1
|
Feys S, Cardinali-Benigni M, Lauwers HM, Jacobs C, Stevaert A, Gonçalves SM, Cunha C, Debaveye Y, Hermans G, Heylen J, Humblet-Baron S, Lagrou K, Maessen L, Meersseman P, Peetermans M, Redondo-Rios A, Seldeslachts L, Starick MR, Thevissen K, Vande Velde G, Vandenbriele C, Vanderbeke L, Wilmer A, Naesens L, van de Veerdonk FL, Van Weyenbergh J, Gabaldón T, Wauters J, Carvalho A. Profiling Bacteria in the Lungs of Patients with Severe Influenza Versus COVID-19 with or without Aspergillosis. Am J Respir Crit Care Med 2024; 210:1230-1242. [PMID: 38865563 DOI: 10.1164/rccm.202401-0145oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Rationale: The influence of the lung bacterial microbiome, including potential pathogens, in patients with influenza-associated pulmonary aspergillosis (IAPA) or coronavirus disease (COVID-19)-associated pulmonary aspergillosis (CAPA) has yet to be explored. Objectives: To explore the composition of the lung bacterial microbiome and its association with viral and fungal infection, immunity, and outcome in severe influenza versus COVID-19 with or without aspergillosis. Methods: We performed a retrospective study in mechanically ventilated patients with influenza and COVID-19 with or without invasive aspergillosis in whom BAL for bacterial culture (with or without PCR) was obtained within 2 weeks after ICU admission. In addition, 16S rRNA gene sequencing data and viral and bacterial load of BAL samples from a subset of these patients, and of patients requiring noninvasive ventilation, were analyzed. We integrated 16S rRNA gene sequencing data with existing immune parameter datasets. Measurements and Main Results: Potential bacterial pathogens were detected in 20% (28/142) of patients with influenza and 37% (104/281) of patients with COVID-19, whereas aspergillosis was detected in 38% (54/142) of patients with influenza and 31% (86/281) of patients with COVID-19. A significant association between bacterial pathogens in BAL fluid and 90-day mortality was found only in patients with influenza, particularly patients with IAPA. Patients with COVID-19, but not patients with influenza, showed increased proinflammatory pulmonary cytokine responses to bacterial pathogens. Conclusions: Aspergillosis is more frequently detected in the lungs of patients with severe influenza than bacterial pathogens. Detection of bacterial pathogens associates with worse outcome in patients with influenza, particularly in those with IAPA, but not in patients with COVID-19. The immunological dynamics of tripartite viral-fungal-bacterial interactions deserve further investigation.
Collapse
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Martina Cardinali-Benigni
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Cato Jacobs
- Medical Intensive Care Unit, Department of General Internal Medicine
| | | | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yves Debaveye
- Department of Intensive Care Medicine
- Department of Cellular and Molecular Medicine
| | - Greet Hermans
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Cellular and Molecular Medicine
| | - Jannes Heylen
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | | | - Katrien Lagrou
- Department of Laboratory Medicine and National Reference Center for Mycosis, and
- Department of Microbiology, Immunology and Transplantation
| | - Lenn Maessen
- Medical Intensive Care Unit, Department of General Internal Medicine
| | - Philippe Meersseman
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Marijke Peetermans
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Alvaro Redondo-Rios
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Karin Thevissen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Christophe Vandenbriele
- Royal Brompton and Harefield, Guy's and St. Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Lore Vanderbeke
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Alexander Wilmer
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Lieve Naesens
- Department of Microbiology, Immunology and Transplantation
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Toni Gabaldón
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain; and
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine
- Department of Microbiology, Immunology and Transplantation
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
2
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K, Czyż K, Janczak M. The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers (Basel) 2024; 16:3707. [PMID: 39518144 PMCID: PMC11545705 DOI: 10.3390/cancers16213707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Radiotherapy is an effective method of treating cancer and affects 50% of patients. Intensity-modulated radiotherapy (IMRT) is a modernized method of classical radiation used in the treatment of laryngeal cancer. Treatment with intent to preserve the larynx is not always safe or complication-free. The microbiome may significantly influence the effectiveness of oncological treatment, especially radiotherapy, and may also be modified by the toxic response to radiation. OBJECTIVE The aim of the study was to prospectively assess the microbiome and its influence on radiotherapy toxicity in patients with laryngeal cancer. RESULTS Statistically significant risk factors for complications after radiotherapy were the percentage of Porphyromonas of at least 6.7%, the percentage of Fusobacterium of at least 2.6% and the percentage of Catonella of at least 2.6%. CONCLUSIONS The importance of the microbiome in oncology has been confirmed in many studies. Effective radiotherapy treatment and the prevention of radiation-induced oral mucositis is a challenge in oncology. The microbiome may be an important part of personalized cancer treatment. The assessment of the microbiome of patients diagnosed with cancer may provide the opportunity to predict the response to treatment and its effectiveness. The influence of the microbiome may be important in predicting the risk group for radiotherapy treatment failure. The possibility of modifying the microbiome may become a goal to improve the prognosis of patients with laryngeal cancer. Fusobacterium, Porphyromonas and Catonella are important risk factors for radiation-induced oral mucositis in patients with laryngeal cancer.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Tadeusz Dorobisz
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Czyż
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Marzena Janczak
- Institute of Animal Breeding, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| |
Collapse
|
3
|
Shen J, Chen H, Zhou X, Huang Q, Garay LG, Zhao M, Qian S, Zong G, Yan Y, Wang X, Wang B, Tonetti M, Zheng Y, Yuan C. Oral microbiome diversity and diet quality in relation to mortality. J Clin Periodontol 2024; 51:1478-1489. [PMID: 39188084 DOI: 10.1111/jcpe.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
AIM To examine the independent and joint associations of oral microbiome diversity and diet quality with risks of all-cause and cause-specific mortality. MATERIALS AND METHODS We included 7,055 eligible adults from the U.S. National Health and Nutrition Examination Survey (NHANES). Oral microbiome diversity was measured with α-diversity, including the Simpson Index, observed amplicon sequence variants (ASVs), Faith's phylogenetic diversity, and Shannon-Weiner index. Dietary quality was assessed using the Healthy Eating Index-2015 (HEI-2015). Cox proportional hazard models were used to assess the corresponding associations. RESULTS During a mean follow-up of 9.0 years, we documented 382 all-cause deaths. We observed independent associations of oral microbiome diversity indices and dietary quality with all-cause mortality (hazard ratio [HR] = 0.63; 95% confidence interval [CI]: 0.49-0.82 for observed ASVs; HR = 0.68, 95% CI: 0.52-0.89 for HEI-2015). Jointly, participants with the highest tertiles of both oral microbiome diversity (in Simpson index) and HEI-2015 had the lowest hazard of mortality (HR = 0.37, 95% CI: 0.23-0.60). In addition, higher oral microbiome diversity was associated with lower risks of deaths from cardiometabolic disease and cancer. CONCLUSIONS Higher oral microbiome α-diversity and diet quality were independently associated with lower risk of mortality.
Collapse
Affiliation(s)
- Jie Shen
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Chen
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Qiumin Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Lucas Gonzalo Garay
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjia Zhao
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shujiao Qian
- Department of Oral Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center of Stomatology; National Clinical Research Center for Oral Diseases; Shanghai key Laboratory of Stomatology, Shanghai, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yan Yan
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maurizio Tonetti
- Department of Oral Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center of Stomatology; National Clinical Research Center for Oral Diseases; Shanghai key Laboratory of Stomatology, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Changzheng Yuan
- School of Public Health, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Malan-Müller S, Vidal R, O'Shea E, Montero E, Figuero E, Zorrilla I, de Diego-Adeliño J, Cano M, García-Portilla MP, González-Pinto A, Leza JC. Probing the oral-brain connection: oral microbiome patterns in a large community cohort with anxiety, depression, and trauma symptoms, and periodontal outcomes. Transl Psychiatry 2024; 14:419. [PMID: 39368974 PMCID: PMC11455920 DOI: 10.1038/s41398-024-03122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
The role of the oral microbiome in mental health has recently been appreciated within the proposed oral-brain axis. This study examined the structure and composition of the salivary microbiome in a large-scale population-based cohort of individuals reporting mental health symptoms (n = 306) compared to mentally healthy controls (n = 164) using 16S rRNA sequencing. Mental health symptoms were evaluated using validated questionnaires and included depression, anxiety, and posttraumatic stress disorder (PTSD), with accompanying periodontal outcomes. Participants also indicated current or previous diagnoses of anxiety, depression, periodontitis, and gingivitis. Mental and periodontal health variables influenced the overall composition of the oral microbiome. PTSD symptoms correlated with a lower clr-transformed relative abundance of Haemophilus sputorum and a higher clr-transformed relative abundance of Prevotella histicola. The clr-transformed relative abundance of P. histicola was also positively associated with depressive scores and negatively associated with psychological quality of life. Anxiety disorder diagnosis was associated with a lower clr-transformed relative abundance of Neisseria elongate and a higher clr-transformed relative abundance of Oribacterium asaccharolyticum. A higher clr-transformed relative abundance of Shuttleworthia and lower clr-transformed relative abundance of Capnocytophaga were evident in those who reported a clinical periodontitis diagnosis. Higher Eggerthia and lower Haemophilus parainfluenzae clr-transformed relative abundances were associated with reported clinical periodontitis diagnoses and psychotherapeutic efficacy. Functional prediction analysis revealed a potential role for tryptophan metabolism/degradation in the oral-brain axis, which was confirmed by lower plasma serotonin levels across symptomatic groups. This study sheds light on the intricate interplay between oral microbiota, periodontal and mental health outcomes, and a potential role for tryptophan metabolism in the proposed oral-brain axis, emphasizing the need for further exploration to pave the way for novel therapeutic interventions and predicting therapeutic response.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain.
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain.
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain.
- Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain.
| | - Rebeca Vidal
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd-ISCIII), Madrid, Spain
| | - Esther O'Shea
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd-ISCIII), Madrid, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain
- Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, UCM, Madrid, Spain
- Department of Dental Clinical Specialties, Faculty of Dentistry, UCM, Madrid, Spain
| | - Iñaki Zorrilla
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- BIOARABA, Department of Psychiatry, Hospital Universitario de Alava, UPV/EHU, Vitoria, Spain
| | - Javier de Diego-Adeliño
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Marta Cano
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Sant Pau Mental Health Research Group, Institut de Recerca Sant Pau (IR Sant Pau), Barcelona, Spain
| | - Maria Paz García-Portilla
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Psychiatry, Universidad de Oviedo, Servicio de Psiquiatría, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana González-Pinto
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- BIOARABA, Department of Psychiatry, Hospital Universitario de Alava, UPV/EHU, Vitoria, Spain
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Biomedical Research Network Centre in Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain
| |
Collapse
|
5
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
6
|
Moghaddam HS, Abkar L, Fowler SJ. Making waves: From tap to gut- exploring the impact of drinking water on gut microbiota. WATER RESEARCH 2024; 267:122503. [PMID: 39340867 DOI: 10.1016/j.watres.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/22/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Drinking water (DW) harbours diverse microbial species and chemical attributes. Water comprises the greatest portion of our daily diet, ingested both on its own and used in the preparation of food. DW is our major source of liquids, which is vital to maintaining homeostasis, and can also supply essential minerals. Limited evidence suggests that DW plays a role in shaping the gut microbiome, which implies that it may impact human health. Despite its significant contribution to diet, DW is often overlooked in studies examining dietary influences on the gut microbiota. This perspective explores our current understanding of the link between DW and the gut microbiota - an area of human microbiome science that has been surprisingly understudied. Existing studies reveal links between DW source, microbiota composition, and gut health, emphasizing the need for comprehensive investigations. Understanding the interplay between DW and gut microbiota holds potential for tailored interventions to enhance human health.
Collapse
Affiliation(s)
| | - Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
7
|
Bingöl M, Cardilli A, Bingöl AC, Löber U, Bang C, Franke A, Bartzela T, Beblo S, Mönch E, Stolz S, Schaefer AS, Forslund SK, Richter GM. Oral microbiota of patients with phenylketonuria: A nation-based cross-sectional study. J Clin Periodontol 2024; 51:1081-1092. [PMID: 38745393 DOI: 10.1111/jcpe.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
AIM The oral microenvironment contributes to microbial composition and immune equilibrium. It is considered to be influenced by dietary habits. Phenylketonuria (PKU) patients, who follow a lifelong low-protein diet, exhibit higher prevalence of oral diseases such as periodontitis, offering a suitable model to explore the interplay between diet, oral microbiota and oral health. MATERIALS AND METHODS We conducted 16S rDNA sequencing on saliva and subgingival plaque from 109 PKU patients (ages 6-68 years) and 114 age-matched controls and correlated oral microbial composition and dental health. RESULTS PKU patients exhibited worse dental health, reduced oral microbial diversity and a difference in the abundance of specific taxa, especially Actinobacteriota species, compared to controls. PKU patients with poor periodontal health exhibited higher alpha diversity than the orally healthy ones, marked by high abundance of the genus Tannerella. Notably, the observed taxonomic differences in PKU patients with normal indices of decayed/missing/filled teeth, plaque control record, gingival bleeding index and periodontal screening and recording index generally differed from microbial signatures of periodontitis. CONCLUSIONS PKU patients' reduced microbial diversity may be due to their diet's metabolic challenges disrupting microbial and immune balance, thus increasing oral inflammation. Higher alpha diversity in PKU patients with oral inflammation is likely related to expanded microbial niches.
Collapse
Affiliation(s)
- Memduh Bingöl
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alessio Cardilli
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Anne Carolin Bingöl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Löber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Theodosia Bartzela
- Department of Orthodontics, Technische Universität Dresden, Dresden, Germany
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Centre for Pediatric Research Leipzig, University of Leipzig, Leipzig, Germany
| | - Eberhard Mönch
- Campus Virchow-Klinikum, Interdisciplinary Metabolism Centre, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Simone Stolz
- Department of Pediatric and Adolescent Medicine, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sofia Kirke Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center, a Cooperation of Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Gesa M Richter
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Kageyama S, Takeshita T. Development and establishment of oral microbiota in early life. J Oral Biosci 2024; 66:300-303. [PMID: 38703995 DOI: 10.1016/j.job.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The oral microbiota has recently attracted attention owing to its association with oral and systemic diseases. Accordingly, gaining an understanding of oral microbiota development and the factors influencing it can contribute to preventing the establishment of dysbiotic oral microbiota and, eventually, oral microbiota-related diseases. HIGHLIGHT In this review, we highlight the results of a longitudinal project focusing on oral microbiota development during early life. At 4 months of age, the oral microbiota of infants was found to differ considerably from the maternal oral microbiota, even though infants acquire oral bacteria from their mothers. At 18 months, although the infant microbiota is still not completely comparable with that of adults, from 4 to 18 months, there is a rapid phase of development, during which the microbial composition undergoes considerable change to a profile more similar to that in adults. During this development, the infant oral microbiota converges into two different profiles with adult-like traits, namely, Streptococcus salivarius- and Neisseria-dominant profiles. This divergence is strongly influenced by dietary habits, with a frequent intake of sweetened beverages being associated with an S. salivarius-dominant profile, which is suspected to be implicated in oral and systemic diseases. CONCLUSION The foundation of the adult oral microbiota may be established by 18 months of age, and the developmental period from 4 to 18 months may be an appropriate period during which to modify the microbial balance to obtain a desirable healthy state. In particular, dietary habits during this period warrant close attention.
Collapse
Affiliation(s)
- Shinya Kageyama
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Mager LF, Krause T, McCoy KD. Interaction of microbiota, mucosal malignancies, and immunotherapy-Mechanistic insights. Mucosal Immunol 2024; 17:402-415. [PMID: 38521413 DOI: 10.1016/j.mucimm.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
The microbiome has emerged as a crucial modulator of host-immune interactions and clearly impacts tumor development and therapy efficacy. The microbiome is a double-edged sword in cancer development and therapy as both pro-tumorigenic and anti-tumorigenic bacterial taxa have been identified. The staggering number of association-based studies in various tumor types has led to an enormous amount of data that makes it difficult to identify bacteria that promote tumor development or modulate therapy efficacy from bystander bacteria. Here we aim to comprehensively summarize the current knowledge of microbiome-host immunity interactions and cancer therapy in various mucosal tissues to find commonalities and thus identify potential functionally relevant bacterial taxa. Moreover, we also review recent studies identifying specific bacteria and mechanisms through which the microbiome modulates cancer development and therapy efficacy.
Collapse
Affiliation(s)
- Lukas F Mager
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Internal Medicine I, Faculty of Medicine, University of Tübingen, Germany; M3 Research Center for Malignom, Metabolome and Microbiome, Faculty of Medicine University Tübingen, Germany
| | - Tim Krause
- Department of Internal Medicine I, Faculty of Medicine, University of Tübingen, Germany; M3 Research Center for Malignom, Metabolome and Microbiome, Faculty of Medicine University Tübingen, Germany
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
10
|
Browning BD, Kirkland AE, Green R, Liu H, Glover JS, Ticer TD, Engevik MA, Alekseyenko AV, Ferguson PL, Tomko RL, Squeglia LM. Adolescent alcohol use is associated with differences in the diversity and composition of the oral microbiome. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1025-1035. [PMID: 38631877 PMCID: PMC11178446 DOI: 10.1111/acer.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Adolescence is a sensitive stage of oral microbial development that often coincides with the initiation and escalation of alcohol use. Thus, adolescents may be particularly susceptible to alcohol-induced alterations in the oral microbiome, though minimal research has been done in this area. Understanding the connection between the oral microbiome and alcohol use during adolescence is important to understand fully the biological consequences of alcohol use to mitigate potential adverse outcomes. METHODS Saliva samples were collected from adolescents aged 17-19 who used alcohol heavily (n = 21, 52.4% female) and those who did not use alcohol or any other substances (n = 18, 44.4% female). We utilized 16S rRNA sequencing to examine differences in microbial diversity and composition between the groups. RESULTS For alpha diversity, evenness was significantly lower in the drinking group than the control group as indicated by Pielou's evenness, Shannon, and Simpson indices. There were no statistically significant findings for beta diversity. Differential abundance analyses revealed higher abundances of Rothia and Corynebacterium in the alcohol-using group using both centered-log-ratio and relative abundance normalization. These genera are known for their high capacity to convert alcohol into acetaldehyde, a toxic metabolite reported to play a role in the neurobiological effects of alcohol. An unclassified Clostridia UCG-014, Streptobacillus, Comamonas, unclassified Lachnospiraceae, and Parvimonas were also identified as significantly different between groups when using only one of the normalization techniques. CONCLUSIONS This is the first study designed specifically to compare the oral microbiome of adolescents who use alcohol with that of control participants. Our findings reveal distinct alcohol-related differences in microbial composition and taxon abundance, emphasizing the importance of understanding the impact on the oral microbiome of alcohol use during adolescence. Because the oral microbiome is malleable, this study provides foundational work for future prevention and intervention studies.
Collapse
Affiliation(s)
- Brittney D. Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Anna E. Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Helen Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Janiece S. Glover
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Taylor D. Ticer
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Mindy A. Engevik
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Pamela L. Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel L. Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lindsay M. Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
11
|
Ye Q, Zhao Y, Zhao J, Ouyang Z, Feng Y, Hu J, Su X, Chen N, Chen Y, Tan L, Feng Y, Guo Y. Prevotella, a dominant bacterium in young people with stage Ⅲ periodontitis, related to the arachidonic acid metabolism pathway. Microbes Infect 2024; 26:105316. [PMID: 38423169 DOI: 10.1016/j.micinf.2024.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
OBJECTS As periodontitis progresses, the oral microbiome changes dynamically. The aim of this study is to evaluate the dominant bacteria of adults with stage III periodontitis and investigate potential pathways related to the dominant bacteria. MATERIALS AND METHODS 16S rRNA sequencing was carried out to detect the differences in the oral microbiome between adult with stage Ⅰ and stage Ⅲ periodontitis and find the dominant bacteria in each group. The inhibitor of the predominant pathway for stage Ⅲ periodontitis was used to investigate the role of the dominant bacteria in periodontitis in vivo and in vitro. RESULTS There was no significant difference in the α-diversity between the two groups. The results of β-diversity showed that the samples were divided into different groups according to the stage of periodontitis. The dominant bacteria in youths with stage Ⅲ periodontitis was Prevotella and may be related to the arachidonic acid metabolism pathway. Administration of SKF-86002 suppressed the expression of inflammation mediators in vivo and vitro. CONCLUSIONS Prevotella was the one dominant bacteria in young people with stage Ⅲ periodontitis and was related to the arachidonic acid metabolism pathway.
Collapse
Affiliation(s)
- Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yaqiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Zeyue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Xiaolin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Ningxin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China
| | - Yunzhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Provincial Engineering Research Center of Digital Oral and Maxillofacial Defect Repair, Changsha, China; Hunan Provincial Clinical Research Center for Oral Diseases, Changsha, China.
| |
Collapse
|
12
|
Sun X, Han B, Han Q, Yu Q, Wang S, Feng J, Feng T, Li X, Zhang S, Li H. Similarity of Chinese and Pakistani oral microbiome. Antonie Van Leeuwenhoek 2024; 117:38. [PMID: 38372789 DOI: 10.1007/s10482-024-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Oral microbiota is vital for human health and can be affected by various factors (i.e. diets, ethnicity). However, few studies have compared oral microbiota of individuals from different nationalities in the same environment. Here, we explored the assembly and interaction of oral microbial communities of Chinese and Pakistanis in one university. Firmicutes and Proteobacteria were the predominant microorganisms in the oral cavity of Chinese and Pakistanis. Streptococcus and Neisseria were the dominant genera of China, while Streptococcus and Haemophilus were the dominant genera of Pakistanis. In addition, the oral community membership and structure were not influenced by season, Chinese/Pakistani student and gender, reflecting the stability of the human oral microbiome. The beta diversity of oral microbiomes between Chinese and Pakistanis significantly differed in winter, but not in spring. The alpha diversity of Chinese students and Pakistani students was similar. Moreover, oral microbial community of both Chinese and Pakistani students was mainly driven by stochastic processes. The microbial network of Chinese was more complexity and stability than that of Pakistanis. Our study uncovers the characteristics of human oral microbiota, which is of great significance for oral and human health.
Collapse
Affiliation(s)
- Xiaofang Sun
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Binghua Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qian Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jie Feng
- Department of Digestive, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Tianshu Feng
- School of Public Health, Peking University, Beijing, 100871, China
| | - Xiaoshan Li
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, 404120, China
| | - Shiheng Zhang
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Faculty of Basic Medical Sciences, Chongqing Three Gorges Medical College, Wanzhou, 404120, China.
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Browning BD, Kirkland AE, Green R, Engevik M, Alekseyenko AV, Leggio L, Tomko RL, Squeglia LM. The adolescent and young adult microbiome and its association with substance use: a scoping review. Alcohol Alcohol 2024; 59:agad055. [PMID: 37665023 PMCID: PMC10979412 DOI: 10.1093/alcalc/agad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate the differences between the youth (post-natal day 21-65 for rodents, 2-7 years for non-human primates, and 10-25 years for humans) microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. METHODS Peer-reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria (aim 1: n = 19, aim 2: n = 7). RESULTS The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages, within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood (i.e. alcohol, cannabis, and tobacco). CONCLUSIONS Studies across the lifespan indicate that adolescence and young adulthood are distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight into the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, United States
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Melinda Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston SC, 29425, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon St., Charleston, SC 29425, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| |
Collapse
|
14
|
Tang X, Zhang L, Ren S, Zhao Y, Zhang Y. Temporal and geographic distribution of gut microbial enterotypes associated with host thermogenesis characteristics in plateau pikas. Microbiol Spectr 2023; 11:e0002023. [PMID: 37815332 PMCID: PMC10715161 DOI: 10.1128/spectrum.00020-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The gut microbiotas of small mammals play an important role in host energy homeostasis. However, it is still unknown whether small mammals with different enterotypes show differences in thermogenesis characteristics. Our study confirmed that plateau pikas with different bacterial enterotypes harbored distinct thermogenesis capabilities and employed various strategies against cold environments. Additionally, we also found that pikas with different fungal enterotypes may display differences in coprophagy.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
15
|
Fan C, Zheng Y, Xue H, Xu J, Wu M, Chen L, Xu L. Different gut microbial types were found in captive striped hamsters. PeerJ 2023; 11:e16365. [PMID: 37953783 PMCID: PMC10634337 DOI: 10.7717/peerj.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Background Typing analysis has become a popular approach to categorize individual differences in studies of animal gut microbial communities. However, previous definitions of gut microbial types were more understood as a passive reaction process to different external interferences, as most studies involve diverse environmental variables. We wondered whether distinct gut microbial types can also occur in animals under the same external environment. Moreover, the role of host sex in shaping gut microbiota has been widely reported; thus, the current study preliminarily explores the effects of sex on potential different microbial types. Methods Here, adult striped hamsters Cricetulus barabensis of different sexes were housed under the same controlled laboratory conditions, and their fecal samples were collected after two months to assess the gut microbiota by 16S rRNA sequencing. Results The gut microbiota of captive striped hamsters naturally separated into two types at the amplicon sequence variant (ASV) level. There was a significant difference in the Shannon index among these two types. A receiver operating characteristic (ROC) curve showed that the top 30 ASVs could effectively distinguish each type. Linear discriminant analysis of effect size (LEfSe) showed enrichment of the genera Lactobacillus, Treponema and Pygmaiobacter in one gut microbial type and enrichment of the genera Turicibacter and Ruminiclostridium in the other. The former type had higher carbohydrate metabolism ability, while the latter harbored a more complex co-occurrence network and higher amino acid metabolism ability. The gut microbial types were not associated with sex; however, we did find sex differences in the relative abundances of certain bacterial taxa, including some type-specific sex variations. Conclusions Although captive animals live in a unified environment, their gut bacteria can still differentiate into distinct types, but the sex of the hosts may not play an important role in the typing process of small-scale captive animal communities. The relevant driving factors as well as other potential types need to be further investigated to better understand host-microbe interactions.
Collapse
Affiliation(s)
- Chao Fan
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yunjiao Zheng
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Huiliang Xue
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jinhui Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Ming Wu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Laixiang Xu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
16
|
Kageyama S, Ma J, Furuta M, Takeshita T, Asakawa M, Okabe Y, Yamashita Y. Establishment of tongue microbiota by 18 months of age and determinants of its microbial profile. mBio 2023; 14:e0133723. [PMID: 37819142 PMCID: PMC10653898 DOI: 10.1128/mbio.01337-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Understanding the development of oral microbiota early in life and the factors that influence it is important for preventing the establishment of dysbiotic oral microbiota later in life. This study demonstrates that the tongue microbiota undergoes early development from 4 to 18 months of age and converges into two types of microbiota showing indications of adult characteristics, with either S. salivarius or Neisseria-dominance. Interestingly, their divergence was strongly determined by their weaning status and the dietary frequencies of sweetened beverages, snacks, and fruits, suggesting that dietary habits during this period might influence the establishment of the oral microbiota. These findings may contribute to the development of novel preventive strategies against oral microbiota-related diseases.
Collapse
Affiliation(s)
- Shinya Kageyama
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Jiale Ma
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Michiko Furuta
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Mikari Asakawa
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yuka Okabe
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Cauwenberghs E, Oerlemans E, Wittouck S, Allonsius CN, Gehrmann T, Ahannach S, De Boeck I, Spacova I, Bron PA, Donders G, Verhoeven V, Lebeer S. Salivary microbiome of healthy women of reproductive age. mBio 2023; 14:e0030023. [PMID: 37655878 PMCID: PMC10653790 DOI: 10.1128/mbio.00300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE The salivary microbiome has been proven to play a crucial role in local and systemic diseases. Moreover, the effects of biological and lifestyle factors such as oral hygiene and smoking on this microbial community have already been explored. However, what was not yet well understood was the natural variation of the saliva microbiome in healthy women and how this is associated with specific use of hormonal contraception and with the number of different sexual partners with whom microbiome exchange is expected regularly. In this paper, we characterized the salivary microbiome of 255 healthy women of reproductive age using an in-depth questionnaire and self-sampling kits. Using the large metadata set, we were able to investigate the associations of several host-related and lifestyle variables with the salivary microbiome profiles. Our study shows a high preservation between individuals.
Collapse
Affiliation(s)
- Eline Cauwenberghs
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Eline Oerlemans
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Camille Nina Allonsius
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Thies Gehrmann
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Peter A. Bron
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Gilbert Donders
- Department of Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium
- Regional Hospital Heilig Hart, Tienen, Belgium
- Femicare, Clinical Research for Women, Tienen, Belgium
| | - Veronique Verhoeven
- Department of Family medicine and population health (FAMPOP), University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Menghi L, Cliceri D, Fava F, Pindo M, Gaudioso G, Giacalone D, Gasperi F. Salivary microbial profiles associate with responsiveness to warning oral sensations and dietary intakes. Food Res Int 2023; 171:113072. [PMID: 37330830 DOI: 10.1016/j.foodres.2023.113072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Oral microbiota-host interactions are gaining recognition as potential factors contributing to interindividual variations in taste perception. However, whether such possible links imply specific bacterial co-occurrence networks remains unknown. To address this issue, we used 16 s rRNA gene sequencing to profile the salivary microbiota of 100 healthy individuals (52 % women; 18-30 y/o), who provided hedonic and psychophysical responses to 5 liquid and 5 solid commercially-available foods, each chosen to elicit a target sensation (sweet, sour, bitter, salty, pungent). The same cohort also completed several psychometric measures and a 4-day food diary. Unsupervised data-driven clustering of genus-level Aitchison distances supported the existence of two salivary microbial profiles (CL-1, CL-2). While CL-1 (n = 57; 49.1 % women) exhibited higher α-diversity metrics and was enriched in microbial genera assigned to the class Clostridia (e.g., Lachnospiraceae_[G-3]), CL-2 (n = 43; 55.8 % women) harbored greater amounts of taxa with potential cariogenic effects (e.g., genus Lactobacillus) and significantly lower abundances of inferred MetaCyc pathways related to the metabolic fate of acetate. Intriguingly, CL-2 showed enhanced responsiveness to warning oral sensations (bitter, sour, astringent) and a higher propensity to crave sweet foods or engage in prosocial behaviors. Further, the same cluster reported habitually consuming more simple carbohydrates and fewer beneficial nutrients (vegetable proteins, monounsaturated fatty acids). In summary, while the mediating role of participants' baseline diet on findings can not be definitively excluded, this work provides evidence suggesting that microbe-microbe and microbe-taste interactions may exert an influence on dietary habits and motivates further research to uncover a potential "core" taste-related salivary microbiota.
Collapse
Affiliation(s)
- Leonardo Menghi
- Center Agriculture Food Environment, University of Trento, Via Mach 1, San Michele all'Adige, 38098, Italy; Department of Technology and Innovation, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark; Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, San Michele all'Adige, 38098, Italy
| | - Danny Cliceri
- Center Agriculture Food Environment, University of Trento, Via Mach 1, San Michele all'Adige, 38098, Italy
| | - Francesca Fava
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, San Michele all'Adige, 38098, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, San Michele all'Adige, 38098, Italy
| | - Giulia Gaudioso
- Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, San Michele all'Adige, 38098, Italy
| | - Davide Giacalone
- Department of Technology and Innovation, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Flavia Gasperi
- Center Agriculture Food Environment, University of Trento, Via Mach 1, San Michele all'Adige, 38098, Italy; Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, San Michele all'Adige, 38098, Italy.
| |
Collapse
|
19
|
Rothman JA, Riis JL, Hamilton KR, Blair C, Granger DA, Whiteson KL. Oral microbial communities in children, caregivers, and associations with salivary biomeasures and environmental tobacco smoke exposure. mSystems 2023; 8:e0003623. [PMID: 37338237 PMCID: PMC10470043 DOI: 10.1128/msystems.00036-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
Human oral microbial communities are diverse, with implications for oral and systemic health. Oral microbial communities change over time; thus, it is important to understand how healthy versus dysbiotic oral microbiomes differ, especially within and between families. There is also a need to understand how the oral microbiome composition is changed within an individual including by factors such as environmental tobacco smoke (ETS) exposure, metabolic regulation, inflammation, and antioxidant potential. Using archived saliva samples collected from caregivers and children during a 90-month follow-up assessment in a longitudinal study of child development in the context of rural poverty, we used 16S rRNA gene sequencing to determine the salivary microbiome. A total of 724 saliva samples were available, 448 of which were from caregiver/child dyads, an additional 70 from children and 206 from adults. We compared children's and caregivers' oral microbiomes, performed "stomatotype" analyses, and examined microbial relations with concentrations of salivary markers associated with ETS exposure, metabolic regulation, inflammation, and antioxidant potential (i.e., salivary cotinine, adiponectin, C-reactive protein, and uric acid) assayed from the same biospecimens. Our results indicate that children and caregivers share much of their oral microbiome diversity, but there are distinct differences. Microbiomes from intrafamily individuals are more similar than microbiomes from nonfamily individuals, with child/caregiver dyad explaining 52% of overall microbial variation. Notably, children harbor fewer potential pathogens than caregivers, and participants' microbiomes clustered into two groups, with major differences being driven by Streptococcus spp. Differences in salivary microbiome composition associated with ETS exposure, and taxa associated with salivary analytes representing potential associations between antioxidant potential, metabolic regulation, and the oral microbiome. IMPORTANCE The human oral cavity is a multi-environment habitat that harbors a diversity of microorganisms. This oral microbiome is often transmitted between cohabitating individuals, which may associate oral and systemic health within family members. Furthermore, family social ecology plays a significant role in childhood development, which may be associated with lifelong health outcomes. In this study, we collected saliva from children and their caregivers and used 16S rRNA gene sequencing to characterize their oral microbiomes. We also analyzed salivary biomeasures of environmental tobacco smoke exposure, metabolic regulation, inflammation, and antioxidant potential. We show there are differences in individuals' oral microbiomes mainly due to Streptococcus spp. that family members share much of their microbes, and several bacterial taxa associate with the selected salivary biomeasures. Our results suggest there are large-scale oral microbiome patterns, and there are likely relationships between oral microbiomes and the social ecology of families.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
| | - Jenna L. Riis
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Katrina R. Hamilton
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clancy Blair
- Department of Population Health, New York University, New York, New York, USA
- Department of Applied Psychology, New York University, New York, New York, USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
- Department of Acute and Chronic Care, Johns Hopkins University School of Nursing, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Salivary Bioscience Laboratory, University of Nebraska, Lincoln, Nebraska, USA
- Department of Psychology, University of Nebraska, Lincoln, Nebraska, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
| |
Collapse
|
20
|
Araújo V, Fehn AM, Phiri A, Wills J, Rocha J, Gayà-Vidal M. Oral microbiome homogeneity across diverse human groups from southern Africa: first results from southwestern Angola and Zimbabwe. BMC Microbiol 2023; 23:226. [PMID: 37596536 PMCID: PMC10436416 DOI: 10.1186/s12866-023-02970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND While the human oral microbiome is known to play an important role in systemic health, its average composition and diversity patterns are still poorly understood. To gain better insights into the general composition of the microbiome on a global scale, the characterization of microbiomes from a broad range of populations, including non-industrialized societies, is needed. Here, we used the portion of non-human reads obtained through an expanded exome capture sequencing approach to characterize the saliva microbiomes of 52 individuals from eight ethnolinguistically diverse southern African populations from Angola (Kuvale, Kwepe, Himba, Tjimba, Kwisi, Twa, !Xun) and Zimbabwe (Tshwa), including foragers, food-producers, and peripatetic groups (low-status communities who provide services to their dominant neighbors). RESULTS Our results indicate that neither host genetics nor livelihood seem to influence the oral microbiome profile, with Neisseria, Streptococcus, Prevotella, Rothia, and Porphyromonas being the five most frequent genera in southern African groups, in line with what has been shown for other human populations. However, we found that some Tshwa and Twa individuals display an enrichment of pathogenic genera from the Enterobacteriaceae family (i.e. Enterobacter, Citrobacter, Salmonella) of the Proteobacteria phylum, probably reflecting deficient sanitation and poor health conditions associated with social marginalization. CONCLUSIONS Taken together, our results suggest that socio-economic status, rather than ethnolinguistic affiliation or subsistence mode, is a key factor in shaping the salivary microbial profiles of human populations in southern Africa.
Collapse
Affiliation(s)
- Vítor Araújo
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- Program in Genomics, Biodiversity and Land Planning, CIBIO, BIOPOLIS, Campus de Vairão, Vairão, 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, 4169-007, Portugal
| | - Anne-Maria Fehn
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- Program in Genomics, Biodiversity and Land Planning, CIBIO, BIOPOLIS, Campus de Vairão, Vairão, 4485-661, Portugal
| | - Admire Phiri
- Department of Linguistics and Language Practice, University of Free State, Bloemfontein, South Africa
| | | | - Jorge Rocha
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- Program in Genomics, Biodiversity and Land Planning, CIBIO, BIOPOLIS, Campus de Vairão, Vairão, 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, 4169-007, Portugal
| | - Magdalena Gayà-Vidal
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal.
- Program in Genomics, Biodiversity and Land Planning, CIBIO, BIOPOLIS, Campus de Vairão, Vairão, 4485-661, Portugal.
| |
Collapse
|
21
|
Woodall CA, Hammond A, Cleary D, Preston A, Muir P, Pascoe B, Sheppard SK, Hay AD. Oral and gut microbial biomarkers of susceptibility to respiratory tract infection in adults: A feasibility study. Heliyon 2023; 9:e18610. [PMID: 37593638 PMCID: PMC10432180 DOI: 10.1016/j.heliyon.2023.e18610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
We conducted a feasibility cohort study which aimed to recruit and retain adults from the community to collect saliva (oral) and stool (gut) samples at three time points, at the start of the study (baseline), during a respiratory tract infection (RTI) and post-RTI. Community RTIs place a huge burden on health care services, and a non-invasive microbial diagnostic tool to predict the most vulnerable to respiratory infection would be ideal. To this aim, we analysed oral-gut baseline samples comparing those who reported RTI symptoms to those who remained healthy throughout the study for microbial biomarkers of respiratory susceptibility. Amplicon sequence variants (ASV) were identified by 16S sequence profiling to reveal oral-gut microbes. Reverse transcriptase-polymerase chain reaction (RT-PCR) was applied to target common respiratory microbes. Two general practices were recruited, and the participant recruitment rate was 1.3%. A total of 40 adult participants were retained, of which 19 acquired an RTI whereas 21 remained healthy. In healthy baseline oral and gut samples, ASVs from participants with RTI symptoms compared to those who remained healthy were similar with a high relative abundance of Streptococcus sp., and Blautia sp., respectively. Linear discriminant analysis effect size (LEfSe) revealed baseline oral microbes differed, indicating participants who suffered RTI symptoms had enhanced Streptococcus sobrinus and Megamonas sp., and depletion of Lactobacillus salivarius, Synergistetes, Verrucomicrobia and Dethiosulfovibrio. Furthermore, a random forest model ranked Streptococcus (4.13) as the highest mean decrease in accuracy (MDA) and RT-PCR showed a higher level of carriage of coagulase-negative Staphylococcus. Baseline core gut microbes were similar in both participant groups whereas LEfSe analysis revealed enhanced Veillonella, Rikenellaceae, Enhydobacteria, Eggerthella and Xanthomonsdales and depleted Desulfobulbus and Coprobacillus. Sutterella (4.73) had a high MDA value. Overall, we demonstrated the feasibility of recruiting and retaining adult participants from the community to provide multiple biological samples for microbial profiling. Our analyses identified potential oral-gut microbial biomarkers of respiratory infection susceptibility in otherwise healthy participants.
Collapse
Affiliation(s)
- Claire A. Woodall
- School of Cellular and Molecular Medicine, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashley Hammond
- Centre for Academic Primary Care, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - David Cleary
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew Preston
- The Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Peter Muir
- Public Health England, Southwest Regional Laboratory, National Infection Service, Southmead Hospital, Bristol, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Alastair D. Hay
- Centre for Academic Primary Care, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Amir A, Ozel E, Haberman Y, Shental N. Achieving pan-microbiome biological insights via the dbBact knowledge base. Nucleic Acids Res 2023; 51:6593-6608. [PMID: 37326027 PMCID: PMC10359611 DOI: 10.1093/nar/gkad527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
16S rRNA amplicon sequencing provides a relatively inexpensive culture-independent method for studying microbial communities. Although thousands of such studies have examined diverse habitats, it is difficult for researchers to use this vast trove of experiments when interpreting their own findings in a broader context. To bridge this gap, we introduce dbBact - a novel pan-microbiome resource. dbBact combines manually curated information from studies across diverse habitats, creating a collaborative central repository of 16S rRNA amplicon sequence variants (ASVs), which are assigned multiple ontology-based terms. To date dbBact contains information from more than 1000 studies, which include 1500000 associations between 360000 ASVs and 6500 ontology terms. Importantly, dbBact offers a set of computational tools allowing users to easily query their own datasets against the database. To demonstrate how dbBact augments standard microbiome analysis we selected 16 published papers, and reanalyzed their data via dbBact. We uncovered novel inter-host similarities, potential intra-host sources of bacteria, commonalities across different diseases and lower host-specificity in disease-associated bacteria. We also demonstrate the ability to detect environmental sources, reagent-borne contaminants, and identify potential cross-sample contaminations. These analyses demonstrate how combining information across multiple studies and over diverse habitats leads to better understanding of underlying biological processes.
Collapse
Affiliation(s)
- Amnon Amir
- Microbiome center, Sheba Medical Center, Israel
| | - Eitan Ozel
- Dept. of Computer Science, The Open University of Israel, Israel
| | - Yael Haberman
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Sheba Medical Center, Israel
| | - Noam Shental
- Dept. of Computer Science, The Open University of Israel, Israel
| |
Collapse
|
23
|
Fernández Forné Á, García Anaya MJ, Segado Guillot SJ, Plaza Andrade I, de la Peña Fernández L, Lorca Ocón MJ, Lupiáñez Pérez Y, Queipo-Ortuño MI, Gómez-Millán J. Influence of the microbiome on radiotherapy-induced oral mucositis and its management: A comprehensive review. Oral Oncol 2023; 144:106488. [PMID: 37399707 DOI: 10.1016/j.oraloncology.2023.106488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Radiation-induced mucositis is the most common, debilitating and painful acute toxicity associated with active treatment in head and neck cancer area, severely affecting more than 65% of patients. Oral microbiota significantly changes during cancer therapy and appears to be involved on its pathophysiology. This review aims to present a comprehensive update of new etiopathogenic factors and treatments that may decrease the incidence of mucositis, mainly modifications of dietary interventions to modify microbiome. Despite advances in recent years, its management is mainly symptomatic opioid-based with variable results on different substances analyzed for its prevention. Immunonutrition seems to play a significant role, particularly the supplementation of compounds such as fatty acids, polyphenols or selected probiotics have shown to promote commensal bacteria diversity and reduced incidence of ulcerative mucositis. Modification of the microbiome is a promising preventive treatment for mucositis although its evidence is still scarce. Large studies are needed to demonstrate the efficacy of interventions on microbiome and its clinical impact on radiation-induced mucositis.
Collapse
Affiliation(s)
- África Fernández Forné
- Department of Radiation Oncology. Punta Europa University Hospital. Algeciras, Cádiz, Spain
| | - María Jesús García Anaya
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | | | - Isaac Plaza Andrade
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain
| | | | - María Jesús Lorca Ocón
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Yolanda Lupiáñez Pérez
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - María Isabel Queipo-Ortuño
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain; Department of Surgical Specialties, Biochemical and Immunology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain.
| | - Jaime Gómez-Millán
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| |
Collapse
|
24
|
Lee SH, Lee H, You HS, Sung HJ, Hyun SH. Metabolic pathway prediction of core microbiome based on enterotype and orotype. Front Cell Infect Microbiol 2023; 13:1173085. [PMID: 37424791 PMCID: PMC10325833 DOI: 10.3389/fcimb.2023.1173085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Identification of key microbiome components has been suggested to help address the maintenance of oral and intestinal health in humans. The core microbiome is similar in all individuals, whereas the diverse microbiome varies across individuals, based on their unique lifestyles and phenotypic and genotypic determinants. In this study, we aimed to predict the metabolism of core microorganisms in the gut and oral environment based on enterotyping and orotyping. Materials and methods Gut and oral samples were collected from 83 Korean women aged 50 years or older. The extracted DNA was subjected to next-generation sequencing analysis of 16S rRNA hypervariable regions V3-V4. Results Gut bacteria were clustered into three enterotypes, while oral bacteria were clustered into three orotypes. Sixty-three of the core microbiome between the gut and oral population were correlated, and different metabolic pathways were predicted for each type. Eubacterium_g11, Actinomyces, Atopobium, and Enterococcus were significantly positively correlated between the gut and oral abundance. The four bacteria were classified as type 3 in orotype and type 2 in enterotype. Conclusion Overall, the study suggested that collapsing the human body's multidimensional microbiome into a few categories may help characterize the microbiomes better and address health issues more deeply.
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Han Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Hee Sang You
- Laboratory of Gastrointestinal Mucosal Immunology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ho-joong Sung
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, Republic of Korea
| | - Sung Hee Hyun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| |
Collapse
|
25
|
Dobon B, Musciotto F, Mira A, Greenacre M, Schlaepfer R, Aguileta G, Astete LH, Ngales M, Latora V, Battiston F, Vinicius L, Migliano AB, Bertranpetit J. The making of the oral microbiome in Agta hunter-gatherers. EVOLUTIONARY HUMAN SCIENCES 2023; 5:e13. [PMID: 37587941 PMCID: PMC10426117 DOI: 10.1017/ehs.2023.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 08/18/2023] Open
Abstract
Ecological and genetic factors have influenced the composition of the human microbiome during our evolutionary history. We analysed the oral microbiota of the Agta, a hunter-gatherer population where some members have adopted an agricultural diet. We show that age is the strongest factor modulating the microbiome, probably through immunosenescence since we identified an increase in the number of species classified as pathogens with age. We also characterised biological and cultural processes generating sexual dimorphism in the oral microbiome. A small subset of oral bacteria is influenced by the host genome, linking host collagen genes to bacterial biofilm formation. Our data also suggest that shifting from a fish/meat diet to a rice-rich diet transforms their microbiome, mirroring the Neolithic transition. All of these factors have implications in the epidemiology of oral diseases. Thus, the human oral microbiome is multifactorial and shaped by various ecological and social factors that modify the oral environment.
Collapse
Affiliation(s)
- Begoña Dobon
- Department of Anthropology, University of Zurich, Switzerland
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Federico Musciotto
- Department of Anthropology, University of Zurich, Switzerland
- Dipartimento di Fisica e Chimica, Università di Palermo, Italy
| | - Alex Mira
- Department of Health and Genomics, Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| | - Michael Greenacre
- Department of Economics and Business, Universitat Pompeu Fabra and Barcelona Graduate School of Economics, Barcelona, Spain
- Faculty of Biosciences, Fisheries and Economics, University of Tromsø, Norway
| | | | - Gabriela Aguileta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Leonora H. Astete
- Lyceum of the Philippines University, Intramuros, Manila, Philippines
| | - Marilyn Ngales
- Lyceum of the Philippines University, Intramuros, Manila, Philippines
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, UK
- Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, Catania, Italy
- Complexity Science Hub Vienna, Vienna, Austria
| | - Federico Battiston
- Department of Anthropology, University of Zurich, Switzerland
- Department of Network and Data Science, Central European University, Vienna 1100, Austria
| | - Lucio Vinicius
- Department of Anthropology, University of Zurich, Switzerland
- Department of Anthropology, University College London, UK
| | - Andrea B. Migliano
- Department of Anthropology, University of Zurich, Switzerland
- Department of Anthropology, University College London, UK
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
26
|
Kreve S, Oliveira VC, Santos ES, Oliveira TT, Valente MLC, Batalha RL, Nascimento CD, Reis AC. In situ evaluation of microbial profile formed on Ti-6Al-4V additive manufacturing disks: 16S rRNA sequencing. J Prosthet Dent 2023:S0022-3913(23)00192-0. [PMID: 37120373 DOI: 10.1016/j.prosdent.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/01/2023]
Abstract
STATEMENT OF PROBLEM Dental implants obtained by additive manufacturing may present changes in the microbiome formed. However, studies profiling the microbial communities formed on Ti-6Al-4V are lacking. PURPOSE The purpose of this in situ study was to characterize the profile of the microbial communities formed on Ti-6Al-4V disks produced by additive manufacturing and machining. MATERIAL AND METHODS Titanium disks produced by additive manufacturing (AMD) and machining (UD) were housed in the buccal region of removable intraoral devices. These devices containing both disks were used by eight participants for 96 hours. After every 24 hours of intraoral exposure, the biofilm that had formed on the disks was collected. The 16S rRNA genes from each specimen were amplified and sequenced with the Miseq Illumina instrument and analyzed. Total microbial quantification was evaluated by analysis of variance-type statistics using the nparLD package. The Wilcoxon test was used to evaluate alpha diversity (α=.05). RESULTS A difference was found in the microbial communities formed on additively manufactured and machined disks, with a reduction in operational taxonomic units (OTUs) for the AMD group compared with the UD group. Firmicutes and Proteobacteria were the most abundant phyla. Of the 1256 genera sequenced, Streptococcus predominated on both disks. CONCLUSIONS The microbiome of the biofilm formed on the Ti-6Al-4V disks was significantly influenced by the fabrication method. The AMD disks showed lower total microbial counts than the UD disks.
Collapse
Affiliation(s)
- Simone Kreve
- Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Viviane C Oliveira
- Specialized Laboratory Technician, Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Brazil
| | - Emerson S Santos
- Specialized Laboratory Technician, Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical Toxicological and Bromatologic Analysis, USP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thaisa T Oliveira
- Master student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana L C Valente
- Post-doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodolfo L Batalha
- Researcher, Materials and Technologies, Department of Research, Development and Innovation, Instituto de Soldadura e Qualidade, Porto Salvo, Oeiras, Portugal
| | - Cássio do Nascimento
- Associate Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, USP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréa C Reis
- Associate Professor, Departament of Dental Materials and Prosthesis, Ribeirão Preto Dental School, USP, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
27
|
Mangal U, Noh K, Lee S, Cha JK, Song JS, Cha JY, Lee KJ, Kim KM, Kwon JS, Choi SH. Multistability and hysteresis in states of oral microbiota: Is it impacting the dental clinical cohort studies? J Periodontal Res 2023; 58:381-391. [PMID: 36641544 DOI: 10.1111/jre.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Microbiome from a "healthy cohort" is used as a reference for comparison to cases and intervention. However, the studies with cohort-based clinical research have not sufficiently accounted for the multistability in oral microbial community. The screening is limited to phenotypic features with marked variations in microbial genomic markers. Herein, we aimed to assess the stability of the oral microbiome across time from an intervention-free "healthy" cohort. METHODS We obtained 33 supragingival samples of 11 healthy participants from the biobank. For each participant, we processed one sample as baseline (T0) and two samples spaced at 1-month (T1) and 3-month (T2) intervals for 16S ribosomal RNA gene sequencing analysis. RESULTS We observed that taxonomic profiling had a similar pattern of dominant genera, namely, Rothia, Prevotella, and Hemophilus, at all time points. Shannon diversity revealed a significant increase from T0 (p < .05). Bray Curtis dissimilarity was significant (R = -.02, p < .01) within the cohort at each time point. Community stability had negative correlation to synchrony (r = -.739; p = .009) and variance (r = -.605; p = .048) of the species. Clustering revealed marked differences in the grouping patterns between the three time points. For all time points, the clusters presented a substantially dissimilar set of differentially abundant taxonomic and functional biomarkers. CONCLUSION Our observations indicate towards the presence of multistable states within the oral microbiome in an intervention-free healthy cohort. For a conclusive and meaningful long-term reference, dental clinical research should account for multistability in the personalized therapy approach to improve the identification and classification of reliable markers.
Collapse
Affiliation(s)
- Utkarsh Mangal
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea.,Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Kowoon Noh
- Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea.,Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Korea.,BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Seeyoon Lee
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Je Seon Song
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, Seoul, Korea.,Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, Korea
| | - Jung-Yul Cha
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea.,Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Kee-Joon Lee
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea.,Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Korea.,BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Yonsei University College of Dentistry, Seoul, Korea.,Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
28
|
Kazarina A, Kuzmicka J, Bortkevica S, Zayakin P, Kimsis J, Igumnova V, Sadovska D, Freimane L, Kivrane A, Namina A, Capligina V, Poksane A, Ranka R. Oral microbiome variations related to ageing: possible implications beyond oral health. Arch Microbiol 2023; 205:116. [PMID: 36920536 PMCID: PMC10016173 DOI: 10.1007/s00203-023-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
The global population is getting older due to a combination of longer life expectancy and declining birth rates. Growing evidence suggests that the oral microbiota composition and distribution may have a profound effect on how well we age. The purpose of this study was to investigate age-related oral microbiome variations of supragingival plaque and buccal mucosa samples in the general population in Latvia. Our results indicated significant difference between supragingival plaque bacterial profiles of three age groups (20-40; 40-60; 60 + years). Within supragingival plaque samples, age group 20-40 showed the highest bacterial diversity with a decline during the 40-60 age period and uprise again after the age of 60. Among other differences, the important oral commensal Neisseria had declined after the age of 40. Additionally, prevalence of two well-documented opportunistic pathogens Streptococcus anginosus and Gemella sanguinis gradually rose with age within our samples. Furthermore, supragingival plaque and buccal mucosa samples significantly differed in overall bacterial composition.
Collapse
Affiliation(s)
- Alisa Kazarina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia.
| | | | - Santa Bortkevica
- Riga Stradins University, 16 Dzirciema Str., Riga, LV-1007, Latvia
| | - Pawel Zayakin
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Janis Kimsis
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Viktorija Igumnova
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Darja Sadovska
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Lauma Freimane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Agnija Kivrane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Agne Namina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Valentina Capligina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Alise Poksane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Renate Ranka
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| |
Collapse
|
29
|
Yuan H, Wang Z, Wang Z, Zhang F, Guan D, Zhao R. Trends in forensic microbiology: From classical methods to deep learning. Front Microbiol 2023; 14:1163741. [PMID: 37065115 PMCID: PMC10098119 DOI: 10.3389/fmicb.2023.1163741] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Forensic microbiology has been widely used in the diagnosis of causes and manner of death, identification of individuals, detection of crime locations, and estimation of postmortem interval. However, the traditional method, microbial culture, has low efficiency, high consumption, and a low degree of quantitative analysis. With the development of high-throughput sequencing technology, advanced bioinformatics, and fast-evolving artificial intelligence, numerous machine learning models, such as RF, SVM, ANN, DNN, regression, PLS, ANOSIM, and ANOVA, have been established with the advancement of the microbiome and metagenomic studies. Recently, deep learning models, including the convolutional neural network (CNN) model and CNN-derived models, improve the accuracy of forensic prognosis using object detection techniques in microorganism image analysis. This review summarizes the application and development of forensic microbiology, as well as the research progress of machine learning (ML) and deep learning (DL) based on microbial genome sequencing and microbial images, and provided a future outlook on forensic microbiology.
Collapse
Affiliation(s)
- Huiya Yuan
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang, China
| | - Ziwei Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhi Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Fuyuan Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Dawei Guan
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang, China
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- *Correspondence: Dawei Guan
| | - Rui Zhao
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Science, Shenyang, China
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Rui Zhao
| |
Collapse
|
30
|
Khannous-Lleiffe O, Willis JR, Saus E, Moreno V, Castellví-Bel S, Gabaldón T. Microbiome Profiling from Fecal Immunochemical Test Reveals Microbial Signatures with Potential for Colorectal Cancer Screening. Cancers (Basel) 2022; 15:cancers15010120. [PMID: 36612118 PMCID: PMC9817783 DOI: 10.3390/cancers15010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Early diagnosis of CRC, which saves lives and enables better outcomes, is generally implemented through a two-step population screening approach based on the use of Fecal Immunochemical Test (FIT) followed by colonoscopy if the test is positive. However, the FIT step has a high false positive rate, and there is a need for new predictive biomarkers to better prioritize cases for colonoscopy. Here we used 16S rRNA metabarcoding from FIT positive samples to uncover microbial taxa, taxon co-occurrence and metabolic features significantly associated with different colonoscopy outcomes, underscoring a predictive potential and revealing changes along the path from healthy tissue to carcinoma. Finally, we used machine learning to develop a two-phase classifier which reduces the current false positive rate while maximizing the inclusion of CRC and clinically relevant samples.
Collapse
Affiliation(s)
- Olfat Khannous-Lleiffe
- Barcelona Supercomputing Center (BSC-CNS), Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jesse R. Willis
- Barcelona Supercomputing Center (BSC-CNS), Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ester Saus
- Barcelona Supercomputing Center (BSC-CNS), Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Victor Moreno
- Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Av. de Monforte de Lemos, 3–5, 28029 Madrid, Spain
- Gastroenterology Department, University of Barcelona, 08036 Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, University of Barcelona, 08036 Barcelona, Spain
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, 08036 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Center (BSC-CNS), Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Carrer de Baldiri Reixac, 10, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Centro Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), 08028 Barcelona, Spain
- Correspondence:
| | | |
Collapse
|
31
|
Sex differences in the oral microbiome, host traits, and their causal relationships. iScience 2022; 26:105839. [PMID: 36660475 PMCID: PMC9843272 DOI: 10.1016/j.isci.2022.105839] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The oral microbiome has been implicated in a growing number of diseases; however, determinants of the oral microbiome and their roles remain elusive. Here, we investigated the oral (saliva and tongue dorsum) metagenome, the whole genome, and other omics data in a total of 4,478 individuals and demonstrated that the oral microbiome composition and its major contributing host factors significantly differed between sexes. We thus conducted a sex-stratified metagenome-genome-wide-association study (M-GWAS) and identified 11 differential genetic associations with the oral microbiome (p sex-difference < 5 × 10-8). Furthermore, we performed sex-stratified Mendelian randomization (MR) analyses and identified abundant causalities between the oral microbiome and serum metabolites. Notably, sex-specific microbes-hormonal interactions explained the mostly observed sex hormones differences such as the significant causalities enrichments for aldosterone in females and androstenedione in males. These findings illustrate the necessity of sex stratification and deepen our understanding of the interplay between the oral microbiome and serum metabolites.
Collapse
|
32
|
Li X, Zhao K, Chen J, Ni Z, Yu Z, Hu L, Qin Y, Zhao J, Peng W, Lu L, Gao X, Sun H. Diurnal changes of the oral microbiome in patients with alcohol dependence. Front Cell Infect Microbiol 2022; 12:1068908. [PMID: 36579346 PMCID: PMC9791055 DOI: 10.3389/fcimb.2022.1068908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Saliva secretion and oral microbiota change in rhythm with our biological clock. Dysbiosis of the oral microbiome and alcohol consumption have a two-way interactive impact, but little is known about whether the oral microbiome undergoes diurnal changes in composition and function during the daytime in patients with alcohol dependence (AD). Methods The impact of alcohol consumption on the diurnal salivary microbiome was examined in a case-control study of 32 AD patients and 21 healthy control (HC) subjects. We tested the changes in microbial composition and individual taxon abundance by 16S rRNA gene sequencing. Results The present study is the first report showing that alcohol consumption enhanced the richness of the salivary microbiome and lowered the evenness. The composition of the oral microbiota changed significantly in alcohol-dependent patients. Additionally, certain genera were enriched in the AD group, including Actinomyces, Leptotrichia, Sphaerochaeta and Cyanobacteria, all of which have pathogenic effects on the host. There is a correlation between liver enzymes and oral microbiota. KEGG function analysis also showed obvious alterations during the daytime. Conclusion Alcohol drinking influences diurnal changes in the oral microbiota, leading to flora disturbance and related functional impairment. In particular, the diurnal changes of the oral microbiota may open avenues for potential interventions that can relieve the detrimental consequences of AD.
Collapse
Affiliation(s)
- Xiangxue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Kangqing Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhaojun Ni
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhoulong Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lingming Hu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ying Qin
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Jingwen Zhao
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Wenjuan Peng
- Addiction Medicine Department, The Second People’s Hospital of Guizhou Province, Guizhou, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,*Correspondence: Xuejiao Gao, ; Hongqiang Sun,
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China,*Correspondence: Xuejiao Gao, ; Hongqiang Sun,
| |
Collapse
|
33
|
Sun H, Zhou Q, Qiao P, Zhu D, Xin B, Wu B, Tang C. Short-term head-down bed rest microgravity simulation alters salivary microbiome in young healthy men. Front Microbiol 2022; 13:1056637. [PMID: 36439790 PMCID: PMC9684331 DOI: 10.3389/fmicb.2022.1056637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/27/2022] [Indexed: 01/03/2024] Open
Abstract
Microgravity influences are prevalent during orbital flight and can adversely affect astronaut physiology. Notably, it may affect the physicochemical properties of saliva and the salivary microbial community. Therefore, this study simulates microgravity in space using a ground-based -6° head-down bed rest (HDBR) test to observe the effects of microgravity on oral salivary secretion function and the salivary microbiome. Sixteen healthy young male volunteers were recruited for the 15-day -6° HDBR test. Non-stimulated whole saliva was collected on day 1 (pre-HDBR), on days 5, 10, and 15 of HDBR, and day 6 of recovery. Salivary pH and salivary flow rate were measured, and the V3-V4 region of the 16S rRNA gene was sequenced and analyzed in 80 saliva samples. The results showed that there were no significant differences in salivary pH, salivary flow rate, and alpha diversity between any two time points. However, beta diversity analysis revealed significant differences between pre-HDBR and the other four time points. After HDBR, the relative abundances of Actinomyces, Parvimonas, Peptostreptococcus, Porphyromonas, Oribacterium, and Capnocytophaga increased significantly, whereas the relative abundances of Neisseria and Haemophilus decreased significantly. However, the relative abundances of Oribacterium and Capnocytophaga did not recover to the pre-HDBR level on day 6 of recovery. Network analysis revealed that the number of relationships between genera decreased, and the positive and negative correlations between genera changed in a complex manner after HDBR and did not reach their original levels on day 6 of recovery. PICRUSt analysis demonstrated that some gene functions of the salivary microbiome also changed after HDBR and remained significantly different from those before HDBR on day 6 of recovery. Collectively, 15 days of -6° HDBR had minimal effect on salivary secretion function but resulted in significant changes in the salivary microbiome, mainly manifested as an increase in oral disease-related bacteria and a decrease in oral health-related commensal bacteria. Further research is required to confirm these oral microbial changes and explore the underlying pathological mechanisms to determine the long-term effects on astronauts embarking on long-duration voyages to outer space.
Collapse
Affiliation(s)
- Hui Sun
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Qian Zhou
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Pengyan Qiao
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Di Zhu
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Bingmu Xin
- Engineering Research Center of Human Circadian Rhythm and Sleep (Shenzhen), Space Science and Technology Institute (Shenzhen), Shenzhen, China
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China
| | - Chuhua Tang
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
34
|
Lu C, Zhu H, Zhao D, Zhang J, Yang K, Lv Y, Peng M, Xu X, Huang J, Shao Z, Xiao M, Li X. Oral-Gut Microbiome Analysis in Patients With Metabolic-Associated Fatty Liver Disease Having Different Tongue Image Feature. Front Cell Infect Microbiol 2022; 12:787143. [PMID: 35846747 PMCID: PMC9277304 DOI: 10.3389/fcimb.2022.787143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The objective of this study was to identify the biological correlation between the tongue coating color and oral and gut micro-characteristics in metabolic-associated fatty liver disease (MAFLD) patients. Method The characteristics of the tongue coating were examined using an automatic tongue diagnosis system. Tongue coating and stool samples were collected from 38 MAFLD patients, and 16S rDNA full-length assembly sequencing technology (16S-FAST) was used for bioinformatic analysis. Results Twenty-two and 16 subjects were included in two distinct clusters according to the white/yellow color of the tongue coating, which was assessed by the L*a*b* values of the image. Upon analyzing the microorganisms in the tongue coating, 66 and 62 pathognomonic bacterial genera were found in the White and Yellow Coating Groups, respectively. The abundance of Stomatobaculumis positively correlated with the a* values of the tongue coating in the White Coating Group, while Fusobacterium, Leptotrichia, and Tannerella abundance was significantly correlated with the b* values in the Yellow Coating Group. Function prediction mainly showed the involvement of protein families related to BRITE hierarchies and metabolism. The MHR (MONO%/high-density lipoprotein cholesterol) of the Yellow Coating Group was higher than that of the White Coating Group. Conclusion In MAFLD patients, lower a* values and higher b* values are indicators of a yellow tongue coating. There were also significant differences in the flora of different tongue coatings, with corresponding changes in the intestinal flora, indicating a correlation between carbohydrate metabolism disorders and inflammation in the oral microbiome.
Collapse
Affiliation(s)
- Chenxia Lu
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Zhu
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Dan Zhao
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jia Zhang
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Kai Yang
- Department of Research and Development, Germountx Company, Beijing, China
| | - Yi Lv
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Miao Peng
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xi Xu
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jingjing Huang
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zuoyu Shao
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Liver Disease, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China.,Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Mingzhong Xiao
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Liver Disease, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China.,Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xiaodong Li
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Liver Disease, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China.,Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
35
|
Shaalan A, Lee S, Feart C, Garcia-Esquinas E, Gomez-Cabrero D, Lopez-Garcia E, Morzel M, Neyraud E, Rodriguez-Artalejo F, Streich R, Proctor G. Alterations in the Oral Microbiome Associated With Diabetes, Overweight, and Dietary Components. Front Nutr 2022; 9:914715. [PMID: 35873415 PMCID: PMC9298547 DOI: 10.3389/fnut.2022.914715] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
The Mediterranean diet (MedDiet) represents the traditional food consumption patterns of people living in countries bordering the Mediterranean Sea and is associated with a reduced incidence of obesity and type-2 diabetes mellitus (T2DM). The objective of this study was to examine differences in the composition of the oral microbiome in older adults with T2DM and/or high body mass index (BMI) and whether the microbiome was influenced by elements of a MedDiet. Using a nested case-control design individuals affected by T2DM were selected from the Seniors-ENRICA-2 cohort concurrently with non-diabetic controls. BMI was measured, a validated dietary history taken, and adherence to a Mediterranean diet calculated using the MEDAS (Mediterranean Diet Adherence Screener) index. Oral health status was assessed by questionnaire and unstimulated whole mouth saliva was collected, and salivary flow rate calculated. Richness and diversity of the salivary microbiome were reduced in participants with T2DM compared to those without diabetes. The bacterial community structure in saliva showed distinct “signatures” or “salivatypes,” characterized by predominance of particular bacterial genera. Salivatype 1 was more represented in subjects with T2DM, whilst those with obesity (BMI ≥ 30 kg/m2) had a predominance of salivatype 2, and control participants without T2DM or obesity had an increased presence of salivatype 3. There was an association of salivatype 1 with increased consumption of sugary snacks combined with reduced consumption of fish/shellfish and nuts. It can be concluded that the microbial community structure of saliva is altered in T2DM and obesity and is associated with altered consumption of particular food items. In order to further substantiate these observations a prospective study should be undertaken to assess the impact of diets aimed at modifying diabetic status and reducing weight.
Collapse
Affiliation(s)
- Abeer Shaalan
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | | | - Esther Garcia-Esquinas
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid and CIBERESP, Madrid, Spain
- Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
| | - David Gomez-Cabrero
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
- Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esther Lopez-Garcia
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid and CIBERESP, Madrid, Spain
- Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
- Institutos Madrileno de Estudios Avanzados (IMDEA)-Food Institute, Madrid, Spain
| | - Martine Morzel
- STLO, INRAE, Institut Agro, Rennes, France
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Eric Neyraud
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, Dijon, France
| | - Fernando Rodriguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid and CIBERESP, Madrid, Spain
- Cardiovascular and Nutritional Epidemiology Group, IdiPAZ (La Paz University Hospital-Universidad Autónoma de Madrid), Madrid, Spain
- Institutos Madrileno de Estudios Avanzados (IMDEA)-Food Institute, Madrid, Spain
| | - Ricarda Streich
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
| | - Gordon Proctor
- Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
- *Correspondence: Gordon Proctor,
| |
Collapse
|
36
|
Wang J, Feng J, Zhu Y, Li D, Wang J, Chi W. Diversity and Biogeography of Human Oral Saliva Microbial Communities Revealed by the Earth Microbiome Project. Front Microbiol 2022; 13:931065. [PMID: 35770164 PMCID: PMC9234457 DOI: 10.3389/fmicb.2022.931065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The oral cavity is an important window for microbial communication between the environment and the human body. The oral microbiome plays an important role in human health. However, compared to the gut microbiome, the oral microbiome has been poorly explored. Here, we analyzed 404 datasets from human oral saliva samples published by the Earth Microbiome Project (EMP) and compared them with 815 samples from the human gut, nose/pharynx, and skin. The diversity of the human saliva microbiome varied significantly among individuals, and the community compositions were complex and diverse. The saliva microbiome showed the lowest species diversity among the four environment types. Human oral habitats shared a small core bacterial community containing only 14 operational taxonomic units (OTUs) under 5 phyla, which occupied over 75% of the sequence abundance. For the four habitats, the core taxa of the saliva microbiome had the greatest impact on saliva habitats than other habitats and were mostly unique. In addition, the saliva microbiome showed significant differences in the populations of different regions, which may be determined by the living environment and lifestyle/dietary habits. Finally, the correlation analysis showed high similarity between the saliva microbiome and the microbiomes of Aerosol (non-saline) and Surface (non-saline), i.e., two environment types closely related to human, suggesting that contact and shared environment being the driving factors of microbial transmission. Together, these findings expand our understanding of human oral diversity and biogeography.
Collapse
Affiliation(s)
- Jinlan Wang
- National Administration of Health Data, Jinan, China
- *Correspondence: Jinlan Wang,
| | - Jianqing Feng
- 96608 Army Hospital of Chinese People’s Liberation Army, Hanzhong, China
| | - Yongbao Zhu
- National Administration of Health Data, Jinan, China
| | - Dandan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Jianing Wang,
| | - Weiwei Chi
- National Administration of Health Data, Jinan, China
- Weiwei Chi,
| |
Collapse
|
37
|
Gao C, Li X, Zhao X, Yang P, Wang X, Chen X, Chen N, Chen F. Standardized studies of the oral microbiome: From technology-driven to hypothesis-driven. IMETA 2022; 1:e19. [PMID: 38868569 PMCID: PMC10989927 DOI: 10.1002/imt2.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2024]
Abstract
The microbiome is in a symbiotic relationship with the host. Among the microbial consortia in the human body, that in the oral cavity is complex. Instead of repeatedly confirming biomarkers of oral and systemic diseases, recent studies have focused on a unified clinical diagnostic standard in microbiology that reduces the heterogeneity caused by individual discrepancies. Research has also been conducted on other topics of greater clinical importance, including bacterial pathogenesis, and the effects of drugs and treatments. In this review, we divide existing research into technology-driven and hypothesis-driven, according to whether there is a clear research hypothesis. This classification allows the demonstration of shifts in the direction of oral microbiology research. Based on the shifts, we suggested that establishing clear hypotheses may be the solution to major research challenges.
Collapse
Affiliation(s)
- Chuqi Gao
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xuantao Li
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiaole Zhao
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Peiyue Yang
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiao Wang
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiaoli Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Ning Chen
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| |
Collapse
|
38
|
Kim D, Jeong YJ, Lee Y, Choi J, Park YM, Kwon OC, Ji YW, Ahn SJ, Lee HK, Park MC, Lim JY. Correlation Between Salivary Microbiome of Parotid Glands and Clinical Features in Primary Sjögren's Syndrome and Non-Sjögren's Sicca Subjects. Front Immunol 2022; 13:874285. [PMID: 35603219 PMCID: PMC9114876 DOI: 10.3389/fimmu.2022.874285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated that the oral microbiome in patients with Sjögren’s syndrome (SS) is significantly different from that in healthy individuals. However, the potential role of the oral microbiome in SS pathogenesis has not been determined. In this study, stimulated intraductal saliva samples were collected from the parotid glands (PGs) of 23 SS and nine non-SS subjects through PG lavage and subjected to 16S ribosomal RNA amplicon sequencing. The correlation between the oral microbiome and clinical features, such as biological markers, clinical manifestations, and functional and radiological characteristics was investigated. The salivary microbial composition was examined using bioinformatic analysis to identify potential diagnostic biomarkers for SS. Oral microbial composition was significantly different between the anti-SSA-positive and SSA-negative groups. The microbial diversity in SS subjects was lower than that in non-SS sicca subjects. Furthermore, SS subjects with sialectasis exhibited decreased microbial diversity and Firmicutes abundance. The abundance of Bacteroidetes was positively correlated with the salivary flow rate. Bioinformatics analysis revealed several potential microbial biomarkers for SS at the genus level, such as decreased Lactobacillus abundance or increased Streptococcus abundance. These results suggest that microbiota composition is correlated with the clinical features of SS, especially the ductal structures and salivary flow, and that the oral microbiome is a potential diagnostic biomarker for SS.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ye Jin Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yerin Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jihoon Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Min Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Oh Chan Kwon
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Woo Ji
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jun Ahn
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Keun Lee
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Chan Park
- Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
39
|
Citizen-science reveals changes in the oral microbiome in Spain through age and lifestyle factors. NPJ Biofilms Microbiomes 2022; 8:38. [PMID: 35585074 PMCID: PMC9117221 DOI: 10.1038/s41522-022-00279-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
The relevance of the human oral microbiome to our understanding of human health has grown in recent years as microbiome studies continue to develop. Given the links of the oral cavity with the digestive, respiratory and circulatory systems, the composition of the oral microbiome is relevant beyond just oral health, impacting systemic processes across the body. However, we still have a very limited understanding about intrinsic and extrinsic factors that shape the composition of the healthy oral microbiome. Here, we followed a citizen-science approach to assess the relative impact on the oral microbiome of selected biological, social, and lifestyle factors in 1648 Spanish individuals. We found that the oral microbiome changes across age, with middle ages showing a more homogeneous composition, and older ages showing more diverse microbiomes with increased representation of typically low abundance taxa. By measuring differences within and between groups of individuals sharing a given parameter, we were able to assess the relative impact of different factors in driving specific microbial compositions. Chronic health disorders present in the analyzed population were the most impactful factors, followed by smoking and the presence of yeasts in the oral cavity. Finally, we corroborate findings in the literature that relatives tend to have more similar oral microbiomes, and show for the first time a similar effect for classmates. Multiple intrinsic and extrinsic factors jointly shape the oral microbiome. Comparative analysis of metabarcoding data from a large sample set allows us to disentangle the individual effects.
Collapse
|
40
|
Barbosa-Amezcua M, Galeana-Cadena D, Alvarado-Peña N, Silva-Herzog E. The Microbiome as Part of the Contemporary View of Tuberculosis Disease. Pathogens 2022; 11:pathogens11050584. [PMID: 35631105 PMCID: PMC9147979 DOI: 10.3390/pathogens11050584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022] Open
Abstract
The study of the microbiome has changed our overall perspective on health and disease. Although studies of the lung microbiome have lagged behind those on the gastrointestinal microbiome, there is now evidence that the lung microbiome is a rich, dynamic ecosystem. Tuberculosis is one of the oldest human diseases, it is primarily a respiratory infectious disease caused by strains from the Mycobacterium tuberculosis Complex. Even today, during the COVID-19 pandemic, it remains one of the principal causes of morbidity and mortality worldwide. Tuberculosis disease manifests itself as a dynamic spectrum that ranges from asymptomatic latent infection to life-threatening active disease. The review aims to provide an overview of the microbiome in the tuberculosis setting, both in patients’ and animal models. We discuss the relevance of the microbiome and its dysbiosis, and how, probably through its interaction with the immune system, it is a significant factor in tuberculosis’s susceptibility, establishment, and severity.
Collapse
Affiliation(s)
- Martín Barbosa-Amezcua
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico;
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Néstor Alvarado-Peña
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Eugenia Silva-Herzog
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de Mexico-Instituto Nacional de Medicina Genomica (UNAM-INMEGEN), Mexico City 14610, Mexico
- Correspondence:
| |
Collapse
|
41
|
Ma D, Chen B, Li Y, Pang X, Fu Q, Xiao Z, Shi Z, Li X, Luo C, Zhou Z, Chen Y, Zhou J. Au@Ag Nanorods-PDMS Wearable Mouthguard as a Visualized Detection Platform for Screening Dental Caries and Periodontal Diseases. Adv Healthc Mater 2022; 11:e2102682. [PMID: 34957703 DOI: 10.1002/adhm.202102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/19/2021] [Indexed: 11/10/2022]
Abstract
The development of easy-to-use, low-cost, and visualized detection platforms for screening human dental caries and periodontal diseases is in urgent demand. In this work, a Au@Ag nanorods-poly(dimethylsiloxane) (Au@Ag NRs-PDMS) wearable mouthguard, which can visualize the tooth lesion sites through the color change of it at the corresponding locations, is presented. The Au@Ag NRs-PDMS composite exhibits a distinct color response to hydrogen sulfide (H2 S) gas generated by bacterial decay at the lesion sites. Moreover, the Au@Ag NRs-PDMS mouthguard is demonstrated to own desired mechanical properties, excellent chemical stability, as well as good biocompatibility, and can accurately locate the lesion sites in human oral cavity. These findings suggest that the mouthguard has the potential to be utilized on a large scale to help people self-monitor their oral health in daily life, and treat oral diseases locally.
Collapse
Affiliation(s)
- Dongxu Ma
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Baiqi Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Yuanfang Li
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Xueyuan Pang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Quanying Fu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Zihan Xiao
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Zhonghong Shi
- State Key Laboratory of Optoelectronic Materials and Technologies School of Physics Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaolei Li
- Department of Orthodontics Guanghua School of Stomatology Hospital of Stomatology Sun Yat‐sen University Guangzhou 510055 China
| | - Chongdai Luo
- Department of Stomatology Guangzhou Women and Children's Medical Center Guangzhou 510275 China
| | - Zhang‐kai Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies School of Physics Sun Yat‐sen University Guangzhou 510275 China
| | - Yin Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
42
|
Negrini TDC, Carlos IZ, Duque C, Caiaffa KS, Arthur RA. Interplay Among the Oral Microbiome, Oral Cavity Conditions, the Host Immune Response, Diabetes Mellitus, and Its Associated-Risk Factors-An Overview. FRONTIERS IN ORAL HEALTH 2022; 2:697428. [PMID: 35048037 PMCID: PMC8757730 DOI: 10.3389/froh.2021.697428] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
This comprehensive review of the literature aimed to investigate the interplay between the oral microbiome, oral cavity conditions, and host immune response in Diabetes mellitus (DM). Moreover, this review also aimed to investigate how DM related risk factors, such as advanced age, hyperglycemia, hyperlipidemia, obesity, hypertension and polycystic ovary syndrome (PCOS), act in promoting or modifying specific mechanisms that could potentially perpetuate both altered systemic and oral conditions. We found that poorly controlled glycemic index may exert a negative effect on the immune system of affected individuals, leading to a deficient immune response or to an exacerbation of the inflammatory response exacerbating DM-related complications. Hyperglycemia induces alterations in the oral microbiome since poor glycemic control is associated with increased levels and frequencies of periodontal pathogens in the subgingival biofilm of individuals with DM. A bidirectional relationship between periodontal diseases and DM has been suggested: DM patients may have an exaggerated inflammatory response, poor repair and bone resorption that aggravates periodontal disease whereas the increased levels of systemic pro-inflammatory mediators found in individuals affected with periodontal disease exacerbates insulin resistance. SARS-CoV-2 infection may represent an aggravating factor for individuals with DM. Individuals with DM tend to have low salivary flow and a high prevalence of xerostomia, but the association between prevalence/experience of dental caries and DM is still unclear. DM has also been associated to the development of lesions in the oral mucosa, especially potentially malignant ones and those associated with fungal infections. Obesity plays an important role in the induction and progression of DM. Co-affected obese and DM individuals tend to present worse oral health conditions. A decrease in HDL and, an increase in triglycerides bloodstream levels seem to be associated with an increase on the load of periodontopathogens on oral cavity. Moreover, DM may increase the likelihood of halitosis. Prevalence of impaired taste perception and impaired smell recognition tend to be greater in DM patients. An important interplay among oral cavity microbiome, DM, obesity and hypertension has been proposed as the reduction of nitrate into nitrite, in addition to contribute to lowering of blood pressure, reduces oxidative stress and increases insulin secretion, being these effects desirable for the control of obesity and DM. Women with PCOS tend to present a distinct oral microbial composition and an elevated systemic response to selective members of this microbial community, but the association between oral microbiome, PCOS are DM is still unknown. The results of the studies presented in this review suggest the interplay among the oral microbiome, oral cavity conditions, host immune response and DM and some of the DM associated risk factors exist. DM individuals need to be encouraged and motivated for an adequate oral health care. In addition, these results show the importance of adopting multidisciplinary management of DM and of strengthening physicians-dentists relationship focusing on both systemic and on oral cavity conditions of DM patients.
Collapse
Affiliation(s)
- Thais de Cássia Negrini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Cristiane Duque
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Karina Sampaio Caiaffa
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Community Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
43
|
Ptasiewicz M, Grywalska E, Mertowska P, Korona-Głowniak I, Poniewierska-Baran A, Niedźwiedzka-Rystwej P, Chałas R. Armed to the Teeth-The Oral Mucosa Immunity System and Microbiota. Int J Mol Sci 2022; 23:882. [PMID: 35055069 PMCID: PMC8776045 DOI: 10.3390/ijms23020882] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
The oral cavity is inhabited by a wide spectrum of microbial species, and their colonization is mostly based on commensalism. These microbes are part of the normal oral flora, but there are also opportunistic species that can cause oral and systemic diseases. Although there is a strong exposure to various microorganisms, the oral mucosa reduces the colonization of microorganisms with high rotation and secretion of various types of cytokines and antimicrobial proteins such as defensins. In some circumstances, the imbalance between normal oral flora and pathogenic flora may lead to a change in the ratio of commensalism to parasitism. Healthy oral mucosa has many important functions. Thanks to its integrity, it is impermeable to most microorganisms and constitutes a mechanical barrier against their penetration into tissues. Our study aims to present the role and composition of the oral cavity microbiota as well as defense mechanisms within the oral mucosa which allow for maintaining a balance between such numerous species of microorganisms. We highlight the specific aspects of the oral mucosa protecting barrier and discuss up-to-date information on the immune cell system that ensures microbiota balance. This study presents the latest data on specific tissue stimuli in the regulation of the immune system with particular emphasis on the resistance of the gingival barrier. Despite advances in understanding the mechanisms regulating the balance on the microorganism/host axis, more research is still needed on how the combination of these diverse signals is involved in the regulation of immunity at the oral mucosa barrier.
Collapse
Affiliation(s)
- Maja Ptasiewicz
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland;
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | | | | | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 6 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (R.C.)
| |
Collapse
|
44
|
AlEraky DM, Madi M, El Tantawi M, AlHumaid J, Fita S, AbdulAzeez S, Borgio JF, Al-Harbi FA, Alagl AS. Predominance of non- Streptococcus mutans bacteria in dental biofilm and its relation to caries progression. Saudi J Biol Sci 2021; 28:7390-7395. [PMID: 34867042 PMCID: PMC8626303 DOI: 10.1016/j.sjbs.2021.08.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/26/2022] Open
Abstract
This study aims to assess differences in biofilm bacterial composition between patients with low and high caries. Patients without a medical problem and with no history of antibiotic use, mouth wash or fluoride application in the previous 3 months were recruited. Caries was recorded at cavitation level; score was calculated by a national mean (dmft of 4.8 and DMFT of 2.7). Pooled biofilm samples were collected from mesial, distal, buccal, lingual, and occlusal surfaces. Based on caries experience, individuals were classified into low and high caries and both groups were compared regarding bacteria identified using 16S rRNA gene sequencing, and molecular phylogenetic analysis of the isolates was performed. A total of twenty seven randomly selected samples with low (n = 13) and high (n = 14) caries. Identification of oral bacteria was performed using 16S rRNA sequence, Rothia mucilaginosa and R. aeria were identified in low caries individuals, while R. dentocariosa was detected in high caries individuals. Two Streptococcus spp. were identified only in low caries S. salivarius and S. gordonii whereas S. sanguinis, S. mitis, S. sinensis, S. rubneri, S. vestibularis, S. cristatus and S. massiliensis were identified only in individuals with high caries. This study revealed the absence of R. mucilaginosa in the high caries subjects and its coexistence with the low caries subjects. Streptococcus mutans was insignificant contributor of caries among samples, while, Streptococcus sanguinis was the main constituent of high caries Saudi patients.
Collapse
Affiliation(s)
- Doaa M AlEraky
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Marwa Madi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maha El Tantawi
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Jehan AlHumaid
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sarah Fita
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fahad A Al-Harbi
- Department of Substitutive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adel S Alagl
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
45
|
Ahannach S, Delanghe L, Spacova I, Wittouck S, Van Beeck W, De Boeck I, Lebeer S. Microbial enrichment and storage for metagenomics of vaginal, skin, and saliva samples. iScience 2021; 24:103306. [PMID: 34765924 PMCID: PMC8571498 DOI: 10.1016/j.isci.2021.103306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Few validated protocols are available for large-scale collection, storage, and analysis of microbiome samples from the vagina, skin, and mouth. To prepare for a large-scale study on the female microbiome by remote self-sampling, we investigated the impact of sample collection, storage, and host DNA depletion on microbiome profiling. Vaginal, skin, and saliva samples were analyzed using 16S rRNA gene amplicon and metagenomic shotgun sequencing, and qPCR. Of the two tested storage buffers, the eNAT buffer could keep the microbial composition stable during various conditions. All three tested host DNA-depletion approaches showed a bias against Gram-negative taxa. However, using the HostZERO Microbial DNA and QIAamp DNA Microbiome kits, samples still clustered according to body site and not by depletion approach. Therefore, our study showed the effectiveness of these methods in depleting host DNA. Yet, a suitable approach is recommended for each habitat studied based on microbial composition. Lysis buffer keeps the microbial composition stable during various storage conditions Host DNA depletion introduces a larger bias toward Gram-negative taxa The HostZERO Microbial DNA kit performed best in human DNA depletion for metagenomics Body site-specific approach based on microbial composition is needed to minimize bias
Collapse
Affiliation(s)
- Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lize Delanghe
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Stijn Wittouck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Wannes Van Beeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ilke De Boeck
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
46
|
Microbial community alteration in tongue squamous cell carcinoma. Appl Microbiol Biotechnol 2021; 105:8457-8467. [PMID: 34655321 DOI: 10.1007/s00253-021-11593-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) is the most common oral cavity malignancy. The role of the microbial community in TSCC development and progression is unclear. In the present study, 23 patients with TSCC were recruited. Tissue DNA was extracted from cancer and paracancerous normal tissues from all participants. Next-generation 16S rDNA amplicon sequencing and functional prediction were applied for taxonomic analysis. Alpha diversity measurements using the Shannon and Simpson diversity indexes indicated a significant increase in the microbiotic diversity of cancer samples (Shannon index: P = 0.001, Simpson index: P = 0.015); otherwise, no differences were found when using observed operational taxonomic units (OTUs) and Chao1 index (observed OTUs: P = 0.261, Chao1 index: P = 0.054). The dominant phyla of the microbiota included Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria, and Fusobacteria. Multivariate analysis of variance (Adonis) and nonparametric analysis of similarities (ANOSIM) based on unweighted unifrac distances demonstrated differences in the bacterial community structure between the two groups (P = 0.001 for Adonis, P = 0.001 for ANOSIM). Compared with the normal samples, Neisseria, Streptococcus, and Actinomyces levels decreased significantly in cancer samples. Co-occurrence network analysis implied that the bacterial community in cancer was more conserved than that in normal tissue. Matched-pair analysis of cancer and control samples revealed a significant alteration in the relative abundance of specific taxa. These findings will enrich our knowledge of the association between the oral microbial community and TSCC. Further experiments should investigate the potential carcinogenic mechanism of microbial community alterations in TSCC. KEY POINTS: • Microbial community role in tongue squamous cell carcinoma. • Significant alteration of microbiome found between cancer and normal tissues. • Microbial community alteration and potential carcinogenic mechanism.
Collapse
|
47
|
Vanhaecke T, Bretin O, Poirel M, Tap J. Drinking Water Source and Intake Are Associated with Distinct Gut Microbiota Signatures in US and UK Populations. J Nutr 2021; 152:171-182. [PMID: 34642755 PMCID: PMC8754568 DOI: 10.1093/jn/nxab312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The microbiome of the digestive tract exerts fundamental roles in host physiology. Extrinsic factors including lifestyle and diet are widely recognized as key drivers of gut and oral microbiome compositions. Although drinking water is among the food items consumed in the largest amount, little is known about its potential impact on the microbiome. OBJECTIVES We explored the associations of plain drinking water source and intake with gut and oral microbiota compositions in a population-based cohort. METHODS Microbiota, health, lifestyle, and food intake data were extracted from the American Gut Project public database. Associations of drinking water source (bottled, tap, filtered, or well water) and intake with global microbiota composition were evaluated using linear and logistic models adjusted for anthropometric, diet, and lifestyle factors in 3413 and 3794 individuals, respectively (fecal samples; 56% female, median [IQR] age: 48 [36-59] y; median [IQR] BMI: 23.3 [20.9-26.3] kg/m2), and in 283 and 309 individuals, respectively (oral samples). RESULTS Drinking water source ranked among the key contributing factors explaining the gut microbiota variation, accounting for 13% [Faith's phylogenetic diversity (Faith's PD)] and 47% (Bray-Curtis dissimilarity) of the age effect size. Drinking water source was associated with differences in gut microbiota signatures, as revealed by β diversity analyses (P < 0.05; Bray-Curtis dissimilarity, weighted UniFrac distance). Subjects drinking mostly well water had higher fecal α diversity (P < 0.05; Faith's PD, observed amplicon sequence variants), higher Dorea, and lower Bacteroides, Odoribacter, and Streptococcus than the other groups. Low water drinkers also exhibited gut microbiota differences compared with high water drinkers (P < 0.05; Bray-Curtis dissimilarity, unweighted UniFrac distance) and a higher abundance of Campylobacter. No associations were found between oral microbiota composition and drinking water consumption. CONCLUSIONS Our results indicate that drinking water may be an important factor in shaping the human gut microbiome and that integrating drinking water source and intake as covariates in future microbiome analyses is warranted.
Collapse
|
48
|
Chen JW, Wu JH, Chiang WF, Chen YL, Wu WS, Wu LW. Taxonomic and Functional Dysregulation in Salivary Microbiomes During Oral Carcinogenesis. Front Cell Infect Microbiol 2021; 11:663068. [PMID: 34604102 PMCID: PMC8482814 DOI: 10.3389/fcimb.2021.663068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Exploring microbial community compositions in humans with healthy versus diseased states is crucial to understand the microbe-host interplay associated with the disease progression. Although the relationship between oral cancer and microbiome was previously established, it remained controversial, and yet the ecological characteristics and their responses to oral carcinogenesis have not been well studied. Here, using the bacterial 16S rRNA gene amplicon sequencing along with the in silico function analysis by PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2), we systematically characterized the compositions and the ecological drivers of saliva microbiome in the cohorts of orally healthy, non-recurrent oral verrucous hyperplasia (a pre-cancer lesion), and oral verrucous hyperplasia–associated oral cancer at taxonomic and function levels, and compared them with the re-analysis of publicly available datasets. Diversity analyses showed that microbiome dysbiosis in saliva was significantly linked to oral health status. As oral health deteriorated, the number of core species declined, and metabolic pathways predicted by PICRUSt2 were dysregulated. Partitioned beta-diversity revealed an extremely high species turnover but low function turnover. Functional beta-diversity in saliva microbiome shifted from turnover to nestedness during oral carcinogenesis, which was not observed at taxonomic levels. Correspondingly, the quantitative analysis of stochasticity ratios showed that drivers of microbial composition and functional gene content of saliva microbiomes were primarily governed by the stochastic processes, yet the driver of functional gene content shifted toward deterministic processes as oral cancer developed. Re-analysis of publicly accessible datasets supported not only the distinctive family taxa of Veillonellaceae and Actinomycetaceae present in normal cohorts but also that Flavobacteriaceae and Peptostreptococcaceae as well as the dysregulated metabolic pathways of nucleotides, amino acids, fatty acids, and cell structure were related to oral cancer. Using predicted functional profiles to elucidate the correlations to the oral health status shows superior performance than using taxonomic data among different studies. These findings advance our understanding of the oral ecosystem in relation to oral carcinogenesis and provide a new direction to the development of microbiome-based tools to study the interplay of the oral microbiome, metabolites, and host health.
Collapse
Affiliation(s)
- Jiung-Wen Chen
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Fan Chiang
- Department of Oral & Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, Taiwan.,School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Li-Wha Wu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
49
|
Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 2021; 19:585-599. [PMID: 34050328 PMCID: PMC11290707 DOI: 10.1038/s41579-021-00559-y] [Citation(s) in RCA: 290] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
The genus Prevotella includes more than 50 characterized species that occur in varied natural habitats, although most Prevotella spp. are associated with humans. In the human microbiome, Prevotella spp. are highly abundant in various body sites, where they are key players in the balance between health and disease. Host factors related to diet, lifestyle and geography are fundamental in affecting the diversity and prevalence of Prevotella species and strains in the human microbiome. These factors, along with the ecological relationship of Prevotella with other members of the microbiome, likely determine the extent of the contribution of Prevotella to human metabolism and health. Here we review the diversity, prevalence and potential connection of Prevotella spp. in the human host, highlighting how genomic methods and analysis have improved and should further help in framing their ecological role. We also provide suggestions for future research to improve understanding of the possible functions of Prevotella spp. and the effects of the Western lifestyle and diet on the host-Prevotella symbiotic relationship in the context of maintaining human health.
Collapse
Affiliation(s)
- Adrian Tett
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
50
|
Ahannach S, Spacova I, Decorte R, Jehaes E, Lebeer S. At the Interface of Life and Death: Post-mortem and Other Applications of Vaginal, Skin, and Salivary Microbiome Analysis in Forensics. Front Microbiol 2021; 12:694447. [PMID: 34394033 PMCID: PMC8355522 DOI: 10.3389/fmicb.2021.694447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial forensics represents a promising tool to strengthen traditional forensic investigative methods and fill related knowledge gaps. Large-scale microbiome studies indicate that microbial fingerprinting can assist forensics in areas such as trace evidence, source tracking, geolocation, and circumstances of death. Nevertheless, the majority of forensic microbiome studies focus on soil and internal organ samples, whereas the microbiome of skin, mouth, and especially vaginal samples that are routinely collected in sexual assault and femicide cases remain underexplored. This review discusses the current and emerging insights into vaginal, skin, and salivary microbiome-modulating factors during life (e.g., lifestyle and health status) and after death (e.g., environmental influences and post-mortem interval) based on next-generation sequencing. We specifically highlight the key aspects of female reproductive tract, skin, and mouth microbiome samples relevant in forensics. To fill the current knowledge gaps, future research should focus on the degree to which the post-mortem succession rate and profiles of vaginal, skin, and saliva microbiota are sensitive to abiotic and biotic factors, presence or absence of oxygen and other gases, and the nutrient richness of the environment. Application of this microbiome-related knowledge could provide valuable complementary data to strengthen forensic cases, for example, to shed light on the circumstances surrounding death with (post-mortem) microbial fingerprinting. Overall, this review synthesizes the present knowledge and aims to provide a framework to adequately comprehend the hurdles and potential application of vaginal, skin, and salivary post-mortem microbiomes in forensic investigations.
Collapse
Affiliation(s)
- Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Ronny Decorte
- Laboratory of Forensic Genetics, Department of Forensic Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Forensic Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Els Jehaes
- Forensic DNA Laboratory, Department of Forensic Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|