated to PLA General Hospital, Beijing, 100037, China
| | - Shaofang Han
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Peipei Qian
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yong Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China.
| | - Huaqing Yu
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Yuxin Kang
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Yue Yin
- Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010110, China
| | - Weiouwen Zhang
- Department of Nutrition, The Fourth Medical Center Affiliated to PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100037, China
| | - Jianmei Chen
- Department of Health Medicine, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100037, China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, The Sixth Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Hua Jiang
- Department of Endocrinology, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiake Chai
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Huinan Yin
- Senior Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| | - Wei Chai
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100037, China
| |
Collapse
|
16
|
Hionides-Gutierrez A, Goikoetxea-Usandizaga N, Sanz-García C, Martínez-Chantar ML, Cubero FJ. Novel Emerging Mechanisms in Acetaminophen (APAP) Hepatotoxicity. Liver Int 2024. [PMID: 39548712 DOI: 10.1111/liv.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Drug-induced liver injury represents a critical public health issue, marked by unpredictable and potentially severe adverse reactions to medications, herbal products or dietary supplements. AIMS Acetaminophen is notably a leading cause of hepatotoxicity, impacting over one million individuals worldwide. MATERIALS & METHODS Extensive research has elucidated the intricate mechanisms driving APAP-induced liver injury, emphasising the significant roles of endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction and cell death. RESULTS These insights pave the way for innovative therapeutic strategies, including the use of magnesium, bile acids, microbiota modulation and mesenchymal stem cells. DISCUSSION & CONCLUSION This review explores into these pathological mechanisms, proposing viable therapeutic interventions for patients suffering from APAP-induced liver injury.
Collapse
Affiliation(s)
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Carlos Sanz-García
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - María L Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centre for Biomedical Research, Network on Liver and Digestive Diseases (CIBEREHD), Madrid, Spain
- Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
17
|
Yang Z, Li P, Fan H, Pang L, Xia G, Duan C, Zheng L. Risperidone accelerates bone loss in mice models of schizophrenia by inhibiting osteoblast autophagy. Heliyon 2024; 10:e38559. [PMID: 39524718 PMCID: PMC11550064 DOI: 10.1016/j.heliyon.2024.e38559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Risperidone (RIS) is the first-line drug in the clinical treatment of schizophrenia, and long-term use may lead to bone loss and even osteoporosis. This study investigated whether the mechanism of RIS-induced bone loss is related to autophagy. Methods The schizophrenia mice were established with the administration of MK-801. Then, RIS were injected, or autophagy inducer rapamycin (RAPA) co-injected for 8 weeks. Cognitive performance was determined by the novel object recognition and Open field tests. Bone loss of schizophrenia mice were assessed using microCT, H&E staining, ALP staining, ARS staining and WB, respectively. Autophagy of schizophrenia mice were detected by immunofluorescence, transmission electron microscopy (TEM) and WB, respectively. In addition, osteogenic differentiation of MC3T3-E1 and BMSCs cells were assessed using H&E staining, ALP staining, ARS staining and WB, respectively. Results In the present study, we found that RIS treatment can promote bone loss in schizophrenia mice and inhibit osteogenic differentiation of MC3T3-E1 and BMSCs cells. Interesting, the number of autophagosome and autophagy-related protein expression were decreased after RIS treatment. However, the bone loss and inhibition of osteogenic differentiation induced by RIS in schizophrenia mice were reversed by autophagy inducer RAPA. Conclusion RIS significantly increased bone loss and inhibited osteogenic differentiation in schizophrenia mice; the underlying mechanism entails suppressing osteoblast autophagy.
Collapse
Affiliation(s)
| | - Peifan Li
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | - Lan Pang
- Guizhou Medical University, Guiyang, China
| | - Guangyuan Xia
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Changrong Duan
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei Zheng
- Guizhou Medical University, Guiyang, China
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
18
|
Rahnama M, Heidari M, Poursalehi Z, Golchin A. Global Trends of Exosomes Application in Clinical Trials: A Scoping Review. Stem Cell Rev Rep 2024; 20:2165-2193. [PMID: 39340738 DOI: 10.1007/s12015-024-10791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Exosomes, nano-sized extracellular vesicles, have emerged as a promising tool for the diagnosis and treatment of various intractable diseases, including chronic wounds and cancers. As our understanding of exosomes continues to grow, their potential as a powerful therapeutic modality in medicine is also expanding. This systematic review aims to examine the progress of exosome-based clinical trials and provide a comprehensive overview of the therapeutic perspectives of exosomes. METHODS This systematic review strictly follows PRISMA guidelines and has been registered in PROSPERO, the International Prospective Register of Systematic Reviews. It encompasses articles from January 2000 to January 2023, sourced from bibliographic databases, with targeted search terms targeting exosome applications in clinical trials. During the screening process, strict inclusion and exclusion criteria were applied, including a focus on clinical trials utilizing different cell-derived exosomes for therapeutic purposes. RESULTS Among the 522 publications initially identified, only 10 studies met the stringent eligibility criteria after meticulous screening. The selection process involved systematically excluding duplicates and irrelevant articles to provide a transparent overview. CONCLUSION According to our systematic review, exosomes have promising applications in a variety of medical fields, including cell-free therapies and drug delivery systems for treating a variety of diseases, especially cancers and chronic wounds. To ensure safety, potency, and broader clinical applications, further optimization of exosome extraction, loading, targeting, and administration is necessary. While cell-based therapeutics are increasingly utilizing exosomes, this field is still in its infancy, and ongoing clinical trials will provide valuable insights into the clinical utility of exosomes.
Collapse
Affiliation(s)
- Maryam Rahnama
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Heidari
- Department of Biostatistics and Epidemiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Poursalehi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Golchin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
19
|
Clua‐Ferré L, Suau R, Vañó‐Segarra I, Ginés I, Serena C, Manyé J. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: A focus on inflammatory bowel disease. Clin Transl Med 2024; 14:e70075. [PMID: 39488745 PMCID: PMC11531661 DOI: 10.1002/ctm2.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as key regulators of intercellular communication, orchestrating essential biological processes by delivering bioactive cargoes to target cells. Available evidence suggests that MSC-EVs can mimic the functions of their parental cells, exhibiting immunomodulatory, pro-regenerative, anti-apoptotic, and antifibrotic properties. Consequently, MSC-EVs represent a cell-free therapeutic option for patients with inflammatory bowel disease (IBD), overcoming the limitations associated with cell replacement therapy, including their non-immunogenic nature, lower risk of tumourigenicity, cargo specificity and ease of manipulation and storage. MAIN TOPICS COVERED This review aims to provide a comprehensive examination of the therapeutic efficacy of MSC-EVs in IBD, with a focus on their mechanisms of action and potential impact on treatment outcomes. We examine the advantages of MSC-EVs over traditional therapies, discuss methods for their isolation and characterisation, and present mechanistic insights into their therapeutic effects through transcriptomic, proteomic and lipidomic analyses of MSC-EV cargoes. We also discuss available preclinical studies demonstrating that MSC-EVs reduce inflammation, promote tissue repair and restore intestinal homeostasis in IBD models, and compare these findings with those of clinical trials. CONCLUSIONS Finally, we highlight the potential of MSC-EVs as a novel therapy for IBD and identify challenges and opportunities associated with their translation into clinical practice. HIGHLIGHTS The source of mesenchymal stem cells (MSCs) strongly influences the composition and function of MSC-derived extracellular vesicles (EVs), affecting their therapeutic potential. Adipose-derived MSC-EVs, known for their immunoregulatory properties and ease of isolation, show promise as a treatment for inflammatory bowel disease (IBD). MicroRNAs are consistently present in MSC-EVs across cell types and are involved in pathways that are dysregulated in IBD, making them potential therapeutic agents. For example, miR-let-7a is associated with inhibition of apoptosis, miR-100 supports cell survival, miR-125b helps suppress pro-inflammatory cytokines and miR-20 promotes anti-inflammatory M2 macrophage polarisation. Preclinical studies in IBD models have shown that MSC-EVs reduce intestinal inflammation by suppressing pro-inflammatory mediators (e.g., TNF-α, IL-1β, IL-6) and increasing anti-inflammatory factors (e.g., IL-4, IL-10). They also promote mucosal healing and strengthen the integrity of the gut barrier, suggesting their potential to address IBD pathology.
Collapse
Affiliation(s)
- Laura Clua‐Ferré
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Roger Suau
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
| | - Irene Vañó‐Segarra
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Iris Ginés
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Carolina Serena
- Hospital Universitari Joan XXIIIInstitut d'investigació sanitària Pere VirgiliTarragonaSpain
| | - Josep Manyé
- Germans Trias i Pujol Research Institute IGTPInflammatory Bowel DiseasesBadalonaSpain
- Centro de Investigación Biomédica en RedMadridSpain
| |
Collapse
|
20
|
Levitte S, Nilkant R, Jensen AR, Zhang KY. Unlocking the promise of mesenchymal stem cells and extracorporeal photopheresis to address rejection and graft failure in intestinal transplant recipients. Hum Immunol 2024; 85:111160. [PMID: 39471538 DOI: 10.1016/j.humimm.2024.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/13/2024] [Indexed: 11/01/2024]
Abstract
INTRODUCTION In patients with irreversible intestinal failure, intestinal transplant has become a standard treatment option. Graft failure secondary to acute or chronic cellular rejection continues to be a significant challenge following transplant. Even with optimal immune suppression, some patients continue to struggle with refractory rejection. Both extracorporeal photopheresis (ECP) and extracellular vesicles derived from mesenchymal stem cells (EVs) have been used to treat refractory rejection following intestinal transplantation, although their use remains limited and consistent treatment protocols are lacking. METHODS Intestinal transplant recipients who received ECP only or ECP and EVs as rescue therapy for acute cellular rejection or chronic inflammation between 2016 and 2022 were included in this single-center retrospective analysis. Baseline demographics, pre- and post-treatment histopathology, endoscopic and biochemical findings, and long-term transplant outcomes were analyzed. RESULTS Three patients (two pediatric and one adult) with acute steroid- and biologic-refractory rejection were treated with ECP and/or EVs, as was one patient (pediatric) with chronic graft rejection and inflammation. Patients received twice weekly ECP for 4 weeks and once weekly thereafter. EVs were administered in three doses each separated by 72 h. Immunosuppression at the time of treatment initiation included high-dose tacrolimus and sirolimus. Histologic resolution of rejection was achieved in all patients over 12-16 weeks. Steroids were weaned to low-dose or withdrawn in every patient within 4 weeks of ECP/EV treatment. C-reactive protein decreased from an average of 14.75 to 1.6 mg/dL post-treatment and fecal calprotectin decreased from average 800 mg/g to 31 mg/g. Donor-induced cytotoxic T cell populations were quantified for two of the patients with acute rejection, and in both cases decreased dramatically following treatment. There were no complications associated with either treatment. CONCLUSION Both ECP and EVs present novel opportunities to address graft rejection and inflammation in bowel transplant recipients. More work will be needed to define the optimal therapeutic parameters for each treatment modality.
Collapse
Affiliation(s)
- Steven Levitte
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA
| | - Riya Nilkant
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Amanda R Jensen
- Department of Transplantation Surgery, Stanford University, Palo Alto, CA, USA
| | - Ke-You Zhang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
21
|
Zeinhom A, Fadallah SA, Mahmoud M. Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives. Stem Cell Res Ther 2024; 15:384. [PMID: 39468609 PMCID: PMC11520428 DOI: 10.1186/s13287-024-03974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.
Collapse
Affiliation(s)
- Alaa Zeinhom
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Sahar A Fadallah
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Marwa Mahmoud
- Human Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, 12622, Egypt.
- Stem Cell Research Unit, Medical Research Centre of Excellence, NRC, Cairo, Egypt.
| |
Collapse
|
22
|
Harrell CR, Djonov V, Volarevic A, Arsenijevic A, Volarevic V. Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Dependent Attenuation of Tear Hyperosmolarity and Immune Cell-Driven Inflammation in the Eyes of Patients with Dry Eye Disease. Diseases 2024; 12:269. [PMID: 39589943 PMCID: PMC11592843 DOI: 10.3390/diseases12110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Dry eye disease (DED) is a chronic condition characterized by a decrease in tear production or an increase in tear evaporation, leading to inflammation and damage of the ocular surface. Dysfunction of ion channels, tear hyperosmolarity and immune cell-driven inflammation create a vicious circle responsible for the pathological changes in the eyes of DED patients. Mesenchymal stem cells (MSCs) are adult, rapidly proliferating stem cells that produce a large number of immunoregulatory, angiomodulatory, and growth factors that efficiently reduce tear hyperosmolarity-induced pathological changes, inhibit harmful immune response, and provide trophic support to the injured corneal and conjuctival epithelial cells, goblet cells and acinar cells in lacrimal glands of DED patients. METHODS An extensive research in the literature was implemented in order to elucidate the role of MSCs in the attenuation of tear hyperosmolarity and eye inflammation in patients suffering from DED. RESULTS Findings obtained in preclinical and pilot clinical studies demonstrated that MSCs reduced tear hyperomsolaity-induced pathological changes and suppressed immune cell-driven eye inflammation. Additionally, MSC-based therapy managed to successfully address the most severe DED-related conditions and complications. CONCLUSIONS MSCs should be considered as potentially new therapeutic agents for the treatment of severe DED.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Ana Volarevic
- Department of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Aleksandar Arsenijevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|
23
|
Pampanella L, Petrocelli G, Forcellini F, Cruciani S, Ventura C, Abruzzo PM, Facchin F, Canaider S. Oxytocin, the Love Hormone, in Stem Cell Differentiation. Curr Issues Mol Biol 2024; 46:12012-12036. [PMID: 39590307 PMCID: PMC11592854 DOI: 10.3390/cimb46110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Oxytocin (OXT) is a neurohypophysial nonapeptide that exerts its effects mainly through the oxytocin receptor (OXTR). Several studies have pointed out the role of OXT in the modulation of stem cell (SC) fate and properties. SCs are undifferentiated cells characterized by a remarkable ability to self-renew and differentiate into various cell types of the body. In this review, we focused on the role of OXT in SC differentiation. Specifically, we summarize and discuss the scientific research examining the effects of OXT on mesodermal SC-derived lineages, including cardiac, myogenic, adipogenic, osteogenic, and chondrogenic differentiation. The available studies related to the effects of OXT on SC differentiation provide little insights about the molecular mechanism mediated by the OXT-OXTR pathway. Further research is needed to fully elucidate these pathways to effectively modulate SC differentiation and develop potential therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Forcellini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering, National Institute of Biostructures and Biosystems (NIBB), Via di Corticella 183, 40129 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
24
|
An D, Wang Y, Wang X. Role of hsa-miR-543-KIF5C/CALM3 pathway in neuron differentiation of embryonic mesenchymal stem cells. Int J Dev Neurosci 2024. [PMID: 39444227 DOI: 10.1002/jdn.10386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) have the ability to differentiate into nerve cells, which offers promising options for treating neurodegenerative diseases. AIM To explore the important regulatory molecules of hUC-MSCs differentiation into neurons. METHOD In this research, the neural differentiation of hUC-MSCs was induced by a low-serum DMSO/BHA/DMEM medium. The GEO database was used to retrieve the relevant datasets. The starBase and miEAA databases were used for bioinformatics analysis. RT-qPCR was used to detect the hsa-miR-543 level and the mRNA levels of NSE, NeuN, NF-M, KIF5C, and CALM3. The protein levels of KIF5C and CALM3 were checked by western blotting. RESULTS The expression levels of NSE, NeuN, NF-M, KIF5C, and CALM3 were elevated, while hsa-miR-543 was under-expressed in neuro-induced hUC-MSCs. The increase in NSE, NeuN, and NF-M mRNA levels induced by DMSO/BHA/DMEM was partially reversed by the knockdown of KIF5C and CALM3 in hUC-MSCs. Moreover, the transfection of hsa-miR-543 mimic partially countered the DMSO/BHA/DMEM-induced elevation in NSE, NeuN, NF-M, KIF5C, and CALM3 mRNA levels. CONCLUSION KIF5C and CALM3 facilitated the neuronal differentiation of hUC-MSCs, whereas hsa-miR-543 exerted an opposing effect by negatively regulating KIF5C and CALM3.
Collapse
Affiliation(s)
- Dongmei An
- Department of Obstetrics, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Yangfan Wang
- Department of Obstetrics, Qianjiang Central Hospital of Chongqing, Chongqing, China
| | - Xin Wang
- Department of Obstetrics, Qianjiang Central Hospital of Chongqing, Chongqing, China
| |
Collapse
|
25
|
Bispo ECI, Argañaraz ER, Neves FDAR, de Carvalho JL, Saldanha-Araujo F. Immunomodulatory effect of IFN-γ licensed adipose-mesenchymal stromal cells in an in vitro model of inflammation generated by SARS-CoV-2 antigens. Sci Rep 2024; 14:24235. [PMID: 39415027 PMCID: PMC11484699 DOI: 10.1038/s41598-024-75776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
In recent years, clinical studies have shown positive results of the application of Mesenchymal Stromal Cells (MSCs) in severe cases of COVID-19. However, the mechanisms of immunomodulation of IFN-γ licensed MSCs in SARS-CoV-2 infection are only partially understood. In this study, we first tested the effect of IFN-γ licensing in the MSC immunomodulatory profile. Then, we established an in vitro model of inflammation by exposing Calu-3 lung cells to SARS-CoV-2 nucleocapsid and spike (NS) antigens, and determined the toxicity of SARS-CoV-2 NS antigen and/or IFN-γ stimulation to Calu-3. The conditioned medium (iCM) generated by Calu-3 cells exposed to IFN-γ and SARS-CoV-2 NS antigens was used to stimulate T-cells, which were then co-cultured with IFN-γ-licensed MSCs. The exposure to IFN-γ and SARS-CoV-2 NS antigens compromised the viability of Calu-3 cells and induced the expression of the inflammatory mediators ICAM-1, CXCL-10, and IFN-β by these cells. Importantly, despite initially stimulating T-cell activation, IFN-γ-licensed MSCs dramatically reduced IL-6 and IL-10 levels secreted by T-cells exposed to NS antigens and iCM. Moreover, IFN-γ-licensed MSCs were able to significantly inhibit T-cell apoptosis induced by SARS-CoV-2 NS antigens. Taken together, our data show that, in addition to reducing the level of critical cytokines in COVID-19, IFN-γ-licensed MSCs protect T-cells from SARS-CoV-2 antigen-induced apoptosis. Such observations suggest that MSCs may contribute to COVID-19 management by preventing the lymphopenia and immunodeficiency observed in critical cases of the disease.
Collapse
Affiliation(s)
- Elizabete Cristina Iseke Bispo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular NeuroVirology, Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil
| | | | - Juliana Lott de Carvalho
- Interdisciplinary Laboratory of Bioscience, Faculty of Medicine, University of Brasília, Brasília, 70910-900, Brazil
| | - Felipe Saldanha-Araujo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasília, 70910-900, Brazil.
| |
Collapse
|
26
|
Bugueno IM, Alastra G, Balic A, Stadlinger B, Mitsiadis TA. Limited Adipogenic Differentiation Potential of Human Dental Pulp Stem Cells Compared to Human Bone Marrow Stem Cells. Int J Mol Sci 2024; 25:11105. [PMID: 39456888 PMCID: PMC11508566 DOI: 10.3390/ijms252011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Bone marrow and teeth contain mesenchymal stem cells (MSCs) that could be used for cell-based regenerative therapies. MSCs from these two tissues represent heterogeneous cell populations with varying degrees of lineage commitment. Although human bone marrow stem cells (hBMSCs) and human dental pulp stem cells (hDPSCs) have been extensively studied, it is not yet fully defined if their adipogenic potential differs. Therefore, in this study, we compared the in vitro adipogenic differentiation potential of hDPSCs and hBMSCs. Both cell populations were cultured in adipogenic differentiation media, followed by specific lipid droplet staining to visualise cytodifferentiation. The in vitro differentiation assays were complemented with the expression of specific genes for adipogenesis and osteogenesis-dentinogenesis, as well as for genes involved in the Wnt and Notch signalling pathways. Our findings showed that hBMSCs formed adipocytes containing numerous and large lipid vesicles. In contrast to hBMSCs, hDPSCs did not acquire the typical adipocyte morphology and formed fewer lipid droplets of small size. Regarding the gene expression, cultured hBMSCs upregulated the expression of adipogenic-specific genes (e.g., PPARγ2, LPL, ADIPONECTIN). Furthermore, in these cells most Wnt pathway genes were downregulated, while the expression of NOTCH pathway genes (e.g., NOTCH1, NOTCH3, JAGGED1, HES5, HEY2) was upregulated. hDPSCs retained their osteogenic/dentinogenic molecular profile (e.g., RUNX2, ALP, COLIA1) and upregulated the WNT-specific genes but not the NOTCH pathway genes. Taken together, our in vitro findings demonstrate that hDPSCs are not entirely committed to the adipogenic fate, in contrast to the hBMSCs, which are more effective to fully differentiate into adipocytes.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| | - Giuseppe Alastra
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Anamaria Balic
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, CH-8032 Zurich, Switzerland;
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, CH-8032 Zurich, Switzerland; (I.M.B.); (G.A.); (A.B.)
| |
Collapse
|
27
|
Pottash AE, Levy D, Powsner EH, Pirolli NH, Kuo L, Solomon TJ, Nowak R, Wang J, Kronstadt SM, Jay SM. Enhanced Extracellular Vesicle Cargo Loading via microRNA Biogenesis Pathway Modulation. ACS Biomater Sci Eng 2024; 10:6286-6298. [PMID: 39305230 DOI: 10.1021/acsbiomaterials.4c00821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are physiological vectors for the intercellular transport of a variety of molecules. Among these, small RNAs, and especially microRNAs (miRNAs), have been identified as prevalent components, and there has thus been a robust investigation of EVs for therapeutic miRNAs delivery. However, intrinsic levels of EV-associated miRNAs are generally too low to enable efficient and effective therapeutic outcomes. We hypothesized that miRNA localization to EVs could be improved by limiting competing interactions that occur throughout the miRNA biogenesis process. Using miR-146a-5p as a model, modulation of transcription, nuclear export, and enzymatic cleavage steps of miRNA biogenesis were tested for impact on EV miRNA loading. Working in HEK293T cells, various alterations in the EV biogenesis pathway were shown to impact miRNA localization to EVs. The system was then applied in induced pluripotent stem cells (iPSCs), a more promising substrate for therapeutic EV production, and EVs were separated and assessed for anti-inflammatory efficacy in vitro and in a murine colitis model, where the preservation of function was validated. Overall, the results highlight necessary considerations when designing a cell culture system for the devoted production of miRNA-loaded EVs.
Collapse
Affiliation(s)
- Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Emily H Powsner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Nicholas H Pirolli
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Leo Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Talia J Solomon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Raith Nowak
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jacob Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
28
|
Park K, Gao WW, Zheng J, Oh KT, Kim IY, You S. Hydrogel-Mediated Local Delivery of Induced Nephron Progenitor Cell-Sourced Molecules as a Cell-Free Approach for Acute Kidney Injury. Int J Mol Sci 2024; 25:10615. [PMID: 39408943 PMCID: PMC11477367 DOI: 10.3390/ijms251910615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Acute kidney injury (AKI) constitutes a severe condition characterized by a sudden decrease in kidney function. Utilizing lineage-restricted stem/progenitor cells, directly reprogrammed from somatic cells, is a promising therapeutic option in personalized medicine for serious and incurable diseases such as AKI. The present study describes the therapeutic potential of induced nephron progenitor cell-sourced molecules (iNPC-SMs) as a cell-free strategy against cisplatin (CP)-induced nephrotoxicity, employing hyaluronic acid (HA) hydrogel-mediated local delivery to minimize systemic leakage and degradation. iNPC-SMs exhibited anti-apoptotic effects on HK-2 cells by inhibiting CP-induced ROS generation. Additionally, the localized biodistribution facilitated by hydrogel-mediated iNPC-SM delivery contributed to enhanced renal function, anti-inflammatory response, and renal regeneration in AKI mice. This study could serve as a 'proof of concept' for injectable hydrogel-mediated iNPC-SM delivery in AKI and as a model for further exploration of the development of cell-free regenerative medicine strategies.
Collapse
Affiliation(s)
- Kyoungmin Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Wei-Wei Gao
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Jie Zheng
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - Kyung Taek Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
| | - In-Yong Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (K.P.); (W.-W.G.); (J.Z.); (K.T.O.)
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
29
|
Nakako S, Koh H, Sogabe N, Kuno M, Makuuchi Y, Takakuwa T, Okamura H, Nishimoto M, Nakashima Y, Hino M, Nakamae H. Successful treatment with mesenchymal stem cells for steroid-refractory late-onset idiopathic pneumonia syndrome following allogeneic hematopoietic cell transplantation. Transpl Immunol 2024; 86:102107. [PMID: 39142540 DOI: 10.1016/j.trim.2024.102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The reportedly poor outcome of late-onset idiopathic pneumonia syndrome (IPS) necessitates new approaches to its treatment. A 55-year-old man who had undergone allogeneic hematopoietic cell transplantation (allo-HCT) for myelodysplastic syndrome 1 year ago developed dyspnea with acute skin graft-versus-host disease (GVHD) flare-up while tapering immunosuppressive agents. He presented with acute respiratory distress syndrome with ground-glass opacities in the right upper and left lower lobes. All infectious tests, including multiplex polymerase chain reaction of nasal wash, were negative, and broad-spectrum antibiotic therapy was refractory. The patient was diagnosed with late-onset IPS and was refractory to methylprednisolone pulse therapy. He then showed a favorable response to mesenchymal stem cell (MSC) infusion. After eight infusions of MSCs, he had no IPS recurrence for over one year. Recently, preclinical studies have reported the potential therapeutic utility of MSC infusion for treating IPS, and our case supports its potential for treating late-onset IPS.
Collapse
Affiliation(s)
- Soichiro Nakako
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Hideo Koh
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Department of Preventive Medicine and Environmental Health, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Nobuhiro Sogabe
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masatomo Kuno
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yosuke Makuuchi
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Teruhito Takakuwa
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Okamura
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mitsutaka Nishimoto
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Nakashima
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
30
|
Chang HH, Liou YS, Sun DS. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Tzu Chi Med J 2024; 36:349-359. [PMID: 39421490 PMCID: PMC11483098 DOI: 10.4103/tcmj.tcmj_100_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair and regeneration. This review explores their intricate interplay, elucidating their collaborative role in maintaining tissue homeostasis and responding to injury or disease. While examining the fundamentals of stem cells, we detail the mechanisms underlying inflammation, including immune cell recruitment and inflammatory mediator release, highlighting their self-renewal and differentiation capabilities. Central to our exploration is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, growth factors, and autophagy, an intracellular catabolic mechanism involved in this process, are discussed alongside their clinical relevance. Furthermore, mesenchymal stem cell homing in response to inflammation contributes to tissue repair processes. In addition, we discuss stem cell resilience in the face of inflammatory challenges. Moreover, we examine the reciprocal influence of stem cells on the inflammatory milieu, shaping immune responses and tissue repair. We underscore the potential of targeting inflammation-induced stem cell mobilization for regenerative therapies through extensive literature analysis and clinical insights. By unraveling the complex interplay between inflammation and stem cells, this review advances our understanding of tissue repair mechanisms and offers promising avenues for clinical translation in regenerative medicine.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
31
|
Galvan S, Teixeira AP, Fussenegger M. Enhancing cell-based therapies with synthetic gene circuits responsive to molecular stimuli. Biotechnol Bioeng 2024; 121:2987-3000. [PMID: 38867466 DOI: 10.1002/bit.28770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Synthetic biology aims to contribute to the development of next-generation patient-specific cell-based therapies for chronic diseases especially through the construction of sophisticated synthetic gene switches to enhance the safety and spatiotemporal controllability of engineered cells. Indeed, switches that sense and process specific cues, which may be either externally administered triggers or endogenous disease-associated molecules, have emerged as powerful tools for programming and fine-tuning therapeutic outputs. Living engineered cells, often referred to as designer cells, incorporating such switches are delivered to patients either as encapsulated cell implants or by infusion, as in the case of the clinically approved CAR-T cell therapies. Here, we review recent developments in synthetic gene switches responsive to molecular stimuli, spanning regulatory mechanisms acting at the transcriptional, translational, and posttranslational levels. We also discuss current challenges facing clinical translation of cell-based therapies employing these devices.
Collapse
Affiliation(s)
- Silvia Galvan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Shamsul Kamal AA, Fakiruddin KS, Bobbo KA, Ling KH, Vidyadaran S, Abdullah S. Engineered Mesenchymal Stem Cells as Treatment for Cancers: Opportunities, Clinical Applications and Challenges. Malays J Med Sci 2024; 31:56-82. [PMID: 39416732 PMCID: PMC11477465 DOI: 10.21315/mjms2024.31.5.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 10/19/2024] Open
Abstract
The insufficient and unspecific target of classical chemotherapies often leads to therapy resistance and cancer recurrence. Over the past decades, discoveries about mesenchymal stem cell (MSC) biology have provided new potential approaches to improve cancer therapy. Researchers have utilised the multipotent, regenerative and immunosuppressive qualities of MSCs and tropisms towards inflammatory, hypoxic and malignant sites in various therapeutic applications. Although MSC-based therapies have generally been demonstrated safe, their effectiveness remains limited when these cells are used alone. However, through genetic engineering, researchers have proven that MSCs can be modified to have specialised delivery roles to increase their therapeutic efficacy in cancer treatment. They can be made to overexpress therapeutic proteins through viral or non-viral genetic modification, which enhances their innate properties. Nevertheless, these engineering strategies must be optimised to increase therapeutic efficacy and targeting effectiveness while minimising any loss of MSC function. This review underscores the cutting-edge methods for engineering MSCs, discusses their promise and the difficulties in translating them into clinical settings, and offers some prospective suggestions for the future on achieving their full therapeutic potential.
Collapse
Affiliation(s)
- Aishah Amirah Shamsul Kamal
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kamal Shaik Fakiruddin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Selangor, Malaysia
| | - Khadijat Abubakar Bobbo
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - King Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| |
Collapse
|
33
|
Das P, Pal D, Roy S, Chaudhuri S, Kesh SS, Basak P, Nandi SK. Unveiling advanced strategies for therapeutic stem cell interventions in severe burn injuries: a comprehensive review. Int J Surg 2024; 110:6382-6401. [PMID: 38869979 PMCID: PMC11487052 DOI: 10.1097/js9.0000000000001812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
This comprehensive review explores the complex terrain of stem cell therapies as a potential therapeutic frontier in the healing of complicated burn wounds. Serious tissue damage, impaired healing processes, and possible long-term consequences make burn wounds a complex problem. An in-depth review is required since, despite medical progress, existing methods for treating severe burn wounds have significant limitations. Burn wounds are difficult to heal because they cause extensive tissue damage. The challenges of burn injury-induced tissue regeneration and functional recovery are also the subject of this review. Although there is a lot of promise in current stem cell treatments, there are also some limitations with scalability, finding the best way to transport the cells, and finding consistent results across different types of patients. To shed light on how to improve stem cell interventions to heal severe burn wounds, this review covers various stem cell applications in burn wounds and examines these obstacles. To overcome these obstacles, one solution is to enhance methods of stem cell distribution, modify therapies according to the severity of the burn, and conduct more studies on how stem cell therapy affects individual patients. Novel solutions may also be possible through the combination of cutting-edge technologies like nanotechnology and biotechnology. This review seeks to increase stem cell interventions by analyzing present challenges and suggesting strategic improvements. The goal is to provide a more effective and tailored way to repair serious burn wounds.
Collapse
Affiliation(s)
- Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
- School of Bioscience and Engineering, Jadavpur University
| | - Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Sudipta Roy
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Shyam S. Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University
| | - Samit K. Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences
| |
Collapse
|
34
|
Lv K, Wu T, Liu S, Lou P, Zhou P, Wang Y, Zhou X, Zhang S, Du D, Lu Y, Wan M, Liu J. Disease-derived circulating extracellular vesicle preconditioning: A promising strategy for precision mesenchymal stem cell therapy. Acta Pharm Sin B 2024; 14:4526-4543. [PMID: 39525589 PMCID: PMC11544168 DOI: 10.1016/j.apsb.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024] Open
Abstract
Mesenchymal stem cell (MSC)-based therapies have emerged as promising methods for regenerative medicine; however, how to precisely enhance their tissue repair effects is still a major question in the field. Circulating extracellular vesicles (EVs) from diseased states carry diverse pathological information and affect the functions of recipient cells. Based on this unique property, we report that disease-derived circulating EV (disease-EV) preconditioning is a potent strategy for precisely enhancing the tissue repair potency of MSCs in diverse disease models. Briefly, plasma EVs from lung or kidney tissue injuries were shown to contain distinctly enriched molecules and were shown to induce tissue injury-specific gene expression responses in cultured MSCs. Disease-EV preconditioning improved the performance (including proliferation, migration, and growth factor production) of MSCs through metabolic reprogramming (such as via enhanced oxidative phosphorylation and lipid metabolism) without inducing an adverse immune response. Consequently, compared with normal MSCs, disease-EV-preconditioned MSCs exhibited superior tissue repair effects (including anti-inflammatory and antiapoptotic effects) in diverse types of tissue injury (such as acute lung or kidney injury). Disease-derived EVs may serve as a type of "off-the-shelf" product due to multiple advantages, such as flexibility, stability, long-term storage, and ease of shipment and use. This study highlights the idea that disease-EV preconditioning is a robust strategy for precisely enhancing the regenerative capacity of MSC-based therapies.
Collapse
Affiliation(s)
- Ke Lv
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tian Wu
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuyun Liu
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Lou
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingya Zhou
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yizhuo Wang
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiyue Zhou
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Du
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meihua Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- The First People's Hospital of Shuangliu District, Chengdu 610299, China
| | - Jingping Liu
- Department of Integrated Traditional Chinese and Western Medicine and NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Li X, Zhu G, Zhao B. Chromatin remodeling in tissue stem cell fate determination. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:18. [PMID: 39348027 PMCID: PMC11442411 DOI: 10.1186/s13619-024-00203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Tissue stem cells (TSCs), which reside in specialized tissues, constitute the major cell sources for tissue homeostasis and regeneration, and the contribution of transcriptional or epigenetic regulation of distinct biological processes in TSCs has been discussed in the past few decades. Meanwhile, ATP-dependent chromatin remodelers use the energy from ATP hydrolysis to remodel nucleosomes, thereby affecting chromatin dynamics and the regulation of gene expression programs in each cell type. However, the role of chromatin remodelers in tissue stem cell fate determination is less well understood. In this review, we systematically discuss recent advances in epigenetic control by chromatin remodelers of hematopoietic stem cells, intestinal epithelial stem cells, neural stem cells, and skin stem cells in their fate determination and highlight the importance of their essential role in tissue homeostasis, development, and regeneration. Moreover, the exploration of the molecular and cellular mechanisms of TSCs is crucial for advancing our understanding of tissue maintenance and for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Xinyang Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China
| | - Gaoxiang Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China
| | - Bing Zhao
- School of Basic Medical Sciences, Jiangxi Medical College, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330031, China.
- Z Lab, bioGenous BIOTECH, Shanghai, 200438, China.
| |
Collapse
|
36
|
Hung M, Sadri M, Katz M, Schwartz C, Mohajeri A. A Systematic Review of Stem Cell Applications in Maxillofacial Regeneration. Dent J (Basel) 2024; 12:315. [PMID: 39452443 PMCID: PMC11505667 DOI: 10.3390/dj12100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Regenerative medicine is revolutionizing oral and maxillofacial surgeries with stem cells, particularly mesenchymal stem cells, for tissue and bone regeneration. Despite promising in-vitro results, human trials are limited. A systematic review is needed to evaluate stem cell efficacy in maxillofacial issues, aiming to improve surgical outcomes and patient satisfaction. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines, this review included peer-reviewed articles (2013-2023) on stem cells in oral surgery, excluding non-English publications, abstracts, reviews, and opinion pieces. Searches were conducted in PubMed, Web of Science, OVID, Cochrane, Dentistry & Oral Sciences Source-Ebscohost, and Scopus. Two authors independently screened titles and abstracts, resolving disagreements by consensus. Full-text analysis involved extracting key data, verified by a secondary reviewer and additional quality checks. RESULTS From 3540 initial articles, 2528 were screened after removing duplicates, and 7 met the inclusion criteria after excluding irrelevant studies. Key themes included the safety and efficacy of stem cell therapy, and bone regeneration and quality. Studies predominantly used mesenchymal stem cells. Findings showed positive outcomes in clinical safety and effectiveness and significant potential for bone regeneration. CONCLUSIONS This systematic review highlights the potential of stem cell therapies in maxillofacial applications, supporting their safety, efficacy, and bone regeneration capabilities. Further research is needed to standardize protocols and confirm long-term benefits.
Collapse
Affiliation(s)
- Man Hung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
- Division of Public Health, University of Utah, Salt Lake City, UT 84108, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mahsa Sadri
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Melanie Katz
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Connor Schwartz
- Library, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Amir Mohajeri
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| |
Collapse
|
37
|
Zarnani K, Zarnani K, Maslehat-Lay N, Zeynali B, Vafaei S, Shokri MR, Vanaki N, Soltanghoraee H, Mirzadegan E, Edalatkhah H, Naderi MM, Sarvari A, Attari F, Jeddi-Tehrani M, Zarnani AH. In-utero transfer of decidualized endometrial stromal cells increases the frequency of regulatory T cells and normalizes the abortion rate in the CBA/J × DBA/2 abortion model. Front Immunol 2024; 15:1440388. [PMID: 39380998 PMCID: PMC11460546 DOI: 10.3389/fimmu.2024.1440388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Failure to adequate decidualization leads to adverse pregnancy outcomes including pregnancy loss. Although there are plenty of reports underscoring immune dysfunction as the main cause of abortion in CBA/J females mated with DBA/2 males (CBA/J × DBA/2), little is known about the potential role of impaired endometrial decidualization. Methods Endometrial stromal cells (ESCs) from CBA/J mice were in-vitro decidualized, and the proteome profile of the secretome was investigated by membrane-based array. CBA/J mice were perfused In-utero with either decidualized ESCs (C×D/D), undecidualized ESCs (C×D/ND), or PBS (C×D/P) 12 days before mating with DBA/2 males. Control mice were not manipulated and were mated with male DBA/2 (C×D) or Balb/c (C×B) mice. On day 13.5 of pregnancy, reproductive parameters were measured. In-vivo tracking of EdU-labeled ESCs was performed using fluorescence microscopy. The frequency of regulatory T cells (Tregs) in paraaortic/renal and inguinal lymph nodes was measured by flow cytometry. The proliferation of pregnant CBA/J splenocytes in response to stimulation with DBA/2 splenocytes was assessed by 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) flow cytometry. Results In C×D/D mice, the resorption rate was reduced to match that seen in the C×B group. Intrauterine perfused ESCs appeared in uterine stroma after 2 days, which remained there for at least 12 days. There was no difference in the number of implantation sites and embryo weight across all groups. The frequency of Tregs in the inguinal lymph nodes was similar across all groups, but it increased in the paraaortic/renal lymph nodes of C×D/D mice to the level found in C×B mice. No significant changes were observed in the proliferation of splenocytes from pregnant C×D/D compared to those of the C×D group in response to stimulation with DBA/2 splenocytes. Decidualization of ESCs was associated with a profound alteration in ESC secretome exemplified by alteration in proteins involved in extracellular matrix (ECM) remodeling, response to inflammation, senescence, and immune cell trafficking. Discussion Our results showed that the deficiency of Tregs is not the primary driver of abortion in the CBA/J × DBA/2 model and provided evidence that impaired endometrial decidualization probably triggers endometrial immune dysfunction and abortion in this model.
Collapse
Affiliation(s)
- Kayhan Zarnani
- School of Biology, College of Sciences, University of Tehran, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Zarnani
- School of Biology, College of Sciences, University of Tehran, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Nasim Maslehat-Lay
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Bahman Zeynali
- Developmental Biology Lab., School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Sedigheh Vafaei
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohammad-Reza Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Soltanghoraee
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ebrahim Mirzadegan
- Nanobiotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohammad-Mehdi Naderi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Ali Sarvari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
El Assaad N, Chebly A, Salame R, Achkar R, Bou Atme N, Akouch K, Rafoul P, Hanna C, Abou Zeid S, Ghosn M, Khalil C. Anti-aging based on stem cell therapy: A scoping review. World J Exp Med 2024; 14:97233. [PMID: 39312703 PMCID: PMC11372738 DOI: 10.5493/wjem.v14.i3.97233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Stem cells are present in the tissues and organs and remain in a quiescent and undifferentiated state until it is physiologically necessary to produce new descendant cells. Due to their multipotency property, mesenchymal stem cells have attracted considerable attention worldwide due to their immunomodulation and therapeutic function in tissue regeneration. Stem cells secrete components such as paracrine factors, extracellular vesicles, and exosomes which have been shown to have anti-inflammatory, anti-aging, reconstruction and wound healing potentials in many in vitro and in vivo models. The pluripotency and immunomodulatory features of stem cells could potentially be an effective tool in cell therapy and tissue repair. Aging affects the capacity for self-renewal and differentiation of stem cells, decreasing the potential for regeneration and the loss of optimal functions in organisms over time. Current progress in the field of cellular therapy and regenerative medicine has facilitated the evolution of particular guidelines and quality control approaches, which eventually lead to clinical trials. Cell therapy could potentially be one of the most promising therapies to control aging due to the fact that single stem cell transplantation can regenerate or substitute the injured tissue. To understand the involvement of stem cells not only in tissue maintenance and disease but also in the control of aging it is important to know and identify their properties, functions, and regulation in vivo, which are addressed in this review.
Collapse
Affiliation(s)
- Nassar El Assaad
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Alain Chebly
- Centre Jacques Loiselet for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut 961, Lebanon
| | - Rawad Salame
- Stem Cell Therapy Lab, Reviva Regenerative Medicine Center, Beirut 961, Lebanon
| | - Robert Achkar
- Poz Pozan University of Medical Sciences, Pozan 034, Poland
| | - Nour Bou Atme
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Khalil Akouch
- Stem Cell Therapy Lab, Reviva Regenerative Medicine Center, Beirut 961, Lebanon
| | - Paul Rafoul
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Lebanese University, Beirut 961, Lebanon
| | - Colette Hanna
- School of Medicine, Lebanese American University, Beirut 961, Lebanon
| | - Samer Abou Zeid
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Marwan Ghosn
- Faculty of Medicine, Saint Joseph University, Beirut 961, Lebanon
| | - Charbel Khalil
- Stem Cell Therapy Lab, Reviva Regenerative Medicine Center, Beirut 961, Lebanon
- School of Medicine, Lebanese American University, Beirut 961, Lebanon
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi 999041, United Arab Emirates
| |
Collapse
|
39
|
Ramzan F, Salim A, Hussain A, Khan I. Unleashing the Healing Power of Mesenchymal Stem Cells for Osteochondral Abnormalities. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024. [DOI: 10.1007/s40883-024-00356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/31/2024] [Indexed: 01/11/2025]
|
40
|
Dadfar S, Yazdanpanah E, Pazoki A, Nemati MH, Eslami M, Haghmorad D, Oksenych V. The Role of Mesenchymal Stem Cells in Modulating Adaptive Immune Responses in Multiple Sclerosis. Cells 2024; 13:1556. [PMID: 39329740 PMCID: PMC11430382 DOI: 10.3390/cells13181556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system, leading to significant disability through neurodegeneration. Despite advances in the understanding of MS pathophysiology, effective treatments remain limited. Mesenchymal stem cells (MSCs) have gained attention as a potential therapeutic option due to their immunomodulatory and regenerative properties. This review examines MS pathogenesis, emphasizing the role of immune cells, particularly T cells, in disease progression, and explores MSCs' therapeutic potential. Although preclinical studies in animal models show MSC efficacy, challenges such as donor variability, culture conditions, migratory capacity, and immunological compatibility hinder widespread clinical adoption. Strategies like genetic modification, optimized delivery methods, and advanced manufacturing are critical to overcoming these obstacles. Further research is needed to validate MSCs' clinical application in MS therapy.
Collapse
Affiliation(s)
- Sepehr Dadfar
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hossein Nemati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
41
|
Stefańska K, Volponi AA, Kulus M, Waśko J, Farzaneh M, Grzelak J, Azizidoost S, Mozdziak P, Bukowska D, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Szcześniak M, Woszczyk M, Kempisty B. Dental pulp stem cells - A basic research and future application in regenerative medicine. Biomed Pharmacother 2024; 178:116990. [PMID: 39024839 DOI: 10.1016/j.biopha.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Dental pulp is a valuable and accessible source of stem cells (DPSCs) with characteristics similar to mesenchymal stem cells. DPSCs can regenerate a range of tissues and their potential for clinical application in regenerative medicine is promising. DPSCs have been found to express low levels of Class II HLA-DR (MHC) molecules, making them potential candidates for allogeneic transplantation without matching the donor's tissue. Research on the correlation between non-coding RNAs (ncRNAs) and human dental pulp stem cells (DPSCs) provides promising insights into the use of these cells in clinical settings for a wide range of medical conditions. It is possible to use a number of ncRNAs in order to restore the functional role of downregulated ncRNAs that are correlated with osteoblastogenesis, or to suppress the functional role of overexpressed ncRNAs associated with osteoclast differentiation in some cases.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Cellivia 3 S.A., Poznan 60-529, Poland; Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan 60-781, Poland.
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London WC2R 2LS, UK.
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland.
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Marta Szcześniak
- Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, Poznań 60-812, Poland; Department of Maxillofacial Surgery, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznań 60-355, Poland.
| | | | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
42
|
Costa-Ferro ZSM, Rocha GV, da Silva KN, Paredes BD, Loiola EC, Silva JD, Santos JLDS, Dias RB, Figueira CP, de Oliveira CI, de Moura LD, Ribeiro LNDM, de Paula E, Zanette DL, Rocha CAG, Rocco PRM, Souza BSDF. GMP-compliant extracellular vesicles derived from umbilical cord mesenchymal stromal cells: manufacturing and pre-clinical evaluation in ARDS treatment. Cytotherapy 2024; 26:1013-1025. [PMID: 38762805 DOI: 10.1016/j.jcyt.2024.04.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND AIMS Extracellular vesicles (EVs) represent a new axis of intercellular communication that can be harnessed for therapeutic purposes, as cell-free therapies. The clinical application of mesenchymal stromal cell (MSC)-derived EVs, however, is still in its infancy and faces many challenges. The heterogeneity inherent to MSCs, differences among donors, tissue sources, and variations in manufacturing conditions may influence the release of EVs and their cargo, thus potentially affecting the quality and consistency of the final product. We investigated the influence of cell culture and conditioned medium harvesting conditions on the physicochemical and proteomic profile of human umbilical cord MSC-derived EVs (hUCMSC-EVs) produced under current good manufacturing practice (cGMP) standards. We also evaluated the efficiency of the protocol in terms of yield, purity, productivity, and expression of surface markers, and assessed the biodistribution, toxicity and potential efficacy of hUCMSC-EVs in pre-clinical studies using the LPS-induced acute lung injury model. METHODS hUCMSCs were isolated from a cord tissue, cultured, cryopreserved, and characterized at a cGMP facility. The conditioned medium was harvested at 24, 48, and 72 h after the addition of EV collection medium. Three conventional methods (nanoparticle tracking analysis, transmission electron microscopy, and nanoflow cytometry) and mass spectrometry were used to characterize hUCMSC-EVs. Safety (toxicity of single and repeated doses) and biodistribution were evaluated in naive mice after intravenous administration of the product. Efficacy was evaluated in an LPS-induced acute lung injury model. RESULTS hUCMSC-EVs were successfully isolated using a cGMP-compliant protocol. Comparison of hUCMSC-EVs purified from multiple harvests revealed progressive EV productivity and slight changes in the proteomic profile, presenting higher homogeneity at later timepoints of conditioned medium harvesting. Pooled hUCMSC-EVs showed a non-toxic profile after single and repeated intravenous administration to naive mice. Biodistribution studies demonstrated a major concentration in liver, spleen and lungs. HUCMSC-EVs reduced lung damage and inflammation in a model of LPS-induced acute lung injury. CONCLUSIONS hUCMSC-EVs were successfully obtained following a cGMP-compliant protocol, with consistent characteristics and pre-clinical safety profile, supporting their future clinical development as cell-free therapies.
Collapse
Affiliation(s)
- Zaquer Suzana Munhoz Costa-Ferro
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Gisele Vieira Rocha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Katia Nunes da Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Erick Correia Loiola
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - John Lenon de Souza Santos
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Rosane Borges Dias
- Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Federal University of Bahia, UFBA, Salvador, Brazil
| | | | | | | | - Lígia Nunes de Morais Ribeiro
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eneida de Paula
- Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Clarissa Araújo Gurgel Rocha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Federal University of Bahia, UFBA, Salvador, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education (IDOR), Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.
| |
Collapse
|
43
|
Krsek A, Jagodic A, Baticic L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood-Brain Barrier Modulation: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1384. [PMID: 39336425 PMCID: PMC11433843 DOI: 10.3390/medicina60091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Nanomedicine is a newer, promising approach to promote neuroprotection, neuroregeneration, and modulation of the blood-brain barrier. This review includes the integration of various nanomaterials in neurological disorders. In addition, gelatin-based hydrogels, which have huge potential due to biocompatibility, maintenance of porosity, and enhanced neural process outgrowth, are reviewed. Chemical modification of these hydrogels, especially with guanidine moieties, has shown improved neuron viability and underscores tailored biomaterial design in neural applications. This review further discusses strategies to modulate the blood-brain barrier-a factor critically associated with the effective delivery of drugs to the central nervous system. These advances bring supportive solutions to the solving of neurological conditions and innovative therapies for their treatment. Nanomedicine, as applied to neuroscience, presents a significant leap forward in new therapeutic strategies that might help raise the treatment and management of neurological disorders to much better levels. Our aim was to summarize the current state-of-knowledge in this field.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ana Jagodic
- Department of Family Medicine, Community Health Center Krapina, 49000 Krapina, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
44
|
Sarvestani M, Rajabzadeh A, Mazoochi T, Samimi M, Navari M, Moradi F. Use of placental-derived mesenchymal stem cells to restore ovarian function and metabolic profile in a rat model of the polycystic ovarian syndrome. BMC Endocr Disord 2024; 24:154. [PMID: 39160512 PMCID: PMC11331624 DOI: 10.1186/s12902-024-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disturbance that affects many women worldwide and is characterized by chronic anovulation, hyperandrogenism, and ovarian dysfunction. Placenta-derived mesenchymal stem cells (PDMSCs) are derived from the placenta and have advantages over other sources of MSCs in terms of availability, safety, and immunomodulation. MATERIALS AND METHODS In this experimental study, twenty female Wistar rats were assigned to four groups (n = 5) including control, sham, PCOS, and PCOS+PDMSCs groups. Then, PCOS was induced in the rats through administering letrozole for 21 days. PDMSCs (1 × 106 cells) were injected through the tail vein. Fourteen days after the cell infusion, evaluation was performed on the number of healthy follicles, corpus luteum, and cystic follicles as well as the levels of testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), fasting blood glucose, fasting insulin, and insulin resistance. Moreover, the serum levels of cholesterol, triglyceride (TG), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were measured. Liver function was also determined by the evaluation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. RESULTS The number of corpus luteum and primordial, primary, secondary, and antral follicles was significantly elevated in the PCOS+PDMSCs group compared to the PCOS group. However, the number of cystic follicles significantly decreased in the PCOS+PDMSCs group. The LH and testosterone levels also decreased significantly, while FSH levels increased significantly in the PCOS+PDMSCs group. The levels of fasting blood glucose, fasting insulin, and insulin resistance notably decreased in the PCOS+PDMSCs group. Moreover, the lipid profile improved in the PCOS+PDMSCs group along with a significant decrease of cholesterol, LDL, and TG and an increase in HDL. The PCOS+PDMSCs group exhibited marked decreases in the AST and ALT levels as well. CONCLUSION The results of this study suggest that PDMSCs are a potential treatment option for PCOS because they can effectively restore folliculogenesis and correct hormonal imbalances, lipid profiles and liver dysfunction in a rat model of PCOS. However, further research is needed to establish the safety and effectiveness of PDMSCs for treating PCOS.
Collapse
Affiliation(s)
- Mojtaba Sarvestani
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Rajabzadeh
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Tahereh Mazoochi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mansooreh Samimi
- Department of obstetrics and gynecology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Faezeh Moradi
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Biobank of Research, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
45
|
Qian L, Zhang Z, Zhang R, Zheng X, Xiao B, Zhang X, Wu Y, Chen Y, Zhang X, Zhou P, Fu Q, Kang T, Gao Y. Activated STING-containing R-EVs from iPSC-derived MSCs promote antitumor immunity. Cancer Lett 2024; 597:217081. [PMID: 38909776 DOI: 10.1016/j.canlet.2024.217081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
We recently revealed that activated STING is secreted into RAB22A-induced extracellular vesicles (R-EVs) and promotes antitumor immunity in cancer cells. Whether mesenchymal stem cell (MSC)-derived R-EVs containing activated STING can be used as a novel antitumor immunotherapy remains unclear, as MSC-derived EVs are promising cell-free therapeutics due to their superior biocompatibility and safety, as well as low immunogenicity. Here, we report that induced pluripotent stem cell (iPSC)-derived MSCs can generate R-EVs with a size and mechanism of formation that are similar to those of R-EVs produced from cancer cells. Furthermore, these MSC-derived R-EVs containing activated STING induced IFNβ expression in recipient THP-1 monocytes and antitumor immunity in mice. Our findings reveal that the use of MSC-derived R-EVs containing activated STING is a promising cell-free strategy for antitumor immunity.
Collapse
Affiliation(s)
- Linxia Qian
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China; School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhonghan Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xueping Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Beibei Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xiaomin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yang Chen
- Departments of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Xingding Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
46
|
Liang L, Wang S, Zhang X, Yan T, Pan X, Gao Y, Zhang X, Wang Q, Qu L. Multi-site enhancement of osteogenesis: peptide-functionalized GelMA hydrogels with three-dimensional cultures of human dental pulp stem cells. Regen Biomater 2024; 11:rbae090. [PMID: 39193556 PMCID: PMC11349188 DOI: 10.1093/rb/rbae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Human dental pulp stem cells (hDPSCs) have demonstrated greater proliferation and osteogenic differentiation potential in certain studies compared to other types of mesenchymal stem cells, making them a promising option for treating craniomaxillofacial bone defects. However, due to low extracting concentration and long amplifying cycles, their access is limited and utilization rates are low. To solve these issues, the principle of bone-forming peptide-1 (BFP1) in situ chemotaxis was utilized for the osteogenic differentiation of hDPSCs to achieve simultaneous and synergistic osteogenesis at multiple sites. BFP1-functionalized gelatin methacryloyl hydrogel provided a 3D culture microenvironment for stem cells. The experimental results showed that the 3D composite hydrogel scaffold constructed in this study increased the cell spread area by four times compared with the conventional GelMA scaffold. Furthermore, the problems of high stem cell dosage and low rate of utilization were alleviated by orchestrating the programmed proliferation and osteogenic differentiation of hDPSCs. In vivo, high-quality repair of critical bone defects was achieved using hDPSCs extracted from a single tooth, and multiple 'bone island'-like structures were successfully observed that rapidly induced robust bone regeneration. In conclusion, this study suggests that this kind of convenient, low-cost, island-like osteogenesis strategy involving a low dose of hDPSCs has great potential for repairing craniomaxillofacial critical-sized bone defects.
Collapse
Affiliation(s)
- Leyi Liang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Shuze Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Xiyue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Tao Yan
- Department of Orthopedics and Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, Liaoning 110016, China
| | - Xiyun Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Yuzhong Gao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xing Zhang
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| | - Liu Qu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
47
|
Lee SB, Abdal Dayem A, Kmiecik S, Lim KM, Seo DS, Kim HT, Kumar Biswas P, Do M, Kim DH, Cho SG. Efficient improvement of the proliferation, differentiation, and anti-arthritic capacity of mesenchymal stem cells by simply culturing on the immobilized FGF2 derived peptide, 44-ERGVVSIKGV-53. J Adv Res 2024; 62:119-141. [PMID: 37777063 PMCID: PMC11331723 DOI: 10.1016/j.jare.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION The stem cell microenvironment has been evidenced to robustly affect its biological functions and clinical grade. Natural or synthetic growth factors, especially, are essential for modulating stem cell proliferation, metabolism, and differentiation via the interaction with specific extracellular receptors. Fibroblast growth factor-2 (FGF-2) possesses pleiotropic functions in various tissues and organs. It interacts with the FGF receptor (FGFR) and activates FGFR signaling pathways, which involve numerous biological functions, such as angiogenesis, wound healing, cell proliferation, and differentiation. OBJECTIVES Here, we aim to explore the molecular functions, mode of action, and therapeutic activity of yet undetermined function, FGF-2-derived peptide, FP2 (44-ERGVVSIKGV-53) in promoting the proliferation, differentiation, and therapeutic application of human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) in comparison to other test peptides, canofin1 (FP1), hexafin2 (FP3), and canofin3 (FP4) with known functions. METHODS The immobilization of test peptides that are fused with mussel adhesive proteins (MAP) on the culture plate was carried out via EDC/NHS chemistry. Cell Proliferation assay, colony-forming unit, western blotting analysis, gene expression analysis, RNA-Seq. analysis, osteogenic, and chondrogenic differentiation capacity were applied to test the activity of the test peptides. We additionally utilized three-dimensional (3D) structural analysis and artificial intelligence (AI)-based AlphaFold2 and CABS-dock programs for receptor interaction prediction of the peptide receptor. We also verified the in vivo therapeutic capacity of FP2-cultured hWJ-MSCs using an osteoarthritis mice model. RESULTS Culture of hWJ-MSC onto an FP2-immobilized culture plate showed a significant increase in cell proliferation (n = 3; *p < 0.05, **p < 0.01) and the colony-forming unit (n = 3; *p < 0.05, **p < 0.01) compared with the test peptides. FP2 showed a significantly upregulated phosphorylation of FRS2α and FGFR1 and activated the AKT and ERK signaling pathways (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001). Interestingly, we detected efficient FP2 receptor binding that was predicted using AI-based tools. Treatment with an AKT inhibitor significantly abrogated the FP2-mediated enhancement of cell differentiation (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001). Intra-articular injection of FP2-cultured MSCs significantly mitigated arthritis symptoms in an osteoarthritis mouse model, as shown through the functional tests (n = 10; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001), modulation of the expression level of the pro-inflammatory and anti-inflammatory genes, and improved osteochondral regeneration as demonstrated by tissue sections. CONCLUSION Our study identified the FGF-2-derived peptide FP2 as a promising candidate peptide to improve the therapeutic potential of hWJ-MSCs, especially in bone and cartilage regeneration.
Collapse
Affiliation(s)
- Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong Sik Seo
- Stem Cell Research Center of AMOLIFESCIENCE Co., Ltd, 91, Gimpo-daero 1950 Beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Hyeong-Taek Kim
- Stem Cell Research Center of AMOLIFESCIENCE Co., Ltd, 91, Gimpo-daero 1950 Beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
48
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
49
|
Refeyton A, Labat V, Mombled M, Vlaski-Lafarge M, Ivanovic Z. Functional single-cell analyses of mesenchymal stromal cell proliferation and differentiation using ALDH-activity and mitochondrial ROS content. Cytotherapy 2024; 26:813-824. [PMID: 38661612 DOI: 10.1016/j.jcyt.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
BASKGROUND Previous research has unveiled a stem cell-like transcriptome enrichment in the aldehyde dehydrogenase-expressing (ALDHhigh) mesenchymal stromal cell (MStroC) fraction. However, considering the heterogeneity of MStroCs, with only a fraction of them presenting bona fide stem cells (MSCs), the actual potency of ALDH as an MSC-specific selection marker remains an issue. METHODS To address this, the proliferative and differentiation potential of individual ALDHhigh and ALDHlow MStroCs incubated at low oxygen concentrations, estimated to mimic stem cell niches (0.1% O2), were assayed using single-cell clonal analysis, compared to standard conditions (20% O2). RESULTS We confirm that a high proliferative capacity and multi-potent MSCs are enriched in the ALDHhigh MStroC population, especially when cells are cultured at 0.1% O2. Measurements of reduced/oxidized glutathione and mitochondrial superoxide anions with MitoSoX (MSX) indicate that this advantage induced by low oxygen is related to a decrease in the oxidative and reactive oxygen species (ROS) levels in the stem cell metabolic setup. However, ALDH expression is neither specific nor exclusive to MSCs, as high proliferative capacity and multi-potent cells were also found in the ALDHlow fraction. Furthermore, single-cell assays performed after combined cell sorting based on ALDH and MSX showed that the MSXlow MStroC population is enriched in stem/progenitor cells in all conditions, irrespective of ALDH expression or culture oxygen concentration. Importantly, the ALDHhighMSXlow MStroC fraction exposed to 0.1% O2 was almost exclusively composed of genuine MSCs. In contrast, neither progenitors nor stem cells (with a complete absence of colony-forming ability) were detected in the MSXhigh fraction, which exclusively resides in the ALDHlow MStroC population. CONCLUSION Our study reveals that ALDH expression is not exclusively associated with MSCs. However, cell sorting using combined ALDH expression and ROS content can be utilized to exclude MStroCs lacking stem/progenitor cell properties.
Collapse
Affiliation(s)
- Alice Refeyton
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Université de Bordeaux, Bordeaux, France; Inserm Bordeaux U1211, Bordeaux, France
| | - Véronique Labat
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Université de Bordeaux, Bordeaux, France; Inserm Bordeaux U1211, Bordeaux, France
| | - Margaux Mombled
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Genethon, Évry-Courcouronne, France; Inserm, Évry-Courcouronne, France
| | - Marija Vlaski-Lafarge
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Université de Bordeaux, Bordeaux, France; Inserm Bordeaux U1211, Bordeaux, France
| | - Zoran Ivanovic
- Etablissement Français du Sang Nouvelle Aquitaine, Bordeaux, France; Université de Bordeaux, Bordeaux, France; Inserm Bordeaux U1211, Bordeaux, France.
| |
Collapse
|
50
|
Salthouse D, Goulding PD, Reay SL, Jackson EL, Xu C, Ahmed R, Mearns-Spragg A, Novakovic K, Hilkens CMU, Ferreira AM. Amine-reactive crosslinking enhances type 0 collagen hydrogel properties for regenerative medicine. Front Bioeng Biotechnol 2024; 12:1391728. [PMID: 39132253 PMCID: PMC11310005 DOI: 10.3389/fbioe.2024.1391728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Collagen is extensively utilised in regenerative medicine due to its highly desirable properties. However, collagen is typically derived from mammalian sources, which poses several limitations, including high cost, potential risk of immunogenicity and transmission of infectious diseases, and ethical and religious constraints. Jellyfish-sourced type 0 collagen represents a safer and more environmentally sustainable alternative collagen source. Methods Thus, we investigated the potential of jellyfish collagen-based hydrogels, obtained from Rhizostoma pulmo (R. pulmo) jellyfish, to be utilised in regenerative medicine. A variety of R. pulmo collagen hydrogels (RpCol hydrogels) were formed by adding a range of chemical crosslinking agents and their physicochemical and biological properties were characterised to assess their suitability for regenerative medicine applications. Results and Discussion The characteristic chemical composition of RpCol was confirmed by Fourier-transform infrared spectroscopy (FTIR), and the degradation kinetics, morphological, and rheological properties of RpCol hydrogels were shown to be adaptable through the addition of specific chemical crosslinking agents. The endotoxin levels of RpCol were below the Food and Drug Administration (FDA) limit for medical devices, thus allowing the potential use of RpCol in vivo. 8-arm polyethylene glycol succinimidyl carboxyl methyl ester (PEG-SCM)-crosslinked RpCol hydrogels preserved the viability and induced a significant increase in the metabolic activity of immortalised human mesenchymal stem/stromal cells (TERT-hMSCs), therefore demonstrating their potential to be utilised in a wide range of regenerative medicine applications.
Collapse
Affiliation(s)
- Daniel Salthouse
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Peter D. Goulding
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sophie L. Reay
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Emma L. Jackson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chenlong Xu
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catharien M. U. Hilkens
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|