1
|
Gul F, Khan IU, Li G, Ullah R, Ibrahim MA, Ullah K, Khan Z, Du D. Co-application of Parthenium biochar and urea effectively mitigate cadmium toxicity during wheat growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117092. [PMID: 39332200 DOI: 10.1016/j.ecoenv.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Environmental contamination by cadmium (Cd), a highly toxic heavy metal, poses significant health risks to plants and humans. Biochar has been effectively used to promote plant growth and productivity under Cd stress. This study presents an innovative application of biochar derived from the invasive weed Parthenium hysterophorus to promote plant growth and productivity under Cd stress. Our study includes detailed soil and plant analyses, providing a holistic perspective on how biochar and urea amendments influence soil properties, nutrient availability, and plant physiological responses. To address these, we established seven treatments: the control, Cd alone (5 mg kg-1), biochar alone (5 %), urea alone (3 g kg-1), biochar with Cd, urea with Cd, and a combination of biochar and urea with Cd. Cd stress alone significantly reduced plant growth indicators such as shoot and root length, fresh and dry biomass, chlorophyll content, and grain yield. However, the supplementation of biochar, urea, or their combination significantly increased shoot length (by 48%, 34%, and 65%), root length (by 73%, 46%, and 70%), and fresh shoot biomass (by 4%, 31%, and 4%), respectively. This improvement is attributed to enhanced soil properties and improved nutrient absorption. The biochar-urea combination also enhanced Cd tolerance by improving total chlorophyll content by 14 %, 13 %, and 16 % compared to the control, respectively. Similaly, these treatments significantly (p < 0.05) boosted the activity of antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase by 51 %, 30 %, and 51 %, respectively, thereby mitigating oxidative stress as a defensive mechanism. The Cd tolerance was improved by biochar, urea, and their combinations, which reduced Cd content in the shoots (by 60.5 %, 38.9 %, and 51.3 %), roots (by 47.5 %, 23.9 %, and 57.6 %), and grains (by 58.1 %, 30.2 %, and 38.3 %) relative to Cd stress alone, respectively. The synergistic effects of biochar and urea are achieved through improved soil properties, nutrient availability, activating antioxidant defense mechanisms, and minimizing the accumulation of metal ions in plant tissues, thereby enhancing plant defenses against Cd stress. Conclusively, converting invasive Parthenium weed into biochar and combining it with urea offers an environmentally friendly solution to manage its spreading while effectively mitigating Cd stress in crops.
Collapse
Affiliation(s)
- Farrukh Gul
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Irfan Ullah Khan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kamran Ullah
- Department of Zoology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Zohaib Khan
- Department of Botany, University of Science and Technology, Bannu, KPK 2100, Pakistan
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Nagaraja SS, Gouda Y, Miguez D, Muralidaran Y, Romanholo Ferreira LF, Américo-Pinheiro JHP, Mulla SI, Mishra P. Distinctive toxic repercussions of polystyrene nano plastic towards aquatic non target species Nitrobacter vulgaris, Scenedesmus sp and Daphnia magna. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02810-7. [PMID: 39384726 DOI: 10.1007/s10646-024-02810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
The widespread application of plastics and its eventual degradation to micro-sized or nano-sized plastics has led to several environmental concerns. Moreover, nanoplastics can easily cascade through the food chain accumulating in the aquatic organisms. Thus, our study focussed on investigating the hazardous impact of nano-sized plastics on aquatic species including Nitrobacter vulgaris, Scenedesmus sp, and Daphnia magna. Various concentrations of polystyrene nanoplastics ranging from 0.01 mg/L to 100 mg/L were tested against Nitrobacter vulgaris, Scenedesmus sp, and Daphnia magna. The minimum inhibitory concentration of polystyrene nanoplastics in Nitrobacter vulgaris was found to be 25 mg/L, and in Daphnia magna, the median lethal concentration 50 was observed to be 64.02 mg/L. Exposure of Scenedesmus sp with increasing nanoplastic concentrations showed a significant decrease in total protein (p < 0.001), and chlorophyll content (p < 0.01), whereas the lipid peroxidation increased (p < 0.001) significantly. Similarly, Nitrobacter vulgaris and Daphnia magna showed a significant decrease in catalase activity (p < 0.001) and an increase in lipid peroxidation levels (p < 0.01). Concomitant with lipid peroxidation results, decreased superoxide dismutase levels (p < 0.01) and protein concentrations (p < 0.01) were observed in Daphnia magna. Besides, the increasing concentration of polystyrene nanoplastics displayed an elevated mortality rate in Scenedesmus sp (p < 0.001) and Nitrobacter vulgaris (p < 0.01). Further, scanning electron microscopy analysis substantiated the morphological alterations in Nitrobacter vulgaris and Scenedesmus sp on exposure to polystyrene nanoplastics.
Collapse
Affiliation(s)
- Sowmya Sri Nagaraja
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India
| | - Yerimma Gouda
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India
| | - Diana Miguez
- Latitud - LATU Foundation, Technological Laboratory of Uruguay. Ave. Italia, Los Abetos Building, Montevideo, Uruguay
| | - Yuvashree Muralidaran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India
| | | | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, 560064, Karnataka, India.
| |
Collapse
|
3
|
Ran S, Li H, Yu Y, Zhu T, Dao J, Long S, Cai J, Liu TY, Xu Y. Ecological characteristics of tall fescue and spatially organized communities: Their contribution to mitigating cadmium damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135953. [PMID: 39332258 DOI: 10.1016/j.jhazmat.2024.135953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The threat of cadmium (Cd) stress to agricultural soil environments, as well as their productivity attracting growing global interest. Tall fescue (Festuca arundinacea Schreb.) is a strong candidate for the remediation of heavy metals in soil. However, the joint analysis of Cd tolerance, physiological responses, and multifaceted plant microbiomes in tall fescue fields has not been extensively researched. Therefore, this study employed microbial sequencing (i.e., 16S and ITS sequencing) to investigate the differences in microbial community structure among various plant compartments of Cd-resistant tall fescue (cv. 'Arid3') and Cd-sensitive tall fescue (cv. 'Barrington'). Furthermore, we examined the mechanism of resistance to Cd by introducing three different bacteria and a fungus that were isolated from the 'Arid3' rhizosheath soil. It highlighted the potential application of enriched taxa such as Delftia, Novosphingobium, Cupriavidus and Torula in enhancing the activity of antioxidant defense systems, increasing the production of osmotic regulatory substances, and stimulating the expression of Cd-resistance genes. This ultimately promoted plant growth and enhanced phytoremediation efficiency. This study shed light on the response mechanism of the tall fescue microbiome to Cd stress and underscored the potential of tall fescue-microbe co-culture in the remediation of heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Shuqi Ran
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hanyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yize Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jicao Dao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junhao Cai
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
4
|
Hasanuzzaman M, Raihan MRH, Siddika A, Bardhan K, Hosen MS, Prasad PVV. Selenium and its nanoparticles modulate the metabolism of reactive oxygen species and morpho-physiology of wheat (Triticum aestivum L.) to combat oxidative stress under water deficit conditions. BMC PLANT BIOLOGY 2024; 24:578. [PMID: 38890566 PMCID: PMC11186265 DOI: 10.1186/s12870-024-05282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Wheat (Triticum aestivum L.) is one of the most important cereal crop species worldwide, but its growth and development are adversely influenced by drought stress. However, the application of trace elements is known to improve plant physiology under water-limited conditions. In this study, the effects of drought stress on wheat plants were investigated, with a focus on potential mitigation by foliar application of selenium nanoparticles (Se(np)) and sodium selenate (Na2SeO4). The experiment was conducted in a net house using a completely randomized design with four replications. The treatments involved three levels of drought stress (mild, moderate, and severe) started at 30 days after sowing (DAS), with foliar sprays of Se(np) and Se (both 25 µM) initiated at 27 DAS and repeated 4 times at 7-day intervals until 55 DAS. RESULTS Drought stress significantly reduced plant growth, whereas Se(np) and Se sprays enhanced it. Drought stress induced chlorophyll degradation, increased malondialdehyde and hydrogen peroxide levels, impaired membrane stability, and caused electrolyte leakage. Severe drought stress reduced the levels of antioxidants (e.g., proline, ascorbate, and glutathione by 4.18-fold, 80%, and 45%) and the activities of antioxidant enzymes (ascorbate peroxidase, dehydroascorbate reductase, and others). Conversely, treatment with Se(np) and Se restored these parameters, for example, 1.23-fold higher total chlorophyll content with Se(np) treatment, 26% higher APX activity with Se treatment, 15% lower electrolyte leakage with Se treatment in wheat plants under severe drought stress. This Se-associated enhancement facilitated rapid scavenging of reactive oxygen species and reduced methylglyoxal toxicity, thereby diminishing oxidative stress and positively affecting the morphophysiological and biochemical responses of the plants under drought. CONCLUSIONS Drought-stressed wheat plants exhibited reductions in physiological processes, including water uptake and photosynthetic activity. However, Se(np) and Se applied at 25 µM mitigated the detrimental effects of drought. The application of Se(np) was notably more effective than the application of Se in mitigating drought stress, indicating the potential of the application of Se(np) as a sustainable agricultural practice under water-limited conditions.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| | - Md Rakib Hossain Raihan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Ayesha Siddika
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Kirti Bardhan
- Department of Basic Sciences and Humanities, Navsari Agricultural University, Gujarat, India
| | - Md Sarwar Hosen
- Institute of Seed Technology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
5
|
Colas S, Marie B, Morin S, Milhe-Poutingon M, Foucault P, Chalvin S, Gelber C, Baldoni-Andrey P, Gurieff N, Fortin C, Le Faucheur S. New sensitive tools to characterize meta-metabolome response to short- and long-term cobalt exposure in dynamic river biofilm communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171851. [PMID: 38518822 DOI: 10.1016/j.scitotenv.2024.171851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Untargeted metabolomics is a non-a priori analysis of biomolecules that characterizes the metabolome variations induced by short- and long-term exposures to stressors. Even if the metabolite annotation remains lacunar due to database gaps, the global metabolomic fingerprint allows for trend analyses of dose-response curves for hundreds of cellular metabolites. Analysis of dose/time-response curve trends (biphasic or monotonic) of untargeted metabolomic features would thus allow the use of all the chemical signals obtained in order to determine stress levels (defense or damage) in organisms. To develop this approach in a context of time-dependent microbial community changes, mature river biofilms were exposed for 1 month to four cobalt (Co) concentrations (from background concentration to 1 × 10-6 M) in an open system of artificial streams. The meta-metabolomic response of biofilms was compared against a multitude of biological parameters (including bioaccumulation, biomass, chlorophyll a content, composition and structure of prokaryotic and eukaryotic communities) monitored at set exposure times (from 1 h to 28 d). Cobalt exposure induced extremely rapid responses of the meta-metabolome, with time range inducing defense responses (TRIDeR) of around 10 s, and time range inducing damage responses (TRIDaR) of several hours. Even in biofilms whose structure had been altered by Co bioaccumulation (reduced biomass, chlorophyll a contents and changes in the composition and diversity of prokaryotic and eukaryotic communities), concentration range inducing defense responses (CRIDeR) with similar initiation thresholds (1.41 ± 0.77 × 10-10 M Co2+ added in the exposure medium) were set up at the meta-metabolome level at every time point. In contrast, the concentration range inducing damage responses (CRIDaR) initiation thresholds increased by 10 times in long-term Co exposed biofilms. The present study demonstrates that defense and damage responses of biofilm meta-metabolome exposed to Co are rapidly and sustainably impacted, even within tolerant and resistant microbial communities.
Collapse
Affiliation(s)
- Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France.
| | - Benjamin Marie
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptation des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France
| | | | | | - Pierre Foucault
- UMR 7245 CNRS/MNHN "Molécules de Communication et Adaptation des Micro-organismes", Muséum National d'Histoire Naturelle, Paris, France; UMR7618 iEES-Paris, Sorbonne Université, Paris, France
| | - Siann Chalvin
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France
| | | | | | | | - Claude Fortin
- Institut National de la Recherche Scientifique - Eau Terre Environnement, Québec, Canada
| | | |
Collapse
|
6
|
Colas S, Marie B, Milhe-Poutingon M, Lot MC, Boullemant A, Fortin C, Le Faucheur S. Meta-metabolomic responses of river biofilms to cobalt exposure and use of dose-response model trends as an indicator of effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134099. [PMID: 38547754 DOI: 10.1016/j.jhazmat.2024.134099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
The response of the meta-metabolome is rarely used to characterize the effects of contaminants on a whole community. Here, the meta-metabolomic fingerprints of biofilms were examined after 1, 3 and 7 days of exposure to five concentrations of cobalt (from background concentration to 1 × 10-5 M) in aquatic microcosms. The untargeted metabolomic data were processed using the DRomics tool to build dose-response models and to calculate benchmark-doses. This approach made it possible to use 100% of the chemical signal instead of being limited to the very few annotated metabolites (7%). These benchmark-doses were further aggregated into an empirical cumulative density function. A trend analysis of the untargeted meta-metabolomic feature dose-response curves after 7 days of exposure suggested the presence of a concentration range inducing defense responses between 1.7 × 10-9 and 2.7 × 10-6 M, and of a concentration range inducing damage responses from 2.7 × 10-6 M and above. This distinction was in good agreement with changes in the other biological parameters studied (biomass and chlorophyll content). This study demonstrated that the molecular defense and damage responses can be related to contaminant concentrations and represents a promising approach for environmental risk assessment of metals.
Collapse
Affiliation(s)
- Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S-UPPA, CNRS, IPREM, Pau, France.
| | - Benjamin Marie
- UMR 7245 CNRS/MNHN " Molécules de Communication et Adaptations des Micro-organismes ", Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | - Claude Fortin
- Institut National de la Recherche Scientifique - Eau Terre Environnement, Québec, Canada
| | | |
Collapse
|
7
|
Piotrowska-Niczyporuk A, Bonda-Ostaszewska E, Bajguz A. Mitigating Effect of Trans-Zeatin on Cadmium Toxicity in Desmodesmus armatus. Cells 2024; 13:686. [PMID: 38667301 PMCID: PMC11049045 DOI: 10.3390/cells13080686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.
Collapse
Affiliation(s)
- Alicja Piotrowska-Niczyporuk
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Elżbieta Bonda-Ostaszewska
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| |
Collapse
|
8
|
Gao M, Ling N, Tian H, Guo C, Wang Q. Toxicity, physiological response, and biosorption mechanism of Dunaliella salina to copper, lead, and cadmium. Front Microbiol 2024; 15:1374275. [PMID: 38605709 PMCID: PMC11007151 DOI: 10.3389/fmicb.2024.1374275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background Heavy metal pollution has become a global problem, which urgently needed to be solved owing to its severe threat to water ecosystems and human health. Thus, the exploration and development of a simple, cost-effective and environmental-friendly technique to remove metal elements from contaminated water is of great importance. Algae are a kind of photosynthetic autotroph and exhibit excellent bioadsorption capacities, making them suitable for wastewater treatment. Methods The effects of heavy metals (copper, lead and cadmium) on the growth, biomolecules accumulation, metabolic responses and antioxidant response of Dunaliella salina were investigated. Moreover, the Box-Behnken design (BBD) in response surface methodology (RSM) was used to optimize the biosorption capacity, and FT-IR was performed to explore the biosorption mechanism of D. salina on multiple heavy metals. Results The growth of D. salina cells was significantly inhibited and the contents of intracellular photosynthetic pigments, polysaccharides and proteins were obviously reduced under different concentrations of Cu2+, Pb2+ and Cd2+, and the EC50 values were 18.14 mg/L, 160.37 mg/L and 3.32 mg/L at 72 h, respectively. Besides, the activities of antioxidant enzyme SOD and CAT in D. salina first increased, and then descended with increasing concentration of three metal ions, while MDA contents elevated continuously. Moreover, D. salina exhibited an excellent removal efficacy on three heavy metals. BBD assay revealed that the maximal removal rates for Cu2+, Pb2+, and Cd2+ were 88.9%, 87.2% and 72.9%, respectively under optimal adsorption conditions of pH 5-6, temperature 20-30°C, and adsorption time 6 h. Both surface biosorption and intracellular bioaccumulation mechanisms are involved in metal ions removal of D. salina. FT-IR spectrum exhibited the main functional groups including carboxyl (-COOH), hydroxyl (-OH), amino (-NH2), phosphate (-P=O) and sulfate (-S=O) are closely associated with the biosorption or removal of heavy metalsions. Discussion Attributing to the brilliant biosorption capacity, Dunaliella salina may be developed to be an excellent adsorbent for heavy metals.
Collapse
Affiliation(s)
- Mingze Gao
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Na Ling
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Haiyan Tian
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Chunqiu Guo
- Pharmaceutical Engineering Technology Research Center, Harbin University of Commerce, Harbin, China
- Engineering Research Center for Natural Antitumor Drugs, Ministry of Education, Harbin, China
| | - Qiyao Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
9
|
Huang S, Tan C, Cao X, Yang J, Xing Q, Tu C. Impacts of simulated atmospheric cadmium deposition on the physiological response and cadmium accumulation of Sedum plumbizincicola. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16413-16425. [PMID: 38315335 DOI: 10.1007/s11356-024-31928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Atmospheric cadmium (Cd) deposition contributes to the accumulation of Cd in the soil-plant system. Sedum plumbizincicola is a Cd and Zn hyperaccumulator commonly used for the phytoremediation of Cd-contaminated soil. However, studies on the effects of atmospheric Cd deposition on the accumulation of Cd and physiological response in S. plumbizincicola are still limited. A Cd solution spraying pot experiment was conducted with S. plumbizincicola at three atmospheric Cd deposition concentrations (4, 8, and 12 mg/L). Each Cd concentration levels was divided into two groups, non-mulching (foliar-root uptake) and mulching (foliar uptake). The soil type used in the experiment was reddish clayey soil collected from a farmland. The results showed that compared with the non-mulching control, the fresh weight of S. plumbizincicola in non-mulching with high atmospheric Cd deposition (12 mg/L) increased by 11.35%. Compared with those in the control group, the malondialdehyde (MDA) content in the non-mulching and mulching S. plumbizincicola groups increased by 0.88-11.06 nmol/L and 0.96-1.32 nmol/L, respectively. Compared with those in the non-Cd-treated control group, the shoot Cd content in the mulching group significantly increased by 11.09-180.51 mg/kg. Under high Cd depositions, the Cd in S. plumbizincicola mainly originated from the air and was stored in the shoots (39.7-158.5%). These findings highlight that the physiological response and Cd accumulation of S. plumbizincicola were mainly affected by high Cd deposition and suggest that atmospheric Cd could directly be absorbed by S. plumbizincicola. The effect of atmospheric deposition on S. plumbizincicola cannot be ignored.
Collapse
Affiliation(s)
- Shuopei Huang
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Changyin Tan
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, People's Republic of China
| | - Jia Yang
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Qianwen Xing
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Chen Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| |
Collapse
|
10
|
Li Z, Qi L, Cui R, Zhang N, Song C, Li X, Lu X, Fan Y. De novo transcriptome assembly and molecular response mechanism analysis of a diatom Cyclotella meneghiniana Kützing exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116020. [PMID: 38306816 DOI: 10.1016/j.ecoenv.2024.116020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Cadmium is a persistent heavy metal commonly found in aquatic ecosystems and has a strong toxic effect on organisms. The sensitivity of phytoplankton to environmental changes and its role as an indicator of aquatic ecosystem health have been well-established. However, the mechanisms by which phytoplankton respond to cadmium remain incompletely understood. In this study, we chose the typical planktonic diatom Cyclotella meneghiniana Kützing, by integrating physiological-biochemical data and transcriptome analysis, to reveal the molecular mechanisms of C. meneghiniana responing to cadmium. Under cadmium stress, the cell density and chlorophyll-a content of C. meneghiniana significantly decreased, while MDA content and SOD activity gradually increased. At 72 h of cadmium stress, we found that at this time point, cell abundance and physiological variation were very significant, therefore we selected 72 h for subsequent analysis. To better understand the cadmium stress response mechanisms of C. meneghiniana, a de novo transcriptome method was used to analyse C. meneghiniana under cadmium stress for 72 h, and 1704 (M vs. CK) and 4788 (H vs. CK) differentially expressed genes were found. Our results showed that the changes in gene expression were closely correlated to the physiological-biochemical changes. Although cadmium stress could promote the nitrogen metabolism pathway, ROS scavenging system, and photosynthesis. While, C. meneghiniana under medium and high concentrations of cadmium can also limit various intracellular metabolic pathways, such as the MAPK pathway and phosphatidylinositol metabolic pathway, and the degree of inhibition increases with the increase of stress concentration. In present study, the complete molecular mechanism of the planktonic diatom response to cadmium has been established, which provided important information for further studies on heavy metal pollutants and the multiple functional genes responsible for cadmium sensitivity and tolerance in planktonic diatoms.
Collapse
Affiliation(s)
- Zhenxiang Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Lin Qi
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Runbo Cui
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Nannan Zhang
- Modern Educational Technology and Experiment Center, Harbin Normal University, Harbin 150025, China
| | - Chunhua Song
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Xue Li
- Moutai Institute, Zunyi 564507, China
| | - Xinxin Lu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
11
|
Ran Y, Sun D, Liu X, Zhang L, Niu Z, Chai T, Hu Z, Qiao K. Chlorella pyrenoidosa as a potential bioremediator: Its tolerance and molecular responses to cadmium and lead. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168712. [PMID: 38016561 DOI: 10.1016/j.scitotenv.2023.168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Heavy metal contamination negatively affects plants and animals in water as well as soils. Some microalgae can remove heavy metal contaminants from wastewater. The aim of this study was to screen green microalgae (GM) to identify those that tolerate high concentrations of toxic heavy metals in water as possible candidates for phytoremediation. Analyses of the tolerance, physiological parameters, ultrastructure, and transcriptomes of GM under Cd/Pb treatments were conducted. Compared with the other GM, Chlorella pyrenoidosa showed stronger tolerance to high concentrations of Cd/Pb. The reduced glutathione content and peroxidase activity were higher in C. pyrenoidosa than those in the other GM. Ultrastructural observations showed that, compared with other GM, C. pyrenoidosa had less damage to the cell surface and interior under Cd/Pb toxicity. Transcriptome analyses indicated that the "peroxisome" and "sulfur metabolism" pathways were enriched with differentially expressed genes under Cd/Pb treatments, and that CpSAT, CpSBP, CpKAT2, Cp2HPCL, CpACOX, CpACOX2, and CpACOX4, all of which encode antioxidant enzymes, were up-regulated under Cd/Pb treatments. These results show that C. pyrenoidosa has potential applications in the remediation of polluted water, and indicate that antioxidant enzymes contribute to Cd/Pb detoxification. These findings will be useful for producing algal strains for the purpose of bioremediation in water contamination.
Collapse
Affiliation(s)
- Ye Ran
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Dexiang Sun
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyong Niu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhangli Hu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Engineering Research Center for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
12
|
Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. Chelate facilitated phytoextraction of Pb, Cd, and Zn from a lead-zinc mine contaminated soil by three accumulator plants. Sci Rep 2023; 13:21185. [PMID: 38040787 PMCID: PMC10692180 DOI: 10.1038/s41598-023-48666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
This study aims to evaluate the enhancement of phytoextraction of heavy metals (Pb, Cd, and Zn) by species Marrubium cuneatum, Stipa arabica, and Verbascum speciosum, through EDTA amendment. Assisted phytoextraction pot experiments were performed at different EDTA dosages (0, 1, 3, and 5 mmol kg-1 soil). The DTPA-extractable metal content increased in the presence of EDTA, followed by their contents in the tissues of all three studied species. Resulting from oxidative stress, the activity of antioxidant enzymes such as glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) increased when the chelating agent was added. EDTA in higher doses partially decreased chlorophyll concentration, and 5 mmol kg-1 of that reduced the biomass of the studied species. The bioconcentration factor (BCF) for Cd was notably high in all studied plants and considerably elevated for Zn and Pb with the addition of EDTA in M. cuneatum and S. arabica (BCF > 1), whilst an accumulation factor greater than one (AF > 1) was found for Cd in all species and for Pb in the case of S. arabica. In general, the results demonstrated that EDTA can be an effective amendment for phytoextraction of Cd, Zn, and Pb by M. cuneatum, V. speciosum and S. arabica in contaminated soils.
Collapse
Affiliation(s)
- Sadegh Hosseinniaee
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran.
| | - Mohammad Jafari
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran.
| | - Ali Tavili
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran
| | - Salman Zare
- Department of Reclamation of Arid and Mountainous Regions, Natural Resources Faculty, University of Tehran, Karaj, Iran
| | - Giovanna Cappai
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, Monserrato, Italy
| |
Collapse
|
13
|
Zhu J, Cai Y, Wakisaka M, Yang Z, Yin Y, Fang W, Xu Y, Omura T, Yu R, Zheng ALT. Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165200. [PMID: 37400020 DOI: 10.1016/j.scitotenv.2023.165200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Microalgae have been recognized as emerging cell factories due to the high value-added bio-products. However, the balance between algal growth and the accumulation of metabolites is always the main contradiction in algal biomass production. Hence, the security and effectiveness of regulating microalgal growth and metabolism simultaneously have drawn substantial attention. Since the correspondence between microalgal growth and reactive oxygen species (ROS) level has been confirmed, improving its growth under oxidative stress and promoting biomass accumulation under non-oxidative stress by exogenous mitigators is feasible. This paper first introduced ROS generation in microalgae and described the effects of different abiotic stresses on the physiological and biochemical status of microalgae from these aspects associated with growth, cell morphology and structure, and antioxidant system. Secondly, the role of exogenous mitigators with different mechanisms in alleviating abiotic stress was concluded. Finally, the possibility of exogenous antioxidants regulating microalgal growth and improving the accumulation of specific products under non-stress conditions was discussed.
Collapse
Affiliation(s)
- Jiangyu Zhu
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China; Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan.
| | - Yifei Cai
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan; Food Study Centre, Fukuoka Women's University, 1-1-1 Kasumigaoka, Fukuoka 813-8529, Japan.
| | - Zhengfei Yang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Weiming Fang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yan Xu
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Taku Omura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ruihui Yu
- School of International Trade, Anhui University of Finance and Economics, Bengbu 233030, China
| | - Alvin Lim Teik Zheng
- Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak 97008, Malaysia
| |
Collapse
|
14
|
Ismaiel MMS, Piercey-Normore MD. Antioxidant enzymes of Pseudochlorella pringsheimii under two stressors: variation of SOD Isoforms activity. JOURNAL OF PLANT RESEARCH 2023; 136:755-767. [PMID: 37310639 PMCID: PMC10421774 DOI: 10.1007/s10265-023-01473-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Algae are always facing the challenge of exposure to different stress conditions, therefore raising challenges of adaptation for survival. In this context, the growth and the antioxidant enzymes of the green stress-tolerant alga Pseudochlorella pringsheimii were investigated under two environmental stresses viz. iron and salinity. The number of algal cells was moderately increased by iron treatment in the range of 0.025-0.09 mM of iron, yet, the number of cells decreased at high iron concentrations (0.18 to 0.7 mM Fe). Furthermore, the different NaCl concentrations (8.5-136.0 mM) had an inhibitory effect on the algal cell number, compared to the control.The superoxide dismutase (SOD) showed three isoforms namely; Mn, Fe, and Cu/Zn SOD. The in gel and in vitro (tube-test) activities of FeSOD were higher compared with the other SOD isoforms. The activity of total SOD and its isoforms increased significantly by the different concentrations of Fe and non-significantly by NaCl. The maximum SOD activity was recorded at 0.7 mM Fe (67.9% above control). The relative expression of FeSOD was high under iron and NaCl at 8.5 and 34 mM, respectively. However, FeSOD expression was reduced at the highest NaCl tested concentration (136 mM). In addition, the antioxidant enzyme activity of catalase (CAT) and peroxidase (POD) were accelerated by increasing iron and salinity stress which indicates the essential role of these enzymes under stress. The correlation between the investigated parameters was also investigated. A highly significant positive correlation between the activity of total SOD and its isoforms, and with the relative expression of FeSOD was observed.
Collapse
Affiliation(s)
- Mostafa M S Ismaiel
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | | |
Collapse
|
15
|
Cuypers A, Vanbuel I, Iven V, Kunnen K, Vandionant S, Huybrechts M, Hendrix S. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radic Biol Med 2023; 199:81-96. [PMID: 36775109 DOI: 10.1016/j.freeradbiomed.2023.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Cadmium (Cd) is one of the most toxic compounds released into our environment and is harmful to human health, urging the need to remediate Cd-polluted soils. To this end, it is important to increase our insight into the molecular mechanisms underlying Cd stress responses in plants, ultimately leading to acclimation, and to develop novel strategies for economic validation of these soils. Albeit its non-redox-active nature, Cd causes a cellular oxidative challenge, which is a crucial determinant in the onset of diverse signalling cascades required for long-term acclimation and survival of Cd-exposed plants. Although it is well known that Cd affects reactive oxygen species (ROS) production and scavenging, the contribution of individual organelles to Cd-induced oxidative stress responses is less well studied. Here, we provide an overview of the current information on Cd-induced organellar responses with special attention to redox biology. We propose that an integration of organellar ROS signals with other signalling pathways is essential to finetune plant acclimation to Cd stress.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium.
| | - Isabeau Vanbuel
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590, Diepenbeek, Belgium
| |
Collapse
|
16
|
Singh A, Čížková M, Náhlík V, Mezricky D, Schild D, Rucki M, Vítová M. Bio-removal of rare earth elements from hazardous industrial waste of CFL bulbs by the extremophile red alga Galdieria sulphuraria. Front Microbiol 2023; 14:1130848. [PMID: 36860487 PMCID: PMC9969134 DOI: 10.3389/fmicb.2023.1130848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
In recent decades, a shift has been seen in the use of light-emitting diodes over incandescent lights and compact fluorescent lamps (CFL), which eventually led to an increase in wastes of electrical equipment (WEE), especially fluorescent lamps (FLs) and CFL light bulbs. These widely used CFL lights, and their wastes are good sources of rare earth elements (REEs), which are desirable in almost every modern technology. Increased demand for REEs and their irregular supply have exerted pressure on us to seek alternative sources that may fulfill this demand in an eco-friendly manner. Bio-removal of wastes containing REEs, and their recycling may be a solution to this problem and could balance environmental and economic benefits. To address this problem, the current study focuses on the use of the extremophilic red alga, Galdieria sulphuraria, for bioaccumulation/removal of REEs from hazardous industrial wastes of CFL bulbs and the physiological response of a synchronized culture of G. sulphuraria. A CFL acid extract significantly affected growth, photosynthetic pigments, quantum yield, and cell cycle progression of this alga. A synchronous culture was able to efficiently accumulate REEs from a CFL acid extract and efficiency was increased by including two phytohormones, i.e., 6-Benzylaminopurine (BAP - Cytokinin family) and 1-Naphthaleneacetic acid (NAA - Auxin family).
Collapse
Affiliation(s)
- Anjali Singh
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Vít Náhlík
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia,Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| | - Dana Mezricky
- Institute of Medical and Pharmaceutical Biotechnology, IMC FH Krems, Krems, Austria
| | - Dominik Schild
- Institute of Medical and Pharmaceutical Biotechnology, IMC FH Krems, Krems, Austria
| | - Marian Rucki
- Laboratory of Predictive Toxicology, National Institute of Public Health, Prague, Czechia
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia,Centre for Phycology, Institute of Botany, Czech Academy of Sciences, Třeboň, Czechia,*Correspondence: Milada Vítová,
| |
Collapse
|
17
|
Aravind MK, Vignesh NS, Gayathri S, Anjitha N, Athira KM, Gunaseelan S, Arunkumar M, Sanjaykumar A, Karthikumar S, Ganesh Moorthy IM, Ashokkumar B, Pugazhendhi A, Varalakshmi P. Review on rewiring of microalgal strategies for the heavy metal remediation - A metal specific logistics and tactics. CHEMOSPHERE 2023; 313:137310. [PMID: 36460155 DOI: 10.1016/j.chemosphere.2022.137310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Phycoremediation of heavy metals are gaining much attention and becoming an emerging practice for the metal removal in diverse environmental matrices. Still, the physicochemical state of metal polluted sites is often found to be complex and haphazard in nature due to the irregular discharge of wastes, that leads to the lack of conjecture on the application of microalgae for the metal bioremediation. Besides, the foresaid issues might be eventually ended up with futile effect to the polluted site. Therefore, this review is mainly focusing on interpretative assessment on pre-existing microalgal strategies and their merits and demerits for selected metal removal by microalgae through various process such as natural attenuation, nutritional amendment, chemical pretreatment, metal specific modification, immobilization and amalgamation, customization of genetic elements and integrative remediation approaches. Thus, this review provides the ideal knowledge for choosing an efficient metal remediation tactics based on the state of polluted environment. Also, this in-depth description would provide the speculative knowledge of counteractive action required for pass-over the barriers and obstacles during implementation. In addition, the most common metal removal mechanism of microalgae by adsorption was comparatively investigated with different metals through the principal component analysis by grouping various factor such as pH, temperature, initial metal concentration, adsorption capacity, removal efficiency, contact time in different microalgae. Conclusively, the suitable strategies for different heavy metals removal and addressing the complications along with their solution is comprehensively deliberated for metal removal mechanism in microalgae.
Collapse
Affiliation(s)
- Manikka Kubendran Aravind
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nagamalai Sakthi Vignesh
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nair Anjitha
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Kottilinkal Manniath Athira
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Sathaiah Gunaseelan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India; International Centre for Genetic Engineering and Biotechnology (ICGEB), Transcription Regulation Group, New Delhi, 110067, India
| | - Ashokkumar Sanjaykumar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Sankar Karthikumar
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Virudhunagar, 626001, Tamil Nadu, India
| | | | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
18
|
Zhang Y, Li M, Chang F, Yi M, Ge H, Fu J, Dang C. The distinct resistance mechanisms of cyanobacteria and green algae to sulfamethoxazole and its implications for environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158723. [PMID: 36108830 DOI: 10.1016/j.scitotenv.2022.158723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria and green algae are the OECD recommended test organisms for environmental toxicity assessments of chemicals. Whether the differences in these two species' responses to the identical chemical affect the assessment outcomes is a question worth investigating. Firstly, we investigated the distinct resistance mechanisms of Synechococcus sp. (cyanobacteria) and R. subcapitata (green algae) to sulfamethoxazole (SMX). The antioxidant system analysis demonstrated that R. subcapitata mainly relies on enhancing the activity of first line defense antioxidants, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), which is the most powerful and efficient response to get rid of ROS, whereas Synechococcus sp. depends upon increasing the activity of glutathione-S-transferase (GST) and GPx to resist oxidative stress. Besides, a total 7 transformation products (TPs) of SMX were identified in R. subcapitata culture medium. The analysis of conjectural transformation pathways and the predicted toxicity indicates that R. subcapitata could relieve SMX toxicity by degrading it to low eco-toxic TPs. Additionally, we summarized numerous exposure data and assessed the environmental risk of various antibiotics, revealing an inconsistent result for the same type of antibiotic by using cyanobacteria and green algae, which is most likely due to the different resistance mechanisms. In the future, modified indicators or comprehensive assessment methods should be considered to improve the rationality of environmental toxicity assessments.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ming Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fang Chang
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Malan Yi
- Marine Resources Research Centre, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, PR China
| | - Hongmei Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
19
|
Liang D, Xiang H, Xia J. Inhibitory effects of Ipomoea cairica extracts on the harmful algae Phaeocystis globosa. MARINE POLLUTION BULLETIN 2022; 185:114228. [PMID: 36274557 DOI: 10.1016/j.marpolbul.2022.114228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Ipomoea cairica (L.) Sweet is an invasive plant that cause serious invasion and damage in South China. Phaeocystis globosa is a common harmful algal bloom species on the southeast coast of China. Both species cause great environmental disturbances and serious economic damage to the localregion. This study explored the potential inhibitory effects of I. cairica leaf extracts on P. globosa. The results showed that solitary cells growth was inhibited at extract concentrations higher than 0.25 % (v/v). Although the colony diameter did not change, and the colony number increased rapidly in the first 36 h, we found that cells in the colonies had been damaged using scanning electron microscope and SYTOX-Green staining at 48 h. In addition, the rapid light-response curve of cells treated with extracts decreased, along with down-regulation of photosynthesis-related genes (psbA, psbD, and rbcL), suggesting damage to the photosynthetic system. Finally, the activities of antioxidant enzymes including superoxide dismutase, peroxidase, and catalase increased with increasing treatment time, indicating that cells activate antioxidant enzyme defense systems to alleviate the production of reactive oxygen species (ROS). Increased ROS levels disrupt cell membranes, alter cellular ultrastructures, and ultimately lead to cell death. This study not only achieved the reuse of invasive plant resources, but also demonstrated that I. cairica leaf extract has potential value as an algaecide.
Collapse
Affiliation(s)
- Dayong Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hua Xiang
- State key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Nagarajan D, Lee DJ, Varjani S, Lam SS, Allakhverdiev SI, Chang JS. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157110. [PMID: 35787906 DOI: 10.1016/j.scitotenv.2022.157110] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Sustainable environmental management is one of the important aspects of sustainable development goals. Increasing amounts of wastewaters (WW) from exponential economic growth is a major challenge, and conventional treatment methods entail a huge carbon footprint in terms of energy use and GHG emissions. Microalgae-based WW treatment is a potential candidate for sustainable WW treatment. The nutrients which are otherwise unutilized in the conventional processes are recovered in the beneficial microalgal biomass. This review presents comprehensive information regarding the potential of microalgae as sustainable bioremediation agents. Microalgae-bacterial consortia play a critical role in synergistic nutrient removal, supported by the complex nutritional and metabolite exchange between microalgae and the associated bacteria. Design of effective microalgae-bacteria consortia either by screening or by recent technologies such as synthetic biology approaches are highly required for efficient WW treatment. Furthermore, this review discusses the crucial research gap in microalgal WW treatment - the application of a multi-omics platform for understanding microalgal response towards WW conditions and the design of effective microalgal or microalgae-bacteria consortia based on genetic information. While metagenomics helps in the identification and monitoring of the microbial community throughout the treatment process, transcriptomics, proteomics and metabolomics aid in studying the algal cellular response towards the nutrients and pollutants in WW. It has been established that the integration of microalgal processes into conventional WW treatment systems is feasible. In this direction, future research directions for microalgal WW treatment emphasize the need for identifying the niche in WW treatment, while highlighting the pilot sale plants in existence. Microalgae-based WW treatment could be a potential phase in the waste hierarchy of circular economy and sustainability, considering WWs are a rich secondary source of finite resources such as nitrogen and phosphorus.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
21
|
Eco-toxicological effect of a commercial dye Rhodamine B on freshwater microalgae Chlorella vulgaris. Arch Microbiol 2022; 204:658. [PMID: 36183287 DOI: 10.1007/s00203-022-03254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022]
Abstract
In this study, the acute toxicity effects of a fluorescent xanthene dye, Rhodamine B (RhB), widely used in textile, paper, and leather industries was investigated on a freshwater microalgae Chlorella vulgaris. The acute toxicity of RhB on C. vulgaris was determined by examining the growth, cell morphology, pigment production, protein content, and the activities of oxidative stress enzymes. Based on the results of the toxicity study of 24-96 h, the median inhibitory concentration (IC50) values ranged from 69.94 to 31.29 mg L-1. The growth of C. vulgaris was conspicuously inhibited by RhB exposure, and the cell surfaces appeared to be seriously shrunk in SEM analysis. The growth of C. vulgaris was hindered after exposure to graded concentrations (10-50 mg L-1) of RhB. A significant reduction in growth rate, pigment synthesis (chlorophyll a, chlorophyll b, and carotenoid), and protein content was recorded in a dose-dependent manner. After 96 h exposure of C. vulgaris to 50 mg L-1 RhB, chlorophyll a, chlorophyll b, carotenoids, and protein contents were reduced by 71.59, 74.90, 65.84, and 74.20%, respectively. The activities of the antioxidant enzymes peroxidase (POD), and catalase (CAT) also increased markedly in the presence of RhB. A notable effect was observed on oxidative enzymes catalase and peroxidase, indicating that oxidative stress may be the primary factor in the inhibition of growth and pigment synthesis. Consequently, the experimental acute toxicity data were compared to the QSAR prediction made by the ECOSAR programme. Results showed that the experimental acute toxicity values were 67.74-fold lower than the ECOSAR predicted values. The study provides convincing evidence for the metabolic disruption in the ubiquitous microalgae C. vulgaris due to the RhB dye toxicity.
Collapse
|
22
|
Antioxidant Activity and Kinetic Characterization of Chlorella vulgaris Growth under Flask-Level Photoheterotrophic Growth Conditions. Molecules 2022; 27:molecules27196346. [PMID: 36234880 PMCID: PMC9570526 DOI: 10.3390/molecules27196346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
C. vulgaris is a unicellular microalgae, whose growth depends on the conditions in which it is found, synthesizing primary and secondary metabolites in different proportions. Therefore, we analyzed and established conditions in which it was possible to increase the yields of metabolites obtained at the flask level, which could then be scaled to the photobioreactor level. As a methodology, a screening design was applied, which evaluated three factors: type of substrate (sodium acetate or glycerol); substrate concentration; and exposure-time to red light (photoperiod: 16:8 and 8:16 light/darkness). The response variables were: cell division; biomass; substrate consumption; and antioxidant activity in intracellular metabolites (ABTS•+ and DPPH•). As a result, the sodium acetate condition of 0.001 g/L, in a photoperiod of 16 h of light, presented a doubling time (Td = 4.84 h) and a higher rate of division (σ = 0.20 h−1), having a final biomass concentration of 2.075 g/L. In addition, a higher concentration of metabolites with antioxidant activity was found in the sodium acetate (0.629 Trolox equivalents mg/L ABTS•+ and 0.630 Trolox equivalents mg/L DPPH•). For the glycerol, after the same photoperiod (16 h of light and 8 h of darkness), the doubling time (Td) was 4.63 h, with a maximum division rate of σ = 0.18 h−1 and with a biomass concentration at the end of the kinetics of 1.4 g/L. Sodium acetate under long photoperiods, therefore, is ideal for the growth of C. vulgaris, which can then be scaled to the photobioreactor level.
Collapse
|
23
|
Zheng Y, Wang Z, Xue D, Tao M, Jiang F, Jia B, Li Y, Huang G, Hu Z. Characterization of a new selenoprotein methionine sulfoxide reductase from Haematococcus pluvialis and its antioxidant activity in response to high light intensity, hydrogen peroxide, glyphosate, and cadmium exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113903. [PMID: 35870349 DOI: 10.1016/j.ecoenv.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Selenium incorporates into selenocysteine (Sec) which is a key component of selenoproteins implicated in antioxidant defense and redox homeostasis. Methionine sulfoxide reductases (Msr) play crucial roles in cellular defense against environmental stress. Whereas mammals have the MsrB selenoprotein form, unicellular organisms have MsrA. The Sec residue at the conserved catalytic sites of selenoprotein MsrA confers a metabolic advantage over the non-selenoprotein type MsrA. In the present study, the novel selenoprotein HpMsrA from Haematococcus pluvialis was cloned by the rapid amplification of cDNA ends and transformed into the model green alga Chlamydomonas reinhardtii. Alignment of homologs revealed the presence of the conserved catalytic domain GUFW and showed that the HpMsrA protein comprises Sec (U) at the N-terminus but no recycled Cys at the C-terminus. We studied the response of HpMsrA expression to selenite, high light intensity, hydrogen peroxide, cadmium nitrate, and glyphosate exposure via real-time quantitative PCR and enzyme activity analysis. The results demonstrated that HpMsrA protects cellular proteins against oxidative and environmental stressors. Compared with wild type C. reinhardtii, the transformant exhibited a superior antioxidant ability. The discoveries made herein shed light on the antioxidant physiology and environmental stress resistance mechanisms of the selenoproteins in microalgae. This information may aid in conducting environmental risk assessments of aquatic ecosystems involving microalgae known to respond rapidly and quantitatively to abiotic stress factors promoting excessive reactive oxygen species generation.
Collapse
Affiliation(s)
- Yihong Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ziyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Dengfeng Xue
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ming Tao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Jia
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Youhao Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Guanqin Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
24
|
He J, Du M, Chen Y, Liu Y, Zhang J(K, Fu W, Lei A, Wang J. Fatty Acid Accumulations and Transcriptome Analyses Under Different Treatments in a Model Microalga Euglena gracilis. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.884451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the continuous growth of the world’s population and the increasing development of industrialization, the demand for energy by human beings has been expanding, resulting in an increasingly severe energy crisis. Microalgae are considered the most potential alternatives to traditional fossil fuels due to their many advantages, like fast growth rate, strong carbon sequestration capacity, and low growth environment requirements. Euglena can use carbon sources such as glucose, ethanol, and others for heterotrophic growth. Moreover, Euglena is highly adaptable to the environment and has a high tolerance to various environmental stresses, such as salinity, heavy metals, antibiotics, etc. Different treatments of Euglena cells could affect their growth and the accumulation of bioactive substances, especially fatty acids. To expand the industrial application of Euglena as a potential biodiesel candidate, we determine the physiological responses of Euglena against environmental stresses (antibiotics, heavy metals, salinity) or carbon resources (glucose and ethanol), and evaluate the potential for higher quality and yield of fatty acid with a high growth rate. Adding glucose into the culture media increases cell biomass and fatty acid production with high-quality biodiesel characters. The transcriptome analysis helped explore the possible regulation and biosynthesis of fatty acids under different treatments and exploited in the improvement of biodiesel production. This study provides insights for further improvement and various culture treatments for Euglena-based biodiesel and jet fuels.
Collapse
|
25
|
Gu P, Wu H, Li Q, Zheng Z. Effects of suspended solids on cyanobacterial bloom formation under different wind fields. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47025-47035. [PMID: 35175518 DOI: 10.1007/s11356-022-19231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Wind waves and suspended solids (SS) generated by the resuspension of sediments are ubiquitous characteristics of lake ecosystems. However, their effects on phytoplankton remain poorly elucidated in shallow eutrophic lakes. Laboratory experiments were carried out to investigate the responses of Microcystis aeruginosa to SS under static (wind speed of 0 m/s) and breeze (wind speed of 3 m/s) conditions. Results showed that 50 mg/L SS can promote the growth of M. aeruginosa, accelerate the formation of colonies, and increase the floating rate under no-wind conditions. Comparing with static environment, breeze can significantly increase the growth rate of M. aeruginosa and benefit the formation of larger colonies of algae cells. Driven by wind and SS, the buoyancy of the cyanobacteria community in different experimental groups was obviously different. The specific performance was that low SS concentration and breeze were in favor of the floating of cyanobacteria, while high SS concentration went against the floating of algal cells. As a conclusion, wind speed of 3 m/s and 20-50 mg/L SS have a synergistic effect on the formation of cyanobacterial blooms. This study can provide an improved current understanding of bloom formation and turbidity management strategies in shallow eutrophic lakes.
Collapse
Affiliation(s)
- Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China
| | - Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
- Taihu Water Environment Research Center, Changzhou, 213169, People's Republic of China.
| |
Collapse
|
26
|
Fassiano AV, March H, Santos M, Juárez ÁB, Ríos de Molina MDC. Toxicological effects of active and inert ingredients of imazethapyr formulation Verosil® against Scenedesmus vacuolatus (Chlorophyta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31384-31399. [PMID: 35001267 DOI: 10.1007/s11356-021-17962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Imazethapyr, a selective systemic herbicide, is widely used in agriculture and it is frequently detected in water bodies close to application areas. Like other agrochemicals, imazethapyr is commercialized in formulations containing a mixture of additives that increase the effectiveness of the active ingredient. These complex mixtures may cause adverse effects on non-target primary producers, such as microalgae, when they reach freshwater bodies. The aim of this study was to assess the effects, separately, of the formulation Verosil®, the formulation additives, and technical-grade imazethapyr, in the acidic form or as ammonium salt, on the microalga Scenedesmus vacuolatus (Chlorophyta). Verosil®, formulation additives, and acid imazethapyr significantly inhibited the growth of S. vacuolatus (Verosil® > formulation additives > acid imazethapyr) and caused morphological alterations from 2 mg L-1, 4 mg L-1, and 60 mg L-1 onwards, respectively. Verosil® and formulation additives caused the most adverse effect including membrane disorganization, cytoplasm contraction, cell wall thickening, thylakoidal membrane disaggregation, and starch granule accumulation. In addition, Verosil® and formulation additives increased the chl a/chl b ratio, indicating possible alterations in photosystems as a stress response. The carotene/chl a ratio was also increased in microalgae exposed to both Verosil® and formulation additives, suggesting an antioxidant response to these toxic compounds. All these results support the hypothesis that the formulation additives contribute significantly to the toxicity and alterations caused by the commercial formulation Verosil® on S. vacuolatus.
Collapse
Affiliation(s)
- Anabella Victoria Fassiano
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET- Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina
| | - Hugo March
- Agrofina S. A. Joaquín V, González 4977, C1419AYK, Buenos Aires, CABA, Argentina
| | - Marina Santos
- Instituto Nacional de Tecnología Industrial (INTI), Av. General Paz 5445, B1650KNA, Buenos Aires, San Martín, Argentina
| | - Ángela Beatriz Juárez
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina.
- Facultad de Ciencias Exactas Y Naturales, Departamento de Biodiversidad Y Biología Experimental, Universidad de Buenos Aires, CONICET-Universidad de Buenos Aires, Instituto de Biodiversidad Y Biología Experimental Y Aplicada (IBBEA), Int. Guiraldes 2160, C1428EHA, Buenos Aires, CABA, Argentina.
| | - María Del Carmen Ríos de Molina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina.
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN), CONICET- Universidad de Buenos Aires, Int. Guiraldes, 2160, C1428EHA, Buenos Aires, CABA, Argentina.
| |
Collapse
|
27
|
Evaluation of Toxicity of Crude Phlorotannins and Phloroglucinol Using Different Model Organisms. Toxins (Basel) 2022; 14:toxins14050312. [PMID: 35622559 PMCID: PMC9148043 DOI: 10.3390/toxins14050312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Phlorotannins have been proven to contain numerous bioactive compounds that have potential to be applied in variety industries, including cosmetics, functional foods, nutraceuticals, environmental management, and medicine. The larvicidal and growth-inhibiting properties of phlorotannins have been extensively studied in various organisms. However, the toxicity of the phloroglucinol oligomer of phlorotannin is unclear, especially in Artemia salina, Daphnia magna, Lactuca sativa, and Chlorella vulgaris, which are commonly used in many bioassays. Therefore, research using these four organisms should be designed to provide basic information about the toxic effects of phlorotannins and phloroglucinol. This study aimed to evaluate the larvicidal and inhibitory properties of phlorotannins and phloroglucinol on A. salina, D. magna, L. sativa, and C. vulgaris. Phlorotannin extract and phloroglucinol were administered at various concentrations to each test organism. The survival rate of A. salina nauplii and D. magna neonates was observed every 24 h to 72 h, whereas the L. sativa seed germination and inhibition rate of C. vulgaris were observed up to 96 h. The results showed that the 24 h LC50 of phlorotannin on A. salina and D. magna were 10.67 and 1.32 mg/mL, respectively. The germination inhibition of L. sativa was 53.3% with a seed growth of less than 4 mm after 96 h upon exposure to 1 mg/mL of phlorotannin. Freshwater and seawater C. vulgaris experienced yield inhibition of 39.47 and 43.46%, respectively, when 2 mg/mL of phlorotanin was added. These results indicate that phlorotannin affects the survival and growth of the test organisms, so its use as a pesticide, herbicide, and algaecide agent for environmental and aquaculture applications can be further studied.
Collapse
|
28
|
Optimization Analysis to Evaluate the Relationships between Different Ion Concentrations and Prymnesium parvum Growth Rate. WATER 2022. [DOI: 10.3390/w14060928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to evaluate the optimum environmental condition required for reaching the maximum growth rate of P. parvum. Eight ions (Na+, K+, CO32−, HCO3−, Ca2+, Mg2+, Cl−, and SO42−) were divided into two groups with a uniform design of 4 factors and 10 levels. The results showed a rising trend in growth rate with increasing ion concentrations. However, concentrations that exceeded the threshold led to a slowdown in the growth rate. Therefore, adequate supply of ion concentrations promoted growth of P. parvum, whereas excessively abundant or deficient ion concentrations inhibited its growth rate. Specifically, the order of impact of the first four ion factors on the growth rate was Na+ > HCO3− > K+ > CO32−. The growth rate of P. parvum reached the maximum theoretical 0.999 when the concentrations of Na+, K+, CO32−, and HCO3− ions were 397.98, 11.60, 3.37, and 33.31 mg/L, respectively. This theoretical growth maximum was inferred from the experimental results obtained in this study. For other ion factors, SO42− had the most influence on the growth rate of P. parvum, followed by Mg2+, Ca2+, and Cl− ions. The growth rate of P. parvum reached the maximum theoretical value of 0.945 when the concentrations of Ca2+, Mg2+, Cl−, and SO42− ions were 11.52, 32.95, 326.29, and 377.31 mg/L, respectively. The findings presented in this study add to our understanding of the growth conditions of P. parvum and provide a theoretical basis for dealing with the water bloom it produces in order to control and utilize it.
Collapse
|
29
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
30
|
Naeem MA, Abdullah M, Imran M, Shahid M, Abbas G, Amjad M, Shah GM, Khan WUD, Alamri S, Al-Amri AA. Iron oxide nanoparticles doped biochar ameliorates trace elements induced phytotoxicity in tomato by modulation of physiological and biochemical responses: Implications for human health risk. CHEMOSPHERE 2022; 289:133203. [PMID: 34896172 DOI: 10.1016/j.chemosphere.2021.133203] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Use of untreated municipal wastewater (WW) contains toxic trace elements that pose a serious threat to the soil-plant-human continuum. The use of biochar (BC) is a promising approach to minimize trace element induced toxicity in the ecosystem. Therefore, the present study aims to evaluate the efficacy of BC derived from wheat straw and iron oxide nanoparticles doped biochar (IO-BC) to reduce trace element buildup in soil and plants that consequently affect tomato plant growth and physiological activity under WW irrigation. The BC and IO-BC were applied at four levels (0, 0.5, 1, and 1.5%) in WW irrigated soils. The results indicated that the addition of WW + BC and WW + IO-BC resulted in significant reduction in trace element mobility in soil. Interestingly, the application of WW + IO-BC (1.5%) was more effective in reducing trace element mobility and bioavailability in soil by 78% (As), 58% (Cr), 46% (Pb) and 50% (Cd) compared to WW irrigation, and thus reduced trace element accumulation and toxicity in plants. Results revealed that WW irrigation negatively affected tomato growth, fruit yield, physiology and antioxidative response. Addition of WW + BC and WW + IO-BC ameliorated the oxidative stress (up to 65% and 58% in H2O2 and MDA) and increased plant tolerance (up to 49% in POD and APX activity). The risk indices also showed minimum human health risk (H1 < 1) from tomato after the addition of BC or IO-BC in WW irrigated soils. It is concluded that IO-BC addition in WW irrigated soil could assist in reducing trace elements accumulation and toxicity in tomato and associated human health risks.
Collapse
Affiliation(s)
- Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan.
| | - Muhammad Abdullah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan; Department of Agroecology, Aarhus University, Blichers Alle 50, 8830, Tjele, Denmark
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Waqas-Ud-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
31
|
Elleuch J, Hmani R, Drira M, Michaud P, Fendri I, Abdelkafi S. Potential of three local marine microalgae from Tunisian coasts for cadmium, lead and chromium removals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149464. [PMID: 34388883 DOI: 10.1016/j.scitotenv.2021.149464] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Metal elements are widely used in various industrial activities and are considered as common water source contaminants. Thus, the development of cost-effective, simple design and efficient processes for trace metal elements removal from contaminated water sources is of great interest. The effects of cadmium, lead and chromium on growth, biomolecules accumulation and metabolic responses of Amphora coffaeiformis, Navicula salinicola and Dunaliella salina isolated from Tunisian coasts were tested. The bioremediation capacities of the three microalgae strains and the mechanisms involved in ions metal removal were also investigated. N. salinicola and D. salina seem to be better tolerating to Cr, while A. coffaeiformis and N. salinicola showed high resistance to Pb. The expression profile analyses by qRT-PCR of the antioxidant defense-related genes revealed that Cd, Pb and Cr treatments induce the up-regulation of catalase and superoxide dismutase coding genes for A. coffaeiformis and D. salina. Regarding N. salinicola, the catalase coding gene seems to be overexpressed after Cd, Pb and Cr exposure while only Cd and Cr induce superoxide dismutase gene overexpression. Moreover, the phytochelatin synthase (a metal chelator synthesis-related gene) was up-regulated in N. salinicola, A. coffaeiformis and D. salina after Cr exposure and also in A. coffaeiformis and D. salina after Cd exposure. While Pb treatments induce overexpression of phytochelatin synthase coding gene only for D. salina. Studied strains showed promising metal removal efficiencies for both Pb and Cr ions metals reached 95% for D. salina. Ion metal removal mechanisms study revealed that intracellular bioaccumulation process is used by D. salina for Cr up-taking. However, both intracellular and extracellular removal mechanisms are involved for Pb and Cr removal using A. coffaeiformis, N. salinicola and for Pb removal using D. salina. FTIR analysis demonstrated that several functional groups as carboxyl, hydroxyl, amino, phosphate and sulfate may participate in the bioadsorption process.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Rihab Hmani
- Laboratoire de Biotechnologies des Plantes Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Marwa Drira
- Laboratoire de Biotechnologies des Plantes Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies des Plantes Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
32
|
Wang L, Liu J, Filipiak M, Mungunkhuyag K, Jedynak P, Burczyk J, Fu P, Malec P. Fast and efficient cadmium biosorption by Chlorella vulgaris K-01 strain: The role of cell walls in metal sequestration. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Zhang C, Shi C, Zhang H, Yu K, Wang Y, Jiang J, Kan G. Metabolomics reveals the mechanism of Antarctic yeast Rhodotorula mucliaginosa AN5 to cope with cadmium stress. Biometals 2021; 35:53-65. [PMID: 34731410 DOI: 10.1007/s10534-021-00350-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Heavy metal pollution in Antarctica has far exceeded expectations. Antarctic yeast is widely present in polar marine environment. The mechanisms of metabolomics effect of heavy metal on polar yeast have not been reported previously. In this study, gas chromatography-mass spectrometry (GC-MS) wascarried out to performed the metabolite profiling analysis of Antarctic sea-ice yeast Rhodotorula mucilaginosa AN5 exposed to different cadmium (Cd) stresses of 5 mM (HM5), 10 mM (HM10) and 20 mM (HM20), respectively. Metabolic profile analysis showed that the composition and contents of cellular metabolites have been altered by cadmium. 93 different metabolites were identified altogether, among which 23, 58 and 81 different metabolites were found in HM5, HM10 and HM20 group respectively. MetaboAnalyst analysis showed that in HM5, HM10 and HM20 groups, 12, 24 and 31 metabolic pathways were involved in the stress of cadmium to R. mucilaginosa, respectively. By contrasting with Kyoto Encyclopedia of Genes and Genomes database, we discovered that exposure of yeast AN5 to Cd stress resulted in profound biochemical changes including amino acids, organic acids and saccharides. These results will supply a nonnegligible basis of studying the adaptive resistance mechanism of Antarctic yeast Rhodotorula mucilaginosa to heavy metal.
Collapse
Affiliation(s)
- Chuanzhou Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China
| | - Yingying Wang
- School of Science, Harbin Institute of Technology (Weihai), Weihai, 264209, Shandong, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China.,School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Huancui District, Weihai, 264209, Shandong, China.
| |
Collapse
|
34
|
Tripathi S, Arora N, Pruthi V, Poluri KM. Elucidating the bioremediation mechanism of Scenedesmus sp. IITRIND2 under cadmium stress. CHEMOSPHERE 2021; 283:131196. [PMID: 34146883 DOI: 10.1016/j.chemosphere.2021.131196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a non-biodegradable pollutant that has become a global threat due to its bioaccumulation and biomagnification in higher trophic levels of the food chain. Green technologies such as phycoremediation is an emerging approach and possess edge over conventional methods to remediate Cd from the environment. The present investigation elucidates the adaptive mechanism of a freshwater microalga, Scenedesmus sp. IITRIND2 under Cd stress. The microalga showed excellent tolerance to Cd stress with IC50 value of ~32 ppm. The microalga showed phenomenal removal efficiency (~80%) when exposed to 25 ppm of Cd. Such a high uptake of Cd by the cells was accompanied with increased total lipid content (~33% of dry cell weight). Additionally, the elevated level of ROS, lipid peroxidation, glycine-betaine, and antioxidant enzymes evidenced the activation of efficient antioxidant machinery for alleviating the Cd stress. Further, analysis of the fatty acid methyl ester (FAME) presented a steady increase in saturated and polyunsaturated fatty acids with biodiesel properties complying the American and European fuel standards. The study proposes an integrated approach for bioremediation of toxic Cd using hyper-tolerant microalgal strains along with biodiesel production from the generated algal biomass.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
35
|
Zhu Q, Zhang M, Bao J, Liu J. Physiological, metabolomic, and transcriptomic analyses reveal the dynamic redox homeostasis upon extended exposure of Dunaliella salina GY-H13 cells to Cd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112593. [PMID: 34358929 DOI: 10.1016/j.ecoenv.2021.112593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
The study was done to elucidate the molecular mechanisms underlying the steady maintenance of the green microalga Dunaliella salina GY-H13 in successive subcultures in F/2 medium supplemented with the high cadmium (Cd) concentration (5 mg L-1) for 3 months or 84 days using physiological, metabolomic, and transcriptomic methodologies. Physiological analysis indicated that Cd suppressed growth rate, photosynthetic efficiency, and pigment contents and promoted Cd accumulation, reactive oxygen species (ROS) generation and lipid peroxidation. UPLC-MS/MS-based metabolic analysis identified the top most upregulated and downregulated metabolites, the 5'-dehydroxyadenosine and thiamine acetic acid that were associated with the formation and removal of H2O2. RNA-seq-based transcriptomic analysis showed the overrepresentation of low-CO2-inducible genes in the most downregulated gene set. Metabolomic and transcriptomic analyses further showed that the decreased GSSG/GSH-based redox potential, increased oxidative-phosphorylation gene expression, and reduced activity of TCA cycle in cells after extended exposure to Cd. Taken together, our results imply that cellular defense to Cd in D. salina is achieved by upregulation of ROS-scavenging activities including depletion of thiamine acetic acid. Dynamic redox homeostasis is maintained in cells with extended exposure to Cd by production of both oxidants and antioxidants through multiple pathways.
Collapse
Affiliation(s)
- Qingling Zhu
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Mengmeng Zhang
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jingjing Bao
- Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang 316000, China
| | - Jianhua Liu
- Systems Biology, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China; National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
36
|
Siciliano A, Guida M, Serafini S, Micillo M, Galdiero E, Carfagna S, Salbitani G, Tommasi F, Lofrano G, Padilla Suarez EG, Gjata I, Brouziotis AA, Trifuoggi M, Liguori R, Race M, Fabbricino M, Libralato G. Long-term multi-endpoint exposure of the microalga Raphidocelis subcapitata to lanthanum and cerium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148229. [PMID: 34380244 DOI: 10.1016/j.scitotenv.2021.148229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Significant release of rare earth elements (REEs) into the environment is mainly due to active or abandoned mining sites, but their presence is globally increasing due to their use in several industrial sectors. The effects on primary producers as Raphidocelis subcapitata are still limited. This research focused on La and Ce as the two most widespread REEs that can be currently found up to hundreds of μg/L in water and wastewater. Microalgae were exposed to La and Ce for 3 days (pH = 7.8) (short-term exposure) to derive the effective concentrations inhibiting the growth on 10% (EC10) of the exposed population. EC10 values (0.5 mg/L of La and 0.4 mg/L of Ce) were used for the 28 days long-term exposure (renewal test) to observe after 7, 14, 21, and 28 days on a multi-endpoint basis microalgae growth inhibition (GI), biomarkers of stress (reactive oxygen species (ROS), superoxide dismutase (SOD), and catalase (CAT)), and bioconcentration. Results evidenced that La and Ce EC10 increased GI (day 28) up to 38% and 28%, respectively. ROS, CAT, and SOD activities showed differential responses from day 7 to day 14, 21, and 28, suggesting, in most of the cases, that La and Ce effects were counteracted (i.e., being the values at day 28 not significantly different, p > 0.05, from the relative negative controls), except for La-related ROS activities. La and Ce significantly bioconcentrated in microalgae populations up to 2- and 5-fold (i.e., at day 28 compared to day 7), in that order. Bioconcentrated La and Ce were up to 3157 and 1232 μg/g dry weight (day 28), respectively. These results suggested that low La and Ce concentrations can be slightly toxic to R. subcapitata having the potential to be bioaccumulated and potentially transferred along the food web.
Collapse
Affiliation(s)
- Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Sara Serafini
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Maria Micillo
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Simona Carfagna
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Giovanna Salbitani
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Franca Tommasi
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy.
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Isidora Gjata
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Marco Trifuoggi
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Renato Liguori
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, Università di Cassino e del Lazio Meridionale, Cassino, Italy
| | - Massimiliano Fabbricino
- University of Naples Federico II, Department of Civil, Architectural and Environmental Engineering, Via Claudio 21, 80125 Napoli, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy.
| |
Collapse
|
37
|
Barón-Sola Á, Toledo-Basantes M, Arana-Gandía M, Martínez F, Ortega-Villasante C, Dučić T, Yousef I, Hernández LE. Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) reveals multiple metabolism alterations in microalgae induced by cadmium and mercury. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126502. [PMID: 34214848 DOI: 10.1016/j.jhazmat.2021.126502] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Toxic metals such as cadmium (Cd) and mercury (Hg) represent a threat to photosynthetic organisms of polluted aquatic ecosystems, and knowledge about mechanisms of toxicity is essential for appropriate assessment of environmental risks. We used Synchrotron Radiation-Fourier Transformed Infrared microspectroscopy (μSR-FTIR) to characterise major changes of biomolecules caused by Cd and Hg in the model green microalga Chlamydomonas reinhardtii. μSR-FTIR showed several metabolic alterations in different biochemical groups such as carbohydrates, proteins, and lipids in a time-dose dependent manner, with the strongest changes occurring at concentrations above 10 μM Cd and 15 μM Hg after short-term (24 h) treatments. This occurred in a context where metals triggered intracellular oxidative stress and chloroplast damage, along with autophagy induction by overexpressing AUTOPHAGY-RELATED PROTEIN 8 (ATG8). Thin layer chromatography analysis confirmed that toxic metals promoted remarkable changes in lipid profile, with higher degree of esterified fatty acid unsaturation as detected by gas chromatography coupled with mass spectrometry. Under Cd stress, there was specifically higher unsaturation of free fatty acids, while Hg led to stronger unsaturation in monogalactosyldiacylglycerol. μSR-FTIR spectroscopy proved as a valuable tool to identify biochemical alterations in microalgae, information that could be exploited to optimise approaches for metal decontamination.
Collapse
Affiliation(s)
- Ángel Barón-Sola
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Margarita Toledo-Basantes
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - María Arana-Gandía
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Cristina Ortega-Villasante
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain
| | - Tanja Dučić
- CELLS ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Ibraheem Yousef
- CELLS ALBA, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Luis E Hernández
- Laboratory of Plant Physiology-Department of Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma Madrid, Darwin 2, ES28049 Madrid, Spain.
| |
Collapse
|
38
|
Tripathi S, Poluri KM. Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117443. [PMID: 34090077 DOI: 10.1016/j.envpol.2021.117443] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 05/20/2023]
Abstract
Heavy metal pollution in ecosystem is a global threat. The associated toxicity and carcinogenic nature of heavy metals/metalloids such as mercury, cadmium, lead, and arsenic are imposing a severe risk to both ecological diversity and human lives. Harnessing the adaptive feature of microalgae for remediating toxic heavy metal has reached a milestone in past few decades. Transcriptomics analyses have provided mechanistic insights to map the dynamics of cellular events under heavy metal stress, thus deciphering the strategic responses of microalgae. Here, the present review comprehensively addresses the elicited molecular responses of microalgae to detoxify the heavy metal stress. The review highlights the intricate role of biochemical components and signaling networks mediating stress responsive transitions of microalgae at physiological level. Furthermore, the differential gene expression signifying the transporters involved in uptake, distribution/sequestration, and efflux of heavy metal has also been reviewed. In a nutshell, this study provided a comprehensive understanding of the molecular mechanisms adopted by microalgae at transcriptome level to nullify the oxidative stress while detoxifying the heavy metals.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
39
|
Vingiani GM, Gasulla F, Barón-Sola Á, Sobrino-Plata J, Henández LE, Casano LM. Physiological and Molecular Alterations of Phycobionts of Genus Trebouxia and Coccomyxa Exposed to Cadmium. MICROBIAL ECOLOGY 2021; 82:334-343. [PMID: 33452613 DOI: 10.1007/s00248-021-01685-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Several studies on aeroterrestrial microalgae are unravelling their resistance mechanisms to different abiotic stressors, including hazardous metals, pointing to their future role as bioremediation microorganisms. In the present study, physiological and molecular alterations of four phycobionts of genus Trebouxia (T. TR1 and T. TR9) and Coccomyxa (C. subellipsoidea and C. simplex) exposed to Cd were studied. Cd accumulation and subcellular distribution, cell wall structure, production of biothiols (GSH and phytochelatins), reactive oxygen species (ROS) formation, expression of key antioxidant genes and ROS-related enzymes were evaluated to determine the physiological differences among the four microalgae, with the aim to identify the most suitable microorganism for further biotechnological applications. After 7 days of Cd exposure, Coccomyxa algae showed higher capacity of Cd intake than Trebouxia species, with C. subellipsoidea being the highest Cd accumulator at both intracellular and, especially, cell wall level. Cd induced ROS formation in the four microalgae, but to a greater extent in both Coccomyxa algae. Trebouxia TR9 showed the lowest Cd-dependent oxidative stress probably due to glutathione reductase induction. All microalgae synthetized phytochelatins in response to Cd but in a species-specific and a dose-dependent manner. Results from this study agree with the notion that each microalga has evolved a distinct strategy to detoxify hazardous metals like Cd and to cope with oxidative stress associated with them. Coccomyxa subellipsoidea and Trebouxia TR9 appear as the most interesting candidates for further applications.
Collapse
Affiliation(s)
- Giorgio Maria Vingiani
- Department of Life Sciences, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Ángel Barón-Sola
- Laboratory of Plant Physiology, Department Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Sobrino-Plata
- Laboratory of Plant Physiology, Department Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis E Henández
- Laboratory of Plant Physiology, Department Biology/Research Centre for Biodiversity and Global Change, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Leonardo M Casano
- Department of Life Sciences, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
40
|
Tamaki S, Mochida K, Suzuki K. Diverse Biosynthetic Pathways and Protective Functions against Environmental Stress of Antioxidants in Microalgae. PLANTS (BASEL, SWITZERLAND) 2021; 10:1250. [PMID: 34205386 PMCID: PMC8234872 DOI: 10.3390/plants10061250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
Eukaryotic microalgae have been classified into several biological divisions and have evolutionarily acquired diverse morphologies, metabolisms, and life cycles. They are naturally exposed to environmental stresses that cause oxidative damage due to reactive oxygen species accumulation. To cope with environmental stresses, microalgae contain various antioxidants, including carotenoids, ascorbate (AsA), and glutathione (GSH). Carotenoids are hydrophobic pigments required for light harvesting, photoprotection, and phototaxis. AsA constitutes the AsA-GSH cycle together with GSH and is responsible for photooxidative stress defense. GSH contributes not only to ROS scavenging, but also to heavy metal detoxification and thiol-based redox regulation. The evolutionary diversity of microalgae influences the composition and biosynthetic pathways of these antioxidants. For example, α-carotene and its derivatives are specific to Chlorophyta, whereas diadinoxanthin and fucoxanthin are found in Heterokontophyta, Haptophyta, and Dinophyta. It has been suggested that AsA is biosynthesized via the plant pathway in Chlorophyta and Rhodophyta and via the Euglena pathway in Euglenophyta, Heterokontophyta, and Haptophyta. The GSH biosynthetic pathway is conserved in all biological kingdoms; however, Euglenophyta are able to synthesize an additional thiol antioxidant, trypanothione, using GSH as the substrate. In the present study, we reviewed and discussed the diversity of microalgal antioxidants, including recent findings.
Collapse
Affiliation(s)
- Shun Tamaki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
| | - Keiichi Mochida
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kengo Suzuki
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; (K.M.); (K.S.)
- euglena Co., Ltd., Tokyo 108-0014, Japan
| |
Collapse
|
41
|
Elleuch J, Ben Amor F, Chaaben Z, Frikha F, Michaud P, Fendri I, Abdelkafi S. Zinc biosorption by Dunaliella sp. AL-1: Mechanism and effects on cell metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145024. [PMID: 33582349 DOI: 10.1016/j.scitotenv.2021.145024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/06/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Phycoremediation is being considered as an eco-friendly and safe technology for toxics eradication from contaminated aquatic systems. The zinc biosorption capacity of Dunaliella sp. AL-1 was demonstrated. Zinc impacted cell growth and photosynthetic pigments accumulation showing exposure time and concentration-dependent effects. The investigation of the antioxidant protective response to zinc exposition proved a stimulation of guaiacol peroxidase (GPX) activity and an increased rate of total phenolics, flavonoids, condensed tannins and glutathione (GSH). The Box-Behnken design was used to optimize zinc removal conditions by Dunaliella sp. AL-1 strain. The maximum experimental zinc uptake was obtained when zinc concentration, algae dose, initial pH, and contact time were set at 25 mg/L, 0.5 g/L, 7.59 and 13 h 43 min, respectively. Under completely optimized conditions, the fraction of zinc removed intracellularly was much lower than the adsorbed on the cell surface. FTIR analysis Dunaliella sp. AL-1 biomass demonstrated that several functional groups as OH, CH2, CO, PO, COO and CO may participate in the biosorption process. A comparative proteomic analysis through nano-HPLC coupled to LC-MS/MS, was performed from pre- and post-zinc treatments cells. Among 199 identified proteins, 60 were differentially expressed of which 41 proteins were down-regulated against 19 up-regulated ones. Target proteins have been demonstrated to be implicated in different metabolic processes mainly photosynthesis and antioxidant defenses.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Faten Ben Amor
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Zeineb Chaaben
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Fakher Frikha
- Laboratoire de Biochimie et Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia.
| |
Collapse
|
42
|
Ahad RIA, Syiem MB. Analyzing dose dependency of antioxidant defense system in the cyanobacterium Nostoc muscorum Meg 1 chronically exposed to Cd 2. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108950. [PMID: 33310062 DOI: 10.1016/j.cbpc.2020.108950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to analyze the dose dependency of oxidant-antioxidant homeostasis in Cd2+ exposed Nostoc muscorum Meg 1 cells. Quantification of percent DNA loss, protein oxidation and lipid peroxidation was carried out to assess Cd2+ induced ROS mediated damages to the organism. The countermeasures adopted by the cyanobacterium were also evaluated by computing various components of both enzymatic and non-enzymatic antioxidants. Exposure to different Cd2+ (0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 2.5, 3 ppm) doses showed substantial increase in ROS content in the ranges of 20-181% and 116-323% at the end of first and seventh day. The DNA damage, protein oxidation and lipid peroxidation were increased by 11-62%, 7-143% and 13-183% with increasing Cd2+ concentrations at the end of seven days. TEM images clearly showed damages to the cell wall, cell membrane and thylakoid organization at higher Cd2+ (0.5-3 ppm) concentrations. Cd2+ exposure up to 0.5 ppm registered increase in contents of antioxidative enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)) and in non-enzymatic antioxidants (glutathione, total thiol, phytochelatin and proline) indicating stimulation of ROS mitigating machinery. However, toxicity of Cd2+ was evident as at higher concentrations the cellular morphology and ultra-structures were negatively affected and the capacities of the cells to generate various antioxidant measures were highly compromised. The organism registered 96-98% sorption ability from a solution supplemented with 0.3 ppm Cd2+ and thus show realistic potential as Cd2+ bioremediator in wastewater treatment.
Collapse
Affiliation(s)
- Rabbul Ibne A Ahad
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Mayashree B Syiem
- Department of Biochemistry, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
43
|
Ajitha V, Sreevidya CP, Sarasan M, Park JC, Mohandas A, Singh ISB, Puthumana J, Lee JS. Effects of zinc and mercury on ROS-mediated oxidative stress-induced physiological impairments and antioxidant responses in the microalga Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12950-6. [PMID: 33629160 DOI: 10.1007/s11356-021-12950-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The rapid growth of industrialization and urbanization results in deterioration of freshwater systems around the world, rescinding the ecological balance. Among many factors that lead to adverse effects in aquatic ecology, metals are frequently discharged into aquatic ecosystems from natural and anthropogenic sources. Metals are highly persistent and toxic substances in trace amounts and can potentially induce severe oxidative stress in aquatic organisms. In this study, adverse effects of the two metal elements zinc (maximum concentration of 167.25 mg/L) and mercury (104.2 mg/L) were examined using Chlorella vulgaris under acute and chronic exposure period (48 h and 7 days, respectively). The metal-induced adverse effects have been analyzed through photosynthetic pigment content, total protein content, reactive oxygen species (ROS) generation, antioxidant enzymatic activities, namely catalase and superoxide dismutase (SOD) along with morphological changes in C. vulgaris. Photosynthetic pigments were gradually reduced (~32-100% reduction) in a dose-dependent manner. Protein content was initially increased during acute (~8-12%) and chronic (~57-80%) exposure and decreased (~44-56%) at higher concentration of the two metals (80%). Under the two metal exposures, 5- to 7-fold increase in ROS generation indicated the induction of oxidative stress and subsequent modulations in antioxidant activities. SOD activity was varied with an initial increase (58-129%) followed by a gradual reduction (~3.7-79%), while ~1- to 12-fold difference in CAT activity was observed in all experimental condition (~83 to 1605%). A significant difference was observed in combined toxic exposure (Zn+Hg), while comparing the toxic endpoint data of individual metal exposure (Zn and Hg alone). Through this work, lethal effects caused by single and combined toxicity of zinc and mercury were assessed, representing the significance of appropriate monitoring system to trim down the release of metal contaminants into the aquatic ecosystems.
Collapse
Affiliation(s)
- Vayampully Ajitha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, 22, India
| | | | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, 16, India
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Ambat Mohandas
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India
| | - Isaac Sarojini Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
44
|
Prospects in Cadmium-Contaminated Water Management Using Free-Living Cyanobacteria (Oscillatoria sp.). WATER 2021. [DOI: 10.3390/w13040542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, the removal of cadmium (Cd) by free-living Oscillatoria sp. was studied. Our results showed that maximal Cd removal efficiency (~60%) by the cyanobacterial culture was achieved within 12–24 h in the presence of 5.0 or 25.0 mg/L of Cd. The mechanisms underlying this phenomenon were explored by elemental analysis and FTIR-ATR spectroscopy. It was found that metal adsorption by negatively charged functional groups in the cyanobacterial biomass was the main mechanism used by Oscillatoria sp. to remove metal from the aqueous medium, followed by Cd bioaccumulation into living cells. Additionally, Cd-exposed microalgae showed increased oxidative stress (MDA formation), a decreased dehydrogenase activity, a higher amount of soluble carbohydrates and a decreased total carotenoid concentration, as compared to the control cells. These results suggest that Oscillatoria sp. improved its antioxidative defense system under stressful conditions, through carotenoid-mediated ROS quenching and induction of carbohydrate catabolism, in order to counteract the oxidative damage and preserve the photosynthetic machinery and cellular energetics. In fact, no significant reduction in Oscillatoria sp. cell density, total protein amount, and chlorophyll a content was observed after 24-h Cd exposure, even at the highest metal concentration tested (i.e., 25.0 mg/L). Hence, the presented results are the first to describe some new insights about the metabolic and physiological behavior of living Oscillatoria sp. during Cd remediation, and open up the possibility of finding an equilibrium that maximizes metal removal performance with an active cyanobacterial metabolism, to achieve a rewarding and sustainable management of industrial metal-polluted wastewater.
Collapse
|
45
|
Chakraborty D, Ethiraj KR, Chandrasekaran N, Mukherjee A. Mitigating the toxic effects of CdSe quantum dots towards freshwater alga Scenedesmus obliquus: Role of eco-corona. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116049. [PMID: 33213955 DOI: 10.1016/j.envpol.2020.116049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 05/24/2023]
Abstract
The extensive use of semiconducting nanoparticles such as quantum dots in biomedical and industrial products can lead to their inadvertent release into the freshwater system. Natural exudates in the aquatic system comprising extracellular polymeric substance (EPS) and protein-rich metabolites can eventually adsorb onto the quantum dots (QDs) surface and form an eco-corona. The alterations in the physio-chemical and toxicological behavior of CdSe/ZnS QDs under the influence of eco-corona in the freshwater system have not been explored yet. In the present study, lake water medium conditioned with exudate secreted by Scenedesmus obliquus was utilized as an eco-corona forming matrix. The time-based evolution of the eco-corona on the differently charged CdSe/ZnS QDs was analyzed using transmission electron microscopy and dynamic light scattering. Aging of amine-QDs in algal exudate for 72 h showed enhanced aggregation (Mean Hydrodynamic Diameter- 1969 nm) as compared to carboxyl-QDs (1543 nm). Further, eco-coronation tends to impart an overall negative charge to the QDs. The fluorescence intensity of amine-QDs was quenched by 84% due to the accumulation of higher eco-corona. An integrative effect of surface charge and accumulated eco-corona layer influenced the Cd2+ ion leaching from the QDs. An enhancement in the algal cell viability treated with carboxyl - CdSe/ZnS (90%) and amine- CdSe/ZnS QDs (94%) aged for 72 h suggested that eco-corona can effectively mitigate the inherent toxicity of the QDs. The oxidative stress markers in the algal cells (LPO, SOD, and CAT) were in correlation with the cytotoxicity results. The algal photosynthetic efficiency depended on the deposition of eco-coronated QDs on the cell surface. Cellular uptake results indicated low Cd2+ concentration of nearly 13.9 and 11.5% for carboxyl- and amine- CdSe/ZnS QDs respectively. This suggests that eco-coronation directly influences the bioavailability of engineered nanoparticles.
Collapse
Affiliation(s)
| | - K R Ethiraj
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
46
|
Tarrahi R, Mahjouri S, Khataee A. A review on in vivo and in vitro nanotoxicological studies in plants: A headlight for future targets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111697. [PMID: 33396028 DOI: 10.1016/j.ecoenv.2020.111697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Owing to the unique properties and useful applications in numerous fields, nanomaterials (NMs) received a great attention. The mass production of NMs has raised major concern for the environment. Recently, some altered growth patterns in plants have been reported due to the plant-NMs interactions. However, for NMs safe applications in agriculture and medicine, a comprehensive understanding of bio-nano interactions is crucial. The main goal of this review article is to summarize the results of the toxicological studies that have shown the in vitro and in vivo interactions of NMs with plants. The toxicity mechanisms are briefly discussed in plants as the defense mechanism works to overcome the stress caused by NMs implications. Indeed, the impact of NMs on plants varies significantly with many factors including physicochemical properties of NMs, culture media, and plant species. To investigate the impacts, dose metrics is an important analysis for assaying toxicity and is discussed in the present article to broadly open up different aspects of nanotoxicological investigations. To access reliable quantification and measurement in laboratories, standardized methodologies are crucial for precise dose delivery of NMs to plants during exposure. Altogether, the information is significant to researchers to describe restrictions and future perspectives.
Collapse
Affiliation(s)
- Roshanak Tarrahi
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Sepideh Mahjouri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation.
| |
Collapse
|
47
|
Awoyemi OM, Subbiah S, Velazquez A, Thompson KN, Peace AL, Mayer GD. Nitrate-N-mediated toxicological responses of Scenedesmus acutus and Daphnia pulex to cadmium, arsenic and their binary mixture (Cd/As mix) at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123189. [PMID: 32947745 DOI: 10.1016/j.jhazmat.2020.123189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Several biomarkers used for ecological risk assessment have been established for single contaminant toxicity, many of which are less predictive of the influence of media and/or dietary nutrients on toxicity outcomes of contaminant mixtures. In this study, we investigate toxicological responses and life traits of Scenedesmus acutus and Daphnia pulex to heavy metals (cadmium-Cd, arsenic-As, binary mixture-Cd/Asmix) in media and diets with varied nutrient (nitrate-N) conditions (low-LN, median-MN, optimum-COMBO). Results showed that nitrate-N-mediated metal inhibitory effects on growth and productivity of primary producer (S. acutus) were significantly interactive (p < 0.05; effect size, ƞ2≤56 %). Cadmium toxicities (Cd-IC50s) in S. acutus were 1.2×, 5.3×, and 4.3× As-IC50s in LN, MN and COMBO media, respectively, while mixture (Cd/Asmix) toxicities were synergistic in MN medium and partial additivity in COMBO and LN media. Nitrate-N and metal exposure effects on S. acutus nutrient stoichiometry, metal uptake and bioaccumulation were significantly interactive (p < 0.05, ƞ2≤100 %). Moreover, survival of primary consumer (D. pulex) was significantly impaired by single and mixed dietary-metal exposures with greater effect under LN condition coupled with significant interactive effects on reproductive capacity (p < 0.05, ƞ2≤21.2 %) but not on swimming activity. We recommend that nitrate-N-mediated metal exposure effects/toxicity in bioindicator species should be considered during ecological risk assessments.
Collapse
Affiliation(s)
- Olushola M Awoyemi
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA.
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA
| | - Anahi Velazquez
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA
| | - Kelsey N Thompson
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA
| | - Angela L Peace
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Gregory D Mayer
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, 79416, USA
| |
Collapse
|
48
|
Zhu Y, Wang H, Lv X, Zhang Y, Wang W. Effects of biochar and biofertilizer on cadmium-contaminated cotton growth and the antioxidative defense system. Sci Rep 2020; 10:20112. [PMID: 33208871 PMCID: PMC7674410 DOI: 10.1038/s41598-020-77142-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
Consistent use of large amounts of fertilizers, pesticides, and mulch can cause the accumulation of harmful substances in cotton plants. Among these harmful substances, cadmium (Cd), an undegradable element, stands out as being particularly highly toxic to plants. The objective of this study was to evaluate the ability of biochar (3%) and biofertilizer (1.5%) to decrease Cd uptake, increase cotton dry weight, and modulate the activities of photosynthetic and peroxidase (POD), superoxide dismutase (SOD), catalase enzyme (CAT) in cotton (Gossypium hirsutum L.) grown in Cd-contaminated soil (0, 1, 2, or 4 mg Cd kg-1 soil) in pots. These studies showed that, as expected, exogenous Cd adversely affects cotton chlorophyll and photosynthesis. However, biochar and biofertilizer increased cotton dry weight by an average of 16.82% and 32.62%, respectively. Meanwhile, biochar and biofertilizer decreased the accumulation of Cd in cotton organs, and there was a significant reduction in the amount of Cd in bolls (P < 0.05). Biochar and biofertilizer have a positive impact on cotton chlorophyll content, net photosynthesis, stomatal conductance, transpiration rate, and intercellular CO2 concentration. Thus, the addition of biochar and biofertilizer promote cotton growth. However, biochar and biofertilizer increased the SOD activity of leaves (47.70% and 77.21%), CAT activity of leaves (35.40% and 72.82%), SOD activity of roots (33.62% and 39.37%), and CAT activity of roots (36.91% and 60.29%), respectively, and the addition of biochar and biofertilizer decreased the content of MDA and electrolyte leakage rate. Redundancy analyses showed that biochar and biofertilizer also improved SOD and POD activities by reducing the heavy metal-induced oxidative stress in cotton and reducing Cd uptake in cotton organs. Therefore, biochar and biofertilizer have a positive effect on the growth of cotton.
Collapse
Affiliation(s)
- Yongqi Zhu
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Haijiang Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China.
| | - Xin Lv
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China.
| | - Yutong Zhang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| | - Weiju Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, People's Republic of China
| |
Collapse
|
49
|
Natarajan L, Omer S, Jetly N, Jenifer MA, Chandrasekaran N, Suraishkumar GK, Mukherjee A. Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp. ENVIRONMENTAL RESEARCH 2020; 188:109842. [PMID: 32846636 DOI: 10.1016/j.envres.2020.109842] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/16/2020] [Accepted: 06/16/2020] [Indexed: 05/09/2023]
Abstract
Unabated use of nanoplastics (<1 μm) in the consumer products and their consequent release to the marine environment poses a substantial threat to the marine ecosystem. The toxic impact of the nanoplastics on marine microalgae is yet to be explored in detail, and the role of reactive oxygen species generation remains largely unclear. The algal exudates constitute a significant part of the natural organics present in the marine system that may readily adsorb over the nanoplastics to form eco-corona. In the current work a marine alga, Chlorella sp., was considered a bioindicator organism and the effects of eco-corona formation in lessening the toxic impact of the nanoplastics was analyzed. Three differently functionalized polystyrene nanoplastics (PS NPs): Aminated (NH2-PS NPs), Carboxylated (COOH-PS NPs) and Plain nanoplastics were aged (12, 24, and 48 h) in the EPS containing medium to facilitate eco-corona formation. Decline in cell viability, membrane integrity, and photosynthetic yield were considered to be principle toxicity indicators. The role of oxidative stress as key mode of action (MOA) was studied considering generation of overall reactive oxygen species, and specific radicals (hydroxyl and superoxide) as relevant markers. The changes in antioxidant enzyme activities (superoxide dismutase, and catalase) were also measured. The results clearly indicate a significant decline in the oxidative stress and corresponding lessening of the toxic effects due to eco-corona formation on the PS NPs. The response varied with surface charge on the NPs and ageing duration. Considering the increasing importance of the nanoplastics as one of the major emerging pollutants in marine ecosystem, this study strongly suggests that the EPS mediated eco-corona formation may substantially lessen their toxic burden.
Collapse
Affiliation(s)
- Lokeshwari Natarajan
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India; School of Biosciences and Technology, VIT University, Vellore, India
| | - Sonal Omer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Nishta Jetly
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India
| | - M Annie Jenifer
- VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, Tamil Nadu, India
| | | | - G K Suraishkumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, 600036, India.
| | | |
Collapse
|
50
|
Chakraborty S, Mishra AK. Mitigation of zinc toxicity through differential strategies in two species of the cyanobacterium Anabaena isolated from zinc polluted paddy field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114375. [PMID: 32220689 DOI: 10.1016/j.envpol.2020.114375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
The present study describes the physiological and biochemical mechanisms of zinc tolerance in two heterocytous cyanobacteria i.e. Anabaena doliolum and Anabaena oryzae, treated with their respective LC50 concentrations of zinc (3 and 4.5 mg L-1) for eight days. The feedbacks were examined in terms of growth, metabolism, zinc exclusion, zinc accumulation, oxidative stress, antioxidants and metallothionein contents. Although the growth and metabolic activities were reduced in both the cyanobacterium, maximum adversity was noticed in A. doliolum. The higher order of abnormalities in A. doliolum was attributed to excessive accumulation of zinc and enhanced reactive oxygen species (ROS) production. However, the comparatively higher growth and metabolic activities of A. oryzae were ascribed to the lower accumulation of zinc as a result of released polysaccharides mediated zinc exclusion, synthesis of zinc chelating metallothioneins and subsequent less production of ROS. The oxidative stress and macromolecular damages were prominent in both the cyanobacterium but the condition was much harsher in A. doliolum which may be explained by its comparatively low antioxidative enzyme activities (SOD, APX and GR) and smaller amount of ascorbate-glutathione-tocopherol contents than that of A. oryzae. However, sustenance of 50% growth by A. doliolum under zinc stress despite severe cellular damages was attributed to the enhanced synthesis of phenolics, flavonoids, and proline. Thus, differential zinc tolerance in A. doliolum and A. oryzae is possibly the outcome of their distinct mitigation strategies. Although the two test organisms followed pseudo second order kinetics model during zinc biosorption yet they exhibited differential zinc biosorption capacity. The cyanobacterium A. oryzae was found to be more efficient in removing zinc as compared to A. doliolum and this efficiency makes A. oryzae a promising candidate for the phycoremediation of zinc polluted environments.
Collapse
Affiliation(s)
| | - Arun K Mishra
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|