1
|
Banar M, Kamyab H, Torkashvand N, Zahraei Salehi T, Sepehrizadeh Z, Shahverdi AR, Pourmand MR, Yazdi MH. A novel broad-spectrum bacteriophage cocktail against methicillin-resistant Staphylococcus aureus: Isolation, characterization, and therapeutic potential in a mastitis mouse model. PLoS One 2025; 20:e0316157. [PMID: 39813201 PMCID: PMC11734958 DOI: 10.1371/journal.pone.0316157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025] Open
Abstract
Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics. This study evaluated the therapeutic potency of a novel bacteriophage cocktail against MRSA mastitis. Two new bacteriophages (vB_SauR_SW21 and vB_SauR_SW25) with potent lytic activity against MRSA were isolated and characterized. The one-step growth curve displayed a rapid latent period (20-35 min) and substantial burst size (418 and 316 PFU/ cell). In silico analyses have confirmed the absence of antimicrobial resistance or virulence factor-encoding genes within their genomes. According to the results, combining these phages augmented their host range and virulence. The phage cocktail significantly reduced bacterial burden in a BALB/c mastitis model, demonstrating efficacy comparable to antibiotic treatment. Moreover, its administration led to decreased concentrations of IL-1β and TNF-α compared to the negative control group. The bacteriophage cocktail (SW21-SW25) exhibits a promising profile for therapeutic applications and may represent a novel substitute to antibiotics for managing MRSA bovine mastitis.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Kamyab
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Torkashvand
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Dégi J, Morariu S, Simiz F, Herman V, Beteg F, Dégi DM. Future Challenge: Assessing the Antibiotic Susceptibility Patterns of Staphylococcus Species Isolated from Canine Otitis Externa Cases in Western Romania. Antibiotics (Basel) 2024; 13:1162. [PMID: 39766552 PMCID: PMC11672840 DOI: 10.3390/antibiotics13121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Antimicrobial resistance (AMR) has surfaced as a critical challenge to public health on a global scale. The precise and swift identification of resistance to antimicrobial agents, along with timely and suitable antimicrobial therapy paired with effective stewardship practices, is crucial for managing the rise and dissemination of antimicrobial resistance. The objective of our investigation was to outline the antimicrobial resistance profile of Staphylococcus spp., a significant contributor to canine otitis, a prevalent condition in dogs, isolated in Western Romania. METHODS AND MATERIALS All data were collected from clinical cases of canine otitis externa which presented at the University Clinic of the Faculty of Veterinary Medicine in Timișoara/Romania. A clinical evaluation was conducted, from which era swabs are usually collected and sent for analysis at the laboratory. Laboratory analysis included the microbiological examination for identifying Staphylococcus spp. and determining antibiotic susceptibility phenotypes. Statistical analysis was implemented on all data that were collected. The ear swabs were processed with standard procedures for cultivating and identifying bacteria. The resulting subcultures were processed to determine the staphylococcal species on the GP ID Cards of the Vitek® 2 automatic system. The antimicrobial susceptibility profiles were detected by the Vitek® 2 system using an AST-GP80 card. These isolated Staphylococcus spp. strains were further processed by real-time PCR and PCR-RFLP. RESULTS Of all the auricular exudate samples analyzed, 76 were positive for Staphylococcus spp. (59.38%). Within these, in 82% of auricular samples, six distinct Staphylococcus spp. were identified (Staphylococcus (S.) pseudintermedius, S. intermedius, S. hyicus, S. delphiny, S. shleiferi, and S. aureus). Our data indicate that the PCR-RFLP assay is a practical approach to S. pseudintermedius identification, allowing for discrimination from the other Staphylococcus Intermedius Group (SIG) species and important staphylococcal pathogens of dogs. The highest frequency of resistant S. pseudintermedius isolates was detected against tetracycline (21/34; 61.76%; p-value 0.003), gentamicin (20/34; 58.82%), and kanamycin (20/34; 58.82%). CONCLUSIONS These results are essential to guide the prudent use of antibiotics in veterinary medicine. They will also help design efficient control strategies and measure their effectiveness.
Collapse
Affiliation(s)
- János Dégi
- Department of Infectious Diseases and Preventive Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania;
| | - Sorin Morariu
- Department of Parasitology, Parasitic Diseases and Dermatology, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania;
| | - Florin Simiz
- Department of Internal Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania;
| | - Florin Beteg
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, 400374 Cluj Napoca, Romania;
| | - Diana Maria Dégi
- Department of Toxicology and Toxicoses, Plant Biology and Medicinal Plants, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania;
| |
Collapse
|
3
|
Straub C, Taylor W, French NP, Murdoch DR, Priest P, Anderson T, Scott P. Zoonotic transmission of asymptomatic carriage Staphylococcus aureus on dairy farms in Canterbury, New Zealand. Microb Genom 2024; 10:001318. [PMID: 39630492 PMCID: PMC11616781 DOI: 10.1099/mgen.0.001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Zoonotic pathogen transmission is of growing concern globally, with agricultural intensification facilitating interactions between humans, livestock and wild animals. Staphylococcus aureus is a major human pathogen, but it also causes mastitis in dairy cattle, leading to an economic burden on the dairy industry. Here, we investigated transmission within and between cattle and humans, including potential zoonotic transmission of S. aureus isolated from cattle and humans from three dairy farms and an associated primary school in New Zealand. Nasal swabs (N=170) were taken from healthy humans. Inguinal and combined nasal/inguinal swabs were taken from healthy cattle (N=1163). Whole-genome sequencing was performed for 96 S. aureus isolates (44 human and 52 cattle). Multilocus sequence typing and assessments of antimicrobial resistance and virulence were carried out. Potential within- and across-species transmission events were determined based on single nucleotide polymorphisms (SNPs). Thirteen potential transmission clusters were detected, with 12 clusters restricted to within-species and one potential zoonotic transmission cluster (ST5). Potential transmission among cattle was mostly limited to single age groups, likely because different age groups are managed separately on farms. While the prevalence of antimicrobial resistance (AMR) was low among both bovine and human isolates, the discovery of an extended-spectrum beta-lactamase gene (bla TEM-116) in a bovine isolate was concerning. This study provides evidence around frequency and patterns of potential transmission of S. aureus on dairy farms and highlights the AMR and virulence profile of asymptomatic carriage S. aureus isolates.
Collapse
Affiliation(s)
- Christina Straub
- The Institute of Environmental Science and Research, Auckland, New Zealand
- Genomics Aotearoa, Dunedin, New Zealand
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - William Taylor
- The Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Nigel P. French
- Tāwharau Ora, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David R. Murdoch
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Patricia Priest
- Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Trevor Anderson
- Microbiology Department, Canterbury Health Laboratories, Te Whatu Ora – Health New Zealand Waitaha, Christchurch, New Zealand
| | - Pippa Scott
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
4
|
Dewi DAPR, Khalifa HO, Khandar H, Hisatsune J, Kutuno S, Yu L, Hayashi W, Kayama S, Mason CE, Sugai M, Suzuki H, Matsumoto T. Detection and genetic characterization of multidrug-resistant staphylococci isolated from public areas in an international airport. Sci Rep 2024; 14:27738. [PMID: 39532959 PMCID: PMC11557577 DOI: 10.1038/s41598-024-79447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The environmental realm has been acknowledged as a pivotal arena for the emergence and propagation of antimicrobial resistance. To further explore insight into antimicrobial resistance dynamics beyond clinical and veterinary settings, we embarked on an environmental surveillance initiative targeting the prevalence of antibiotic-resistant bacteria within the bustling confines of an international airport in Japan. Our findings illuminate a high prevalence of methicillin-resistant staphylococci (46.3%) on frequently contacted surfaces in the public domain. Notably, Staphylococcus haemolyticus and S. epidermidis emerged as the preeminent carriers of the mecA gene. Intriguingly, we encountered a virulent strain of livestock-associated MRSA harboring a PVL-positive ST1232 clone, CC398 lineage. Further scrutiny unveiled a repertoire of resistance mechanisms, the methicillin-resistant isolates exhibited two or more resistance genes conferring resistance against different types of antibiotics, including beta-lactams, macrolides, lincosamides, aminoglycosides, chloramphenicol, and fosfomycin. Revealing multidrug-resistant CoNS and a LA-MRSA across various surfaces in urban public areas unearths a looming public health hazard. Thus, implementation of molecular surveillance is imperative, augmenting our capacity for early detection and mitigation of the insidious spread and potential transfer of antibiotic resistance genes and virulence factors amidst urban settings, notably within pivotal nodes such as airports.
Collapse
Affiliation(s)
- Dewa A P Rasmika Dewi
- School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Australia.
- Faculty of Medicine and Health Sciences, Udayana University, Bali, Indonesia.
| | - Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El Sheikh, Egypt.
| | - Haque Khandar
- School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shoko Kutuno
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, USA
| | - Motoyuki Sugai
- School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
| | - Tetsuya Matsumoto
- School of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
5
|
Khairullah AR, Widodo A, Riwu KHP, Yanestria SM, Moses IB, Effendi MH, Fauzia KA, Fauziah I, Hasib A, Kusala MKJ, Raissa R, Silaen OSM, Ramandinianto SC, Afnani DA. Spread of livestock-associated methicillin-resistant Staphylococcus aureus in poultry and its risks to public health: A comprehensive review. Open Vet J 2024; 14:2116-2128. [PMID: 39553759 PMCID: PMC11563600 DOI: 10.5455/ovj.2024.v14.i9.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/09/2024] [Indexed: 11/19/2024] Open
Abstract
The livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains are prevalent in the poultry farming environment and are a common component of the bacterial microbiota on the skin and mucous membranes of healthy animals. The origin and spread of LA-MRSA are attributed to the use of antibiotics in animals, and close contact between people and different animal species increases the risk of animal exposure to humans. The epidemiology of LA-MRSA in poultry significantly changed when ST398 and ST9 were found in food-producing animals. The significance of LA-MRSA and zoonotic risk associated with handling and processing foods of avian origin is highlighted by the LA-MRSA strain's ability to infect chickens. People who work with poultry are more prone to contract LA-MRSA than the general population. There is scientific consensus that individuals who have close contact with chickens can become colonized and subsequently infected with LA-MRSA; these individuals could include breeders, medical professionals, or personnel at chicken slaughterhouses. The prevention of LA-MRSA infections and diseases of poultry origin requires taking precautions against contamination across the entire chicken production chain.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
6
|
Ocloo R, Newton-Foot M, Chabuka L, Ziebuhr W, Whitelaw AC. Epidemiology and antibiotic resistance of staphylococci on commercial pig farms in Cape Town, South Africa. Sci Rep 2024; 14:19747. [PMID: 39187540 PMCID: PMC11347665 DOI: 10.1038/s41598-024-70183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Staphylococci are responsible for a wide range of infections in animals. The most common species infecting animals include Staphylococcus aureus, Staphylococcus epidermidis and Staphylococcus intermedius. Recent increases in antibiotic use and antibiotic resistance in animals highlight the need to understand the potential role of commercial livestock as a reservoir of staphylococci and antibiotic resistance genes. Nasal swabs were collected from 143 apparently healthy pigs and 21 pig farm workers, and 45 environmental swabs of feed and water troughs, from two commercial pig farms in the Western Cape, South Africa. Staphylococci were isolated, identified using mass-spectrometry, and antimicrobial susceptibility testing and Illumina whole genome sequencing were performed. One hundred and eighty-five (185) Staphylococcus spp. isolates were obtained, with Mammalicoccus sciuri (n = 57; 31%) being the most common, followed by S. hyicus (n = 40; 22%) and S. aureus (n = 29; 16%). S. epidermidis was predominantly identified in the farm workers (n = 18; 86%). Tetracycline resistance was observed across all species, with rates ranging from 67 to 100%. Majority of M. sciuri isolates (n = 40; 70%) were methicillin resistant, with 78% (n = 31) harbouring mecA. M. sciuri isolates had genes/elements which were associated with SCCmec_type_III (3A) and SCCmec_type_VIII(4A) and were mostly observed in ST61 strains. ST239 strains were associated with SCCmec_type_III(3A). High rates of tetracycline resistance were identified among staphylococci in the pig farms in Western Cape, South Africa. This highlights the need for policy makers to regulate the use of this antibiotic in pig farming.
Collapse
Affiliation(s)
- Remous Ocloo
- Department of Pathology, Division of Medical Microbiology, Stellenbosch University, Stellenbosch, South Africa.
- TASK, Cape Town, South Africa.
| | - Mae Newton-Foot
- Department of Pathology, Division of Medical Microbiology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service (NHLS), Tygerberg Hospital, (TBH), Cape Town, South Africa
| | - Lucious Chabuka
- Centre for Epidemic Control and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Public Health Institute of Malawi, Ministry of Health, Lilongwe, Malawi
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, Würzburg University, Würzburg, Germany
| | - Andrew Christopher Whitelaw
- Department of Pathology, Division of Medical Microbiology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service (NHLS), Tygerberg Hospital, (TBH), Cape Town, South Africa
| |
Collapse
|
7
|
Alkuraythi DM, Alkhulaifi MM. Methicillin-resistant Staphylococcus aureus prevalence in food-producing animals and food products in Saudi Arabia: A review. Vet World 2024; 17:1753-1764. [PMID: 39328450 PMCID: PMC11422649 DOI: 10.14202/vetworld.2024.1753-1764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/15/2024] [Indexed: 09/28/2024] Open
Abstract
In Saudi Arabia, the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) in food and livestock represents a major public health hazard. The emergence of livestock-associated MRSA has heightened the risk of human infection with comparable virulence traits. The lack of information about MRSA transmission in our region hinders accurate risk assessment, despite its detection in food animals and retail foods. Adopting a One Health approach is essential for effectively combating MRSA in Saudi Arabia. This method unites actions in the human, animal, and environmental spheres. To combat MRSA contamination, surveillance measures need strengthening; interdisciplinary collaboration among healthcare professionals, veterinarians, and environmental scientists is crucial, and targeted interventions must be implemented in local food chains and animal populations. Through a holistic strategy, public health and sustainable food production in the region are protected. This review aims to improve public health interventions by increasing understanding of MRSA prevalence and related risks in local food chains and animal populations.
Collapse
Affiliation(s)
- Dalal M Alkuraythi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Titouche Y, Akkou M, Djaoui Y, Mechoub D, Fatihi A, Campaña-Burguet A, Bouchez P, Bouhier L, Houali K, Torres C, Nia Y, Hennekinne JA. Nasal carriage of Staphylococcus aureus in healthy dairy cows in Algeria: antibiotic resistance, enterotoxin genes and biofilm formation. BMC Vet Res 2024; 20:247. [PMID: 38849892 PMCID: PMC11157847 DOI: 10.1186/s12917-024-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Staphylococcus aureus can colonize and infect a variety of animal species. In dairy herds, it is one of the leading causes of mastitis cases. The objective of this study was to characterize the S. aureus isolates recovered from nasal swabs of 249 healthy cows and 21 breeders of 21 dairy farms located in two provinces of Algeria (Tizi Ouzou and Bouira). METHODS The detection of enterotoxin genes was investigated by multiplex PCRs. Resistance of recovered isolates to 8 antimicrobial agents was determined by disc-diffusion method. The slime production and biofilm formation of S. aureus isolates were assessed using congo-red agar (CRA) and microtiter-plate assay. Molecular characterization of selected isolates was carried out by spa-typing and Multi-Locus-Sequence-Typing (MLST). RESULTS S. aureus was detected in 30/249 (12%) and 6/13 (28.6%) of nasal swabs in cows and breeders, respectively, and a total of 72 isolates were recovered from positive samples (59 isolates from cows and 13 from breeders). Twenty-six of these isolates (36.1%) harbored genes encoding for staphylococcal enterotoxins, including 17/59 (28.8%) isolates from cows and 9/13 (69.2%) from breeders. Moreover, 49.1% and 92.3% of isolates from cows and breeders, respectively, showed penicillin resistance. All isolates were considered as methicillin-susceptible (MSSA). Forty-five (76.3%) of the isolates from cows were slime producers and 52 (88.1%) of them had the ability to form biofilm in microtiter plates. Evidence of a possible zoonotic transmission was observed in two farms, since S. aureus isolates recovered in these farms from cows and breeders belonged to the same clonal lineage (CC15-ST15-t084 or CC30-ST34-t2228). CONCLUSIONS Although healthy cows in this study did not harbor methicillin-resistant S. aureus isolates, the nares of healthy cows could be a reservoir of enterotoxigenic and biofilm producing isolates which could have implications in human and animal health.
Collapse
Affiliation(s)
- Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria.
| | - Madjid Akkou
- Laboratory of Biotechnologies Related to Animal Reproduction, Institute of Veterinary Sciences, University of Saad Dahlab, Blida 1.Blida, Tizi Ouzou, Algeria
| | - Yasmina Djaoui
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Donia Mechoub
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Abdelhak Fatihi
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | - Allelen Campaña-Burguet
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Pascal Bouchez
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | - Laurence Bouhier
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | - Karim Houali
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou, Algeria
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Yacine Nia
- Laboratory For Food Safety, University Paris Est, Maisons-Alfort, Paris, France, Anses, F-94700, France
| | | |
Collapse
|
9
|
Wilson TK, Zishiri OT, El Zowalaty ME. Molecular detection of virulence genes in Staphylococcus aureus isolated from wild pigeons ( Columba domestica livia) in KwaZulu-Natal in South Africa. One Health 2024; 18:100656. [PMID: 38179313 PMCID: PMC10765103 DOI: 10.1016/j.onehlt.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
The current study aimed to determine virulence determinants among S. aureus isolated from wild pigeons and houseflies around hospital areas in the Greater Durban area, South Africa. Following enrichment and bacterial growth, DNA extraction using the boiling method was performed. Overall, 57 out of 252 samples (22.6%) were positive for S. aureus. Six known virulence genes were tested, where five known virulence determinants were positive and none of the S. aureus isolates were positive to coagulase (coa) gene. The highest prevalence rates were found in the genes encoding haemolysins, with the hla and hld genes having 8 (14%) and 9 (15.8%) positive isolates respectively. The sea, LukS/F-PV, and spa genes had 5 (8.8%), 4 (7%), and 2 (3.5%) positive isolates respectively. These results demonstrated the detection of pathogenic S. aureus from hospital environment in Durban, South Africa which may account for the emergence staphylococcal infections. The findings of the present study highlights the significant role of wild pigeons and houseflies as potenital infectious disease vectors in a One Health context.
Collapse
Affiliation(s)
- Trevor K. Wilson
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Groups, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women's Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
10
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
11
|
Titouche Y, Akkou M, Campaña-Burguet A, González-Azcona C, Djaoui Y, Mechoub D, Fatihi A, Bouchez P, Bouhier L, Houali K, Nia Y, Torres C, Hennekinne JA. Phenotypic and Genotypic Characterization of Staphylococcus aureus Isolated from Nasal Samples of Healthy Dairy Goats in Algeria. Pathogens 2024; 13:408. [PMID: 38787260 PMCID: PMC11124369 DOI: 10.3390/pathogens13050408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The present study aimed to determine the phenotypic and genotypic characteristics of S. aureus isolates from the nasal swabs of goats. A total of 232 nasal samples (one per animal) were collected from goats on 13 farms located in two regions of Algeria and were analyzed for the presence of S. aureus. The detection of virulence factors was carried out using PCR. The antibiotic susceptibility of the recovered isolates was assessed using the disc diffusion method. The biofilm formation ability was assessed by the Congo red agar method and a microtiter plate assay, and the molecular characterization of isolates was carried out by spa-typing, and for selected isolates also by multilocus sequence typing (MLST). Overall, 36 out of 232 nasal swabs (15.5%) contained S. aureus, and 62 isolates were recovered. Regarding the virulence factors, at least one staphylococcal enterotoxin gene was detected in 30 (48.4%) isolates. The gene tst encoding the toxic shock syndrome toxin was detected in fifteen isolates (24.2%), but none of the isolates harbored the gene of Panton-Valentine leukocidin (lukF/S-PV). Nine different spa-types were identified, including the detection of a new one (t21230). The recovered isolates were assigned to three clonal complexes, with CC5 (51.8%) being the most common lineage. Two isolates were methicillin-resistant (MRSA) and belonged to ST5 (CC5) and to spa-types t450 and t688. Moreover, 27 (43.5%) of the S. aureus isolates were found to be slime producers in Congo red agar, and all of the recovered isolates could produce biofilms in the microtiter plate assay. Our study showed that the nares of healthy goats could be a reservoir of toxigenic and antibiotic-resistant strains of S. aureus isolates, including MRSA, which could have implications for public health.
Collapse
Affiliation(s)
- Yacine Titouche
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Madjid Akkou
- Institute of Veterinary Sciences, University of Saad Dahlab Blida 1, Blida 09000, Algeria;
| | - Allelen Campaña-Burguet
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (A.C.-B.); (C.G.-A.); (C.T.)
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (A.C.-B.); (C.G.-A.); (C.T.)
| | - Yasmina Djaoui
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Donia Mechoub
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Abdelhak Fatihi
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Pascal Bouchez
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Laurence Bouhier
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Karim Houali
- Laboratory of Analytical Biochemistry and Biotechnology (LABAB), University Mouloud Mammeri, Tizi Ouzou 15000, Algeria; (Y.D.); (D.M.); (K.H.)
| | - Yacine Nia
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (A.C.-B.); (C.G.-A.); (C.T.)
| | - Jacques-Antoine Hennekinne
- University Paris Est, Anses, Laboratory for Food Safety, F-94700 Maisons-Alfort, France; (A.F.); (P.B.); (L.B.); (Y.N.); (J.-A.H.)
| |
Collapse
|
12
|
Bashabsheh RH, AL-Fawares O, Natsheh I, Bdeir R, Al-Khreshieh RO, Bashabsheh HH. Staphylococcus aureus epidemiology, pathophysiology, clinical manifestations and application of nano-therapeutics as a promising approach to combat methicillin resistant Staphylococcus aureus. Pathog Glob Health 2024; 118:209-231. [PMID: 38006316 PMCID: PMC11221481 DOI: 10.1080/20477724.2023.2285187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium and one of the most prevalent infectious disease-related causes of morbidity and mortality in adults. This pathogen can trigger a broad spectrum of diseases, from sepsis and pneumonia to severe skin infections that can be fatal. In this review, we will provide an overview of S. aureus and discuss the extensive literature on epidemiology, transmission, genetic diversity, evolution and antibiotic resistance strains, particularly methicillin resistant S. aureus (MRSA). While many different virulence factors that S. aureus produces have been investigated as therapeutic targets, this review examines recent nanotechnology approaches, which employ materials with atomic or molecular dimensions and are being used to diagnose, treat, or eliminate the activity of S. aureus. Finally, having a deeper understanding and clearer grasp of the roles and contributions of S. aureus determinants, antibiotic resistance, and nanotechnology will aid us in developing anti-virulence strategies to combat the growing scarcity of effective antibiotics against S. aureus.
Collapse
Affiliation(s)
- Raghad H.F. Bashabsheh
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | - O’la AL-Fawares
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | - Iyad Natsheh
- Department of Allied Medical Sciences, Zarqa College, Al-Balqa Applied University, Zarqa, Jordan
| | - Roba Bdeir
- Department of Allied Health Sciences, Faculty of Nursing, Al-Balqa Applied University, Al-salt, Jordan
| | - Rozan O. Al-Khreshieh
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | | |
Collapse
|
13
|
Silva V, Silva A, Barbero R, Romero M, del Campo R, Caniça M, Cordeiro R, Igrejas G, Poeta P. Resistome, Virulome, and Clonal Variation in Methicillin-Resistant Staphylococcus aureus (MRSA) in Healthy Swine Populations: A Cross-Sectional Study. Genes (Basel) 2024; 15:532. [PMID: 38790161 PMCID: PMC11121583 DOI: 10.3390/genes15050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
This cross-sectional study investigates the methicillin-resistant Staphylococcus aureus (MRSA): its prevalence, antimicrobial resistance, and molecular characteristics in healthy swine populations in central Portugal. A total of 213 samples were collected from pigs on twelve farms, and MRSA prevalence was assessed using selective agar plates and confirmed via molecular methods. Antimicrobial susceptibility testing and whole genome sequencing (WGS) were performed to characterize resistance profiles and genetic determinants. Among the 107 MRSA-positive samples (83.1% prevalence), fattening pigs and breeding sows exhibited notably high carriage rates. The genome of 20 isolates revealed the predominance of the ST398 clonal complex, with diverse spa types identified. Antimicrobial susceptibility testing demonstrated resistance to multiple antimicrobial agents, including penicillin, cefoxitin, and tetracycline. WGS analysis identified a diverse array of resistance genes, highlighting the genetic basis of antimicrobial resistance. Moreover, virulence gene profiling revealed the presence of genes associated with pathogenicity. These findings underscore the significant prevalence of MRSA in swine populations and emphasize the need for enhanced surveillance and control measures to mitigate zoonotic transmission risks. Implementation of prudent antimicrobial use practices and targeted intervention strategies is essential to reducing MRSA prevalence and safeguarding public health. Continued research efforts are warranted to elucidate transmission dynamics and virulence potential, ultimately ensuring food safety and public health protection.
Collapse
Affiliation(s)
- Vanessa Silva
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Adriana Silva
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Raquel Barbero
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Mario Romero
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Rui Cordeiro
- Intergados, SA, Av. de Olivença, S/N, 2870-108 Montijo, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patricia Poeta
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
14
|
Sher C, Fusco C. Sports and sustainable development: the troubling absence of meat sourcing policies in the sports sector. Front Sports Act Living 2024; 6:1341810. [PMID: 38504689 PMCID: PMC10948448 DOI: 10.3389/fspor.2024.1341810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
The excessive use of antibiotics in industrial meat production in the U.S. incurs severe health implications for animals, humans, and the environment, thereby threatening the integrated health of the ecosystem and sustainable development. While the consumption of meat, including hot dogs, chicken wings, and hamburgers, is a hallmark of attending professional sports events in North America, the sourcing policies for meat in the realm of professional sports remain relatively obscure. We conducted a content analysis case study on the four major sports leagues in North America, their teams and stadium practices. Our objective was twofold: first, to investigate existing sustainability initiatives at the league, team, and stadium levels; and second, to examine whether there are any food sourcing programs, specifically meat sourcing policies that might encourage the consumption of meat produced without the use of antibiotics, in the sports sector that are designed to mitigate ecological ramifications of meat consumption within sports contexts. Results show that existing sustainability initiatives at the three levels are focused primarily on reducing carbon emissions and waste. There is, however, a notable neglect of food sourcing policies, which is concerning given that industrial animal agriculture is a leading cause of antibiotic resistance and environmental degradation. This suggests that meat sourcing policy is a missing piece in current sustainability initiatives. The major sports leagues should therefore consider incorporating pertinent policies, such as procuring meat-based products produced without the use of antibiotics to help strengthen their existing efforts in achieving their sustainable development goals.
Collapse
Affiliation(s)
- Chloe Sher
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Caroline Fusco
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Kawanishi M, Matsuda M, Abo H, Ozawa M, Hosoi Y, Hiraoka Y, Harada S, Kumakawa M, Sekiguchi H. Prevalence and Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Pigs in Japan. Antibiotics (Basel) 2024; 13:155. [PMID: 38391541 PMCID: PMC10885860 DOI: 10.3390/antibiotics13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
We investigated the prevalence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pig slaughterhouses from 2018 to 2022 in Japan and the isolates were examined for antimicrobial susceptibility and genetic characteristics by whole-genome analysis. Although the positive LA-MRSA rates on farms (29.6%) and samples (9.9%) in 2022 in Japan remained lower than those observed in European countries exhibiting extremely high rates of confirmed human LA-MRSA infections, these rates showed a gradually increasing trend over five years. The ST398/t034 strain was predominant, followed by ST5/t002, and differences were identified between ST398 and ST5 in terms of antimicrobial susceptibility and the resistance genes carried. Notably, LA-MRSA possessed resistance genes toward many antimicrobial classes, with 91.4% of the ST398 strains harboring zinc resistance genes. These findings indicate that the co-selection pressure associated with multidrug and zinc resistance may have contributed markedly to LA-MRSA persistence. SNP analysis revealed that ST398 and ST5 of swine origin were classified into a different cluster of MRSA from humans, showing the same ST in Japan and lacking the immune evasion genes (scn, sak, or chp). Although swine-origin LA-MRSA is currently unlikely to spread to humans and become a problem in current clinical practice, preventing its dissemination requires using antimicrobials prudently, limiting zinc utilization to the minimum required nutrient, and practicing fundamental hygiene measures.
Collapse
Affiliation(s)
- Michiko Kawanishi
- Veterinary AMR Center, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan
| | - Mari Matsuda
- Veterinary AMR Center, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan
| | - Hitoshi Abo
- Veterinary AMR Center, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan
| | - Manao Ozawa
- Veterinary AMR Center, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan
| | - Yuta Hosoi
- Veterinary AMR Center, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan
| | - Yukari Hiraoka
- Veterinary AMR Center, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan
| | - Saki Harada
- Veterinary AMR Center, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan
| | - Mio Kumakawa
- Veterinary AMR Center, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan
| | - Hideto Sekiguchi
- Veterinary AMR Center, National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, Tokyo 185-8511, Japan
| |
Collapse
|
16
|
The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA J 2024; 22:e8583. [PMID: 38419967 PMCID: PMC10900121 DOI: 10.2903/j.efsa.2024.8583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla OXA-48 or bla OXA-48-like genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, bla NDM-5 and bla VIM-1 genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.
Collapse
|
17
|
Khairullah AR, Kurniawan SC, Sudjarwo SA, Effendi MH, Widodo A, Moses IB, Hasib A, Zahra RLA, Gelolodo MA, Kurniawati DA, Riwu KHP, Silaen OSM, Afnani DA, Ramandinianto SC. Kinship analysis of mecA gene of methicillin-resistant Staphylococcus aureus isolated from milk and risk factors from the farmers in Blitar, Indonesia. Vet World 2024; 17:216-225. [PMID: 38406357 PMCID: PMC10884576 DOI: 10.14202/vetworld.2024.216-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024] Open
Abstract
Background and Aim There are numerous reports of subclinical mastitis cases in Blitar, which is consistent with the region's high milk production and dairy cattle population. Staphylococcus aureus, which is often the cause of mastitis cases, is widely known because of its multidrug-resistant properties and resistance to β-lactam antibiotic class, especially the methicillin-resistant S. aureus (MRSA) strains. This study aimed to molecular detection and sequence analysis of the mecA gene in milk and farmer's hand swabs to show that dairy cattle are reservoirs of MRSA strains. Materials and Methods A total of 113 milk samples and 39 farmers' hand swab samples were collected from a dairy farm for the isolation of S. aureus using Mannitol salt agar. The recovered isolates were further characterized using standard microbiological techniques. Isolates confirmed as S. aureus were tested for sensitivity to antibiotics. Oxacillin Resistance Screening Agar Base testing was used to confirm the presence of MRSA, whereas the mecA gene was detected by polymerase chain reaction and sequencing. Results A total of 101 samples were confirmed to be S. aureus. There were 2 S. aureus isolates that were multidrug-resistant and 14 S. aureus isolates that were MRSA. The mecA gene was detected in 4/14 (28.6%) phenotypically identified MRSA isolates. Kinship analysis showed identical results between mecA from milk and farmers' hand swabs. No visible nucleotide variation was observed in the two mecA sequences of isolates from Blitar, East Java. Conclusion The spread of MRSA is a serious problem because the risk of zoonotic transmission can occur not only to people who are close to livestock in the workplace, such as dairy farm workers but also to the wider community through the food chain.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Sri Agus Sudjarwo
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Jl. Dharmawangsa Dalam Selatan No. 28-30, Kampus B Airlangga, Surabaya 60115, East Java, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki 480211, Nigeria
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Queensland, Australia
| | - Reichan Lisa Az Zahra
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Maria Aega Gelolodo
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, East Nusa Tenggara, Indonesia
| | - Dyah Ayu Kurniawati
- Indonesia Research Center for Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram 83125, West Nusa Tenggara, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6 Senen, Jakarta 10430, Indonesia
| | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram 83125, West Nusa Tenggara, Indonesia
| | | |
Collapse
|
18
|
Keneh NK, Kenmoe S, Bowo-Ngandji A, Tatah Kihla Akoachere JF, Gonsu Kamga H, Ndip RN, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Tendongfor N, Ndip LM, Esemu SN. A mapping review of methicillin-resistant Staphylococcus aureus proportions, genetic diversity, and antimicrobial resistance patterns in Cameroon. PLoS One 2023; 18:e0296267. [PMID: 38134014 PMCID: PMC10745167 DOI: 10.1371/journal.pone.0296267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has increased and poses a significant threat to human and animal health in Cameroon and the world at large. MRSA strains have infiltrated various settings, including hospitals, communities, and livestock, contributing to increased morbidity, treatment costs, and mortality. This evidence synthesis aims to understand MRSA prevalence, resistance patterns, and genetic characterization in Cameroon. METHODS The methodology was consistent with the PRISMA 2020 guidelines. Studies of any design containing scientific data on MRSA prevalence, genetic diversity, and antimicrobial resistance patterns in Cameroon were eligible for inclusion, with no restrictions on language or publication date. The search involved a comprehensive search strategy in several databases including Medline, Embase, Global Health, Web of Science, African Index Medicus, and African Journal Online. The risk of bias in the included studies was assessed using the Hoy et al tool, and the results were synthesized and presented in narrative synthesis and/or tables and graphs. RESULTS The systematic review analyzed 24 studies, mostly conducted after 2010, in various settings in Cameroon. The studies, characterized by moderate to low bias, revealed a wide prevalence of MRSA ranging from 1.9% to 46.8%, with considerable variation based on demographic and environmental factors. Animal (0.2%), food (3.2% to 15.4%), and environmental samples (0.0% to 34.6%) also showed a varied prevalence of MRSA. The genetic diversity of MRSA was heterogeneous, with different virulence gene profiles and clonal lineages identified in various populations and sample types. Antimicrobial resistance rates showed great variability in the different regions of Cameroon, with notable antibiotic resistance recorded for the beta-lactam, fluoroquinolone, glycopeptide, lincosamide, and macrolide families. CONCLUSION This study highlights the significant variability in MRSA prevalence, genetic diversity, and antimicrobial resistance patterns in Cameroon, and emphasizes the pressing need for comprehensive antimicrobial stewardship strategies in the country.
Collapse
Affiliation(s)
- Nene Kaah Keneh
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, South West Region, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | - Hortense Gonsu Kamga
- Faculty of Medicine and Biomedical Sciences, The University of Yaounde I, Yaoundé, Cameroon
| | - Roland Ndip Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Center for Research in Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | | | | | - Lucy Mande Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, South West Region, Cameroon
| | - Seraphine Nkie Esemu
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Laboratory for Emerging Infectious Diseases, University of Buea, Buea, South West Region, Cameroon
| |
Collapse
|
19
|
Narongpun P, Chanchaithong P, Yamagishi J, Thapa J, Nakajima C, Suzuki Y. Whole-Genome Investigation of Zoonotic Transmission of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complex 398 Isolated from Pigs and Humans in Thailand. Antibiotics (Basel) 2023; 12:1745. [PMID: 38136779 PMCID: PMC10741195 DOI: 10.3390/antibiotics12121745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has been widespread globally in pigs and humans for decades. Nasal colonization of LA-MRSA is regarded as an occupational hazard to people who are regularly involved in livestock production. Our previous study suggested pig-to-human transmission caused by LA-MRSA clonal complex (CC) 398, using traditional molecular typing methods. Instead, this study aimed to investigate the zoonotic transmission of LA-MRSA CC398 using whole genome sequencing (WGS) technologies. A total of 63 LA-MRSA isolates were identified and characterized in Thailand. Further, the 16 representatives of LA-MRSA CC9 and CC398, including porcine and worker isolates, were subjected to WGS on the Illumina Miseq platform. Core-genome single nucleotide polymorphism (SNP)-based analyses verify the zoonotic transmission caused by LA-MRSA CC398 in two farms. WGS-based characterization suggests the emergence of a novel staphylococcal cassette chromosome (SCC) mec type, consisting of multiple cassette chromosome recombinase (ccr) gene complexes via genetic recombination. Additionally, the WGS analyses revealed putative multi-resistant plasmids and several cross-resistance genes, conferring resistance against drugs of last resort used in humans such as quinupristin/dalfopristin and linezolid. Significantly, LA-MRSA isolates, in this study, harbored multiple virulence genes that may become a serious threat to an immunosuppressive population, particularly for persons who are in close contact with LA-MRSA carriers.
Collapse
Affiliation(s)
- Pawarut Narongpun
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Junya Yamagishi
- Division of Collaboration and Education, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan;
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (P.N.); (J.T.)
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
20
|
Rattigan R, Wajda L, Vlasblom AA, Wolfe A, Zomer AL, Duim B, Wagenaar JA, Lawlor PG. Safety Evaluation of an Intranasally Applied Cocktail of Lactococcus lactis Strains in Pigs. Animals (Basel) 2023; 13:3442. [PMID: 38003060 PMCID: PMC10668741 DOI: 10.3390/ani13223442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Three Lactococcus lactis strains from the nasal microbiota of healthy pigs were identified as candidates for reducing MRSA in pigs. The safety of nasal administration of a cocktail of these strains was examined in new-born piglets. Six days pre-farrowing, twelve sows were assigned to the placebo or cocktail group (n = 6/group). After farrowing, piglets were administered with either 0.5 mL of the placebo or the cocktail to each nostril. Health status and body weight were monitored at regular time points. Two piglets from three sows/treatment group were euthanised at 24 h, 96 h and 14 d after birth, and conchae, lung and tonsil samples were collected for histopathological and gene expression analysis. Health scores were improved in the cocktail group between d1-5. Body weight and daily gains did not differ between groups. Both groups displayed histological indications of euthanasia and inflammation in the lungs, signifying the findings were not treatment related. The expression of pBD2, TLR9 and IL-1β in the nasal conchae differed between groups, indicating the cocktail has the potential to modulate immune responses. In summary, the L. lactis cocktail was well tolerated by piglets and there was no negative impact on health scores, growth or lung histopathology indicating that it is safe for administration to new-born piglets.
Collapse
Affiliation(s)
- Ruth Rattigan
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland
| | - Lukasz Wajda
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland
| | - Abel A. Vlasblom
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Alan Wolfe
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Birgitta Duim
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Peadar G. Lawlor
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland
| |
Collapse
|
21
|
Kos A, Papić B, Golob M, Avberšek J, Kušar D, Ledina T, Đorđević J, Bulajić S. Genomic Insights into Methicillin-Resistant Staphylococci and Mammaliicocci from Bulk Tank Milk of Dairy Farms in Serbia. Antibiotics (Basel) 2023; 12:1529. [PMID: 37887230 PMCID: PMC10604148 DOI: 10.3390/antibiotics12101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The potential risk to human and animal health provides a rationale for research on methicillin-resistant staphylococci (MRS) and mammaliicocci (MRM) in dairy herds. Here, we aimed to estimate their occurrence in the bulk tank milk (BTM) samples collected in 2019-2021 from 283 bovine dairy farms in the Belgrade district. We used whole-genome sequencing to characterize the obtained isolates and assess their genetic relatedness. A total of 70 MRS/MRM were recovered, most frequently Staphylococcus haemolyticus and Mammaliicoccus sciuri. Five clusters of 2-4 genetically related isolates were identified and epidemiological data indicated transmission through, e.g., farm visits by personnel or milk collection trucks. Most MRSA isolates belonged to the typical livestock-associated lineage ST398-t034. One MRSA isolate (ST152-t355) harbored the PVL-encoding genes. Since MRS/MRM isolates obtained in this study frequently harbored genes conferring multidrug resistance (MDR), this argues for their role as reservoirs for the spread of antimicrobial resistance genes. The pipeline milking system and total bacterial count >100,000 CFU/mL were significantly associated with higher occurrences of MRS/MRM. Our study confirms that BTM can be a zoonotic source of MRS, including MDR strains. This highlights the urgent need for good agricultural practices and the continuous monitoring of MRS/MRM in dairy farms.
Collapse
Affiliation(s)
- Andrea Kos
- Directorate for National Reference Laboratories, Ministry of Agriculture, Forestry and Water Management, Batajnički drum 7, 11186 Belgrade, Serbia;
| | - Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (B.P.); (M.G.); (J.A.); (D.K.)
| | - Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (B.P.); (M.G.); (J.A.); (D.K.)
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (B.P.); (M.G.); (J.A.); (D.K.)
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (B.P.); (M.G.); (J.A.); (D.K.)
| | - Tijana Ledina
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia; (T.L.); (J.Đ.)
| | - Jasna Đorđević
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia; (T.L.); (J.Đ.)
| | - Snežana Bulajić
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia; (T.L.); (J.Đ.)
| |
Collapse
|
22
|
Das Mitra S, Kumar B, Rajegowda S, Bandopadhyay S, Karunakar P, Pais R. Reverse vaccinology & immunoinformatics approach to design a multiepitope vaccine (CV3Ag-antiMRSA) against methicillin resistant Staphylococcus aureus (MRSA) - a pathogen affecting both human and animal health. J Biomol Struct Dyn 2023; 42:11792-11811. [PMID: 37798927 DOI: 10.1080/07391102.2023.2265471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023]
Abstract
Infections caused by drug resistant bacteria is a silent detrimental pandemic affecting the global health care profoundly. Methicillin resistant Staphylococcus aureus (MRSA) is a pathogen that causes serious infections in different settings (community, hospital & veterinary) whose treatment remains highly challenging due to its powerful characteristics (antibiotic resistance strategies, virulence factors). In this study, we used reverse vaccinology (RV) approach and designed an immunogenic multi epitope vaccine (CV3Ag-antiMRSA) targeting three potential antigen candidates viz., mecA encoding transpeptidase (PBP2a) protein responsible for conferring methicillin resistance and two virulence determinants - hlgA encoding gamma-hemolysin component A (a pore forming toxin) and isdB encoding iron regulated surface determinant B (heme transport component that allows S. aureus to scavenge iron from host hemoglobin and myoglobin). We employed an array of immunoinformatic tools/server to identify and use immunogenic epitopes (B cell and MHC class) to develop the chimeric subunit vaccine V4 (CV3Ag-antiMRSA) with immune modulating adjuvant and linkers. Based on different parameters, the vaccine construct V4 (CV3Ag-antiMRSA) was determined to be suitable vaccine (antigenic and non-allergen). Molecular docking and simulation of CV3Ag-antiMRSA with Toll Like Receptor (TLR2) predicted its immuno-stimulating potential. Finally, in silico cloning of CV3Ag-antiMRSA construct into pet28a and pet30 vector displayed its feasibility for the heterologous expression in the E. coli expression system. This vaccine candidate (CV3Ag-antiMRSA) designed based on the MRSA genomes obtained from both animal and human hosts can be experimentally validated and thereby contribute to vaccine development to impart protection to both animal and human health.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Susweta Das Mitra
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Bharat Kumar
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Sushmitha Rajegowda
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Satarupa Bandopadhyay
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bangalore, Karnataka, India
| | - Roshan Pais
- Department of Biotechnology, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, Karnataka, India
| |
Collapse
|
23
|
Leite DPDSBM, Barbosa IC, da Silva RA, Fernandes PR, Abad ACA, da Silva JG, Mota RA, Porto TS. Occurrence of antimicrobial-resistant Staphylococcus aureus in a Brazilian veterinary hospital environment. Braz J Microbiol 2023; 54:2393-2401. [PMID: 37407882 PMCID: PMC10485224 DOI: 10.1007/s42770-023-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
Antimicrobial resistance is a threat to public health. The emergence of antibiotic-resistant Staphylococcus aureus represents a priority for the implementation of preventive measures. The objective was to isolate S. aureus in humans, animals, and animal health care environment, and to characterize the genotypic and phenotypic profile of antimicrobial resistance in these isolates. We isolated S. aureus from staff, animals, and environment of a veterinary hospital, and identified their antimicrobial resistance profiles. Samples were collected from 20 humans, 13 animals, 14 surfaces, 8 mobile phones, and 7 veterinarians' stethoscopes by using sterile swabs. S. aureus was isolated by culturing on mannitol salt agar and preliminary identification was done by Gram staining and catalase test. Subsequently, a polymerase chain reaction was performed for species confirmation and investigating their antimicrobial-resistant genotypic profiles. Phenotypic profiles of resistant isolates were determined using the disk-diffusion technique. Ten S. aureus isolates were recovered from 5/20 humans (25%), it was also recovered from 2/13 animals (15.38%), including 1 dog and 1 cat, and from 1/14 of surfaces (7.14%). The oxacillin-susceptible mecA-positive Staphylococcus aureus phenotype was identified in a feline. Most of the isolates carried at least two resistance genes of different antimicrobial classes, with 90% (9/10) presenting the gene blaZ, with 10% (1/10) presenting the gene mecA, 20% (2/10) presenting tet38, 10% (1/10) presenting tetM, 90% (9/10) presenting norA, 50% (5/10) presenting norC, 10% (1/10) presenting ermA, and 60% (6/10) presenting ermB. In antibiograms, resistance to penicillin was identified in all the isolates, resistance to erythromycin was identified in 80% (8/10), and all the isolate's resistance to erythromycin presented erythromycin-induced resistance to clindamycin. Antimicrobial resistance in the veterinary hospital requires attention due to the risk of interspecies transmission, gene transfer between bacteria that colonize companion animals and humans and, can make antimicrobial therapy difficult.
Collapse
Affiliation(s)
- Denny Parente de Sá Barreto Maia Leite
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Iago Carvalho Barbosa
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Renato Amorim da Silva
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Pollyanne Raysa Fernandes
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Atzel Candido Acosta Abad
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - José Givanildo da Silva
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Zootechnics, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | - Rinaldo Aparecido Mota
- Department of Veterinary Medicine, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil.
| | - Tatiana Souza Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil.
| |
Collapse
|
24
|
Kasela M, Ossowski M, Dzikoń E, Ignatiuk K, Wlazło Ł, Malm A. The Epidemiology of Animal-Associated Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1079. [PMID: 37370398 DOI: 10.3390/antibiotics12061079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains an important etiological factor of human and animal infectious diseases, causing significant economic losses not only in human healthcare but also in the large-scale farming sector. The constantly changing epidemiology of MRSA observed globally affects animal welfare and raises concerns for public health. High MRSA colonization rates in livestock raise questions about the meaning of reservoirs and possible transmission pathways, while the prevalence of MRSA colonization and infection rates among companion animals vary and might affect human health in multiple ways. We present the main findings concerning the circulation of animal-associated MRSA (AA-MRSA) in the environment and factors influencing the direction, mechanisms, and routes of its transmission. Studies have shown it that S. aureus is a multi-host bacterial pathogen; however, its adaptation mechanisms enabling it to colonize and infect both animal and human hosts are still rarely discussed. Finally, we elaborate on the most successful strategies and programs applied limiting the circulation of AA-MRSA among animals and humans. Although MRSA strains colonizing animals rarely infect humans, they undergo host-adaptive evolution enabling them to spread and persist in human populations.
Collapse
Affiliation(s)
- Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Mateusz Ossowski
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Ewelina Dzikoń
- Student's Scientific Circle, Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Katarzyna Ignatiuk
- Student's Scientific Circle, Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Łukasz Wlazło
- Department of Animal Hygiene and Environmental Hazards, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| |
Collapse
|
25
|
Hou Z, Liu L, Wei J, Xu B. Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus. Infect Drug Resist 2023; 16:3271-3292. [PMID: 37255882 PMCID: PMC10226514 DOI: 10.2147/idr.s412308] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen with a variety of virulence factors, which can cause multiple infectious diseases. In recent decades, due to the constant evolution and the abuse of antibiotics, Staphylococcus aureus was becoming more resistant, the infection rate of MRSA remained high, and clinical treatment of MRSA became more difficult. The genetic diversity of MRSA was mainly represented by the continuous emergence of epidemic strains, resulting in the constant changes of epidemic clones. Different classes of MRSA resulted in different epidemics and resistance characteristics, which could affect the clinical symptoms and treatments. MRSA had also spread from traditional hospitals to community and livestock environments, and the new clones established a relationship between animals and humans, promoting further evolution of MRSA. Since the resistance mechanism of MRSA is very complex, it is important to clarify these resistance mechanisms at the molecular level for the treatment of infectious diseases. We firstly described the diversity of SCCmec elements, and discussed the types of SCCmec, its drug resistance mechanisms and expression regulations. Then, we described how the vanA operon makes Staphylococcus aureus resistant to vancomycin and its expression regulation. Finally, a brief introduction was given to the drug resistance mechanisms of biofilms and efflux pump systems. Analyzing the resistance mechanism of MRSA can help study new anti-infective drugs and alleviate the evolution of MRSA. At the end of the review, we summarized the treatment strategies for MRSA infection, including antibiotics, anti-biofilm agents and efflux pump inhibitors. To sum up, here we reviewed the epidemic characteristics of Staphylococcus aureus, summarized its classifications, drug resistance mechanisms of MRSA (SCCmec element, vanA operon, biofilm and active efflux pump system) and novel therapy strategies, so as to provide a theoretical basis for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Ling Liu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Benjin Xu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| |
Collapse
|
26
|
Breed MW, Perez HL, Otto M, Villaruz AE, Weese JS, Alvord GW, Donohue DE, Washington F, Kramer JA. Bacterial Genotype, Carrier Risk Factors, and an Antimicrobial Stewardship Approach Relevant To Methicillin-resistant Staphylococcus Aureus Prevalence in a Population of Macaques Housed in a Research Facility. Comp Med 2023; 73:134-144. [PMID: 36941053 PMCID: PMC10162382 DOI: 10.30802/aalas-cm-22-000018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/31/2022] [Accepted: 10/27/2022] [Indexed: 03/22/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains a significant problem for human and animal health and can negatively affect the health status of macaques and other nonhuman primates (NHP) in research colonies. However, few publications provide guidance on the prevalence, genotype, or risk factors for macaques with MRSA and even fewer on how to effectively respond to MRSA once identified in a population. After having a clinical case of MRSA in a rhesus macaque, we sought to determine the MRSA carrier prevalence, risk factors, and genotypes of MRSA in a population of research NHPs. Over a 6-wk period in 2015, we collected nasal swabs from 298 NHPs. MRSA was isolated from 28% (n = 83). We then reviewed each macaque's medical record for a variety of variables including animal housing room, sex, age, number of antibiotic courses, number of surgical interventions, and SIV status. Analysis of these data suggests that MRSA carriage is associated with the room location, age of the animal, SIV status, and the number of antibiotic courses. We used multilocus sequence typing and spa typing on a subset of MRSA and MSSA isolates to determine whether the MRSA present in NHPs was comparable with common human strains. Two MRSA sequence types were predominant: ST188 and a novel MRSA genotype, neither of which is a common human isolate in the United States. We subsequently implemented antimicrobial stewardship practices (significantly reducing antimicrobial use) and then resampled the colony in 2018 and found that MRSA carriage had fallen to 9% (26/285). These data suggest that, as in humans, macaques may have a high carrier status of MRSA despite low clinically apparent disease. Implementing strategic antimicrobial stewardship practices resulted in a marked reduction in MRSA carriage in the NHP colony, highlighting the importance of limiting antimicrobial use when possible.
Collapse
Affiliation(s)
- Matthew W Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Bethesda, Maryland;,
| | - Hannah L Perez
- Salem Animal Hospital, Salem, Virginia; National Institutes of Health, Bethesda, Maryland
| | - Michael Otto
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Amer E Villaruz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - J Scott Weese
- Centre for Public Health and Zoonoses, Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada; National Institutes of Health, Bethesda, Maryland
| | - Gregory W Alvord
- Statistical Consulting, Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Duncan E Donohue
- Statistical Consulting, Data Management Services, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Joshua A Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Bethesda, Maryland
| |
Collapse
|
27
|
Genetic Identification of Methicillin-Resistant Staphylococcus aureus Nasal Carriage and Its Antibiogram among Kidney Dialysis Patients at a Tertiary Care Hospital in AL-Karak, Jordan. Int J Microbiol 2023; 2023:9217014. [PMID: 36970126 PMCID: PMC10033209 DOI: 10.1155/2023/9217014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Background. Methicillin-resistant Staphylococcus aureus (MRSA) is a major bacterial pathogen. Aim. The present study aimed to determine the incidence of MRSA infections among kidney dialysis patients and the antibiotic susceptibility patterns and investigate the prevalence of mecA gene among MRSA isolates. Materials and Methods. A total of 83 nasal sterile cotton swabs samples were obtained from hemodialysis patients from Al-Karak Governmental Hospital, Al-Karak, Jordan. Collected and cultured on nutrient agar and mannitol salt agar and incubating at 37°C for 24–48 hours, Staphylococcus aureus (S. aureus) strains were identified by gram stain, coagulase test, and catalase tests. The MRSA isolates were tested for the presence of MecA and SCCmec genes using the Xpert SA Nasal Complete assay real-time PCR. Factors such as age and gender were included in the study. The antibiotic profile tested by using the disc diffusion method tested all MRSA isolates. Results. This study showed that 10.8% of the cultures’ growth was S. aureus and 9.6% of all the patients were infected with MRSA, with no relationship between the number and frequency of MRSA according to the patient’s gender or age. All MRSA (100%) isolates have both genes (MecA genes and SCCmec genes), and all samples were resistant to oxacillin, ceftazidime, cefoxitin, aztreonam, and ampicillin. Conclusion. The MRSA prevalence was determined among kidney dialysis patients in the hospital. All positive samples were resistant to oxacillin, ceftazidime, cefoxitin, aztreonam, and ampicillin, which is a very rare finding, and this will give the scientists and doctors a dangerous indication about health-care centers in the Al-Karak city of Jordan.
Collapse
|
28
|
Scarborough RO, Sri AE, Browning GF, Hardefeldt LY, Bailey KE. ‘Brave Enough’: A Qualitative Study of Veterinary Decisions to Withhold or Delay Antimicrobial Treatment in Pets. Antibiotics (Basel) 2023; 12:antibiotics12030540. [PMID: 36978407 PMCID: PMC10044613 DOI: 10.3390/antibiotics12030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Veterinarians sometimes prescribe antimicrobials even when they know or suspect that they are unnecessary. The drivers of this behaviour must be understood to design effective antimicrobial stewardship interventions. Semi-structured interviews were conducted with 22 veterinarians who treated companion animals in Australia. The Theory of Planned Behaviour was used to organise interview themes, focusing on a decision to withhold antimicrobial therapy in the absence of a clear indication. Many background factors influenced antimicrobial-withholding decisions, including the veterinarian’s communication skills, general attitudes towards antimicrobial resistance (AMR), habits and energy levels. Client awareness of AMR and the veterinarian–client relationship were also important. Beliefs about the consequences of withholding antimicrobials (behavioural beliefs) were dominated by fears of the animal’s condition deteriorating and of failing to meet client expectations. These fears, weighed against the seemingly distant consequences of AMR, were major barriers to withholding antimicrobials. Normative beliefs were primarily focused on the expected approval (or disapproval) of the client and of other veterinarians. Control beliefs about the difficulty of withholding antimicrobials centred around client factors, most importantly, their capacity to adequately monitor their animal, to pay for further investigations, or to undertake non-antimicrobial management, such as wound care, at home. The use of antimicrobials by companion animal veterinarians in the absence of a clear indication is often powerfully driven by behavioural beliefs, chiefly, fears of clinical deterioration and of failing to meet client expectations.
Collapse
Affiliation(s)
- Ri O. Scarborough
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, VIC 3010, Australia
- National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Parkville, VIC 3052, Australia
- Correspondence:
| | - Anna E. Sri
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, VIC 3010, Australia
- National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Parkville, VIC 3052, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, VIC 3010, Australia
- National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Parkville, VIC 3052, Australia
| | - Laura Y. Hardefeldt
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, VIC 3010, Australia
- National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Parkville, VIC 3052, Australia
| | - Kirsten E. Bailey
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, VIC 3010, Australia
- National Centre for Antimicrobial Stewardship, Peter Doherty Institute, Parkville, VIC 3052, Australia
| |
Collapse
|
29
|
The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
30
|
Nikolic P, Mudgil P. The Cell Wall, Cell Membrane and Virulence Factors of Staphylococcus aureus and Their Role in Antibiotic Resistance. Microorganisms 2023; 11:microorganisms11020259. [PMID: 36838224 PMCID: PMC9965861 DOI: 10.3390/microorganisms11020259] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Antibiotic resistant strains of bacteria are a serious threat to human health. With increasing antibiotic resistance in common human pathogens, fewer antibiotics remain effective against infectious diseases. Staphylococcus aureus is a pathogenic bacterium of particular concern to human health as it has developed resistance to many of the currently used antibiotics leaving very few remaining as effective treatment. Alternatives to conventional antibiotics are needed for treating resistant bacterial infections. A deeper understanding of the cellular characteristics of resistant bacteria beyond well characterized resistance mechanisms can allow for increased ability to properly treat them and to potentially identify targetable changes. This review looks at antibiotic resistance in S aureus in relation to its cellular components, the cell wall, cell membrane and virulence factors. Methicillin resistant S aureus bacteria are resistant to most antibiotics and some strains have even developed resistance to the last resort antibiotics vancomycin and daptomycin. Modifications in cell wall peptidoglycan and teichoic acids are noted in antibiotic resistant bacteria. Alterations in cell membrane lipids affect susceptibility to antibiotics through surface charge, permeability, fluidity, and stability of the bacterial membrane. Virulence factors such as adhesins, toxins and immunomodulators serve versatile pathogenic functions in S aureus. New antimicrobial strategies can target cell membrane lipids and virulence factors including anti-virulence treatment as an adjuvant to traditional antibiotic therapy.
Collapse
|
31
|
Detecting mecA in Faecal Samples: A Tool for Assessing Carriage of Meticillin-Resistant Staphylococci in Pets and Owners in the Microbiological ‘Fast Age’? MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sampling animals for carriage of meticillin-resistant, coagulase-positive staphylococci (MRCoPS), considered zoonotic pathogens, can be challenging and time-consuming. Developing methods to identify mecA from non-invasive samples, e.g., faeces, would benefit AMR surveillance and management of MRS carrier animals. This study aimed to distinguish MRS carriers from non-carriers from faecal samples using quantitative polymerase chain reaction (qPCR) for mecA. Paired faecal and nasal swab samples (n = 86) were obtained from 13 dogs and 20 humans as part of a longitudinal study. Nasal MRCoPS carriage (either MR-Staphylococcus aureus or MR-Staphylococcus pseudintermedius was confirmed by identification of species (nuc) and meticillin resistance (mecA) (PCR). Faecal DNA (n = 69) was extracted and a qPCR method was optimised to provide a robust detection method. The presence of faecal mecA was compared between MRS carriers and non-carriers (Kruskal–Wallis test). Nasal swabbing identified seven canine and four human MRCoPS carriers. mecA was detected in 13/69 faecal samples, including four MRCoPS carriers and nine non-carriers. For dogs, there was no significant association (p = 1.000) between carrier status and mecA detection; for humans, mecA was more commonly detected in MRCoPS carriers (p = 0.047). mecA was detected in faeces of MRCoPS carriers and non-carriers by qPCR, but larger sample sizes are required to determine assay sensitivity. This rapid method enables passive surveillance of mecA in individuals and the environment.
Collapse
|
32
|
Khairullah AR, Kurniawan SC, Effendi MH, Sudjarwo SA, Ramandinianto SC, Widodo A, Riwu KHP, Silaen OSM, Rehman S. A review of new emerging livestock-associated methicillin-resistant Staphylococcus aureus from pig farms. Vet World 2023; 16:46-58. [PMID: 36855358 PMCID: PMC9967705 DOI: 10.14202/vetworld.2023.46-58] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a S. aureus strain resistant to β-lactam antibiotics and is often associated with livestock, known as livestock-associated (LA)-MRSA. Using molecular typing with multi-locus sequence typing, MRSA clones have been classified in pigs, including clonal complex 398. Livestock-associated-methicillin-resistant S. aureus was first discovered in pigs in the Netherlands in 2005. Since then, it has been widely detected in pigs in other countries. Livestock-associated-methicillin-resistant S. aureus can be transmitted from pigs to pigs, pigs to humans (zoonosis), and humans to humans. This transmission is enabled by several risk factors involved in the pig trade, including the use of antibiotics and zinc, the size and type of the herd, and the pig pen management system. Although LA-MRSA has little impact on the pigs' health, it can be transmitted from pig to pig or from pig to human. This is a serious concern as people in direct contact with pigs are highly predisposed to acquiring LA-MRSA infection. The measures to control LA-MRSA spread in pig farms include conducting periodic LA-MRSA screening tests on pigs and avoiding certain antibiotics in pigs. This study aimed to review the emerging LA-MRSA strains in pig farms.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia,Corresponding author: Mustofa Helmi Effendi, e-mail: Co-authors: ARK: , SCK: , SAS: , SCR: , AW: , KHPR: , OSMS: , SR:
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | | | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6 Senen, Jakarta 10430, Indonesia
| | - Saifur Rehman
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga. Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| |
Collapse
|
33
|
Soundararajan M, Marincola G, Liong O, Marciniak T, Wencker FDR, Hofmann F, Schollenbruch H, Kobusch I, Linnemann S, Wolf SA, Helal M, Semmler T, Walther B, Schoen C, Nyasinga J, Revathi G, Boelhauve M, Ziebuhr W. Farming Practice Influences Antimicrobial Resistance Burden of Non-Aureus Staphylococci in Pig Husbandries. Microorganisms 2022; 11:microorganisms11010031. [PMID: 36677324 PMCID: PMC9865537 DOI: 10.3390/microorganisms11010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-aureus staphylococci (NAS) are ubiquitous bacteria in livestock-associated environments where they may act as reservoirs of antimicrobial resistance (AMR) genes for pathogens such as Staphylococcus aureus. Here, we tested whether housing conditions in pig farms could influence the overall AMR-NAS burden. Two hundred and forty porcine commensal and environmental NAS isolates from three different farm types (conventional, alternative, and organic) were tested for phenotypic antimicrobial susceptibility and subjected to whole genome sequencing. Genomic data were analysed regarding species identity and AMR gene carriage. Seventeen different NAS species were identified across all farm types. In contrast to conventional farms, no AMR genes were detectable towards methicillin, aminoglycosides, and phenicols in organic farms. Additionally, AMR genes to macrolides and tetracycline were rare among NAS in organic farms, while such genes were common in conventional husbandries. No differences in AMR detection existed between farm types regarding fosfomycin, lincosamides, fusidic acid, and heavy metal resistance gene presence. The combined data show that husbandry conditions influence the occurrence of resistant and multidrug-resistant bacteria in livestock, suggesting that changing husbandry practices may be an appropriate means of limiting the spread of AMR bacteria on farms.
Collapse
Affiliation(s)
| | - Gabriella Marincola
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Olivia Liong
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Tessa Marciniak
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Freya D. R. Wencker
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Franka Hofmann
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Hannah Schollenbruch
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Iris Kobusch
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Sabrina Linnemann
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Silver A. Wolf
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
| | - Mustafa Helal
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, 13353 Berlin, Germany
| | - Christoph Schoen
- Institute of Hygiene and Microbiology, University of Würzburg, 97080 Würzburg, Germany
| | - Justin Nyasinga
- Department of Pathology, Aga-Khan-University Hospital Nairobi, Nairobi, Kenya
- Department of Biomedical Sciences and Technology, The Technical University of Kenya, Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Aga-Khan-University Hospital Nairobi, Nairobi, Kenya
| | - Marc Boelhauve
- Department of Agriculture; South Westphalia University of Applied Sciences, 59494 Soest, Germany
| | - Wilma Ziebuhr
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- Correspondence: ; Tel.: +49-(0)931-31-2578
| |
Collapse
|
34
|
Lienen T, Grobbel M, Tenhagen BA, Maurischat S. Plasmid-Coded Linezolid Resistance in Methicillin-Resistant Staphylococcus aureus from Food and Livestock in Germany. Antibiotics (Basel) 2022; 11:antibiotics11121802. [PMID: 36551459 PMCID: PMC9774410 DOI: 10.3390/antibiotics11121802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Resistance of methicillin-resistant Staphylococcus aureus (MRSA) from food and livestock to last resort antibiotics such as linezolid is highly concerning, since treatment options for infections in humans might be diminished. Known mechanisms of linezolid resistance include point mutations in the 23S rRNA gene and in the ribosomal proteins L3, L4 and L22 as well as an acquisition of the cfr, optrA or poxtA gene. The objective of our study was to characterize antimicrobial resistance (AMR) determinants and phylogenetic relationships among linezolid-resistant (LR-) MRSA from food and livestock. In total, from more than 4000 incoming isolates in the years 2012 to 2021, only two strains from 2015 originating from pig samples exhibited linezolid resistance in the antimicrobial susceptibility testing with MICs of ≥8 mg/L. These LR-MRSA were characterized in detail by whole-genome sequencing and phylogenetic analyses using cgMLST. The LR-MRSA strains showed resistances to ten and eight different antibiotics, respectively. Both strains harbored plasmid-coded cfr genes mediating the linezolid resistance. The cfr genes showed identical sequences in both strains. In addition to the cfr gene, genes for phenicol and clindamycin resistance were detected on the respective plasmids, opening the possibility for a co-selection. The LR-MRSA differed distantly in the phylogenetic analyses and also to other MRSA from pig samples in the year 2015. In conclusion, the occurrence of LR-MRSA in food and livestock seems to be very rare in Germany. However, carriage of plasmids with linezolid resistance determinants could lead to further linezolid-resistant strains by horizontal gene transfer.
Collapse
|
35
|
Bo ZM, Tan WK, Chong CSC, Lye MS, Parmasivam S, Pang ST, Satkunananthan SE, Chong HY, Malek A, Al-khazzan BAAM, Sim BLH, Lee CKC, Lim RLH, Lim CSY. Respiratory microorganisms in acute pharyngitis patients: Identification, antibiotic prescription patterns and appropriateness, and antibiotic resistance in private primary care, central Malaysia. PLoS One 2022; 17:e0277802. [PMID: 36395327 PMCID: PMC9671416 DOI: 10.1371/journal.pone.0277802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Acute pharyngitis (AP) is a common reason for private primary care consultations, thus providing an avenue for widespread antibiotic intake among the community. However, there is limited data on the antibiotic prescription appropriateness and resistance information in the Malaysian private primary care setting, therefore, this study aimed to investigate the prevalence of isolated viruses and bacteria, antibiotic resistance patterns, antibiotic prescription patterns and appropriateness by general practitioners (GPs) and factors affecting antibiotic resistance and antibiotic prescription patterns. To investigate, a cross-sectional study was conducted among 205 patients presenting with AP symptoms at private primary care clinics in central Malaysia from 3rd January 2016 to 30th November 2016. Throat swabs were collected from 205 AP patients for two purposes: (i) the detection of four common respiratory viruses associated with AP via reverse-transcription real-time PCR (qRT-PCR); and (ii) bacterial identification using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Bacterial isolates were then subjected to antibiotic susceptibility screening and McIsaac scoring was calculated post-prescription based on GP selection of criteria. Generalized estimating equations analysis with multiple logistic regression was conducted to identify factors associated with presence of virus and antibiotic prescription. The results showed that 95.1% (195/205) of patients had at least one of the four viruses, with rhinovirus (88.5%) being the most prevalent, followed by adenovirus (74.9%), influenza A virus (4.6%) and enterovirus (2.1%). A total of 862 non-repetitive colonies were isolated from the culture of throat swabs from 205 patients who were positive for bacteria. From a total of 22 genera, Streptococcus constitutes the most prevalent bacteria genus (40.9%), followed by Neisseria (20%), Rothia (13.0%), Staphylococcus (11%) and Klebsiella (4.9%). Only 5 patients carried group A beta-hemolytic streptococci (GABHS). We also report the presence of vancomycin-resistant S. aureus or VRSA (n = 9, 10.1%) among which one isolate is a multidrug-resistant methicillin-resistant S. aureus (MDR-MRSA), while 54.1% (n = 111) were found to carry at least one antibiotic-resistant bacteria species. Application of the McIsaac scoring system indicated that 87.8% (n = 180) of patients should not be prescribed antibiotics as the majority of AP patients in this study had viral pharyngitis. The antibiotic prescription appropriateness by applying post-prescription McIsaac scoring was able to rule out GABHS pharyngitis in this sample with a GABHS culture-positive sensitivity of 40% (n = 2/5) and specificity of 90% (180/200). In conclusion, antibiotic-resistant throat isolates and over-prescription of antibiotics were observed and McIsaac scoring system is effective in guiding GPs to determine occurrences of viral pharyngitis to reduce unnecessary antibiotic prescription.
Collapse
Affiliation(s)
- Zhuang Mian Bo
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Wei Keat Tan
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | - Munn Sann Lye
- Faculty of Medicine and Health Sciences, Formerly Department of Community Medicine, Universiti Putra Malaysia
| | - Seshatharran Parmasivam
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Shu Ting Pang
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | - Hui Yee Chong
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Ameen Malek
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | - Renee Lay Hong Lim
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Crystale Siew Ying Lim
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Cheras, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
36
|
Golob M, Pate M, Kušar D, Zajc U, Papić B, Ocepek M, Zdovc I, Avberšek J. Antimicrobial Resistance and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Two Pig Farms: Longitudinal Study of LA-MRSA. Antibiotics (Basel) 2022; 11:1532. [PMID: 36358187 PMCID: PMC9687068 DOI: 10.3390/antibiotics11111532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 10/29/2023] Open
Abstract
Pigs were identified as the most important reservoir of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA), mostly belonging to the emergent zoonotic clonal complex (CC) 398. Here, we investigated the presence of MRSA in sows and piglets over a period of several months in two pig farms (intensive farm A and family-run farm B). Isolates underwent antimicrobial susceptibility testing, PCR characterization and spa typing. We collected 280 samples, namely 206 nasal swabs from pigs and 74 environmental samples from pig housings at 12 consecutive time points. A total of 120/161 (74.5%) and 75/119 (63.0%) samples were MRSA-positive in farms A and B, respectively. All isolates harbored mecA but lacked mecC and PVL-encoding genes. The identified spa types (t571, t034, t1250 and t898 in farm A, t1451 and t011 in farm B) were indicative of CC398. Antimicrobial resistance patterns (all multidrug resistant in farm A, 57.2% in farm B) depended on the farm, suggesting the impact of farm size and management practices on the prevalence and characteristics of MRSA. Due to the intermittent colonization of pigs and the high contamination of their immediate environment, MRSA status should be determined at the farm level when considering preventive measures or animal trade between farms.
Collapse
Affiliation(s)
- Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu Z, Yuan C. Molecular Epidemiology of Staphylococcus aureus in China Reveals the Key Gene Features Involved in Epidemic Transmission and Adaptive Evolution. Microbiol Spectr 2022; 10:e0156422. [PMID: 36190436 PMCID: PMC9603185 DOI: 10.1128/spectrum.01564-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen that causes various infections in humans and domestic animals. In China, S. aureus is the most common Gram-positive pathogen that causes clinical infections. However, there are few comprehensive genome-based molecular epidemiology studies to investigate the genotypic background of the major S. aureus clones that are epidemic in China. Here, four S. aureus isolates that were recovered from hospital personnel were sequenced. In combination with whole-genome sequencing (WGS) data of 328 S. aureus strains as references, we performed a comprehensive molecular epidemiology study to reveal the molecular epidemic characterization of S. aureus that is epidemic in China. It was found that 332 S. aureus isolates were phylogenetically categorized into 4 major epidemic groups with different epidemiology phenotypes. Each group has exclusive features in virulence genotypic profiles, antimicrobial resistance genotypic profiles, core and pangenome features representing the differences involved in genetic features, evolutionary processes, and potential future evolutionary directions. Moreover, a comparative core genome analysis of 332 S. aureus isolates indicated several key genes that contributed to differences in molecular epidemic characterization and promoted the adaptive evolutionary process of each group. This study provides a comprehensive understanding of molecular epidemiological characteristics and adaptive evolutionary directions of major S. aureus clones that are epidemic in China. IMPORTANCE Staphylococcus aureus is an important Gram-positive pathogen that is epidemic worldwide and causes various infections in humans and domestic animals. However, there has been relatively little research on comprehensive molecular epidemiology in China. In this research, we reconstructed the phylogenetic relationship based on whole-genome data of strains almost all over China, screened for resistance and virulence genes, and took core and pan genome analysis to perform a comprehensive molecular epidemiology study of S. aureus that is epidemic in China. Our results highlight that there are 4 major epidemic groups with different epidemiology phenotypes after phylogenetic categorization with exclusive genetic features in virulence genotypic profiles, antimicrobial-resistance genotypic profiles, and core and pangenome features, and we found key gene features involved in epidemic transmission and adaptive evolution. Our findings are critical in describing molecular characteristic profiles of S. aureus infection, which could update existing preventive measures and take appropriate strategies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, PR China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, PR China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, PR China
| | - Chao Yuan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, PR China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, PR China
- Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
38
|
Silva V, Monteiro A, Pereira JE, Maltez L, Igrejas G, Poeta P. MRSA in Humans, Pets and Livestock in Portugal: Where We Came from and Where We Are Going. Pathogens 2022; 11:1110. [PMID: 36297167 PMCID: PMC9608539 DOI: 10.3390/pathogens11101110] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 09/10/2023] Open
Abstract
Over the years, molecular typing of methicillin-resistant S. aureus (MRSA) has allowed for the identification of endemic MRSA strains and pathogenic strains. After reaching a peak of predominance in a given geographic region, MRSA strains are usually replaced by a new strain. This process is called clonal replacement and is observed worldwide. The worldwide spread of hospital-associated MRSA (HA-MRSA), community-associated MRSA (CA-MRSA) and livestock-associated MRSA (LA-MRSA) clones over the last few decades has allowed this microorganism to be currently considered a pandemic. In Portugal, most HA-MRSA infections are associated with EMRSA-15 (S22-IV), New York/Japan (ST5-II) and Iberian (ST247-I) clones. Regarding the strains found in the community, many of them are frequently associated with the hospital environment, namely the Pediatric, Brazilian and Iberian clones. On the other hand, a strain that is typically found in animals, MRSA clonal complex (CC) 398, has been described in humans as colonizing and causing infections. The ST398 clone is found across all animal species, particularly in farm animals where the economic impact of LA-MRSA infections can have disastrous consequences for industries. In contrast, the EMRSA-15 clone seems to be more related to companion animals. The objective of this review is to better understand the MRSA epidemiology because it is, undoubtedly, an important public health concern that requires more attention, in order to achieve an effective response in all sectors.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
39
|
Rhouma M, Soufi L, Cenatus S, Archambault M, Butaye P. Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Vet Sci 2022; 9:480. [PMID: 36136696 PMCID: PMC9503504 DOI: 10.3390/vetsci9090480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) represents a global threat to both human and animal health and has received increasing attention over the years from different stakeholders. Certain AMR bacteria circulate between humans, animals, and the environment, while AMR genes can be found in all ecosystems. The aim of the present review was to provide an overview of antimicrobial use in food-producing animals and to document the current status of the role of farm animals in the spread of AMR to humans. The available body of scientific evidence supported the notion that restricted use of antimicrobials in farm animals was effective in reducing AMR in livestock and, in some cases, in humans. However, most recent studies have reported that livestock have little contribution to the acquisition of AMR bacteria and/or AMR genes by humans. Overall, strategies applied on farms that target the reduction of all antimicrobials are recommended, as these are apparently associated with notable reduction in AMR (avoiding co-resistance between antimicrobials). The interconnection between human and animal health as well as the environment requires the acceleration of the implementation of the 'One Health' approach to effectively fight AMR while preserving the effectiveness of antimicrobials.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Leila Soufi
- Department of Microbiology, Faculty of Life Sciences and Technology, Berlin University of Applied Sciences, Seestrasse 64, 13347 Berlin, Germany
- Laboratory of Biotechnology and Bio-Geo Resources Valorization (BVBGR)-LR11ES31, Higher Institute for Biotechnology, University of Manouba, Biotechpole Sidi Thabet, Ariana 2020, Tunisia
| | - Schlasiva Cenatus
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d’Enseignement en Salubrité Alimentaire (GRESA), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie Archambault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| |
Collapse
|
40
|
Tonjo T, Manilal A, Seid M. Bacteriological quality and antimicrobial susceptibility profiles of isolates of ready-to-eat raw minced meat from hotels and restaurants in Arba Minch, Ethiopia. PLoS One 2022; 17:e0273790. [PMID: 36048838 PMCID: PMC9436051 DOI: 10.1371/journal.pone.0273790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
In Ethiopia, the bacteriological quality of ready-to-eat raw meat is of a great public health concern as it can serve as a source of meat-borne pathogens and worsen the transmission of antimicrobial resistant bacteria, and hence this cross-sectional study, done on 257 meat samples (ie., 169 beef, 50 mutton and 38 chevon) from randomly selected hotels and restaurants (n = 52). Approximately 25 gm of meat samples were taken bi-weekly and subjected to quantitative and qualitative analyses; antimicrobial susceptibility tests were done as per the Kirby-Bauer disk diffusion method. It was found that 13.2 (n = 34), 17.5 (n = 45) and 21.8% (n = 56) samples exceeded the permissible limit for total viable and coliform and S. aureus counts, respectively. At the same time, 24.9% (n = 64) surpassed the bacteriological limit permissible for consumption. Overall, 36.6% (n = 94) of samples were extrapolated as unsatisfactory for consumption due to high bacterial load and or the presence of pathogens. Five different bacterial spp. such as E. coli 65% (n = 167), S. aureus 59% (n = 152), Salmonella spp. 28.4% (n = 73), Campylobacter spp. 14.4% (n = 37) and Shigella spp. 4.3% (n = 11) were isolated in varied proportions. Alarmingly, 60% (n = 264) of the isolates were multi-drug resistant and 51% of S. aureus were found to be MRSA.
Collapse
Affiliation(s)
- Tomas Tonjo
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Aseer Manilal
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
- * E-mail: (AM); (MS)
| | - Mohammed Seid
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
- * E-mail: (AM); (MS)
| |
Collapse
|
41
|
Khairullah AR, Sudjarwo SA, Effendi MH, Ramandinianto SC, Widodo A, Riwu KHP. A review of horses as a source of spreading livestock-associated methicillin-resistant Staphylococcus aureus to human health. Vet World 2022; 15:1906-1915. [PMID: 36313842 PMCID: PMC9615495 DOI: 10.14202/vetworld.2022.1906-1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) was first discovered in horses in 1989. Since then, LA-MRSA has begun to be considered an important strain of pathogenic bacteria in horses, which can cause LA-MRSA infection and colonization in humans with public health impacts. The anterior nares are the primary site of LA-MRSA colonization in horses, although LA-MRSA colonization may also occur in the gastrointestinal tract in horses. LA-MRSA-infected horses typically exhibit clinical infection or may not exhibit clinical infection. There are two potential risks associated with LA-MRSA colonization in horses: The possibility of disease development in horses infected with LA-MRSA and the possibility of LA-MRSA transfer to humans and other horses. The diagnosis of LA-MRSA in horses can be made by conducting in vitro sensitivity testing for oxacillin and cefoxitin, and then followed by a molecular test using polymerase chain reaction. LA-MRSA transmission in animal hospitals and on farms is most likely due to contact with horses infected or colonized by LA-MRSA. The history of prior antibiotic administration, history of prior LA-MRSA colonization, and length of equine hospitalization were described as risk factors in cases of infection and colonization of LA-MRSA in horses. Nebulized antibiotics may be a viable alternative to use in horses, but nebulized antibiotics are only used in horses that are persistently colonized with LA-MRSA. Controlling the spread of LA-MRSA in horses can be done by regularly washing horses, eradicating vectors in horse stalls such as rats, and maintaining the cleanliness of the stable and animal hospital environment. Meanwhile, cleaning hands, using gloves, and donning protective clothes are ways that humans can prevent the transmission of LA-MRSA when handling horses. This review will explain the definition of LA-MRSA in general, LA-MRSA in horses, the epidemiology of LA-MRSA in horses, the diagnosis of LA-MRSA in horses, the transmission of LA-MRSA in horses, risk factors for spreading LA-MRSA in horses, public health impact, treatment of LA-MRSA infection in horses, and control of the spread of LA-MRSA in horses.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| | - Sri Agus Sudjarwo
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| | | | - Agus Widodo
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya, Jawa Timur 60115, Indonesia
| |
Collapse
|
42
|
Le MNT, Kawada-Matsuo M, Komatsuzawa H. Efficiency of Antimicrobial Peptides Against Multidrug-Resistant Staphylococcal Pathogens. Front Microbiol 2022; 13:930629. [PMID: 35756032 PMCID: PMC9218695 DOI: 10.3389/fmicb.2022.930629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotics play a vital role in saving millions of lives from fatal infections; however, the inappropriate use of antibiotics has led to the emergence and propagation of drug resistance worldwide. Multidrug-resistant bacteria represent a significant challenge to treating infections due to the limitation of available antibiotics, necessitating the investigation of alternative treatments for combating these superbugs. Under such circumstances, antimicrobial peptides (AMPs), including human-derived AMPs and bacteria-derived AMPs (so-called bacteriocins), are considered potential therapeutic drugs owing to their high efficacy against infectious bacteria and the poor ability of these microorganisms to develop resistance to them. Several staphylococcal species including Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus saprophyticus are commensal bacteria and known to cause many opportunistic infectious diseases. Methicillin-resistant Staphylococci, especially methicillin-resistant S. aureus (MRSA), are of particular concern among the critical multidrug-resistant infectious Gram-positive pathogens. Within the past decade, studies have reported promising AMPs that are effective against MRSA and other methicillin-resistant Staphylococci. This review discusses the sources and mechanisms of AMPs against staphylococcal species, as well as their potential to become chemotherapies for clinical infections caused by multidrug-resistant staphylococci.
Collapse
Affiliation(s)
- Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
43
|
Shoaib M, Aqib AI, Ali MM, Ijaz M, Sattar H, Ghaffar A, Sajid Hasni M, Bhutta ZA, Ashfaq K, Kulyar MFEA, Pu W. Tracking Infection and Genetic Divergence of Methicillin-Resistant Staphylococcus aureus at Pets, Pet Owners, and Environment Interface. Front Vet Sci 2022; 9:900480. [PMID: 35720840 PMCID: PMC9201917 DOI: 10.3389/fvets.2022.900480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus (S. aureus) has become a leading animal and public health pathogen that keeps on transferring from one host to other, giving rise to newer strains by genetic shifts. The current study was designed to investigate the epidemiology and genetic relatedness of mecA gene in S. aureus isolated from pets, immediate individuals in contact with pets, and veterinary clinic environments. A total of n = 300 samples were collected from different veterinary hospitals in Pakistan using convenience sampling. The collected samples were subjected to microbiological and biochemical examination for the isolation of S. aureus. Methicillin resistance was investigated by both phenotypically using oxacillin disk diffusion assay and by genotypically targeting mecA gene by PCR. PCR amplicons were subjected for sequencing by Sanger method of sequencing, which were subsequently submitted to NCBI GenBank under the accession numbers MT874770, MT874771, and MT874772. Sequence evolutionary analysis and mecA gene characterization was done using various bioinformatics tools. Overall, 33.66% mecA genes harboring S. aureus strains were isolated from all sources (33.33% from pets, 46.0% from surrounding, and 28.0% from immediate contact individuals). The bioinformatics analysis noted that one SNP was identified at position c.253C>A (Transvertion). The phylogenetic tree (two clades) of S. aureus mecA revealed a possibility of inter-transmission of disease between the environment and pets. Frequency of adenine and thymine nucleotide in motifs were found to be the same (0.334). Cytosine and guanine frequency were also the same (0.166). Threonine was replaced by asparagine (p.T84D) in each sample of cat, environment, and human. On the other hand, protein structures ofcat-1 and cat-2 proteins were found identical while cat-3, environmental, and human proteins shared identical structures. The study thus concludes rising circulation of methicillin-resistant S. aureus (MRSA) strains in animal-human-environment interfaces, forecasting the development of novel strains withmodified range of resistance.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Huma Sattar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Awais Ghaffar
- Department of Clinical Sciences, KBCMA, College of Veterinary and Animal Sciences, Narowal, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Sajid Hasni
- Directorate General Farms and Feed Resources, Livestock and Dairy Development Department, Quetta, Pakistan
| | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Khurram Ashfaq
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | | | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
44
|
Silva V, Caniça M, Manageiro V, Vieira-Pinto M, Pereira JE, Maltez L, Poeta P, Igrejas G. Antimicrobial Resistance and Molecular Epidemiology of Staphylococcus aureus from Hunters and Hunting Dogs. Pathogens 2022; 11:548. [PMID: 35631069 PMCID: PMC9143024 DOI: 10.3390/pathogens11050548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Several studies have showed that a dog-to-human transmission of Staphylococcus aureus occurs. Hunting dogs do not have as much contact with their owners as dogs that live in the same household as the owners; however, these dogs have contact with their owners during hunting activities as well as when hunting game; therefore, we aimed to isolate S. aureus from hunters and their hunting dogs to investigate a possible S. aureus transmission. Nose and mouth samples were collected from 30 hunters and their 78 hunting dogs for staphylococcal isolation. The species identification was performed using MALDI-TOF. The antimicrobial susceptibility profiles were accessed using the Kirby-Bauer method and respective antimicrobial resistance genes were investigated by PCR. Multilocus sequence typing (MLST) and spa- and agr-typing was performed in all S. aureus isolates. S. aureus were detected in 10 (30%) human samples and in 11 (15.4%) dog samples of which 11 and 5 were methicillin-resistant S. aureus (MRSA). Other staphylococci were identified, particularly, S. pseudintermedius. Most S. aureus isolates were resistant to penicillin, erythromycin, and tetracycline. Evidence of a possible transmission of S. aureus between human and dogs was detected in three hunters and their dogs. S. aureus isolates were ascribed to 10 STs and 9 spa-types. A moderate colonization of S. aureus in hunting dogs and their owners was detected in this study. A few dog-to-dog and dog-to-human possible transmissions were identified.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Madalena Vieira-Pinto
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - José Eduardo Pereira
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (J.E.P.); (L.M.)
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
45
|
Jauro S, Hamman MM, Malgwi KD, Musa JA, Ngoshe YB, Gulani IA, Kwoji ID, Iliya I, Abubakar MB, Fasina FO. Antimicrobial resistance pattern of methicillin-resistant Staphylococcus aureus isolated from sheep and humans in Veterinary Hospital Maiduguri, Nigeria. Vet World 2022; 15:1141-1148. [PMID: 35698509 PMCID: PMC9178588 DOI: 10.14202/vetworld.2022.1141-1148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Methicillin-resistant Staphylococcus aureus (MRSA), an important opportunistic pathogen, is a Gram-positive coccus known to be resistant to β-lactam antibiotics. Its virulence depends on a large range of factors, mainly extracellular proteins, such as enzymes and exotoxins, that contribute to causing a wide range of diseases in human and animal species. The major reasons for the success of this pathogen are its great variability, which enables it to occur and thrive at different periods and places with diverse clonal types and antibiotic resistance patterns within regions and countries. Infections caused by antibiotic-resistant S. aureus bring about serious problems in the general population (humans and animals). Infections with these pathogens can be devastating, particularly for the very young, adults and immunocompromised patients in both humans and animals. This study aimed to determine the presence of MRSA in both apparently healthy and sick sheep brought to the veterinary hospital as well as veterinary staff and students on clinical attachment in the hospital.
Materials and Methods: A total of 200 nasal swab samples were collected aseptically from sheep and humans (100 each) for the isolation of MRSA. The samples were processed by appropriately transporting them to the laboratory, then propagated in nutrient broth at 37°C for 24 h followed by subculturing on mannitol salt agar at 37°C for 24 h, to identify S. aureus. This was followed by biochemical tests (catalase and coagulase tests) and Gram staining. MRSA was isolated using Clinical Laboratory Standard Institute (CLSI) guideline and confirmed by plating onto Oxacillin (OX) Resistance Screening Agar Base agar. The antimicrobial susceptibility pattern of the MRSA isolates was determined using the disk diffusion method against 12 commonly used antimicrobial agents.
Results: The total rate of nasal carriage of S. aureus and MRSA was found to be 51% and 43% in sheep and humans, respectively. The MRSA prevalence in male and female sheep was 18% and 8%, while 9% and 8% were for male and female human samples, respectively. The antimicrobial susceptibility test showed 100% resistance to OX, cefoxitin, oxytetracycline, cephazolin, and penicillin-G (Pen) by MRSA isolates from humans. Conversely, there was 100% susceptibility to ciprofloxacin, imipenem, and gentamicin; for linezolid (LZD), it was 87.5%, norfloxacin (NOR) (71%), and erythromycin (ERY) (50%) susceptibility was recorded. The MRSA isolates from sheep recorded 100% resistance to the same set of drugs used for human MRSA isolates and were equally 100% susceptible to gentamicin, imipenem, LZD, ciprofloxacin, NOR (92%), and ERY (50%).
Conclusion: This study determined the presence of MRSA in sheep and humans from the Veterinary Hospital, Maiduguri. It appears that certain drugs such as ciprofloxacin, imipenem, and gentamicin will continue to remain effective against MRSA associated with humans and sheep. Reasons for the observed patterns of resistance must be explored to reduce the burdens of MRSA resistance. Furthermore, the present study did not confirm the MRSA resistance genes such as mecA and spa typing to ascertain the polymorphism in the X-region using appropriate molecular techniques. Hence more studies need to be conducted to elucidate these findings using robust techniques.
Collapse
Affiliation(s)
- Solomon Jauro
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Mark M. Hamman
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Kefas D. Malgwi
- Veterinary Teaching Hospital, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Jasini A. Musa
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Yusuf B. Ngoshe
- Department of Production Animal Studies (Epidemiology Section), Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Isa A. Gulani
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Iliya D. Kwoji
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Ibrahim Iliya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Mustapha B. Abubakar
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno, Nigeria
| | - Folorunso O. Fasina
- Food and Agriculture Organization, Dar es Salaam, Tanzania; Department of Veterinary Tropical Diseases, University of Pretoria, South Africa
| |
Collapse
|
46
|
An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 2022; 86:e0015921. [PMID: 35420454 PMCID: PMC9199415 DOI: 10.1128/mmbr.00159-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of resistance to β-lactam antibiotics has made Staphylococcus aureus a clinical burden on a global scale. MRSA (methicillin-resistant S. aureus) is commonly known as a superbug. The ability of MRSA to proliferate in the presence of β-lactams is attributed to the acquisition of mecA, which encodes the alternative penicillin binding protein, PBP2A, which is insensitive to the antibiotics. Most MRSA isolates exhibit low-level β-lactam resistance, whereby additional genetic adjustments are required to develop high-level resistance. Although several genetic factors that potentiate or are required for high-level resistance have been identified, how these interact at the mechanistic level has remained elusive. Here, we discuss the development of resistance and assess the role of the associated components in tailoring physiology to accommodate incoming mecA.
Collapse
|
47
|
El-Ashker M, Monecke S, Gwida M, Saad T, El-Gohary A, Mohamed A, Reißig A, Frankenfeld K, Gary D, Müller E, Ehricht R. Molecular characterisation of methicillin-resistant and methicillin-susceptible Staphylococcus aureusclones isolated from healthy dairy animals and their caretakers in Egypt. Vet Microbiol 2022; 267:109374. [DOI: 10.1016/j.vetmic.2022.109374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
|
48
|
Prevalence and Characterization of PVL-Positive Staphylococcus aureus Isolated from Raw Cow’s Milk. Toxins (Basel) 2022; 14:toxins14020097. [PMID: 35202125 PMCID: PMC8876356 DOI: 10.3390/toxins14020097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate the prevalence, antibiotic susceptibility profiles, and some toxin genes of Panton-Valentine leukocidin (PVL)-positive Staphylococcus aureus (S. aureus) in unpasteurized raw cow’s milk collected from retail outlets located at Mansoura, Dakahliya governorate, Egypt. In that context, a total of 700 raw cow’s milk samples were investigated for the presence of S. aureus, which was identified in 41.1% (288/700) of the samples. Among the S. aureus isolates, 113 PVL-positive S. aureus were identified and subjected for further analysis. The PVL-positive S. aureus were investigated for the existence of toxin-related genes, including hemolysin (hla), toxic shock syndrome toxin-1 (tst), and enterotoxins (sea, seb, sec, see, seg, sei, and selj). Genotypic resistance of PVL-positive strains was performed for the detection of blaZ and mecA genes. Among the PVL-positive S. aureus, sea, seb, and sec were detected in 44.2, 6.2%, and 0.9%, respectively, while the hla and tst genes were identified in 54.9% and 0.9%, respectively. The blaZ and mecA genes were successfully identified in 84.9 (96/113) and 32.7% (37/113) of the total evaluated S. aureus isolates, respectively. PVL-positive S. aureus displayed a high level of resistance to penicillin, ampicillin, and trimethoprim-sulfamethoxazole. Multidrug resistance (resistant to ≥3 antimicrobial classes) was displayed by all methicillin-resistant S. aureus (MRSA) and 38.2% of methicillin-sensitive S. aureus (MSSA) isolates. The obtained findings are raising the alarm of virulent PVL-positive MRSA clones in retail milk in Egypt, suggesting the requirement for limiting the use of β-lactam drugs in food-producing animals and the importance of implementing strong hygiene procedures in dairy farms and processing plants.
Collapse
|
49
|
Sri Prabakusuma A, Zhu J, Shi Y, Ma Q, Zhao Q, Yang Z, Xu Y, Huang A. Prevalence and antimicrobial resistance profiling of Staphylococcus aureus isolated from traditional cheese in Yunnan, China. 3 Biotech 2022; 12:1. [PMID: 34926114 PMCID: PMC8639989 DOI: 10.1007/s13205-021-03072-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/22/2021] [Indexed: 01/03/2023] Open
Abstract
The prevalence of staphylococcal infection and the emergence of multidrug resistance of Staphylococcus aureus (S. aureus) are major concerns in food safety and public health. This study aimed to investigate the prevalence of S. aureus isolated from traditional Chinese Rubing and Rushan cheese, antimicrobial resistance profiles, genomic characteristics, and predict antimicrobial resistance genes (ARGs). From 124 samples, 18 of 62 (29.03%) of Rubing and 5 of 62 (8.06%) of Rushan cheese were confirmed to be S. aureus positive by standard culture-based methods. Twenty-three coagulase-positive staphylococci isolates were grouped into 16 clusters by pulsed-field gel electrophoresis and subjected to routine susceptibility testing to 12 antibiotics. Those isolates exhibited high resistance to penicillin (100%), erythromycin, trimethoprim-sulphamethoxazole (34.78%), oxacillin, clindamycin, and cefoxitin (21.74%). Multidrug-resistant (MDR) S. aureus was found in 34.78% (8 of 23) of isolates. Further, S. aureus strain DC.RB_015 isolated from Rubing cheese, recognized as the most resistant to six antibiotics, was selected for whole-genome sequencing (WGS), continued with in silico approaches. S. aureus DC.RB_015 had a single chromosome size of 2,794,578 bp and a plasmid size of 22,961 bp. The strain harbored 18 predicted ARGs, including eight efflux pump genes (mepA, tet(K), arlR, arlS, norA, mgrA, tet(38), LmrS), one peptidoglycan biosynthesis gene (bacA), two β-lactams resistance genes (mecA, blaZ), and seven genes conferring other antimicrobial resistance (APH(3')-IIIa, aad(6), ErmB, SAT-4, mecR1, GlpT, murA). The results of this study expand the knowledge of S. aureus strain DC.RB_015, increase food safety awareness, and will be helpful in establishing therapeutic therapy. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03072-4.
Collapse
Affiliation(s)
- Adhita Sri Prabakusuma
- Department of Food Technology, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, 55166 Indonesia
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Jingjing Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Qingwen Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Zushun Yang
- Yunnan Center for Disease Control and Prevention (CDC), Kunming, 650100 Yunnan China
| | - Yan Xu
- Yunnan Center for Disease Control and Prevention (CDC), Kunming, 650100 Yunnan China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|