1
|
Fiorucci S, Urbani G, Biagioli M, Sepe V, Distrutti E, Zampella A. Bile acids and bile acid activated receptors in the treatment of Covid-19. Biochem Pharmacol 2024; 228:115983. [PMID: 38081371 DOI: 10.1016/j.bcp.2023.115983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 09/20/2024]
Abstract
Since its first outbreak in 2020, the pandemic caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) has caused the death of almost 7 million people worldwide. Vaccines have been fundamental in disease prevention and to reduce disease severity especially in patients with comorbidities. Nevertheless, treatment of COVID-19 has been proven difficult and several approaches have failed to prevent disease onset or disease progression, particularly in patients with comorbidities. Interrogation of drug data bases has been widely used since the beginning of pandemic to repurpose existing drugs/natural substances for the prevention/treatment of COVID-19. Steroids, including bile acids such as ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) have shown to be promising for their potential in modulating SARS-CoV-2/host interaction. Bile acids have proven to be effective in preventing binding of spike protein with the Angiotensin Converting Enzyme II (ACE2), thus preventing virus uptake by the host cells and inhibiting its replication, as well as in indirectly modulating immune response. Additionally, the two main bile acid activated receptors, GPBAR1 and FXR, have proven effective in modulating the expression of ACE2, suggesting an indirect role for these receptors in regulating SARS-CoV-2 infectiveness and immune response. In this review we have examined how the potential of bile acids and their receptors as anti-COVID-19 therapies and how these biochemical mechanisms translate into clinical efficacy.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Islam Z, Yamamoto S, Mizoue T, Konishi M, Ohmagari N. Coffee and Green Tea Consumption With the Risk of COVID-19 Among the Vaccine Recipients in Japan: A Prospective Study. J Epidemiol 2024; 34:444-452. [PMID: 38346747 PMCID: PMC11330706 DOI: 10.2188/jea.je20230231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/25/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND While coffee and green tea have been suggested to have immunoprotective effects, it remains elusive whether they can decrease the risk of coronavirus disease 2019 (COVID-19). OBJECTIVE We prospectively examined the associations of coffee and green tea consumption with the risk of COVID-19 among mRNA vaccine recipients during the epidemic of the Omicron variant. METHODS Participants were 2,110 staff (aged 18 to 76 years) of a large medical facility in Tokyo, who attended a serosurvey in June 2022, predominantly received ≥3 doses of vaccine, and were followed for COVID-19 until December 2022. Coffee and green tea consumption was ascertained via a questionnaire. COVID-19 was identified through the in-house registry. Cox proportional hazards model was used to estimate the hazard ratios (HRs) of COVID-19 across the categories of beverage consumption. RESULTS During 6 months of follow-up, 225 (10.6%) cases of COVID-19 were identified. Contrary to the expectation, higher consumption of coffee was associated with a significant increase in the risk of COVID-19; multivariable-adjusted HRs were 1.00 (reference), 0.92 (95% confidence interval [CI], 0.62-1.35), 1.48 (95% CI, 0.99-2.22), and 1.82 (95% CI, 1.20-2.76) for <1 cup/day, 1 cup/day, 2 cups/day, and ≥3 cups/day, respectively (P trend = 0.003). Green tea consumption was not significantly associated with the risk of COVID-19. The association with coffee was attenuated if serologically detected infection was added to the cases. CONCLUSION In a cohort of Japanese hospital staff who received COVID-19 vaccine, higher consumption of coffee was associated with an increased risk of COVID-19 during the epidemic of the Omicron variant. There was no evidence of a significant association between green tea consumption and COVID-19 risk.
Collapse
Affiliation(s)
- Zobida Islam
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shohei Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maki Konishi
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Van Loy B, Stevaert A, Naesens L. The coronavirus nsp15 endoribonuclease: A puzzling protein and pertinent antiviral drug target. Antiviral Res 2024; 228:105921. [PMID: 38825019 DOI: 10.1016/j.antiviral.2024.105921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The SARS-CoV-2 pandemic has bolstered unprecedented research efforts to better understand the pathogenesis of coronavirus (CoV) infections and develop effective therapeutics. We here focus on non-structural protein nsp15, a hexameric component of the viral replication-transcription complex (RTC). Nsp15 possesses uridine-specific endoribonuclease (EndoU) activity for which some specific cleavage sites were recently identified in viral RNA. By preventing accumulation of viral dsRNA, EndoU helps the virus to evade RNA sensors of the innate immune response. The immune-evading property of nsp15 was firmly established in several CoV animal models and makes it a pertinent target for antiviral therapy. The search for nsp15 inhibitors typically proceeds via compound screenings and is aided by the rapidly evolving insight in the protein structure of nsp15. In this overview, we broadly cover this fascinating protein, starting with its structure, biochemical properties and functions in CoV immune evasion. Next, we summarize the reported studies in which compound screening or a more rational method was used to identify suitable leads for nsp15 inhibitor development. In this way, we hope to raise awareness on the relevance and druggability of this unique CoV protein.
Collapse
Affiliation(s)
- Benjamin Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Annelies Stevaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Lieve Naesens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium.
| |
Collapse
|
4
|
Morris JN, Esseili MA. Screening Commercial Tea for Rapid Inactivation of Infectious SARS-CoV-2 in Saliva. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:159-170. [PMID: 38294673 DOI: 10.1007/s12560-023-09581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
SARS-CoV-2 infects the oral mucosa and is shed in salivary fluids. Traditionally, tea has been used by various cultures to treat respiratory ailments. The objective of this study was to identify commercially available teas that can rapidly inactivate infectious SARS-CoV-2 in saliva. Initially, tea (n = 24) was prepared as 40 mg/mL infusions and incubated with SARS-CoV-2 resuspended in water, for 5 min at 37 °C. Then, five teas that showed >3 log reduction in virus infectivity were further investigated at 40 and 10 mg/mL infusions for 60 and 10 s contact time with SARS-CoV-2 resuspended in saliva. Tea polyphenols were measured using the Folin-Ciocalteu assay. SARS-CoV-2 infectivity was quantified on Vero-E6 cell line using TCID50 assay. At 10 mg/mL infusion, black tea showed the highest reduction (3 log, i.e., 99.9%) of infectious SARS-CoV-2 within 10 s. Green, mint medley, eucalyptus-mint, and raspberry zinger teas showed similar inactivation of SARS-CoV-2 (1.5-2 log, i.e., 96-99% reduction). At 40 mg/mL infusions, all five teas showed >3 log reduction in virus infectivity within 10 s. Tea polyphenol but not pH was significantly correlated to virus reduction. Time-of-addition assay revealed that the five teas displayed preventive effects (0.5-1 log, i.e., 68-90% reduction) against SARS-CoV-2 infection of Vero-E6 cells as well as during post-virus infection (1.2-1.9 log, i.e., 94-98%). However, the highest inhibitory effect was observed when the teas were added at the time of virus infection (2-3 log, i.e., 99-99.9%). Our results provide insights into a rapid at-home intervention (tea drinking or gargling) to reduce infectious SARS-CoV-2 load in the oral cavity which might also mitigate infection of the oral mucosa.
Collapse
Affiliation(s)
- Julianna N Morris
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin Campus, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Malak A Esseili
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin Campus, 1109 Experiment Street, Griffin, GA, 30223, USA.
| |
Collapse
|
5
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Liu YM, Zhang J, Wu JJ, Guo WW, Tang FS. Strengthening pharmacotherapy research for COVID-19-induced pulmonary fibrosis. World J Clin Cases 2024; 12:875-879. [PMID: 38414600 PMCID: PMC10895630 DOI: 10.12998/wjcc.v12.i5.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
The global spread of severe acute respiratory syndrome coronavirus 2 has resulted in a significant number of individuals developing pulmonary fibrosis (PF), an irreversible lung injury. This condition can manifest within a short interval following the onset of pneumonia symptoms, sometimes even within a few days. While lung transplantation is a potentially lifesaving procedure, its limited availability, high costs, intricate surgeries, and risk of immunological rejection present significant drawbacks. The optimal timing of medication administration for coronavirus disease 2019 (COVID-19)-induced PF remains controversial. Despite this, it is crucial to explore pharmacotherapy interventions, involving early and preventative treatment as well as pharmacotherapy options for advanced-stage PF. Additionally, studies have demonstrated disparities in anti-fibrotic treatment based on race and gender factors. Genetic mutations may also impact therapeutic efficacy. Enhancing research efforts on pharmacotherapy interventions, while considering relevant pharmacological factors and optimizing the timing and dosage of medication administration, will lead to enhanced, personalized, and fair treatment for individuals impacted by COVID-19-related PF. These measures are crucial in lessening the burden of the disease on healthcare systems and improving patients' quality of life.
Collapse
Affiliation(s)
- Yan-Miao Liu
- The First Clinical Institute, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Jing Zhang
- Department of Respiratory Medicine, Central Hospital in Jinchang City, Jinchang 737102, Gansu Province, China
| | - Jing-Jing Wu
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Wei-Wei Guo
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| | - Fu-Shan Tang
- Key Laboratory of Clinical Pharmacy in Zunyi City, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Department of Clinical Pharmacy, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, Guizhou Province, China
| |
Collapse
|
7
|
Péter B, Szekacs I, Horvath R. Label-free biomolecular and cellular methods in small molecule epigallocatechin-gallate research. Heliyon 2024; 10:e25603. [PMID: 38371993 PMCID: PMC10873674 DOI: 10.1016/j.heliyon.2024.e25603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Small molecule natural compounds are gaining popularity in biomedicine due to their easy access to wide structural diversity and their proven health benefits in several case studies. Affinity measurements of small molecules below 100 Da molecular weight in a label-free and automatized manner using small amounts of samples have now become a possibility and reviewed in the present work. We also highlight novel label-free setups with excellent time resolution, which is important for kinetic measurements of biomolecules and living cells. We summarize how molecular-scale affinity data can be obtained from the in-depth analysis of cellular kinetic signals. Unlike traditional measurements, label-free biosensors have made such measurements possible, even without the isolation of specific cellular receptors of interest. Throughout this review, we consider epigallocatechin gallate (EGCG) as an exemplary compound. EGCG, a catechin found in green tea, is a well-established anti-inflammatory and anti-cancer agent. It has undergone extensive examination in numerous studies, which typically rely on fluorescent-based methods to explore its effects on both healthy and tumor cells. The summarized research topics range from molecular interactions with proteins and biological films to the kinetics of cellular adhesion and movement on novel biomimetic interfaces in the presence of EGCG. While the direct impact of small molecules on living cells and biomolecules is relatively well investigated in the literature using traditional biological measurements, this review also highlights the indirect influence of these molecules on the cells by modifying their nano-environment. Moreover, we underscore the significance of novel high-throughput label-free techniques in small molecular measurements, facilitating the investigation of both molecular-scale interactions and cellular processes in one single experiment. This advancement opens the door to exploring more complex multicomponent models that were previously beyond the reach of traditional assays.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege M. út 29-33., 1121 Budapest, Hungary
| |
Collapse
|
8
|
Li W, Ding T, Chang H, Peng Y, Li J, Liang X, Ma H, Li F, Ren M, Wang W. Plant-derived strategies to fight against severe acute respiratory syndrome coronavirus 2. Eur J Med Chem 2024; 264:116000. [PMID: 38056300 DOI: 10.1016/j.ejmech.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented crisis, which has been exacerbated because specific drugs and treatments have not yet been developed. In the post-pandemic era, humans and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will remain in equilibrium for a long time. Therefore, we still need to be vigilant against mutated SARS-CoV-2 variants and other emerging human viruses. Plant-derived products are increasingly important in the fight against the pandemic, but a comprehensive review is lacking. This review describes plant-based strategies centered on key biological processes, such as SARS-CoV-2 transmission, entry, replication, and immune interference. We highlight the mechanisms and effects of these plant-derived products and their feasibility and limitations for the treatment and prevention of COVID-19. The development of emerging technologies is driving plants to become production platforms for various antiviral products, improving their medicinal potential. We believe that plant-based strategies will be an important part of the solutions for future pandemics.
Collapse
Affiliation(s)
- Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huimin Chang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuanchang Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jun Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xin Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Huixin Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572000, China.
| |
Collapse
|
9
|
Stannard H, Koszalka P, Deshpande N, Desjardins Y, Baz M. Pre-Clinical Evaluation of the Antiviral Activity of Epigalocatechin-3-Gallate, a Component of Green Tea, against Influenza A(H1N1)pdm Viruses. Viruses 2023; 15:2447. [PMID: 38140688 PMCID: PMC10747412 DOI: 10.3390/v15122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza antiviral drugs are important tools in our fight against both annual influenza epidemics and pandemics. Polyphenols are a group of compounds found in plants, some of which have demonstrated promising antiviral activity. Previous in vitro and mouse studies have outlined the anti-influenza virus effectiveness of the polyphenol epigallocatechin-3-gallate (EGCG); however, no study has utilised the ferret model, which is considered the gold-standard for influenza antiviral studies. This study aimed to explore the antiviral efficacy of EGCG in vitro and in ferrets. We first performed studies in Madin-Darby Canine Kidney (MDCK) and human lung carcinoma (Calu-3) cells, which demonstrated antiviral activity. In MDCK cells, we observed a selective index (SI, CC50/IC50) of 77 (290 µM/3.8 µM) and 96 (290 µM/3.0 µM) against A/California/07/2009 and A/Victoria/2570/2019 (H1N1)pdm09 influenza virus, respectively. Calu-3 cells demonstrated a SI of 16 (420 µM/26 µM) and 18 (420 µM/24 µM). Ferrets infected with A/California/07/2009 influenza virus and treated with EGCG (500 mg/kg/day for 4 days) had no change in respiratory tissue viral titres, in contrast to oseltamivir treatment, which significantly reduced viral load in the lungs of treated animals. Therefore, we demonstrated that although EGCG showed antiviral activity in vitro against influenza viruses, the drug failed to impair viral replication in the respiratory tract of ferrets.
Collapse
Affiliation(s)
- Harry Stannard
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Nikita Deshpande
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Centre Nutrition, Santé et Societé (NUTRISS) Center, Faculté de Sciences de L’agriculture et de L’alimentation (FSAA), Université Laval, Quebec City, QC G1V 4L3, Canada
| | - Mariana Baz
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (H.S.)
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
10
|
Mostafa A, Mostafa-Hedeab G, Elhady HA, Mohamed EA, Eledrdery AY, Alruwaili SH, Al-Abd AM, Allayeh AK. Dual action of epigallocatechin-3-gallate in virus-induced cell Injury. J Genet Eng Biotechnol 2023; 21:145. [PMID: 38012348 PMCID: PMC10682343 DOI: 10.1186/s43141-023-00624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Viral infections cause damage and long-term injury to infected human tissues, demanding therapy with antiviral and wound healing medications. Consequently, safe phytochemical molecules that may control viral infections with an ability to provide wound healing to viral-induced tissue injuries, either topically or systemically, are advantageous. Herein, we hypothesized that epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, might be effective as a wound healing, antiviral, and antifibrotic therapy. RESULTS The antiviral activities of EGCG against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Herpes simplex virus type 2 (HSV-2) as well as its wound healing activities against different monolayer tissue (continuous and primary) systems were investigated. Consider its possible wound-healing advantages as well. To determine the safe concentrations of EGCG in green monkey kidney (Vero) and Vero-E6 cell lines, MTT assay was performed and showed high CC50 values of 405.1 and 322.9 μM, respectively. The antiviral activities of EGCG against SARS-CoV-2 and HSV-2, measured as half-maximal concentration 50 (IC50) concentrations, were 36.28 and 59.88 μM, respectively. These results confirm that the EGCG has remarkable viral inhibitory activities and could successfully suppress the replication of SARS-CoV-2 and HSV-2 in vitro with acceptable selectivity indices (SI) of 11.16 and 5.39, respectively. In parallel, the EGCG exhibits significant and dose/time-dependent anti-migration effects in human breast cancer cells (MCF-7), its resistant variation (MCF-7adr), and human skin fibroblast (HSF) indicating their potential to heal injuries in different internal and topical mammalian systems. CONCLUSIONS The EGCG has proven to be an efficient antiviral against SARS-CoV-2 and HSV-2, as well as a wound-healing phytochemical. We assume that EGCG may be a promising option for slowing the course of acute cellular damage induced by systemic (Coronavirus Disease 2019 (COVID-19)) or topical (HSV-2) viral infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, 11564, Skaka, Saudi Arabia.
| | | | - Esraa Ahmed Mohamed
- Virology Department, Nawah Scientific Co, Almokattam Mall, Street 9, Egypt, 11562, El Mokattam, Egypt
| | - Abozer Y Eledrdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf Uni-Versity, 11564, Sakaka, Saudi Arabia
| | - Sager Holyl Alruwaili
- Department of Surgery, Orthopedic Division, College of Medicine, Jouf University, 11564, Sakaka, Saudi Arabia
| | - Ahmed Mohamed Al-Abd
- Pharmacology Department, Medical and Clinical Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Water Pollution Department, Virology Laboratory, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
11
|
Yang YF, Singh S. Pharmacogenomic Landscape of Ivermectin and Selective Antioxidants: Exploring Gene Interplay in the Context of Long COVID. Int J Mol Sci 2023; 24:15471. [PMID: 37895148 PMCID: PMC10607042 DOI: 10.3390/ijms242015471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
COVID-19 pandemic has caused widespread panic and fear among the global population. As such, repurposing drugs are being used as viable therapeutic options due to the limited effective treatments for Long COVID symptoms. Ivermectin is one of the emerging repurposed drugs that has been shown effective to have antiviral effects in clinical trials. In addition, antioxidant compounds are also gaining attention due to their capabilities of reducing inflammation and severity of symptoms. Due to the absence of knowledge in pharmacogenomics and modes of actions in the human body for these compounds, this study aims to provide a pharmacogenomic profile for the combination of ivermectin and six selected antioxidants (epigallocatechin gallate (EGCG), curcumin, sesamin, anthocyanins, quercetin, and N-acetylcysteine (NAC)) as potentially effective regimens for long COVID symptoms. Results showed that there were 12 interacting genes found among the ivermectin, 6 antioxidants, and COVID-19. For network pharmacology, the 12 common interacting genes/proteins had the highest associations with Pertussis pathway, AGE-RAGE signaling pathway in diabetic complications, and colorectal cancer in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Disease analyses also revealed that the top three relevant diseases with COVID-19 infections were diabetes mellitus, ischemia, reperfusion injury. We also identified 6 potential target microRNAs (miRNAs) of the 12 commonly curated genes used as molecular biomarkers for COVID-19 treatments. The established pharmacogenomic network, disease analyses, and identified miRNAs could facilitate developments of effective regimens for chronic sequelae of COVID-19 especially in this post-pandemic era. However, further studies and clinical trials are needed to substantiate the effectiveness and dosages for COVID-19 treatments.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Sher Singh
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
12
|
Shin-Ya M, Nakashio M, Ohgitani E, Suganami A, Kawamoto M, Ichitani M, Kobayashi M, Takihara T, Inaba T, Nukui Y, Kinugasa H, Ishikura H, Tamura Y, Mazda O. Effects of tea, catechins and catechin derivatives on Omicron subvariants of SARS-CoV-2. Sci Rep 2023; 13:16577. [PMID: 37789046 PMCID: PMC10547759 DOI: 10.1038/s41598-023-43563-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023] Open
Abstract
The Omicron subvariants of SARS-CoV-2 have multiple mutations in the S-proteins and show high transmissibility. We previously reported that tea catechin (-)-epigallocatechin gallate (EGCG) and its derivatives including theaflavin-3,3'-di-O-digallate (TFDG) strongly inactivated the conventional SARS-CoV-2 by binding to the receptor binding domain (RBD) of the S-protein. Here we show that Omicron subvariants were effectively inactivated by green tea, Matcha, and black tea. EGCG and TFDG strongly suppressed infectivity of BA.1 and XE subvariants, while effect on BA.2.75 was weaker. Neutralization assay showed that EGCG and TFDG inhibited interaction between BA.1 RBD and ACE2. In silico analyses suggested that N460K, G446S and F490S mutations in RBDs crucially influenced the binding of EGCG/TFDG to the RBDs. Healthy volunteers consumed a candy containing green tea or black tea, and saliva collected from them immediately after the candy consumption significantly decreased BA.1 virus infectivity in vitro. These results indicate specific amino acid substitutions in RBDs that crucially influence the binding of EGCG/TFDG to the RBDs and different susceptibility of each Omicron subvariant to EGCG/TFDG. The study may suggest molecular basis for potential usefulness of these compounds in suppression of mutant viruses that could emerge in the future and cause next pandemic.
Collapse
Affiliation(s)
- Masaharu Shin-Ya
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Molecular Anti-Virus Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Maiko Nakashio
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Eriko Ohgitani
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaya Kawamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ichitani
- Department of Molecular Anti-Virus Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Central Research Institute, ITO EN, Ltd, Shizuoka, Japan
| | | | | | - Tohru Inaba
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Hiroyasu Ishikura
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Department of Molecular Anti-Virus Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
13
|
Knany HR, Elsabbagh SA, Shehata MA, Eldehna WM, Bekhit AA, Ibrahim TM. In silico screening of SARS-CoV2 helicase using African natural products: Docking and molecular dynamics approaches. Virology 2023; 587:109863. [PMID: 37586235 DOI: 10.1016/j.virol.2023.109863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
In the current medical era, there is an urgent necessity to identify new effective drugs to enrich the COVID-19's therapeutic arsenal. The SARS-COV-2 NSP13/helicase enzyme has been identified as a potential target for developing novel COVID-19 inhibitors. In this work, we aimed at endorsing effective natural products with potential inhibitory action towards the NSP13 through the virtual screening of 1012 natural products of botanical and marine origin from the South African Natural Compounds Database (SANCDB). The molecules were docked into the NTPase active site, and the best twelve compounds were chosen for further analysis. Thereafter, a combination of molecular dynamics simulations and MM-GBSA free energy calculations were carried out for a subset of best hits complexed with NSP13 helicase. We believe that the findings of this work will pave the way for additional research and experimental validation of some natural products as viable NSP13 helicase inhibitors.
Collapse
Affiliation(s)
- Hamada R Knany
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherif A Elsabbagh
- Biochemistry Department, Institute of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Moustafa A Shehata
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, P.O. Box 32038, Kingdom of Bahrain
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
14
|
Emanuel J, Papies J, Galander C, Adler JM, Heinemann N, Eschke K, Merz S, Pischon H, Rose R, Krumbholz A, Kulić Ž, Lehner MD, Trimpert J, Müller MA. In vitro and in vivo effects of Pelargonium sidoides DC. root extract EPs ® 7630 and selected constituents against SARS-CoV-2 B.1, Delta AY.4/AY.117 and Omicron BA.2. Front Pharmacol 2023; 14:1214351. [PMID: 37564181 PMCID: PMC10410074 DOI: 10.3389/fphar.2023.1214351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
The occurrence of immune-evasive SARS-CoV-2 strains emphasizes the importance to search for broad-acting antiviral compounds. Our previous in vitro study showed that Pelargonium sidoides DC. root extract EPs® 7630 has combined antiviral and immunomodulatory properties in SARS-CoV-2-infected human lung cells. Here we assessed in vivo effects of EPs® 7630 in SARS-CoV-2-infected hamsters, and investigated properties of EPs® 7630 and its functionally relevant constituents in context of phenotypically distinct SARS-CoV-2 variants. We show that EPs® 7630 reduced viral load early in the course of infection and displayed significant immunomodulatory properties positively modulating disease progression in hamsters. In addition, we find that EPs® 7630 differentially inhibits SARS-CoV-2 variants in nasal and bronchial human airway epithelial cells. Antiviral effects were more pronounced against Omicron BA.2 compared to B.1 and Delta, the latter two preferring TMPRSS2-mediated fusion with the plasma membrane for cell entry instead of receptor-mediated low pH-dependent endocytosis. By using SARS-CoV-2 Spike VSV-based pseudo particles (VSVpp), we confirm higher EPs® 7630 activity against Omicron Spike-VSVpp, which seems independent of the serine protease TMPRSS2, suggesting that EPs® 7630 targets endosomal entry. We identify at least two molecular constituents of EPs® 7630, i.e., (-)-epigallocatechin and taxifolin with antiviral effects on SARS-CoV-2 replication and cell entry. In summary, our study shows that EPs® 7630 ameliorates disease outcome in SARS-CoV-2-infected hamsters and has enhanced activity against Omicron, apparently by limiting late endosomal SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Jackson Emanuel
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Jan Papies
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Celine Galander
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Julia M. Adler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| | - Kathrin Eschke
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | | | - Ruben Rose
- Institute for Infection Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Žarko Kulić
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe, Germany
| | - Martin D. Lehner
- Preclinical R&D, Dr. Willmar Schwabe GmbH and Co. KG, Karlsruhe, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Marcel A. Müller
- Institute of Virology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Charité, Berlin, Germany
| |
Collapse
|
15
|
Rafiq A, Jabeen T, Aslam S, Ahmad M, Ashfaq UA, Mohsin NUA, Zaki MEA, Al-Hussain SA. A Comprehensive Update of Various Attempts by Medicinal Chemists to Combat COVID-19 through Natural Products. Molecules 2023; 28:4860. [PMID: 37375415 PMCID: PMC10305344 DOI: 10.3390/molecules28124860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The ongoing COVID-19 pandemic has resulted in a global panic because of its continual evolution and recurring spikes. This serious malignancy is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the outbreak, millions of people have been affected from December 2019 till now, which has led to a great surge in finding treatments. Despite trying to handle the pandemic with the repurposing of some drugs, such as chloroquine, hydroxychloroquine, remdesivir, lopinavir, ivermectin, etc., against COVID-19, the SARS-CoV-2 virus continues its out-of-control spread. There is a dire need to identify a new regimen of natural products to combat the deadly viral disease. This article deals with the literature reports to date of natural products showing inhibitory activity towards SARS-CoV-2 through different approaches, such as in vivo, in vitro, and in silico studies. Natural compounds targeting the proteins of SARS-CoV-2-the main protease (Mpro), papain-like protease (PLpro), spike proteins, RNA-dependent RNA polymerase (RdRp), endoribonuclease, exoribonuclease, helicase, nucleocapsid, methyltransferase, adeno diphosphate (ADP) phosphatase, other nonstructural proteins, and envelope proteins-were extracted mainly from plants, and some were isolated from bacteria, algae, fungi, and a few marine organisms.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Tooba Jabeen
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
16
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Chen Y, Liu Z, Gong Y. Neuron-immunity communication: mechanism of neuroprotective effects in EGCG. Crit Rev Food Sci Nutr 2023; 64:9333-9352. [PMID: 37216484 DOI: 10.1080/10408398.2023.2212069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Epigallocatechin gallate (EGCG), a naturally occurring active ingredient unique to tea, has been shown to have neuroprotective potential. There is growing evidence of its potential advantages in the prevention and treatment of neuroinflammation, neurodegenerative diseases, and neurological damage. Neuroimmune communication is an important physiological mechanism in neurological diseases, including immune cell activation and response, cytokine delivery. EGCG shows great neuroprotective potential by modulating signals related to autoimmune response and improving communication between the nervous system and the immune system, effectively reducing the inflammatory state and neurological function. During neuroimmune communication, EGCG promotes the secretion of neurotrophic factors into the repair of damaged neurons, improves intestinal microenvironmental homeostasis, and ameliorates pathological phenotypes through molecular and cellular mechanisms related to the brain-gut axis. Here, we discuss the molecular and cellular mechanisms of inflammatory signaling exchange involving neuroimmune communication. We further emphasize that the neuroprotective role of EGCG is dependent on the modulatory role between immunity and neurology in neurologically related diseases.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Educatioxn, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
18
|
Mohammed MA. Fighting cytokine storm and immunomodulatory deficiency: By using natural products therapy up to now. Front Pharmacol 2023; 14:1111329. [PMID: 37124230 PMCID: PMC10134036 DOI: 10.3389/fphar.2023.1111329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
A novel coronavirus strain (COVID-19) caused severe illness and mortality worldwide from 31 December 2019 to 21 March 2023. As of this writing, 761,071,826 million cases have been diagnosed worldwide, with 6,879,677 million deaths accorded by WHO organization and has spread to 228 countries. The number of deaths is closely connected to the growth of innate immune cells in the lungs, mainly macrophages, which generate inflammatory cytokines (especially IL-6 and IL-1β) that induce "cytokine storm syndrome" (CSS), multi-organ failure, and death. We focus on promising natural products and their biologically active chemical constituents as potential phytopharmaceuticals that target virus-induced pro-inflammatory cytokines. Successful therapy for this condition is currently rare, and the introduction of an effective vaccine might take months. Blocking viral entrance and replication and regulating humoral and cellular immunity in the uninfected population are the most often employed treatment approaches for viral infections. Unfortunately, no presently FDA-approved medicine can prevent or reduce SARS-CoV-2 access and reproduction. Until now, the most important element in disease severity has been the host's immune response activation or suppression. Several medicines have been adapted for COVID-19 patients, including arbidol, favipiravir, ribavirin, lopinavir, ritonavir, hydroxychloroquine, chloroquine, dexamethasone, and anti-inflammatory pharmaceutical drugs, such as tocilizumab, glucocorticoids, anakinra (IL-1β cytokine inhibition), and siltuximab (IL-6 cytokine inhibition). However, these synthetic medications and therapies have several side effects, including heart failure, permanent retinal damage in the case of hydroxyl-chloroquine, and liver destruction in the case of remdesivir. This review summarizes four strategies for fighting cytokine storms and immunomodulatory deficiency induced by COVID-19 using natural product therapy as a potential therapeutic measure to control cytokine storms.
Collapse
Affiliation(s)
- Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
19
|
Barh D, Aburjaile FF, Tavares TS, da Silva ME, Bretz GPM, Rocha IFM, Dey A, de Souza RP, Góes-Neto A, Ribeiro SP, Alzahrani KJ, Alghamdi AA, Alzahrani FM, Halawani IF, Tiwari S, Aljabali AAA, Lundstrom K, Azevedo V, Ganguly NK. Indian food habit & food ingredients may have a role in lowering the severity & high death rate from COVID-19 in Indians: findings from the first nutrigenomic analysis. Indian J Med Res 2023; 157:293-303. [PMID: 37102510 PMCID: PMC10438415 DOI: 10.4103/ijmr.ijmr_1701_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 04/28/2023] Open
Abstract
Background & objectives During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food components across four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case-control studies are required to support our current findings.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics & Applied Biotechnology, Purba Medinipur, West Bengal, India
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventative Veterinary Medicine, School of Veterinary Medicine, Belo Horizonte, Brazil
| | - Thais Silva Tavares
- Department of Laboratory of Algorithms in Biology, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | | | | - Igor Fernando Martins Rocha
- Department of Centre of Research on Health Vulnerability, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Annesha Dey
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics & Applied Biotechnology, Purba Medinipur, West Bengal, India
| | - Renan Pedra de Souza
- Department of Laboratory of Integrative Biology, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Aristóteles Góes-Neto
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Sérvio Pontes Ribeiro
- Department of Laboratory of Ecology of Diseases & Forests, Nucleus of Biological Research, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahmad A. Alghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim Faisal Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sandeep Tiwari
- Department of Post-Graduation Programs in Microbiology and Immunology, Institute of Biology and Health Sciences, Federal University of Bahia, Salvador, BA, Brazil
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | | | - Vasco Azevedo
- Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Nirmal Kumar Ganguly
- Policy Center for Biomedical Research, Translational Health Science & Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
20
|
Storozhuk M, Lee S, Lee JI, Park J. Green Tea Consumption and the COVID-19 Omicron Pandemic Era: Pharmacology and Epidemiology. Life (Basel) 2023; 13:life13030852. [PMID: 36984007 PMCID: PMC10054848 DOI: 10.3390/life13030852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In spite of the development of numerous vaccines for the prevention of COVID-19 and the approval of several drugs for its treatment, there is still a great need for effective and inexpensive therapies against this disease. Previously, we showed that green tea and tea catechins interfere with coronavirus replication as well as coronavirus 3CL protease activity, and also showed lower COVID-19 morbidity and mortality in countries with higher green tea consumption. However, it is not clear whether green tea is still effective against the newer SARS-CoV-2 variants including omicron. It is also not known whether higher green tea consumption continues to contribute to lower COVID-19 morbidity and mortality now that vaccination rates in many countries are high. Here, we attempted to update the information regarding green tea in relation to COVID-19. Using pharmacological and ecological approaches, we found that EGCG as well as green tea inhibit the activity of the omicron variant 3CL protease efficiently, and there continues to be pronounced differences in COVID-19 morbidity and mortality between groups of countries with high and low green tea consumption as of December 6, 2022. These results collectively suggest that green tea continues to be effective against COVID-19 despite the new omicron variants and increased vaccination.
Collapse
Affiliation(s)
- Maksim Storozhuk
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine
| | - Siyun Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Jin I Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
21
|
Yang JY, Ma YX, Liu Y, Peng XJ, Chen XZ. A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity. Molecules 2023; 28:molecules28062735. [PMID: 36985705 PMCID: PMC10054335 DOI: 10.3390/molecules28062735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has majorly impacted public health and economies worldwide. Although several effective vaccines and drugs are now used to prevent and treat COVID-19, natural products, especially flavonoids, showed great therapeutic potential early in the pandemic and thus attracted particular attention. Quercetin, baicalein, baicalin, EGCG (epigallocatechin gallate), and luteolin are among the most studied flavonoids in this field. Flavonoids can directly or indirectly exert antiviral activities, such as the inhibition of virus invasion and the replication and inhibition of viral proteases. In addition, flavonoids can modulate the levels of interferon and proinflammatory factors. We have reviewed the previously reported relevant literature researching the pharmacological anti-SARS-CoV-2 activity of flavonoids where structures, classifications, synthetic pathways, and pharmacological effects are summarized. There is no doubt that flavonoids have great potential in the treatment of COVID-19. However, most of the current research is still in the theoretical stage. More studies are recommended to evaluate the efficacy and safety of flavonoids against SARS-CoV-2.
Collapse
Affiliation(s)
- Jun-Yu Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Xuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Jun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
22
|
Edible alginate-based films with anti-SARS-CoV-2 activity. Food Microbiol 2023; 113:104251. [PMID: 37098418 PMCID: PMC9995353 DOI: 10.1016/j.fm.2023.104251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
The viability of SARS-CoV-2 on food surfaces and its propagation through the food chain has been discussed by several stakeholders, as it may represent a serious public health problem, bringing new challenges to the food system. This work shows for the first time that edible films can be used against SARS-CoV-2. Sodium alginate-based films containing gallic acid, geraniol, and green tea extract were evaluated in terms of their antiviral activity against SARS-CoV-2. The results showed that all these films have strong in vitro antiviral activity against this virus. However, a higher concentration of the active compound (1.25%) is needed for the film containing gallic acid to achieve similar results to those obtained for lower concentrations of geraniol and green tea extract (0.313%). Furthermore, critical concentrations of the active compounds in the films were used to evaluate their stability during storage. Results showed that gallic acid-loaded films lose their activity from the second week of storage, while films with geraniol and green tea extract only show a drop in activity after four weeks. These results highlight the possibility of using edible films and coatings as antiviral materials on food surfaces or food contact materials, which may help to reduce the spreading of viruses through the food chain.
Collapse
|
23
|
Coronado MA, Gering I, Sevenich M, Olivier DS, Mastalipour M, Amaral MS, Willbold D, Eberle RJ. The Importance of Epigallocatechin as a Scaffold for Drug Development against Flaviviruses. Pharmaceutics 2023; 15:pharmaceutics15030803. [PMID: 36986663 PMCID: PMC10053286 DOI: 10.3390/pharmaceutics15030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Arboviruses such as Dengue, yellow fever, West Nile, and Zika are flaviviruses vector-borne RNA viruses transmitted biologically among vertebrate hosts by blood-taking vectors. Many flaviviruses are associated with neurological, viscerotropic, and hemorrhagic diseases, posing significant health and socioeconomic concerns as they adapt to new environments. Licensed drugs against them are currently unavailable, so searching for effective antiviral molecules is still necessary. Epigallocatechin molecules, a green tea polyphenol, have shown great virucidal potential against flaviviruses, including DENV, WNV, and ZIKV. The interaction of EGCG with the viral envelope protein and viral protease, mainly identified by computational studies, describes the interaction of these molecules with viral proteins; however, how the viral NS2B/NS3 protease interacts with epigallocatechin molecules is not yet fully deciphered. Consequently, we tested the antiviral potential of two epigallocatechin molecules (EGC and EGCG) and their derivative (AcEGCG) against DENV, YFV, WNV, and ZIKV NS2B/NS3 protease. Thus, we assayed the effect of the molecules and found that a mixture of the molecules EGC (competitive) and EGCG (noncompetitive) inhibited the virus protease of YFV, WNV, and ZIKV more effectively with IC50 values of 1.17 ± 0.2 µM, 0.58 ± 0.07 µM, and 0.57 ± 0.05 µM, respectively. As these molecules fundamentally differ in their inhibitory mode and chemical structure, our finding may open a new line for developing more effective allosteric/active site inhibitors to combat flaviviruses infection.
Collapse
Affiliation(s)
- Mônika A. Coronado
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Correspondence: (M.A.C.); (R.J.E.); Tel.: +49-2461-61-9505 (M.A.C. & R.J.E.)
| | - Ian Gering
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Marc Sevenich
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Priavoid GmbH, Merowingerplatz 1A, 40225 Düsseldorf, Germany
| | - Danilo S. Olivier
- Integrated Sciences Center, Campus Cimba, Federal University of Tocantins, Araguaína 77824-838, TO, Brazil
| | - Mohammadamin Mastalipour
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
| | - Marcos S. Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- JuStruct: Jülich Centre for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Raphael J. Eberle
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße, 40225 Düsseldorf, Germany
- Correspondence: (M.A.C.); (R.J.E.); Tel.: +49-2461-61-9505 (M.A.C. & R.J.E.)
| |
Collapse
|
24
|
Zhu Y, Saribas AS, Liu J, Lin Y, Bodnar B, Zhao R, Guo Q, Ting J, Wei Z, Ellis A, Li F, Wang X, Yang X, Wang H, Ho WZ, Yang L, Hu W. Protein expression/secretion boost by a novel unique 21-mer cis-regulatory motif (Exin21) via mRNA stabilization. Mol Ther 2023; 31:1136-1158. [PMID: 36793212 PMCID: PMC9927791 DOI: 10.1016/j.ymthe.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/24/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Boosting protein production is invaluable in both industrial and academic applications. We discovered a novel expression-increasing 21-mer cis-regulatory motif (Exin21) that inserts between SARS-CoV-2 envelope (E) protein-encoding sequence and luciferase reporter gene. This unique Exin21 (CAACCGCGGTTCGCGGCCGCT), encoding a heptapeptide (QPRFAAA, designated as Qα), significantly (34-fold on average) boosted E production. Both synonymous and nonsynonymous mutations within Exin21 diminished its boosting capability, indicating the exclusive composition and order of 21 nucleotides. Further investigations demonstrated that Exin21/Qα addition could boost the production of multiple SARS-CoV-2 structural proteins (S, M, and N) and accessory proteins (NSP2, NSP16, and ORF3), and host cellular gene products such as IL-2, IFN-γ, ACE2, and NIBP. Exin21/Qα enhanced the packaging yield of S-containing pseudoviruses and standard lentivirus. Exin21/Qα addition on the heavy and light chains of human anti-SARS-CoV monoclonal antibody robustly increased antibody production. The extent of such boosting varied with protein types, cellular density/function, transfection efficiency, reporter dosage, secretion signaling, and 2A-mediated auto-cleaving efficiency. Mechanistically, Exin21/Qα increased mRNA synthesis/stability, and facilitated protein expression and secretion. These findings indicate that Exin21/Qα has the potential to be used as a universal booster for protein production, which is of importance for biomedicine research and development of bioproducts, drugs, and vaccines.
Collapse
Affiliation(s)
- Yuanjun Zhu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - A. Sami Saribas
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Jinbiao Liu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yuan Lin
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Brittany Bodnar
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ruotong Zhao
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Qian Guo
- Department of Medical Genetics & Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Julia Ting
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Zhengyu Wei
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Aidan Ellis
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fang Li
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA,Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ling Yang
- Department of Medical Genetics & Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
25
|
Dinda B, Dinda S, Dinda M. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3- O-gallate (EGCG) in SARS-CoV-2 infection: Major interactions with host/virus proteases. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 3:100402. [PMID: 36597465 PMCID: PMC9800022 DOI: 10.1016/j.phyplu.2022.100402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The current COVID-19 pandemic from the human pathogenic virus SARS-CoV-2 has resulted in a major health hazard globally. The morbidity and transmission modality of this disease are severe and uncontrollable. As no effective clinical drugs are available for treatment of COVID-19 infection till to date and only vaccination is used as prophylaxis and its efficacy is restricted due to emergent of new variants of SARS-CoV-2, there is an urgent need for effective drugs for its treatment. PURPOSE The aim of this review was to provide a detailed analysis of anti-SARS-CoV-2 efficacy of (-)-epigallocatechin-3-O-gallate (EGCG), a major catechin constituent of green tea (Camellia sinensis (L.) Kuntze) beverage to highlight the scope of EGCG in clinical medicine as both prophylaxis and treatment of present COVID-19 infection. In addition, the factors related to poor oral bioavailabilty of EGCG was also analysed for a suggestion for future research in this direction. STUDY DESIGN We collected the published articles related to anti-SARS-CoV-2 activity of EGCG against the original strain (Wuhan type) and its newly emerged variants of SARS-CoV-2 virus. METHODS A systematic search on the published literature was conducted in various databases including Google Scholar, PubMed, Science Direct and Scopus to collect the relevant literature. RESULTS The findings of this search demonstrate that EGCG shows potent antiviral activity against SARS-CoV-2 virus by preventing viral entry and replication in host cells in vitro models. The studies on the molecular mechanisms of EGCG in inhibition of SARS-CoV-2 infection in host cells reveal that EGCG blocks the entry of the virus particles by interaction with the receptor binding domain (RBD) of viral spike (S) protein to host cell surface receptor protease angiotensin-converting enzyme 2 (ACE2) as well as suppression of the expressions of host proteases, ACE2, TMPRSS2 and GRP78, required for viral entry, by Nrf2 activation in host cells. Moreover, EGCG inhibits the activities of SARS-CoV-2 main protease (Mpro), papain-like protease (PLpro), endoribonuclease Nsp15 in vitro models and of RNA-dependent RNA polymerase (RdRp) in molecular docking model for suppression of viral replication. In addition, EGCG significantly inhibits viral inflammatory cytokine production by stimulating Nrf2- dependent host immune response in virus-infected cells. EGCG significantly reduces the elevated levels of HMGB1, a biomarker of sepsis, lung fibrosis and thrombotic complications in viral infections. EGCG potentially inhibits the infection of original (Wuhan type) strain of SARS-CoV-2 and other newly emerged variants as well as the infections of SARS-CoV-2 virus spike-protein of WT and its mutants-mediated pseudotyped viruses . EGCG shows maximum inhibitory effect against SARS-CoV-2 infection when the host cells are pre-incubated with the drug prior to viral infection. A sorbitol/lecithin-based throat spray containing concentrated green tea extract rich in EGCG content significantly reduces SARS-CoV-2 infectivity in oral mucosa. Several factors including degradation in gastrointestinal environment, low absorption in small intestine and extensive metabolism of EGCG are responsible for its poor bioavailability in humans. Pharmacokinetic and metabolism studies of EGCG in humans reveal poor bioavailability of EGCG in human plasma and EGCG-4"-sulfate is its major metabolite. The concentration of EGCG-4"-sulfate in human plasma is almost equivalent to that of free EGCG (Cmax 177.9 vs 233.5 nmol/L). These findings suggest that inhibition of sulfation of EGCG is a crucial factor for improvement of its bioavailability. In vitro study on the mechanism of EGCG sulfonation indicates that sulfotransferases, SULT1A1 and SULT1A3 are responsible for sulfonation in human liver and small intestine, respectively. Some attempts including structural modifications, and nanoformulations of EGCG and addition of nutrients with EGCG have been made to improve the bioavailability of EGCG. CONCLUSIONS The findings of this study suggest that EGCG has strong antiviral activity against SARS-CoV-2 infection independent of viral strains (Wuhan type (WT), other variants) by inhibition of viral entry and replication in host cells in vitro models. EGCG may be useful in reduction of this viral load in salivary glands of COVID-19 patients, if it is applied in mouth and throat wash formulations in optimal concentrations. EGCG could be a promising candidate in the development of effective vaccine for prevention of the infections of newly emergent strains of SARS-CoV-2 virus. EGCG might be useful also as a clinical medicine for treatment of COVID-19 patients if its bioavailability in human plasma is enhanced.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Suryamaninagar, Agartala, Tripura, 799 022, India
| | - Subhajit Dinda
- Department of Chemistry, Kamalpur Govt Degree College, Dhalai,Tripura, 799 285, India
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, 1300 Jefferson Park Ave, VA, 22908, United States of America
| |
Collapse
|
26
|
Zhang Z, Hao M, Zhang X, He Y, Chen X, Taylor EW, Zhang J. Potential of green tea EGCG in neutralizing SARS-CoV-2 Omicron variant with greater tropism toward the upper respiratory tract. Trends Food Sci Technol 2023; 132:40-53. [PMID: 36594074 PMCID: PMC9796359 DOI: 10.1016/j.tifs.2022.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Background COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity. The robust transmission of Omicron despite attenuated disease severity still poses a great challenge for pandemic control. Under this circumstance, its tropism shift may be utilized for discovering effective preventive approaches. Scope and approach This review aims to estimate the potential of green tea epigallocatechin gallate (EGCG), the most potent antiviral catechin, in neutralizing SARS-CoV-2 Omicron variant, based on current knowledge concerning EGCG distribution in tissues and Omicron tropism. Key findings and conclusions EGCG has a low bioavailability. Plasma EGCG levels are in the range of submicromolar concentrations following green tea drinking, or reach at most low μM concentrations after pharmacological intervention. Nonetheless, its levels in the upper respiratory tract could reach concentrations as high as tens or even hundreds of μM following green tea consumption or pharmacological intervention. An approach for delivering sufficiently high concentrations of EGCG in the pharynx has been developed. Convincing data have demonstrated that EGCG at tens to hundreds of μM can dramatically neutralize SARS-CoV-2 and effectively eliminate SARS-CoV-2-induced cytopathic effects and plaque formation. Thus, EGCG, which exhibits hyperaccumulation in the upper respiratory tract, deserves closer investigation as an antiviral in the current global battle against COVID-19, given Omicron's greater tropism toward the upper respiratory tract.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- COVID-19
- EGCG
- EGCG, epigallocatechin-3-gallate
- GRP78, glucose-regulated protein 78
- HO-1, hemeoxygenase 1
- IFN-β, interferon-β
- Mpro, main protease
- MxA, MxGTPases
- Nrf2, nuclear factor erythroid 2 p45-related factor 2
- Nsp15, nonstructural protein 15
- Omicron variant
- SARS-CoV-2
- TMPRSS2, transmembrane serine protease 2
- The upper respiratory tract
- Tropism
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiongsheng Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
27
|
Shrivastava AK, Sahu PK, Cecchi T, Shrestha L, Shah SK, Gupta A, Palikhey A, Joshi B, Gupta PP, Upadhyaya J, Paudel M, Koirala N. An emerging natural antioxidant therapy for COVID‐19 infection patients: Current and future directions. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Amit Kumar Shrivastava
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Prafulla Kumar Sahu
- School of Pharmacy Centurion University of Technology and Management Bhubaneswar Odisha India
| | | | - Laxmi Shrestha
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Sanjay Kumar Shah
- Department of Reproductive MedicineJoint Inter‐national Research Laboratory of Reproduction and DevelopmentChongquing Medical University ChongqingPeople's Republic of China
| | - Anamika Gupta
- Sharjah Institute for Medical Sciences University of Sharjah Sharjah United Arab Emirates
| | - Anjan Palikhey
- Department of Pharmacology Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Bishal Joshi
- Department of Physiology, Universal College of Medical Sciences Bhairahawa Rupandehi Nepal
| | - Pramodkumar P. Gupta
- School of Biotechnology and Bioinformatics D. Y. Patil Deemed to be University, CBD Belapur Navi Mumbai India
| | - Jitendra Upadhyaya
- Institute of Agriculture and Animal Science Tribhuvan University Chitwan Nepal
| | - Mahendra Paudel
- Department of Agri‐Botany and Ecology Institute of Agriculture and Animal Science Tribhuvan University Mahendranagar Nepal
| | - Niranjan Koirala
- Natural Products Research FacilityGandaki Province Academy of Science and Technology Pokhara, Gandaki Province Nepal
| |
Collapse
|
28
|
Baranova A, Song Y, Cao H, Yue W, Zhang F. Causal associations of tea intake with COVID-19 infection and severity. Front Nutr 2023; 9:1005466. [PMID: 36687732 PMCID: PMC9848307 DOI: 10.3389/fnut.2022.1005466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023] Open
Abstract
Tea ingredients can effectively inhibit SARS-CoV-2 infection at adequate concentrations. It is not known whether tea intake could impact the susceptibility to COVID-19 or its severity. We aimed to evaluate the causal effects of tea intake on COVID-19 outcomes. We performed Mendelian randomization (MR) analyses to assess the causal associations between tea intake (N = 441,279) and three COVID-19 outcomes, including SARS-CoV-2 infection (122,616 cases and 2,475,240 controls), hospitalized COVID-19 (32,519 cases and 2,062,805 controls), and critical COVID-19 (13,769 cases and 1,072,442 controls). The MR analyses indicated that genetic propensity for tea consumption conferred a negative causal effect on the risk of SARS-CoV-2 infection (OR: 0.87, 95% confidence interval (CI): 0.78-0.97, P = 0.015). No causal effects on hospitalized COVID-19 (0.84, 0.64-1.10, P = 0.201) or critical COVID-19 (0.73, 0.51-1.03, P = 0.074) were detected. Our study revealed that tea intake could decrease the risk of SARS-CoV-2 infection, highlighting the potential preventive effect of tea consumption on COVID-19 transmission.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, VA, United States,Research Centre for Medical Genetics, Moscow, Russia
| | - Yuqing Song
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China,NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China,NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China,Chinese Institute for Brain Research, Beijing, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Fuquan Zhang ✉
| |
Collapse
|
29
|
Chda A, Bencheikh R. Flavonoids as G Protein-coupled Receptors Ligands: New Potential Therapeutic Natural Drugs. Curr Drug Targets 2023; 24:1346-1363. [PMID: 38037994 DOI: 10.2174/0113894501268871231127105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
G protein coupled receptors (GPCRs) are among the largest family of cell surface receptors found in the human genome. They govern a wide range of physiological responses in both health and diseases, making them one of the potential targeted surface receptors for pharmaceuticals. Flavonoids can modulate GPCRs activity by acting as allosteric ligands. They can either enhance or reduce the GPCR's effect. Emerging research shows that individual flavonoids or mixtures of flavonoids from plant extracts can have relevant pharmacological effects against a number of diseases, particularly by influencing GPCRs. In the present review, we are considering to give a comprehensive overview of flavonoids and related compounds that exhibit GPCRs activity and to further explore which beneficial structural features. Molecular docking was used to strengthen experimental evidence and describe flavonoid-GPCRs interactions at molecular level.
Collapse
Affiliation(s)
- Alae Chda
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LM2BM), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Road of Immouzer, PO Box 2202, Fez, Morocco
- Higher Institute of Nursing and Health Techniques - Fez. Ministry of Health and Social Protection, Fez, Morocco
| | - Rachid Bencheikh
- Laboratory of Microbial Biotechnology and Bioactive Molecules (LM2BM), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Road of Immouzer, PO Box 2202, Fez, Morocco
| |
Collapse
|
30
|
Dofuor AK, Quartey NKA, Osabutey AF, Boateng BO, Lutuf H, Osei JHN, Ayivi-Tosuh SM, Aiduenu AF, Ekloh W, Loh SK, Opoku MJ, Aidoo OF. The Global Impact of COVID-19: Historical Development, Molecular Characterization, Drug Discovery and Future Directions. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231218075. [PMID: 38144436 PMCID: PMC10748929 DOI: 10.1177/2632010x231218075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
In December 2019, an outbreak of a respiratory disease called the coronavirus disease 2019 (COVID-19) caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China. The SARS-CoV-2, an encapsulated positive-stranded RNA virus, spread worldwide with disastrous consequences for people's health, economies, and quality of life. The disease has had far-reaching impacts on society, including economic disruption, school closures, and increased stress and anxiety. It has also highlighted disparities in healthcare access and outcomes, with marginalized communities disproportionately affected by the SARS-CoV-2. The symptoms of COVID-19 range from mild to severe. There is presently no effective cure. Nevertheless, significant progress has been made in developing COVID-19 vaccine for different therapeutic targets. For instance, scientists developed multifold vaccine candidates shortly after the COVID-19 outbreak after Pfizer and AstraZeneca discovered the initial COVID-19 vaccines. These vaccines reduce disease spread, severity, and mortality. The addition of rapid diagnostics to microscopy for COVID-19 diagnosis has proven crucial. Our review provides a thorough overview of the historical development of COVID-19 and molecular and biochemical characterization of the SARS-CoV-2. We highlight the potential contributions from insect and plant sources as anti-SARS-CoV-2 and present directions for future research.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Selina Mawunyo Ayivi-Tosuh
- Department of Biochemistry, School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, China
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr Opoku
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
31
|
Ge J, Song T, Li M, Chen W, Li J, Gong S, Zhao Y, Ma L, Yu H, Li X, Fu K. The medicinal value of tea drinking in the management of COVID-19. Heliyon 2023; 9:e12968. [PMID: 36647394 PMCID: PMC9833859 DOI: 10.1016/j.heliyon.2023.e12968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is presently the largest international public health event, individuals infected by the virus not only have symptoms such as fever, dry cough, and lung infection at the time of onset, but also possibly have sequelae in the cardiovascular system, respiratory system, nervous system, mental health and other aspects. However, numerous studies have depicted that the active ingredients in tea show good antiviral effects and can treat various diseases by regulating multiple pathways, and the therapeutic effects are associated with the categories of chemical components in tea. In this review, the differences in the content of key active ingredients in different types of tea are summarized. In addition, we also highlighted their effects on COVID-19 and connected sequelae, further demonstrating the possibility of developing a formulation for the prevention and treatment of COVID-19 and its sequelae through tea extracts. We have a tendency to suggest forestalling and treating COVID-19 and its sequelae through scientific tea drinking.
Collapse
Affiliation(s)
- Jiaming Ge
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Tianbao Song
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Mengyuan Li
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Weisan Chen
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Jiarong Li
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Sihan Gong
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Ying Zhao
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Lin Ma
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Hongjian Yu
- Wuxi Century Bioengineering Co., Ltd., Wuxi 214000, China
| | - Xiankuan Li
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Kun Fu
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300120, Tianjin, China
| |
Collapse
|
32
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
33
|
Pu Y, He X, Chen L, Wang H, Ma Y, Jiang W. Apple polyphenols attenuate the binding ability of angiotensin converting enzyme 2 to viral proteins: Computer simulation and in vitro experiments. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Rieder AS, Deniz BF, Netto CA, Wyse ATS. A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease. Neurotox Res 2022; 40:1553-1569. [PMID: 35917086 PMCID: PMC9343570 DOI: 10.1007/s12640-022-00542-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 01/18/2023]
Abstract
Since the appearance of SARS-CoV-2 and the COVID-19 pandemic, the search for new approaches to treat this disease took place in the scientific community. The in silico approach has gained importance at this moment, once the methodologies used in this kind of study allow for the identification of specific protein-ligand interactions, which may serve as a filter step for molecules that can act as specific inhibitors. In addition, it is a low-cost and high-speed technology. Molecular docking has been widely used to find potential viral protein inhibitors for structural and non-structural proteins of the SARS-CoV-2, aiming to block the infection and the virus multiplication. The papain-like protease (PLpro) participates in the proteolytic processing of SARS-CoV-2 and composes one of the main targets studied for pharmacological intervention by in silico methodologies. Based on that, we performed a systematic review about PLpro inhibitors from the perspective of in silico research, including possible therapeutic molecules in relation to this viral protein. The neurological problems triggered by COVID-19 were also briefly discussed, especially relative to the similarities of neuroinflammation present in Alzheimer's disease. In this context, we focused on two molecules, curcumin and glycyrrhizinic acid, given their PLpro inhibitory actions and neuroprotective properties and potential therapeutic effects on COVID-19.
Collapse
Affiliation(s)
- Alessandra S Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Bruna F Deniz
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos Alexandre Netto
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
35
|
Zhao Y, Deng S, Bai Y, Guo J, Kai G, Huang X, Jia X. Promising natural products against SARS-CoV-2: Structure, function, and clinical trials. Phytother Res 2022; 36:3833-3858. [PMID: 35932157 PMCID: PMC9538226 DOI: 10.1002/ptr.7580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
The corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus type 2 (SARS-COV-2) poses a severe threat to human health and still spreads globally. Due to the high mutation ratio and breakthrough infection rate of the virus, vaccines and anti-COVID-19 drugs require continual improvements. Drug screening research has shown that some natural active products can target the critical proteins of SARS-CoV-2, including 3CLpro, ACE2, FURIN, and RdRp, which could produce great inhibitory effects on SARS-COV-2. In addition, some natural products have displayed activities of immunomodulation, antiinflammatory, and antihepatic failure in COVID-19 clinical trials, which may relate to their non-monomeric structures. However, further evaluation and high-quality assessments, including safety verification tests, drug interaction tests, and clinical trials, are needed to substantiate natural products' multi-target and multi-pathway effects on COVID-19. Here, we review the literature on several promising active natural products that may act as vaccine immune enhancers or provide targeted anti-COVID-19 drugs. The structures, mechanisms of action, and research progress of these natural products are analyzed, to hopefully provide effective ideas for the development of targeted drugs that possess better structure, potency, and safety.
Collapse
Affiliation(s)
- Yan Zhao
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Shanshan Deng
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Yujiao Bai
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese MedicineChengduChina
| | - Guoyin Kai
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinhe Huang
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Xu Jia
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| |
Collapse
|
36
|
Consumer Choices and Habits Related to Tea Consumption by Poles. Foods 2022; 11:foods11182873. [PMID: 36141004 PMCID: PMC9498334 DOI: 10.3390/foods11182873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Tea is one of the most consumed beverages in the world. In the literature, much attention is paid to the influence of tea and its components on human health and consumer purchasing behavior. The aim of the study was to analyze the habits of Polish consumers regarding tea consumption, brewing methods, and their choices related to tea, to describe the characteristics of tea consumers, and present their segmentation based on consumer choices and habits regarding tea consumption. The study was performed using the computer-assisted web interviewing (CAWI) method on a group of 1700 adult consumers of tea. Information about consumer choices and habits related to tea consumption was collected, including brewing method, place of tea consumption, and factors determining tea choices. Using cluster analysis, six groups of tea consumers were identified. These are “Occasional tea gourmets”, “Yerba mate drinkers”, “Tea gourmets”, “Occasional consumers”, “Undemanding tea consumers,” and “Occasional strong tea consumers”. In summary, it can be said that Poles are not tea gourmets; they prefer black tea, in bags, brewed in cups or glasses for up to 3 min, and usually drink teas without any additives, at home, several times a week, during breakfast and between meals. The most popular brand among the respondents was Lipton. Consumers have little knowledge of the health benefits of tea.
Collapse
|
37
|
A Review on Herbal Secondary Metabolites Against COVID-19 Focusing on the Genetic Variants of SARS-CoV-2. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: An outbreak of the new coronavirus disease 2019 (COVID-19) was reported in Wuhan, China, in December 2019, subsequently affecting countries worldwide and causing a pandemic. Although several vaccines, such as mRNA vaccines, inactivated vaccines, and adenovirus vaccines, have been licensed in several countries, the danger of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants persists. To date, Alpha (B.1.1.7), Beta (B.1.351, B.1.351.2, B.1.351.3), Delta (B.1.617.2, AY.1, AY.2, AY. 3), Gamma (P.1, P.1.1, P.1.2), and Iota (B.1 .526) circulating in the United States, Kappa (B.1.617.1) in India, Lambda (C.37) in Peru and Mu (B.1.621) in Colombia are considered the variants of concern and interest. Evidence Acquisition: Data were collected through the end of August 2021 by searching PubMed, Scopus, and Google Scholar databases. There were findings from in silico, in vitro cell-based, and non-cell-based investigations. Results: The potential and safety profile of herbal medicines need clarification to scientifically support future recommendations regarding the benefits and risks of their use. Conclusions: Current research results on natural products against SARS-CoV-2 and variants are discussed, and their specific molecular targets and possible mechanisms of action are summarized.
Collapse
|
38
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
39
|
Chauhan M, Bhardwaj VK, Kumar A, Kumar V, Kumar P, Enayathullah MG, Thomas J, George J, Kumar BK, Purohit R, Kumar A, Kumar S. Theaflavin 3-gallate inhibits the main protease (M pro) of SARS-CoV-2 and reduces its count in vitro. Sci Rep 2022; 12:13146. [PMID: 35908093 PMCID: PMC9338964 DOI: 10.1038/s41598-022-17558-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/27/2022] [Indexed: 12/26/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 has been recognized as an attractive drug target because of its central role in viral replication. Our previous preliminary molecular docking studies showed that theaflavin 3-gallate (a natural bioactive molecule derived from theaflavin and found in high abundance in black tea) exhibited better docking scores than repurposed drugs (Atazanavir, Darunavir, Lopinavir). In this study, conventional and steered MD-simulations analyses revealed stronger interactions of theaflavin 3-gallate with the active site residues of Mpro than theaflavin and a standard molecule GC373 (a known inhibitor of Mpro and novel broad-spectrum anti-viral agent). Theaflavin 3-gallate inhibited Mpro protein of SARS-CoV-2 with an IC50 value of 18.48 ± 1.29 μM. Treatment of SARS-CoV-2 (Indian/a3i clade/2020 isolate) with 200 μM of theaflavin 3-gallate in vitro using Vero cells and quantifying viral transcripts demonstrated reduction of viral count by 75% (viral particles reduced from Log106.7 to Log106.1). Overall, our findings suggest that theaflavin 3-gallate effectively targets the Mpro thus limiting the replication of the SARS-CoV-2 virus in vitro.
Collapse
Affiliation(s)
- Mahima Chauhan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Vijay Kumar Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.,Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Asheesh Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Vinod Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Pawan Kumar
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.,Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - M Ghalib Enayathullah
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Jessie Thomas
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Joel George
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India
| | - Bokara Kiran Kumar
- CSIR-Center for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology Complex, Uppal Road, Hyderabad, Telangana, 500007, India.
| | - Rituraj Purohit
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India. .,Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| |
Collapse
|
40
|
The green tea catechin EGCG provides proof-of-concept for a pan-coronavirus attachment inhibitor. Sci Rep 2022; 12:12899. [PMID: 35902713 PMCID: PMC9330937 DOI: 10.1038/s41598-022-17088-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 11/08/2022] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emphasized the serious threat to human health posed by emerging coronaviruses. Effective broadly-acting antiviral countermeasures are urgently needed to prepare for future emerging CoVs, as vaccine development is not compatible with a rapid response to a newly emerging virus. The green tea catechin, epigallocatechin gallate (EGCG), has broad-spectrum antiviral activity, although its mechanisms against coronavirus (CoV) infection have remained unclear. Here, we show that EGCG prevents human and murine CoV infection and blocks the entry of lentiviral particles pseudotyped with spike proteins from bat or highly pathogenic CoVs, including SARS-CoV-2 variants of concern, in lung epithelial cells. Mechanistically, EGCG treatment reduces CoV attachment to target cell surfaces by interfering with attachment to cell-surface glycans. Heparan sulfate proteoglycans are a required attachment factor for SARS-CoV-2 and are shown here to be important in endemic HCoV-OC43 infection. We show that EGCG can compete with heparin, a heparan sulfate analog, for virion binding. Our results highlight heparan sulfate as a conserved cell attachment factor for CoVs, and demonstrate the potential for the development of pan-coronavirus attachment inhibitors, which may be useful to protect against future emerging CoVs.
Collapse
|
41
|
Wang X, Lin S, Tang RWL, Lee HC, Chan HH, Choi SSA, Leung KW, Webb SE, Miller AL, Tsim KWK. Polygoni multiflori radix extracts inhibit SARS-CoV-2 pseudovirus entry in HEK293T cells and zebrafish larvae. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154154. [PMID: 35576740 PMCID: PMC9081044 DOI: 10.1016/j.phymed.2022.154154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Globally, COVID-19 has caused millions of deaths and led to unprecedented socioeconomic damage. There is therefore, in addition to vaccination, an urgent need to develop complementary effective treatments and/or protective and preventative therapies against this deadly disease. METHODS Here, a multi-component testing platform was established to screen a library of herbal extracts from traditional Chinese medicine (TCM), to identify potent herbal extracts/phytochemicals as possible therapeutics for COVID-19. We utilized assays for spike protein (S-protein) binding to angiotensin-converting enzyme II (ACE2); the enzymatic inhibition of 3CL protease; and entry of the SARS-CoV-2 pseudovirus into cultured HEK293T cells and zebrafish larvae. RESULTS Over a thousand herbal extracts were screened and approximately 20 positive hits were identified. Among these, we found that the water and ethanol extracts of Polygoni Multiflori Radix (PMR) significantly inhibited S-protein binding to ACE2, 3CL protease activity, and viral entry into the cell and fish models. The water extract was more effective than the ethanol extract, with IC50 values of 25 to 500 µg/ml. In addition, the polysaccharide-depleted fraction of the former, and epigallocatechin gallate (EGCG) which was found in both extracts, displayed significant antiviral activity. CONCLUSIONS Our results indicate that the water and ethanol extracts of PMR have an inhibitory effect on SARS-CoV-2 pseudovirus host-cell entry. Furthermore, EGCG might be an active component of PMR, which blocks SARS-CoV-2 entry to cells. Taken together, our findings suggest that PMR might be considered as a potential treatment for COVID-19.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengying Lin
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Roy Wai-Lun Tang
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hung Chun Lee
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ho-Hin Chan
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sheyne S A Choi
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ka Wing Leung
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sarah E Webb
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Andrew L Miller
- State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Karl Wah-Keung Tsim
- Center for Chinese Medicine, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
42
|
Sadeghian M, Torabi A, Torabi S, Vafadar M, Oladi S. Therapeutic effectiveness of green tea leaf extract on clinical symptoms in children suffering viral gastroenteritis: A randomized clinical trial. Eur J Transl Myol 2022; 32. [PMID: 35791616 PMCID: PMC9580527 DOI: 10.4081/ejtm.2022.10606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The use of tea plant extract has been reported to reduce viral complications, but its role in improving viral gastritis has not been investigated. The aim of this randomized clinical trial was to evaluate the effect of green tea consumption in improving pediatric viral gastroenteritis. This clinical trial study was performed on children aged 12 to 17 years with diarrhea who were not treated within 48 hours of the onset of clinical symptoms during September 2019 to September 2020. The children were randomly assigned to a green tea leaf extract (GTE) tablet. The placebo group was considered as a control. Treatment (prescribing the tablets) was continued until a Bristol Stool Scale of 3 or 4 was obtained. Two groups were compared in terms of clinical symptoms. The complete and partial improvement was revealed in 63.2% and 31.6% respectively in the GTE group while only in 15.8% and 57.9% respectively in control group indicating a significant difference (p <0.001). The increase in the number of tablets led to higher improvement rate in response to GTE prescription. The mean hospital stay in GTE and control groups was also 1.66 ± 0.63 days and 3.36 ± 0.4 days indicated shorter hospitalization in former group (p < 0.001). The use of GTE leads to effectively improve the diarrhea as well as to reduce the hospital stay in children suffering viral gastroenteritis.
Collapse
Affiliation(s)
- Mahnaz Sadeghian
- Department of Pediatric, Ali Asghar Children's Hospital, School of Medicine, Iran University of Medical Sciences, Tehran.
| | - Ala Torabi
- Shariati Hospital, Tehran University of Medical Science, Tehran.
| | - Sara Torabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran.
| | - Mehdi Vafadar
- Ali Asghar Children's Hospital, School of Medicine, Iran University of Medical Sciences, Tehran.
| | - Shahrooz Oladi
- Aliasghar Clinical Research Development Center, School of Medicine, Iran University of Medical Sciences, Tehran.
| |
Collapse
|
43
|
Ngwe Tun MM, Luvai E, Nwe KM, Toume K, Mizukami S, Hirayama K, Komatsu K, Morita K. Anti-SARS-CoV-2 activity of various PET-bottled Japanese green teas and tea compounds in vitro. Arch Virol 2022; 167:1547-1557. [PMID: 35606466 PMCID: PMC9126694 DOI: 10.1007/s00705-022-05483-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to global public health. The emergence of SARS-CoV-2 variants is a significant concern regarding the continued effectiveness of vaccines and antiviral therapeutics. Thus, natural products such as foods, drinks, and other compounds should be investigated for their potential to treat COVID-19. Here, we examined the in vitro antiviral activity against SARS-CoV-2 of various polyethylene terephthalate (PET)-bottled green Japanese teas and tea compounds. Six types of PET-bottled green tea were shown to inhibit SARS-CoV-2 at half-maximal inhibitory concentrations (IC50) of 121- to 323-fold dilution. Our study revealed for the first time that a variety of PET-bottled Japanese green tea drinks inhibit SARS-CoV-2 infection in a dilution-dependent manner. The tea compounds epigallocatechin gallate (EGCG) and epicatechin gallate showed virucidal activity against SARS-CoV-2, with IC50 values of 6.5 and 12.5 µM, respectively. The investigated teas and tea compounds inactivated SARS-CoV-2 in a dose-dependent manner, as demonstrated by the viral RNA levels and infectious titers. Furthermore, the green teas and EGCG showed significant inhibition at the entry and post-entry stages of the viral life cycle and inhibited the activity of the SARS-CoV-2 3CL-protease. These findings indicate that green tea drinks and tea compounds are potentially useful in prophylaxis and COVID-19 treatment.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, , Nagasaki, 852-8523, Japan.
| | - Elizabeth Luvai
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, , Nagasaki, 852-8523, Japan
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, , Nagasaki, 852-8523, Japan
| | - Kazufumi Toume
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shusaku Mizukami
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kenji Hirayama
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Katsuko Komatsu
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, , Nagasaki, 852-8523, Japan.
| |
Collapse
|
44
|
Nath M, Debnath P. Therapeutic role of traditionally used Indian medicinal plants and spices in combating COVID-19 pandemic situation. J Biomol Struct Dyn 2022:1-20. [PMID: 35773779 DOI: 10.1080/07391102.2022.2093793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is a big challenge and burning issue to the scientific community and doctors worldwide. Globally, COVID-19 has created a health disaster and adversely affects the economic growth. Although some vaccines have already emerged, no therapeutic medication has yet been approved by FDA for the treatment of COVID-19 patients. Traditionally, we have been using different medicinal plants like neem, tulsi, tea, and many spices like garlic, ginger, turmeric, black seed, onion, etc. for the treatment of flu-like diseases. In this paper, we are highlighting the recent research progress in the identification of natural products from the Indian medicinal plants and spices that have potential inhibition properties against SARS-CoV-2. This study will provide an initiative to stimulate further research by providing useful guidance to the medicinal chemists for designing new protease inhibitors effective against SARS-CoV-2 in future.
Collapse
Affiliation(s)
- Moumita Nath
- Department of Botany, Tripura University, Suryamaninagar, Tripura, India
| | - Pradip Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India
| |
Collapse
|
45
|
Zhang X, Xu P, Lin B, Deng X, Zhu J, Chen X, Liu S, Li R, Wang N, Chen L. Chimonanthus salicifolius attenuated vascular remodeling by alleviating endoplasmic reticulum stress in spontaneously hypertensive rats. Food Funct 2022; 13:6293-6305. [PMID: 35611700 DOI: 10.1039/d1fo04381a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chimonanthus salicifolius (CS), the leaves of Chimonanthus salicifolius S. Y. Hu., is an effective tea to prevent and treat hypertension in China. This study aimed to explore the effect and mechanism of CS in the protection against vascular remodeling in hypertension. Spontaneously hypertensive rats (SHRs) were orally administered with aqueous extracts of CS for 6 months. The blood pressure and morphological changes of the aorta were measured. Their mechanisms were studied by combining chemical identification, network pharmacology analysis and validation in vivo. Hypertensive rats showed an impaired vascular structure and dyslipidemia as illustrated by the increase of the vascular media thickness and collagen deposition in the aorta. CS treatment exhibited significant beneficial effects on blood pressure control and aortal morphology. A total of 21 compounds from CS were identified, which were linked to 106 corresponding targeted genes for vascular remodeling. The network pharmacology predicted that CS prevented vascular remodeling through the endoplasmic reticulum stress pathway. The in vivo experiments further showed that CS treatment upregulated Glucose-Regulated Protein 78 and downregulated CCAAT-enhancer-binding protein homologous protein at both mRNA and protein levels, paralleling reduced apoptotic cells in the arterial wall. Additionally, CS diminished the low-density lipoprotein cholesterol levels, total cholesterol contents and triglyceride/high-density lipoprotein cholesterol ratios in the sera of SHRs, which might also contribute to its protection of vessels. Collectively, CS protects against vascular modeling by suppressing endoplasmic reticulum stress-related apoptosis in hypertension, and it could be a potential agent for the prevention and treatment of vascular modeling.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China.
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Jiazhen Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Xinyi Chen
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Shuang Liu
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Rui Li
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China.
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China. .,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| | - Liping Chen
- Department of Pharmacy, Lishui hospital of traditional Chinese medicine, Lishui, Zhejiang, 323000, China. .,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310007, China.
| |
Collapse
|
46
|
Lu J, Zhang Y, Qi D, Yan C, Wu B, Huang JH, Yao J, Wu E, Zhang G. An L-theanine derivative targets against SARS-CoV-2 and its Delta and Omicron variants. Heliyon 2022; 8:e09660. [PMID: 35706933 PMCID: PMC9181633 DOI: 10.1016/j.heliyon.2022.e09660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
Recent research efforts have shown that tea has activities against SARS-CoV-2. However, the active compounds and the action mechanisms are largely unknown. Here we study the inhibitory potential of L-theanine from tea and its semi-synthesized derivative, a small-molecule fluorescent compound, ethyl 6-bromocoumarin-3-carboxylyl L-theanine (TBrC) against infection and replication of SARS-CoV-2 and the underlying mechanisms of action. We reveal that TBrC has potential activities against SARS-CoV-2 in addition to its activity against lung cancer. TBrC showed extracellular inhibition of SARS-CoV-2 Mpro/3CL and the host cell receptor ACE2 while interacting with the viral spike glycoproteins (wild-type, Delta, and Omicron mutants). Moreover, TBrC and L-theanine significantly suppressed growth and TNFα-induced nuclear transcriptional activation of NF-κB in human lung cancer cells without affecting the viability of normal lung cells, suggesting a potential protection of TBrC and L-theanine from pulmonary damages in SARS-CoV-2 infected patients, especially for lung cancer patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jing Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China
| | - Ying Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China.,Shandong YingdongYinghao Biotechnology Inc., Yantai, Shandong, 264670, China.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58105, USA
| | - Dan Qi
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, 76502, USA
| | - Chunyan Yan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China.,Department of Pharmacy, Yantai Yuhuangding Hospital (Laishan branch), Yantai, Shandong, 264003, China
| | - Benhao Wu
- Shandong YingdongYinghao Biotechnology Inc., Yantai, Shandong, 264670, China
| | - Jason H Huang
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, 76502, USA.,College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Jianwen Yao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China
| | - Erxi Wu
- Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, 76502, USA.,College of Medicine, Texas A&M University, College Station, TX, 77843, USA.,College of Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, 77843, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guoying Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, Shandong, 264005, China
| |
Collapse
|
47
|
Zhong B, Peng W, Du S, Chen B, Feng Y, Hu X, Lai Q, Liu S, Zhou ZW, Fang P, Wu Y, Gao F, Zhou H, Sun L. Oridonin Inhibits SARS-CoV-2 by Targeting Its 3C-Like Protease. SMALL SCIENCE 2022; 2:2100124. [PMID: 35600064 PMCID: PMC9111243 DOI: 10.1002/smsc.202100124] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/10/2022] [Indexed: 12/22/2022] Open
Abstract
The current COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an enormous threat to public health. The SARS-CoV-2 3C-like protease (3CLpro), which is critical for viral replication and transcription, has been recognized as an ideal drug target. Herein, it is identified that three herbal compounds, Salvianolic acid A (SAA), (-)-Epigallocatechin gallate (EGCG), and Oridonin, directly inhibit the activity of SARS-CoV-2 3CLpro. Further, blocking SARS-CoV-2 infectivity by Oridonin is confirmed in cell-based experiments. By solving the crystal structure of 3CLpro in complex with Oridonin and comparing it to that of other ligands with 3CLpro, it is identified that Oridonin binds at the 3CLpro catalytic site by forming a C-S covalent bond, which is confirmed by mass spectrometry and kinetic study, blocking substrate binding through a nonpeptidomimetic covalent binding mode. Thus, Oridonin is a novel candidate to develop a new antiviral treatment for COVID-19.
Collapse
Affiliation(s)
- Baisen Zhong
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat-sen UniversityShenzhen518107China
| | - Weiyu Peng
- Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of Sciences (CAS)Beijing100101China
| | - Shan Du
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat-sen UniversityShenzhen518107China
| | - Bingyi Chen
- School of Pharmaceutical SciencesSun Yat-sen UniversityGuangzhou510006China
| | - Yajuan Feng
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat-sen UniversityShenzhen518107China
| | - Xinfeng Hu
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat-sen UniversityShenzhen518107China
| | - Qi Lai
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat-sen UniversityShenzhen518107China
| | - Shujie Liu
- School of MedicineShenzhen Campus of Sun Yat-sen UniversityShenzhen518107China
| | - Zhong-Wei Zhou
- School of MedicineShenzhen Campus of Sun Yat-sen UniversityShenzhen518107China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryShanghai200032China
| | - Yan Wu
- Department of Pathogen MicrobiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Feng Gao
- Laboratory of Protein Engineering and VaccinesTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences (CAS)Tianjin300308China
| | - Huihao Zhou
- School of Pharmaceutical SciencesSun Yat-sen UniversityGuangzhou510006China
| | - Litao Sun
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat-sen UniversityShenzhen518107China
| |
Collapse
|
48
|
Padhiar NH, Liu JB, Wang X, Wang XL, Bodnar BH, Khan S, Wang P, Khan AI, Luo JJ, Hu WH, Ho WZ. Comparison of BNT162b2-, mRNA-1273- and Ad26.COV2.S-Elicited IgG and Neutralizing Titers against SARS-CoV-2 and Its Variants. Vaccines (Basel) 2022; 10:vaccines10060858. [PMID: 35746466 PMCID: PMC9228110 DOI: 10.3390/vaccines10060858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Because the vaccine-elicited antibody and neutralizing activity against spike protein of SARS-CoV-2 are associated with protection from COVID-19, it is important to determine the levels of specific IgG and neutralization titers against SARS-CoV-2 elicited by the vaccines. While three widely used vaccine brands (Pfizer-BNT162b2, Moderna-mRNA-1273 and Johnson-Ad26.COV2.S) are effective in preventing SARS-CoV-2 infection and alleviating COVID-19 illness, they have different efficacy against COVID-19. It is unclear whether the differences are due to varying ability of the vaccines to elicit a specific IgG antibody response and neutralization activity against spike protein of the virus. In this study, we compared the plasma IgG and neutralization titers against spike proteins of wild-type SARS-CoV-2 and eight variants in healthy subjects who received the mRNA-1273, BNT162b2 or Ad26.COV2.S vaccine. We demonstrated that subjects vaccinated with Ad26.COV2.S vaccine had significantly lower levels of IgG and neutralizing titers as compared to those who received the mRNA vaccines. While the linear regression analysis showed a positive correlation between IgG levels and neutralizing activities against SARS-CoV-2 WT and the variants, there was an overall reduction in neutralizing titers against the variants in subjects across the three groups. These findings suggest that people who received one dose of Ad26.COV2.S vaccine have a more limited IgG response and lower neutralization activity against SARS-CoV-2 WT and its variants than recipients of the mRNA vaccines. Thus, monitoring the plasma or serum levels of anti-SARS-CoV-2 spike IgG titer and neutralization activity is necessary for the selection of suitable vaccines, vaccine dosage and regimens.
Collapse
Affiliation(s)
- Nigam H. Padhiar
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
| | - Jin-Biao Liu
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiao-Long Wang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
| | - Brittany H. Bodnar
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shazheb Khan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
| | - Peng Wang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
| | - Adil I. Khan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
| | - Jin-Jun Luo
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (N.H.P.); (J.-B.L.); (X.W.); (X.-L.W.); (B.H.B.); (S.K.); (P.W.); (A.I.K.); (W.-H.H.)
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Microbiology, Immunology & Inflammation, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Correspondence: ; Tel.: +1-215-707-8858
| |
Collapse
|
49
|
Kiriacos CJ, Khedr MR, Tadros M, Youness RA. Prospective Medicinal Plants and Their Phytochemicals Shielding Autoimmune and Cancer Patients Against the SARS-CoV-2 Pandemic: A Special Focus on Matcha. Front Oncol 2022; 12:837408. [PMID: 35664773 PMCID: PMC9157490 DOI: 10.3389/fonc.2022.837408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Being "positive" has been one of the most frustrating words anyone could hear since the end of 2019. This word had been overused globally due to the high infectious nature of SARS-CoV-2. All citizens are at risk of being infected with SARS-CoV-2, but a red warning sign has been directed towards cancer and immune-compromised patients in particular. These groups of patients are not only more prone to catch the virus but also more predisposed to its deadly consequences, something that urged the research community to seek other effective and safe solutions that could be used as a protective measurement for cancer and autoimmune patients during the pandemic. Aim The authors aimed to turn the spotlight on specific herbal remedies that showed potential anticancer activity, immuno-modulatory roles, and promising anti-SARS-CoV-2 actions. Methodology To attain the purpose of the review, the research was conducted at the States National Library of Medicine (PubMed). To search databases, the descriptors used were as follows: "COVID-19"/"SARS-CoV-2", "Herbal Drugs", "Autoimmune diseases", "Rheumatoid Arthritis", "Asthma", "Multiple Sclerosis", "Systemic Lupus Erythematosus" "Nutraceuticals", "Matcha", "EGCG", "Quercetin", "Cancer", and key molecular pathways. Results This manuscript reviewed most of the herbal drugs that showed a triple action concerning anticancer, immunomodulation, and anti-SARS-CoV-2 activities. Special attention was directed towards "matcha" as a novel potential protective and therapeutic agent for cancer and immunocompromised patients during the SARS-CoV-2 pandemic. Conclusion This review sheds light on the pivotal role of "matcha" as a tri-acting herbal tea having a potent antitumorigenic effect, immunomodulatory role, and proven anti-SARS-CoV-2 activity, thus providing a powerful shield for high-risk patients such as cancer and autoimmune patients during the pandemic.
Collapse
Affiliation(s)
- Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monika Rafik Khedr
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Miray Tadros
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
50
|
Eggers M, Jungke P, Wolkinger V, Bauer R, Kessler U, Frank B. Antiviral activity of plant juices and green tea against SARS-CoV-2 and influenza virus. Phytother Res 2022; 36:2109-2115. [PMID: 35229364 PMCID: PMC9111003 DOI: 10.1002/ptr.7431] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 01/19/2023]
Abstract
Respiratory viruses pose a significant threat to global health. They initially infect the naso- and oropharyngeal regions, where they amplify, cause symptoms, and may also be transmitted to new hosts. Preventing initial infection or reducing viral loads upon infection might soothe symptoms, prevent dissemination into the lower airways, or transmission to the next individual. Several natural products have well-described direct antiviral activity or may ameliorate symptoms of respiratory infections. We thus analyzed the potential of plant-derived products to inactivate respiratory viral pathogens and determined the antiviral activity of black chokeberry (Aronia melanocarpae [Michx.] Elliott), elderberry (Sambucus nigra L.), and pomegranate (Punica granatum L.) juice, as well as green tea (Camellia sinensis [L.] Kuntze) on the infectivity of the surrogate-modified vaccinia virus Ankara, and the respiratory viruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and adenovirus Type 5. Black chokeberry and pomegranate juice, and green tea reduced SARS-CoV-2 and IAV titers by ≥80% or ≥99%. This suggests that oral rinsing with these products may reduce viral loads in the oral cavity which might prevent viral transmission.
Collapse
Affiliation(s)
- Maren Eggers
- VirologieLabor Prof. Dr. G. Enders MVZ GbRStuttgartGermany
| | - Peggy Jungke
- Technische Universität DresdenMedical Faculty Carl Gustav CarusDresdenGermany
| | - Volker Wolkinger
- Institute of Pharmaceutical SciencesUniversity of GrazGrazAustria
| | - Rudolf Bauer
- Institute of Pharmaceutical SciencesUniversity of GrazGrazAustria
| | - Uwe Kessler
- General management / R&DCogniVerde GmbHIm Oberen Rech 10Groß‐UmstadtGermany
| | - Bruno Frank
- General management / R&DCogniVerde GmbHIm Oberen Rech 10Groß‐UmstadtGermany
| |
Collapse
|