1
|
Sabbahi R, Hock V, Azzaoui K, Hammouti B. Leishmania-sand fly interactions: exploring the role of the immune response and potential strategies for Leishmaniasis control. J Parasit Dis 2024; 48:655-670. [PMID: 39493480 PMCID: PMC11528092 DOI: 10.1007/s12639-024-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 11/05/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania, affecting millions of people worldwide. The disease is transmitted by the bite of infected female sand flies, which act as vectors and hosts for the parasites. The interaction between Leishmania parasites and sand flies is complex and dynamic, involving various factors that influence parasite development, survival and transmission. This review examines how the immune response of sand flies affects vector competence and transmission of Leishmania parasites, and what the potential strategies are to prevent or reduce infection. The review also summarizes the main findings and conclusions of the existing literature and discusses implications and recommendations for future research and practice. The study reveals that the immune response of sand flies is a key determinant of vector competence and transmission of Leishmania parasites, and that several molecular and cellular mechanisms are involved in the interaction between parasite and vector. The study also suggests that there are potential strategies for controlling leishmaniasis, such as interfering with parasite development, modulating the vector's immune response or reducing the vector population. However, the study also identifies several gaps and limitations in current knowledge and calls for more comprehensive and systematic studies on vector-parasite interaction and its impact on leishmaniasis transmission and control.
Collapse
Affiliation(s)
- Rachid Sabbahi
- Research Team in Science and Technology, Higher School of Technology, Ibn Zohr University, 70000 Laayoune, Morocco
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
| | - Virginia Hock
- Department of Biology, Dawson College, 3040 Sherbrooke St. W, Montreal, QC H3Z 1A4 Canada
| | - Khalil Azzaoui
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
- Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000 Fez, Morocco
| | | |
Collapse
|
2
|
Pilgrim J, Metelmann S, Widlake E, Seechurn N, Vaux A, Mansfield KL, Tanianis-Hughes J, Sherlock K, Johnson N, Medlock J, Baylis M, Blagrove MS. UK mosquitoes are competent to transmit Usutu virus at native temperatures. One Health 2024; 19:100916. [PMID: 39497950 PMCID: PMC11532274 DOI: 10.1016/j.onehlt.2024.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Usutu virus (USUV) is an emerging zoonotic virus transmitted primarily by Culex mosquitoes. Since its introduction into Europe from Africa during the late 20th century, it has caused mortality within populations of passerine birds and captive owls, and can on occasion lead to disease in humans. USUV was first detected in the UK in 2020 and has become endemic, having been detected in either birds and/or mosquitoes every subsequent year. Importantly, the vector competence of indigenous mosquitoes for the circulating UK (London) USUV strain at representative regional temperatures is still to be elucidated. This study assessed the vector competence of five field-collected mosquito species/biotypes, Culex pipiens biotype molestus, Culex pipiens biotype pipiens, Culex torrentium, Culiseta annulata and Aedes detritus for the London USUV strain, with infection rates (IR) and transmission rates (TR) evaluated between 7 and 28 days post-infection. Infection and transmission were observed in all species/biotypes aside from Ae. detritus and Cx. torrentium. For Cx. pipiens biotype molestus, transmission potential suggests these populations should be monitored further for their role in transmission to humans. Furthermore, both Cx. pipiens biotype pipiens and Cs. annulata were shown to be competent vectors at 19 °C indicating the potential for geographical spread of the virus to other UK regions.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Soeren Metelmann
- North West Field Service, UK Health Security Agency, Liverpool L3 1EL, UK
| | - Emma Widlake
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nicola Seechurn
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Alexander Vaux
- Medical Entomology and Zoonoses Ecology group, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Karen L. Mansfield
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Jola Tanianis-Hughes
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Ken Sherlock
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nicholas Johnson
- Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Jolyon Medlock
- Medical Entomology and Zoonoses Ecology group, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Marcus S.C. Blagrove
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
3
|
Mateescu I, Lequime S. Dengue-mediated changes in the vectorial capacity of Aedes aegypti (Diptera: Culicidae): manipulation of transmission or infection by-product? JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae134. [PMID: 39436782 DOI: 10.1093/jme/tjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
An arthropod's vectorial capacity summarizes its disease transmission potential. Life-history traits, such as fecundity or survival, and behavioral traits, such as locomotor activity, host-seeking and feeding behavior, are important components of vectorial capacity. Studies have shown that mosquito-borne pathogens may alter important vectorial capacity traits of their mosquito vectors, thus directly impacting their transmission and epidemic potential. Here, we compile and discuss the evidence supporting dengue-mediated changes in the yellow fever mosquito Aedes aegypti (L.), its primary vector, and evaluate whether the observed effects represent an evolved trait manipulation with epidemiological implications. Dengue infection appears to manipulate essential traits that facilitate vector-host contact, such as locomotor activity, host-seeking, and feeding behavior, but the underlying mechanisms are still not understood. Conversely, life-history traits relevant to vector population dynamics, such as survival, oviposition, and fecundity, appear to be negatively impacted by dengue virus. Overall, any detrimental effects on life-history traits may be a negligible cost derived from the virulence that dengue has evolved to facilitate its transmission by manipulating Ae. aegypti behavior and feeding performance. However, methodological disparities among studies render comparisons difficult and limit the ability to reach well-supported conclusions. This highlights the need for more standardized methods for the research into changes in virus-mediated traits. Eventually, we argue that the effects on life-history traits and behavior outlined here must be considered when assessing the epidemiological impact of dengue or other arbovirus-vector-host interactions.
Collapse
Affiliation(s)
- Ioana Mateescu
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research School of Behavioral and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Sebastian Lequime
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Herrera-Rodríguez D, Jareño-Moreno S, Buch-Cardona C, Mougeot F, Luque-Larena JJ, Vidal D. Water and mosquitoes as key components of the infective cycle of Francisella tularensis in Europe: a review. Crit Rev Microbiol 2024; 50:922-936. [PMID: 38393764 DOI: 10.1080/1040841x.2024.2319040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
Francisella tularensis is the pathogen of tularemia, a zoonotic disease that have a broad range of hosts. Its epidemiology is related to aquatic environments, particularly in the subspecies holarctica. In this review, we explore the role of water and mosquitoes in the epidemiology of Francisella in Europe. F. tularensis epidemiology has been linked to natural waters, where its persistence has been associated with biofilm and amebas. In Sweden and Finland, the European countries where most human cases have been reported, mosquito bites are a main route of transmission. F. tularensis is present in other European countries, but to date positive mosquitoes have not been found. Biofilm and amebas are potential sources of Francisella for mosquito larvae, however, mosquito vector capacity has not been demonstrated experimentally, with the need to be studied using local species to uncover a potential transmission adaptation. Transstadial, for persistence through life stages, and mechanical transmission, suggesting contaminated media as a source for infection, have been studied experimentally for mosquitoes, but their natural occurrence needs to be evaluated. It is important to clear up the role of different local mosquito species in the epidemiology of F. tularensis and their importance in all areas where tularemia is present.
Collapse
Affiliation(s)
- Daniel Herrera-Rodríguez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Castilla la Mancha (UCLM), Ciudad Real, España
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, España
| | - Sara Jareño-Moreno
- Facultad de Veterinaria, Universidad Autónoma de Barcelona (UAB), Barcelona, España
| | - Clara Buch-Cardona
- Facultad de Biociencias, Universidad Autónoma de Barcelona (UAB), Barcelona, España
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, España
| | - Juan José Luque-Larena
- Departamento de Ciencias Agroforestales, E.T.S. Ingenierías Agrarias, Universidad de Valladolid (UVa), Palencia, España
- Sustainable Forest Management Research Institute (iuFOR), Universidad de Valladolid (UVa), Palencia, España
| | - Dolors Vidal
- Departamento de Microbiología, Facultad de Medicina, Universidad de Castilla la Mancha (UCLM), Ciudad Real, España
| |
Collapse
|
5
|
Kumar T, Maitra S, Rai R, Priyanka, Maitra S, Tirkey NN, Kumari R. The dichotomy between probiotic lactic acid bacteria and Plasmodium: A promising therapeutic avenue. Acta Trop 2024; 257:107284. [PMID: 38857820 DOI: 10.1016/j.actatropica.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Our understanding of gut microbial populations and their immense influence on host immunity, health, and diseases has increased deeply in recent years. Numerous reports have identified the role of mosquito and mammalian gut microbiota in the modulation of host susceptibility to Plasmodium infection. Artemisinin resistance in malaria-endemic regions necessitates the development of new, safer, and more affordable treatments to supplement existing therapies. In this review, we compiled a colossal amount of data from numerous studies that have assessed the roles played by gut microbial communities in Plasmodium infection, progression, transmission, and severity. Most interestingly, our study points to the overwhelming evidence from experimental studies in mural malaria to human trials, suggesting that the presence of lactic acid bacteria in the gut microbiota of mammalian hosts provides a great degree of protection against malaria. Therefore, our study provides a compelling narrative for probiotic administration as an adjunct therapy for combatting malaria.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Department of Zoology, Panch Pargana Kisan College, Ranchi University, Ranchi, Jharkhand, 835204, India.
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Richa Rai
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Priyanka
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Satwat Maitra
- Noida International Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | | | - Rajesh Kumari
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
6
|
Brettell LE, Hoque AF, Joseph TS, Dhokiya V, Hornett EA, Hughes GL, Heinz E. Mosquitoes reared in distinct insectaries within an institution in close spatial proximity possess significantly divergent microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610121. [PMID: 39257775 PMCID: PMC11383675 DOI: 10.1101/2024.08.28.610121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The microbiome affects important aspects of mosquito biology and differences in microbial composition can affect the outcomes of laboratory studies. To determine how the biotic and abiotic conditions in an insectary affect the composition of the bacterial microbiome of mosquitoes we reared mosquitoes from a single cohort of eggs from one genetically homogeneous inbred Aedes aegypti colony, which were split into three batches, and transferred to each of three different insectaries located within the Liverpool School of Tropical Medicine. Using three replicate trays per insectary, we assessed and compared the bacterial microbiome composition as mosquitoes developed from these eggs. We also characterised the microbiome of the mosquitoes' food sources, measured environmental conditions over time in each climate-controlled insectary, and recorded development and survival of mosquitoes. While mosquito development was overall similar between all three insectaries, we saw differences in microbiome composition between mosquitoes from each insectary. Furthermore, bacterial input via food sources, potentially followed by selective pressure of temperature stability and range, did affect the microbiome composition. At both adult and larval stages, specific members of the mosquito microbiome were associated with particular insectaries; and the insectary with less stable and cooler conditions resulted in slower pupation rate and higher diversity of the larval microbiome. Tray and cage effects were also seen in all insectaries, with different bacterial taxa implicated between insectaries. These results highlight the necessity of considering the variability and effects of different microbiome composition even in experiments carried out in a laboratory environment starting with eggs from one batch; and highlights the impact of even minor inconsistencies in rearing conditions due to variation of temperature and humidity.
Collapse
Affiliation(s)
- Laura E. Brettell
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK
| | - Ananya F. Hoque
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Tara S. Joseph
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Vishaal Dhokiya
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Emily A. Hornett
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Grant L. Hughes
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| |
Collapse
|
7
|
Baril C, Cassone BJ. Metatranscriptomic analysis of common mosquito vector species in the Canadian Prairies. mSphere 2024; 9:e0020324. [PMID: 38912793 PMCID: PMC11288045 DOI: 10.1128/msphere.00203-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 06/25/2024] Open
Abstract
The microbiome plays vital roles in the life history of mosquitoes, including their development, immunity, longevity, and vector competence. Recent advances in sequencing technologies have allowed for detailed exploration into the diverse microorganisms harbored by these medically important insects. Although these meta-studies have cataloged the microbiomes of mosquitoes in several continents, much of the information currently available for North America is limited to the state of California. In this study, we collected >35,000 mosquitoes throughout Manitoba, Canada, over a 3-year period and then harnessed RNA sequencing and targeted reverse transcriptase-PCR to characterize the microbiomes of the eight most pervasive and important vector and pest species. The consensus microbiome of each species was overwhelmingly composed of viruses but also included fungi, bacteria, protozoa, and parasitic invertebrates. The microbial assemblages were heterogeneous between species, even within the same genus. We detected notable pathogens, including the causal agents of Cache Valley Fever, avian malaria, and canine heartworm. The remaining microbiome consisted largely of putatively insect-specific viruses that are not well characterized, including 17 newly discovered viruses from 10 different families. Future research should focus on evaluating the potential application of these viruses in biocontrol, as biomarkers, and/or in disrupting mosquito vectorial capacity. Interestingly, we also detected viruses that naturally infect honeybees and thrips, which were presumably acquired indirectly through nectar foraging behaviors. Overall, we provide the first comprehensive catalog of the microorganisms harbored by the most common and important mosquito vectors and pests in the Canadian Prairies. IMPORTANCE Mosquitoes are the most dangerous animals on the planet, responsible for over 800,000 deaths per year globally. This is because they carry and transmit a plethora of human disease-causing microorganisms, such as West Nile virus and the malaria parasite. Recent innovations in nucleic acid sequencing technologies have enabled researchers unparalleled opportunities to characterize the suite of microorganisms harbored by different mosquito species, including the causal agents of disease. In our study, we carried out 3 years of intensive mosquito surveillance in Canada. We collected and characterized the microorganisms harbored by >35,000 mosquitoes, including the identification of the agents of Cache Valley fever, avian malaria, and canine heartworm. We also detected insect-specific viruses and discovered 17 new viruses that have never been reported. This study, which is the first of its kind in Canada and one of only a handful globally, will greatly aid in future infectious disease research.
Collapse
Affiliation(s)
- Cole Baril
- Department of Biology, Brandon University, Brandon, Manitoba, Canada
| | - Bryan J. Cassone
- Department of Biology, Brandon University, Brandon, Manitoba, Canada
| |
Collapse
|
8
|
Veiga J, Garrido M, Garrigós M, Chagas CRF, Martínez-de la Puente J. A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites. Animals (Basel) 2024; 14:2019. [PMID: 39061481 PMCID: PMC11274142 DOI: 10.3390/ani14142019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The Asian tiger mosquito (Aedes albopictus) is an invasive mosquito species with a global distribution. This species has populations established in most continents, being considered one of the 100 most dangerous invasive species. Invasions of mosquitoes such as Ae. albopictus could facilitate local transmission of pathogens, impacting the epidemiology of some mosquito-borne diseases. Aedes albopictus is a vector of several pathogens affecting humans, including viruses such as dengue virus, Zika virus and Chikungunya virus, as well as parasites such as Dirofilaria. However, information about its competence for the transmission of parasites affecting wildlife, such as avian malaria parasites, is limited. In this literature review, we aim to explore the current knowledge about the relationships between Ae. albopictus and avian Plasmodium to understand the role of this mosquito species in avian malaria transmission. The prevalence of avian Plasmodium in field-collected Ae. albopictus is generally low, although studies have been conducted in a small proportion of the affected countries. In addition, the competence of Ae. albopictus for the transmission of avian malaria parasites has been only proved for certain Plasmodium morphospecies under laboratory conditions. Therefore, Ae. albopictus may play a minor role in avian Plasmodium transmission in the wild, likely due to its mammal-biased blood-feeding pattern and its reduced competence for the development of different avian Plasmodium. However, further studies considering other avian Plasmodium species and lineages circulating under natural conditions should be carried out to properly assess the vectorial role of Ae. albopictus for the Plasmodium species naturally circulating in its distribution range.
Collapse
Affiliation(s)
- Jesús Veiga
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
| | - Mario Garrido
- Department of Parasitology, Faculty of Pharmacy, University of Granada, 18011 Granada, Spain;
| | - Marta Garrigós
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
| | | | - Josué Martínez-de la Puente
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana (EBD, CSIC), 41092 Sevilla, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
9
|
Martinez-Villegas L, Lado P, Klompen H, Wang S, Cummings C, Pesapane R, Short SM. The microbiota of Amblyomma americanum reflects known westward expansion. PLoS One 2024; 19:e0304959. [PMID: 38857239 PMCID: PMC11164389 DOI: 10.1371/journal.pone.0304959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Amblyomma americanum, a known vector of multiple tick-borne pathogens, has expanded its geographic distribution across the United States in the past decades. Tick microbiomes may play a role shaping their host's life history and vectorial capacity. Bacterial communities associated with A. americanum may reflect, or enable, geographic expansion and studying the microbiota will improve understanding of tick-borne disease ecology. We examined the microbiota structure of 189 adult ticks collected in four regions encompassing their historical and current geographic distribution. Both geographic region of origin and sex were significant predictors of alpha diversity. As in other tick models, within-sample diversity was low and uneven given the presence of dominant endosymbionts. Beta diversity analyses revealed that bacterial profiles of ticks of both sexes collected in the West were significantly different from those of the Historic range. Biomarkers were identified for all regions except the historical range. In addition, Bray-Curtis dissimilarities overall increased with distance between sites. Relative quantification of ecological processes showed that, for females and males, respectively, drift and dispersal limitation were the primary drivers of community assembly. Collectively, our findings highlight how microbiota structural variance discriminates the western-expanded populations of A. americanum ticks from the Historical range. Spatial autocorrelation, and particularly the detection of non-selective ecological processes, are indicative of geographic isolation. We also found that prevalence of Ehrlichia chaffeensis, E. ewingii, and Anaplasma phagocytophilum ranged from 3.40-5.11% and did not significantly differ by region. Rickettsia rickettsii was absent from our samples. Our conclusions demonstrate the value of synergistic analysis of biogeographic and microbial ecology data in investigating range expansion in A. americanum and potentially other tick vectors as well.
Collapse
Affiliation(s)
- Luis Martinez-Villegas
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| | - Paula Lado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Hans Klompen
- Department of Evolution, Ecology, and Organismal Biology and Museum of Biological Diversity, The Ohio State University, Columbus, Ohio, United States of America
| | - Selena Wang
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Caleb Cummings
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Risa Pesapane
- Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah M. Short
- Department of Entomology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
10
|
Jones CM, Hughes GL, Coleman S, Fellows R, Quilliam RS. A perspective on the impacts of microplastics on mosquito biology and their vectorial capacity. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:138-147. [PMID: 38469658 DOI: 10.1111/mve.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Microplastics (plastic particles <5 mm) permeate aquatic and terrestrial ecosystems and constitute a hazard to animal life. Although much research has been conducted on the effects of microplastics on marine and benthic organisms, less consideration has been given to insects, especially those adapted to urban environments. Here, we provide a perspective on the potential consequences of exposure to microplastics within typical larval habitat on mosquito biology. Mosquitoes represent an ideal organism in which to explore the biological effects of microplastics on terrestrial insects, not least because of their importance as an infectious disease vector. Drawing on evidence from other organisms and knowledge of the mosquito life cycle, we summarise some of the more plausible impacts of microplastics including physiological, ecotoxicological and immunological responses. We conclude that although there remains little experimental evidence demonstrating any adverse effect on mosquito biology or pathogen transmission, significant knowledge gaps remain, and there is now a need to quantify the effects that microplastic pollution could have on such an important disease vector.
Collapse
Affiliation(s)
- Christopher M Jones
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sylvester Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
11
|
Garrigós M, Garrido M, Morales-Yuste M, Martínez-de la Puente J, Veiga J. Survival effects of antibiotic exposure during the larval and adult stages in the West Nile virus vector Culex pipiens. INSECT SCIENCE 2024; 31:542-550. [PMID: 37559499 DOI: 10.1111/1744-7917.13259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
The ability of mosquitoes to transmit a pathogen is affected, among other factors, by their survival rate, which is partly modulated by their microbiota. Mosquito microbiota is acquired during the larval phase and modified during their development and adult feeding behavior, being highly dependent on environmental factors. Pharmaceutical residues including antibiotics are widespread pollutants potentially being present in mosquito breeding waters likely affecting their microbiota. Here, we used Culex pipiens mosquitoes to assess the impact of antibiotic exposure during the larval and adult stages on the survival rate of adult mosquitoes. Wild-collected larvae were randomly assigned to two treatments: larvae maintained in water supplemented with antibiotics and control larvae. Emerged adults were subsequently assigned to each of two treatments, fed with sugar solution with antibiotics and fed only with sugar solution (controls). Larval exposure to antibiotics significantly increased the survival rate of adult females that received a control diet. In addition, the effect of adult exposure to antibiotics on the survival rate of both male and female mosquitoes depended on the number of days that larvae fed ad libitum in the laboratory before emergence. In particular, shorter larval ad libitum feeding periods reduced the survival rate of antibiotic-treated adult mosquitoes compared with those that emerged after a longer larval feeding period. These differences were not found in control adult mosquitoes. Our results extend the current understanding of the impact of antibiotic exposure of mosquitoes on a key component of vectorial capacity, that is the vector survival rate.
Collapse
Affiliation(s)
- Marta Garrigós
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Mario Garrido
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Manuel Morales-Yuste
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| | - Josué Martínez-de la Puente
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jesús Veiga
- Faculty of Pharmacy, Department of Parasitology, University of Granada, Granada, Spain
| |
Collapse
|
12
|
Sollelis L, Howick VM, Marti M. Revisiting the determinants of malaria transmission. Trends Parasitol 2024; 40:302-312. [PMID: 38443304 DOI: 10.1016/j.pt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Malaria parasites have coevolved with humans over thousands of years, mirroring their migration out of Africa. They persist to this day, despite continuous elimination efforts worldwide. These parasites can adapt to changing environments during infection of human and mosquito, and when expanding the geographical range by switching vector species. Recent studies in the human malaria parasite, Plasmodium falciparum, identified determinants governing the plasticity of sexual conversion rates, sex ratio, and vector competence. Here we summarize the latest literature revealing environmental, epigenetic, and genetic determinants of malaria transmission.
Collapse
Affiliation(s)
- Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Virginia M Howick
- Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland; Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity University of Glasgow, Glasgow, UK; Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
13
|
McGrath AH, Lema K, Egan S, Wood G, Gonzalez SV, Kjelleberg S, Steinberg PD, Marzinelli EM. Disentangling direct vs indirect effects of microbiome manipulations in a habitat-forming marine holobiont. NPJ Biofilms Microbiomes 2024; 10:33. [PMID: 38553475 PMCID: PMC10980776 DOI: 10.1038/s41522-024-00503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Host-associated microbiota are critical for eukaryotic host functioning, to the extent that hosts and their associated microbial communities are often considered "holobionts". Most studies of holobionts have focused on descriptive approaches or have used model systems, usually in the laboratory, to understand host-microbiome interactions. To advance our understanding of host-microbiota interactions and their wider ecological impacts, we need experimental frameworks that can explore causation in non-model hosts, which often have highly diverse microbiota, and in their natural ecological setting (i.e. in the field). We used a dominant habitat-forming seaweed, Hormosira banksii, to explore these issues and to experimentally test host-microbiota interactions in a non-model holobiont. The experimental protocols were aimed at trying to disentangle microbially mediated effects on hosts from direct effects on hosts associated with the methods employed to manipulate host-microbiota. This was done by disrupting the microbiome, either through removal/disruption using a combination of antimicrobial treatments, or additions of specific taxa via inoculations, or a combination of thew two. The experiments were done in mesocosms and in the field. Three different antibiotic treatments were used to disrupt seaweed-associated microbiota to test whether disturbances of microbiota, particularly bacteria, would negatively affect host performance. Responses of bacteria to these disturbances were complex and differed substantially among treatments, with some antibacterial treatments having little discernible effect. However, the temporal sequence of responses antibiotic treatments, changes in bacterial diversity and subsequent decreases in host performance, strongly suggested an effect of the microbiota on host performance in some treatments, as opposed to direct effects of the antibiotics. To further test these effects, we used 16S-rRNA-gene sequencing to identify bacterial taxa that were either correlated, or uncorrelated, with poor host performance following antibiotic treatment. These were then isolated and used in inoculation experiments, independently or in combination with the previously used antibiotic treatments. Negative effects on host performance were strongest where specific microbial antimicrobials treatments were combined with inoculations of strains that were correlated with poor host performance. For these treatments, negative host effects persisted the entire experimental period (12 days), even though treatments were only applied at the beginning of the experiment. Host performance recovered in all other treatments. These experiments provide a framework for exploring causation and disentangling microbially mediated vs. direct effects on hosts for ecologically important, non-model holobionts in the field. This should allow for better predictions of how these systems will respond to, and potentially mitigate, environmental disturbances in their natural context.
Collapse
Affiliation(s)
- Alexander Harry McGrath
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia.
- Sydney Institute of Marine Science, Mosman, NSW, Australia.
| | - Kimberley Lema
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Suhelen Egan
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, NSW, Australia
| | - Georgina Wood
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- UWA Oceans Institute & School of Biological Sciences, Indian Ocean Marine Research Centre, The University of Western Australia, Sydney, Australia
| | - Sebastian Vadillo Gonzalez
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551, Singapore
| | - Peter D Steinberg
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, NSW, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551, Singapore
| | - Ezequiel M Marzinelli
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, SBS-01N-27, Singapore, 637551, Singapore
| |
Collapse
|
14
|
Garrido M, Minard G, Veiga J, Martínez-de la Puente J. Editorial: Ecological interactions between mosquitoes and their microbiota: implications for pathogen transmission. Front Microbiol 2024; 15:1395348. [PMID: 38605712 PMCID: PMC11008769 DOI: 10.3389/fmicb.2024.1395348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Affiliation(s)
- Mario Garrido
- Department of Parasitology, University of Granada, Campus Universitario de Cartuja, Granada, Spain
| | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAe, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Jesús Veiga
- Department of Parasitology, University of Granada, Campus Universitario de Cartuja, Granada, Spain
| | - Josué Martínez-de la Puente
- Department of Conservation Biology and Global Change, Doñana Biological Station (EBD, CSIC), Seville, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
15
|
Pautzke KC, Felsot AS, Reganold JP, Owen JP. Effects of soil on the development, survival, and oviposition of Culex quinquefasciatus (Diptera: Culicidae) mosquitoes. Parasit Vectors 2024; 17:154. [PMID: 38523287 PMCID: PMC10960989 DOI: 10.1186/s13071-024-06202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Water quality is known to influence the development and survival of larval mosquitoes, which affects mosquito-borne pathogen transmission as a function of the number of mosquitoes that reach adulthood and blood feed. Although water properties are known to affect mosquito development, few studies have investigated the link among soil properties, water quality, and mosquito development. Given the large number of ground-breeding mosquito species, this linkage is a potentially important factor to consider in mosquito ecology. In this study, we explored the effects of different soils on multiple life history parameters of the ground-breeding mosquito species Culex quinquefasciatus (Diptera: Culicidae). METHODS Cx. quinquefasciatus larvae were reared in water combined with different soil substrates (sandy, silt, or clay loam textures) at increasing soil to water volume ratios, with and without the addition of organic matter (fish food). Gravid mosquitoes were offered different soil-water extracts to investigate soil effects on oviposition preference. RESULTS Without the addition of organic matter, larval survival and development differed significantly among waters with different soil textures and volumes of substrate. Mosquitoes in water with clay loam soil survived longer and developed further than mosquitoes in other soil waters. Larvae survived for longer periods of time with increased volumes of soil substrate. Adding organic matter reduced the differences in larval survival time, development, and pupation among soil-water extracts. Adult female mosquitoes oviposited more frequently in water with clay loam soil, but the addition of organic matter reduced the soil effects on oviposition preference. CONCLUSIONS This study suggests soil composition affects larval mosquito survival and development, as well as the oviposition preference of gravid females. Future studies could differentiate abiotic and biotic soil features that affect mosquitoes and incorporate soil variation at the landscape scale into models to predict mosquito population dynamics and mosquito-borne pathogen transmission.
Collapse
Affiliation(s)
- Kellen C Pautzke
- Department of Entomology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA.
| | - Allan S Felsot
- Department of Entomology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA
| | - John P Reganold
- Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA
| | - Jeb P Owen
- Department of Entomology, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
16
|
Hegde S, Khanipov K, Hornett EA, Nilyanimit P, Pimenova M, Saldaña MA, de Bekker C, Golovko G, Hughes GL. Interkingdom interactions shape the fungal microbiome of mosquitoes. Anim Microbiome 2024; 6:11. [PMID: 38454530 PMCID: PMC10921588 DOI: 10.1186/s42523-024-00298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The mosquito microbiome is an important modulator of vector competence and vectoral capacity. Unlike the extensively studied bacterial microbiome, fungal communities in the mosquito microbiome (the mycobiome) remain largely unexplored. To work towards getting an improved understanding of the fungi associated with mosquitoes, we sequenced the mycobiome of three field-collected and laboratory-reared mosquito species (Aedes albopictus, Aedes aegypti, and Culex quinquefasciatus). RESULTS Our analysis showed both environment and host species were contributing to the diversity of the fungal microbiome of mosquitoes. When comparing species, Ae. albopictus possessed a higher number of diverse fungal taxa than Cx. quinquefasciatus, while strikingly less than 1% of reads from Ae. aegypti samples were fungal. Fungal reads from Ae. aegypti were < 1% even after inhibiting host amplification using a PNA blocker, indicating that this species lacked a significant fungal microbiome that was amplified using this sequencing approach. Using a mono-association mosquito infection model, we confirmed that mosquito-derived fungal isolates colonize Aedes mosquitoes and support growth and development at comparable rates to their bacterial counterparts. Strikingly, native bacterial taxa isolated from mosquitoes impeded the colonization of symbiotic fungi in Ae. aegypti suggesting interkingdom interactions shape fungal microbiome communities. CONCLUSION Collectively, this study adds to our understanding of the fungal microbiome of different mosquito species, that these fungal microbes support growth and development, and highlights that microbial interactions underpin fungal colonization of these medically relevent species.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
- School of Life Sciences, Keele University, Newcastle, UK.
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine , Chulalongkorn University, Bangkok, Thailand
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Charissa de Bekker
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
17
|
Hegde S, Brettell LE, Quek S, Etebari K, Saldaña MA, Asgari S, Coon KL, Heinz E, Hughes GL. Aedes aegypti gut transcriptomes respond differently to microbiome transplants from field-caught or laboratory-reared mosquitoes. Environ Microbiol 2024; 26:e16576. [PMID: 38192175 PMCID: PMC11022138 DOI: 10.1111/1462-2920.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or the field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, many more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities is associated with variability in host-microbiome interactions and further demonstrate the utility of the microbiome transplantation technique for investigating host-microbe interactions in mosquitoes.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Laura E. Brettell
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- School of Science, Engineering and Environment, University of Salford, Manchester M4 4WT, UK
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel A. Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
18
|
Cheng Y, Yang J, Li T, Li J, Ye M, Wang J, Chen R, Zhu L, Du B, He G. Endosymbiotic Fungal Diversity and Dynamics of the Brown Planthopper across Developmental Stages, Tissues, and Sexes Revealed Using Circular Consensus Sequencing. INSECTS 2024; 15:87. [PMID: 38392507 PMCID: PMC10889434 DOI: 10.3390/insects15020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Endosymbiotic fungi play an important role in the growth and development of insects. Understanding the endosymbiont communities hosted by the brown planthopper (BPH; Nilaparvata lugens Stål), the most destructive pest in rice, is a prerequisite for controlling BPH rice infestations. However, the endosymbiont diversity and dynamics of the BPH remain poorly studied. Here, we used circular consensus sequencing (CCS) to obtain 87,131 OTUs (operational taxonomic units), which annotated 730 species of endosymbiotic fungi in the various developmental stages and tissues. We found that three yeast-like symbionts (YLSs), Polycephalomyces prolificus, Ophiocordyceps heteropoda, and Hirsutella proturicola, were dominant in almost all samples, which was especially pronounced in instar nymphs 4-5, female adults, and the fat bodies of female and male adult BPH. Interestingly, honeydew as the only in vitro sample had a unique community structure. Various diversity indices might indicate the different activity of endosymbionts in these stages and tissues. The biomarkers analyzed using LEfSe suggested some special functions of samples at different developmental stages of growth and the active functions of specific tissues in different sexes. Finally, we found that the incidence of occurrence of three species of Malassezia and Fusarium sp. was higher in males than in females in all comparison groups. In summary, our study provides a comprehensive survey of symbiotic fungi in the BPH, which complements the previous research on YLSs. These results offer new theoretical insights and practical implications for novel pest management strategies to understand the BPH-microbe symbiosis and devise effective pest control strategies.
Collapse
Affiliation(s)
- Yichen Cheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Tianzhu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiamei Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Meng Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
19
|
Jeffries CL, Tantely LM, Kadriaj P, Blagrove MSC, Lytra I, Orsborne J, Al-Amin HM, Mohammed AR, Alam MS, Girod R, Afrane YA, Bino S, Robert V, Boyer S, Baylis M, Velo E, Hughes GL, Walker T. Mitochondrial and microbial diversity of the invasive mosquito vector species Culex tritaeniorhynchus across its extensive inter-continental geographic range. Wellcome Open Res 2024; 9:18. [PMID: 38800519 PMCID: PMC11128058 DOI: 10.12688/wellcomeopenres.20761.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
Background Culex (Cx.) tritaeniorhynchus is an invasive mosquito species with an extensive and expanding inter-continental distribution, currently reported across Asia, Africa, the Middle East, Europe and now Australia. It is an important vector of medical and veterinary pathogens which cause significant morbidity and mortality in human and animal populations. Across regions endemic for Japanese encephalitis virus (JEV), Cx. tritaeniorhynchus is considered the major vector and has also been shown to contribute to the transmission of several other zoonotic arboviruses including Rift Valley fever virus (RVFV) and West Nile virus (WNV). Methods In this study, we used laboratory vector competence experiments to determine if Cx. tritaeniorhynchus from a Southern European population were competent JEV vectors. We also obtained samples from multiple geographically dispersed Cx. tritaeniorhynchus populations from countries within Europe, Africa, Eurasia and Asia to perform phylogenetic analysis to measure the level of mitochondrial divergence using the cytochrome oxidase subunit 1 ( CO1) gene. We also undertook bacterial 16S rRNA gene amplicon sequencing to determine microbial diversity and used multi-locus sequence typing (MLST) to determine any evidence for the presence of strains of the naturally occurring endosymbiotic bacterium Wolbachia. Results Cx. tritaeniorhynchus from a Greek population were shown be be competent vectors of JEV with high levels of virus present in saliva. We found a signficant level of mitochondrial genetic diversity using the mosquito CO1 gene between geographically dispersed populations. Furthermore, we report diverse microbiomes identified by 16S rRNA gene amplicon sequencing within and between geographical populations. Evidence for the detection of the endosymbiotic bacteria Wolbachia was confirmed using Wolbachia-specific PCR and MLST. Conclusions This study enhances our understanding of the diversity of Cx. tritaeniorhynchus and the associated microbiome across its inter-continental range and highlights the need for greater surveillance of this invasive vector species in Europe.
Collapse
Affiliation(s)
- Claire L. Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Luciano M Tantely
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Perparim Kadriaj
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Marcus S C Blagrove
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
| | - Ioanna Lytra
- Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, Athens, Greece
| | - James Orsborne
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hasan Mohammad Al-Amin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
- Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Romain Girod
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Greater Accra Region, Ghana
| | - Silvia Bino
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Vincent Robert
- MIVEGEC, CNRS, Institute of Research for Development (IRD), University of Montpellier, Montpellier, France
| | - Sebastien Boyer
- Unite d'entomologie medicale, Institute Pasteur de Madagascar, Antanarivo, Madagascar
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Matthew Baylis
- Health Protection Research Unit on Emerging and Zoonotic Infections, University of Liverpool, Liverpool, England, UK
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England, UK
| | - Enkelejda Velo
- Vector Control Unit, Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, University of Liverpool, Liverpool, England, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- School of Life Sciences, University of Warwick, Coventry, England, UK
| |
Collapse
|
20
|
Kriefall NG, Seabourn PS, Yoneishi NM, Davis K, Nakayama KK, Weber DE, Hynson NA, Medeiros MCI. Abiotic factors shape mosquito microbiomes that enhance host development. THE ISME JOURNAL 2024; 18:wrae181. [PMID: 39315733 PMCID: PMC11481732 DOI: 10.1093/ismejo/wrae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Metazoans rely on interactions with microorganisms through multiple life stages. For example, developmental trajectories of mosquitoes can vary depending on the microorganisms available during their aquatic larval phase. However, the role that the local environment plays in shaping such host-microbe dynamics and the consequences for the host organism remain inadequately understood. Here, we examine the influence of abiotic factors, locally available bacteria, and their interactions on the development and associated microbiota of the mosquito Aedes albopictus. Our findings reveal that leaf detritus infused into the larval habitat water, sourced from native Hawaiian tree 'ōhi'a lehua Metrosideros polymorpha, invasive strawberry guava Psidium cattleianum, or a pure water control, displayed a more substantial influence than either temperature variations or simulated microbial dispersal regimes on bacterial community composition in adult mosquitoes. However, specific bacteria exhibited divergent patterns within mosquitoes across detrital infusions that did not align with their abundance in the larval habitat. Specifically, we observed a higher relative abundance of a Chryseobacterium sp. strain in mosquitoes from the strawberry guava infusion than the pure water control, whereas the opposite trend was observed for a Pseudomonas sp. strain. In a follow-up experiment, we manipulated the presence of these two bacterial strains and found larval developmental success was enhanced by including the Chryseobacterium sp. strain in the strawberry guava infusion and the Pseudomonas sp. strain in the pure water control. Collectively, these data suggest that interactions between abiotic factors and microbes of the larval environment can help shape mosquito populations' success.
Collapse
Affiliation(s)
- Nicola G Kriefall
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Priscilla S Seabourn
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole M Yoneishi
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kahiwahiwa Davis
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Danya E Weber
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| |
Collapse
|
21
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
22
|
Akoton R, Sovegnon PM, Djihinto OY, Medjigbodo AA, Agonhossou R, Saizonou HM, Tchigossou GM, Atoyebi SM, Tossou E, Zeukeng F, Lagnika HO, Mousse W, Adegnika AA, Djouaka R, Djogbénou LS. Vectorial competence, insecticide resistance in Anopheles funestus and operational implications for malaria vector control strategies in Benin Republic. Malar J 2023; 22:385. [PMID: 38129880 PMCID: PMC10740250 DOI: 10.1186/s12936-023-04815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The primary reason for the failure of malaria vector control across endemic regions is the widespread insecticide resistance observed in Anopheles vectors. The most dominant African vectors of malaria parasites are Anopheles gambiae and Anopheles funestus mosquitoes. These species often exhibit divergent behaviours and adaptive changes underscoring the importance of deploying active and effective measures in their control. Unlike An. gambiae, An. funestus mosquitoes are poorly studied in Benin Republic. However, recent reports indicated that An. funestus can adapt and colonize various ecological niches owing to its resistance against insecticides and adaptation to changing breeding habitats. Unfortunately, scientific investigations on the contribution of An. funestus to malaria transmission, their susceptibility to insecticide and resistance mechanism developed are currently insufficient for the design of better control strategies. In an attempt to gather valuable information on An. funestus, the present review examines the progress made on this malaria vector species in Benin Republic and highlights future research perspectives on insecticide resistance profiles and related mechanisms, as well as new potential control strategies against An. funestus. Literature analysis revealed that An. funestus is distributed all over the country, although present in low density compared to other dominant malaria vectors. Interestingly, An. funestus is being found in abundance during the dry seasons, suggesting an adaptation to desiccation. Among the An. funestus group, only An. funestus sensu stricto (s.s.) and Anopheles leesoni were found in the country with An. funestus s.s. being the most abundant species. Furthermore, An. funestus s.s. is the only one species in the group contributing to malaria transmission and have adapted biting times that allow them to bite at dawn. In addition, across the country, An. funestus were found resistant to pyrethroid insecticides used for bed nets impregnation and also resistant to bendiocarb which is currently being introduced in indoor residual spraying formulation in malaria endemic regions. All these findings highlight the challenges faced in controlling this malaria vector. Therefore, advancing the knowledge of vectorial competence of An. funestus, understanding the dynamics of insecticide resistance in this malaria vector, and exploring alternative vector control measures, are critical for sustainable malaria control efforts in Benin Republic.
Collapse
Affiliation(s)
- Romaric Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin.
- Fondation Pour la Recherche Scientifique (FORS), Cotonou, Benin.
| | - Pierre Marie Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Romuald Agonhossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
- Fondation Pour la Recherche Scientifique (FORS), Cotonou, Benin
| | - Helga M Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | | | - Seun M Atoyebi
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Eric Tossou
- International Institute of Tropical Agriculture, Cotonou, Benin
| | - Francis Zeukeng
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Hamirath O Lagnika
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Wassiyath Mousse
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute for Tropical Medicine (ITM), University of Tübingen, Tübingen, Germany
| | | | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, Benin
- Regional Institute of Public Health, University of Abomey-Calavi, Ouidah, Benin
| |
Collapse
|
23
|
LaReau JC, Hyde J, Brackney DE, Steven B. Introducing an environmental microbiome to axenic Aedes aegypti mosquitoes documents bacterial responses to a blood meal. Appl Environ Microbiol 2023; 89:e0095923. [PMID: 38014951 PMCID: PMC10734439 DOI: 10.1128/aem.00959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The blood meal of the female mosquito serves as a nutrition source to support egg development, so is an important aspect of its biology. Yet, the roles the microbiome may play in blood digestion are poorly characterized. We employed axenic mosquitoes to investigate how the microbiome differs between mosquitoes reared in the insectary versus mosquitoes that acquire their microbiome from the environment. Environmental microbiomes were more diverse and showed larger temporal shifts over the course of blood digestion. Importantly, only bacteria from the environmental microbiome performed hemolysis in culture, pointing to functional differences between bacterial populations. These data highlight that taxonomic differences between the microbiomes of insectary-reared and wild mosquitoes are potentially also related to their functional ecology. Thus, axenic mosquitoes colonized with environmental bacteria offer a way to investigate the role of bacteria from the wild in mosquito processes such as blood digestion, under controlled laboratory conditions.
Collapse
Affiliation(s)
- Jacquelyn C. LaReau
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Josephine Hyde
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Doug E. Brackney
- Department of Entomology, Center for Vector Biology and Zoonotic Diseases, New Haven, Connecticut, USA
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Flores GAM, Lopez RP, Cerrudo CS, Perotti MA, Consolo VF, Berón CM. Wolbachia dominance influences the Culex quinquefasciatus microbiota. Sci Rep 2023; 13:18980. [PMID: 37923779 PMCID: PMC10624681 DOI: 10.1038/s41598-023-46067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Microorganisms present in mosquitoes and their interactions are key factors affecting insect development. Among them, Wolbachia is closely associated with the host and affects several fitness parameters. In this study, the bacterial and fungal microbiota from two laboratory Culex quinquefasciatus isolines (wild type and tetracycline-cured) were characterized by metagenome amplicon sequencing of the ITS2 and 16S rRNA genes at different developmental stages and feeding conditions. We identified 572 bacterial and 61 fungal OTUs. Both isolines presented variable bacterial communities and different trends in the distribution of diversity among the groups. The lowest bacterial richness was detected in sugar-fed adults of the cured isoline, whereas fungal richness was highly reduced in blood-fed mosquitoes. Beta diversity analysis indicated that isolines are an important factor in the differentiation of mosquito bacterial communities. Considering composition, Penicillium was the dominant fungal genus, whereas Wolbachia dominance was inversely related to that of Enterobacteria (mainly Thorsellia and Serratia). This study provides a more complete overview of the mosquito microbiome, emphasizing specific highly abundant components that should be considered in microorganism manipulation approaches to control vector-borne diseases.
Collapse
Affiliation(s)
- Guillermo A M Flores
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina
| | - Rocio P Lopez
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina
| | - Carolina S Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular (LIGBCM), Area Virosis de Insectos (AVI), Departamento Ciencia y Tecnología, Universidad Nacional de Quilmes and CONICET, Bernal, Argentina
| | - M Alejandra Perotti
- Ecology and Evolutionary Biology Section, School of Biological Sciences, University of Reading, Reading, UK
| | - V Fabiana Consolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina.
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Garrigós M, Garrido M, Panisse G, Veiga J, Martínez-de la Puente J. Interactions between West Nile Virus and the Microbiota of Culex pipiens Vectors: A Literature Review. Pathogens 2023; 12:1287. [PMID: 38003752 PMCID: PMC10675824 DOI: 10.3390/pathogens12111287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The flavivirus West Nile virus (WNV) naturally circulates between mosquitoes and birds, potentially affecting humans and horses. Different species of mosquitoes play a role as vectors of WNV, with those of the Culex pipiens complex being particularly crucial for its circulation. Different biotic and abiotic factors determine the capacity of mosquitoes for pathogen transmission, with the mosquito gut microbiota being recognized as an important one. Here, we review the published studies on the interactions between the microbiota of the Culex pipiens complex and WNV infections in mosquitoes. Most articles published so far studied the interactions between bacteria of the genus Wolbachia and WNV infections, obtaining variable results regarding the directionality of this relationship. In contrast, only a few studies investigate the role of the whole microbiome or other bacterial taxa in WNV infections. These studies suggest that bacteria of the genera Serratia and Enterobacter may enhance WNV development. Thus, due to the relevance of WNV in human and animal health and the important role of mosquitoes of the Cx. pipiens complex in its transmission, more research is needed to unravel the role of mosquito microbiota and those factors affecting this microbiota on pathogen epidemiology. In this respect, we finally propose future lines of research lines on this topic.
Collapse
Affiliation(s)
- Marta Garrigós
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Mario Garrido
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Guillermo Panisse
- CEPAVE—Centro de Estudios Parasitológicos y de Vectores CONICET-UNLP, La Plata 1900, Argentina;
| | - Jesús Veiga
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, 18071 Granada, Spain; (M.G.); (J.V.); (J.M.-d.l.P.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
26
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
27
|
Fitzmeyer EA, Gallichotte EN, Weger-Lucarelli J, Kapuscinski ML, Abdo Z, Pyron K, Young MC, Ebel GD. Loss of West Nile virus genetic diversity during mosquito infection due to species-dependent population bottlenecks. iScience 2023; 26:107711. [PMID: 37701570 PMCID: PMC10494182 DOI: 10.1016/j.isci.2023.107711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Vector competence (VC) refers to the efficiency of pathogen transmission by vectors. Each step in the infection of a mosquito vector constitutes a barrier to transmission that may impose bottlenecks on virus populations. West Nile virus (WNV) is maintained by multiple mosquito species with varying VC. However, the extent to which bottlenecks and VC are linked is poorly understood. Similarly, quantitative analyses of mosquito-imposed bottlenecks on virus populations are limited. We used molecularly barcoded WNV to quantify tissue-associated population bottlenecks in three variably competent WNV vectors. Our results confirm strong population bottlenecks during mosquito infection that are capable of dramatically reshaping virus population structure in a non-selective manner. In addition, we found that mosquitoes with differing VC uniquely shape WNV population structure: highly competent vectors are more likely to contribute to the maintenance of rare viral genotypes. These findings have important implications for arbovirus emergence and evolution.
Collapse
Affiliation(s)
- Emily A. Fitzmeyer
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Emily N. Gallichotte
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Marylee L. Kapuscinski
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kyra Pyron
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael C. Young
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gregory D. Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Jiang Y, Gao H, Wang L, Hu W, Wang G, Wang S. Quorum sensing-activated phenylalanine metabolism drives OMV biogenesis to enhance mosquito commensal colonization resistance to Plasmodium. Cell Host Microbe 2023; 31:1655-1667.e6. [PMID: 37738984 DOI: 10.1016/j.chom.2023.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 08/27/2023] [Indexed: 09/24/2023]
Abstract
Gut microbiota and its symbiotic relationship with the host are crucial for preventing pathogen infection. However, little is known about the mechanisms that drive commensal colonization. Serratia bacteria, commonly found in Anopheles mosquitoes, potentially mediate mosquito resistance to Plasmodium. Using S. ureilytica Su_YN1 as a model, we show that a quorum sensing (QS) circuit is crucial for stable colonization. After blood ingestion, the QS synthase SueI generates the signaling molecule N-hexanoyl-L-homoserine lactone (C6-HSL). Once C6-HSL binds to the QS receptor SueR, repression of the phenylalanine-to-acetyl-coenzyme A (CoA) conversion pathway is lifted. This pathway regulates outer membrane vesicle (OMV) biogenesis and promotes Serratia biofilm-like aggregate formation, facilitating gut adaptation and colonization. Notably, exposing Serratia Su_YN1-carrying Anopheles mosquitoes to C6-HSL increases Serratia gut colonization and enhances Plasmodium transmission-blocking efficacy. These findings provide insights into OMV biogenesis and commensal gut colonization and identify a powerful strategy for enhancing commensal resistance to pathogens.
Collapse
Affiliation(s)
- Yongmao Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Han Gao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqian Hu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DY, Khanipov K, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype-dependent. PLoS Pathog 2023; 19:e1011727. [PMID: 37903174 PMCID: PMC10635568 DOI: 10.1371/journal.ppat.1011727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/09/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can have carry-over effects on adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we showed that the bacterial community structure differs between the two genotypes of Ae. aegypti when given identical microbiomes, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific larval microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti. We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Laura C. Multini
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Babakar Diouf
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
| | - Margaret Becker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques Sine Saloum University El Hadji Ibrahima NIASS (USSEIN), Kaffrine, Senegal
| | - Dianne Y. Yap
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mawlouth Diallo
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Alioune Gaye
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Vector-borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
30
|
Edwards CC, McConnel G, Ramos D, Gurrola-Mares Y, Dhondiram Arole K, Green MJ, Cañas-Carrell JE, Brelsfoard CL. Microplastic ingestion perturbs the microbiome of Aedes albopictus (Diptera: Culicidae) and Aedes aegypti. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:884-898. [PMID: 37478409 DOI: 10.1093/jme/tjad097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Microplastics (MPs) are common environmental pollutants; however, little is known about their effects after ingestion by insects. Here we fed Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) mosquito larvae 1 µm polystyrene MPs and examined the impacts of ingestion on adult emergence rates, gut damage, and fungal and bacterial microbiota. Results show that MPs accumulate in the larval guts, resulting in gut damage. However, little impact on adult emergence rates was observed. MPs are also found in adult guts postemergence from the pupal stage, and adults expel MPs in their frass after obtaining sugar meals. Moreover, MPs effects on insect microbiomes need to be better defined. To address this knowledge gap, we investigated the relationship between MP ingestion and the microbial communities in Ae. albopictus and Ae. aegypti. The microbiota composition was altered by the ingestion of increasing concentrations of MPs. Amplicon sequence variants (ASVs) that contributed to differences in the bacterial and fungal microbiota composition between MP treatments were from the genera Elizabethkingia and Aspergillus, respectively. Furthermore, a decrease in the alpha diversity of the fungal and bacterial microbiota was observed in treatments where larvae ingested MPs. These results highlight the potential for the bacterial and fungal constituents in the mosquito microbiome to respond differently to the ingestion of MPs. Based on our findings and the effects of MP ingestion on the mosquito host micro- and mycobiome, MP pollution could impact the vector competence of important mosquito-transmitted viruses and parasites that cause human and animal diseases.
Collapse
Affiliation(s)
- Carla-Cristina Edwards
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| | - Gabriella McConnel
- Department of Environmental Toxicology, Texas Tech University, 1207 S. Gilbert Drive, Lubbock, TX 79416, USA
| | - Daniela Ramos
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| | - Yaizeth Gurrola-Mares
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| | - Kailash Dhondiram Arole
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Micah J Green
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jaclyn E Cañas-Carrell
- Department of Environmental Toxicology, Texas Tech University, 1207 S. Gilbert Drive, Lubbock, TX 79416, USA
| | - Corey L Brelsfoard
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX 79409, USA
| |
Collapse
|
31
|
Accoti A, Quek S, Vulcan J, Cansado-Utrilla C, Anderson ER, Abu AEI, Alsing J, Narra HP, Khanipov K, Hughes GL, Dickson LB. Variable microbiomes between mosquito lines are maintained across different environments. PLoS Negl Trop Dis 2023; 17:e0011306. [PMID: 37747880 PMCID: PMC10553814 DOI: 10.1371/journal.pntd.0011306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/05/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The composition of the microbiome is shaped by both environment and host in most organisms, but in the mosquito Aedes aegypti the role of the host in shaping the microbiome is poorly understood. Previously, we had shown that four lines of Ae. aegypti harbored different microbiomes when reared in the same insectary under identical conditions. To determine whether these lines differed from each other across time and in different environments, we characterized the microbiome of the same four lines of Ae. aegypti reared in the original insectary and at another institution. While it was clear that the environment influenced the microbiomes of these lines, we did still observe distinct differences in the microbiome between lines within each insectary. Clear differences were observed in alpha diversity, beta diversity, and abundance of specific bacterial taxa. To determine if the line specific differences in the microbiome were maintained across environments, pair-wise differential abundances of taxa was compared between insectaries. Lines were most similar to other lines from the same insectary than to the same line reared in a different insectary. Additionally, relatively few differentially abundant taxa identified between pairs of lines were shared across insectaries, indicating that line specific properties of the microbiome are not conserved across environments, or that there were distinct microbiota within each insectary. Overall, these results demonstrate that mosquito lines under the same environmental conditions have different microbiomes across microbially- diverse environments and host by microbe interactions affecting microbiome composition and abundance is dependent on environmentally available bacteria.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
| | - Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Enyia R. Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angel Elma I. Abu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
| | - Jessica Alsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hema P. Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
- Center of Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
32
|
Katak RDM, Cintra AM, Burini BC, Marinotti O, Souza-Neto JA, Rocha EM. Biotechnological Potential of Microorganisms for Mosquito Population Control and Reduction in Vector Competence. INSECTS 2023; 14:718. [PMID: 37754686 PMCID: PMC10532289 DOI: 10.3390/insects14090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Mosquitoes transmit pathogens that cause human diseases such as malaria, dengue fever, chikungunya, yellow fever, Zika fever, and filariasis. Biotechnological approaches using microorganisms have a significant potential to control mosquito populations and reduce their vector competence, making them alternatives to synthetic insecticides. Ongoing research has identified many microorganisms that can be used effectively to control mosquito populations and disease transmission. However, the successful implementation of these newly proposed approaches requires a thorough understanding of the multipronged microorganism-mosquito-pathogen-environment interactions. Although much has been achieved in discovering new entomopathogenic microorganisms, antipathogen compounds, and their mechanisms of action, only a few have been turned into viable products for mosquito control. There is a discrepancy between the number of microorganisms with the potential for the development of new insecticides and/or antipathogen products and the actual available products, highlighting the need for investments in the intersection of basic research and biotechnology.
Collapse
Affiliation(s)
- Ricardo de Melo Katak
- Malaria and Dengue Laboratory, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus 69060-001, AM, Brazil;
| | - Amanda Montezano Cintra
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Bianca Correa Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA;
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Elerson Matos Rocha
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| |
Collapse
|
33
|
Hegde S, Rauch HE, Hughes GL, Shariat N. Identification and characterization of two CRISPR/Cas systems associated with the mosquito microbiome. Access Microbiol 2023; 5:acmi000599.v4. [PMID: 37691844 PMCID: PMC10484321 DOI: 10.1099/acmi.0.000599.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
The microbiome profoundly influences many traits in medically relevant vectors such as mosquitoes, and a greater functional understanding of host-microbe interactions may be exploited for novel microbial-based approaches to control mosquito-borne disease. Here, we characterized two novel clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems in Serratia sp. Ag1, which was isolated from the gut of an Anopheles gambiae mosquito. Two distinct CRISPR/Cas systems were identified in Serratia Ag1, CRISPR1 and CRISPR2. Based on cas gene composition, CRISPR1 is classified as a type I-E CRISPR/Cas system and has a single array, CRISPR1. CRISPR2 is a type I-F system with two arrays, CRISPR2.1 and CRISPR2.2. RT-PCR analyses show that all cas genes from both systems are expressed during logarithmic growth in culture media. The direct repeat sequences of CRISPRs 2.1 and 2.2 are identical and found in the arrays of other Serratia spp., including S. marcescens and S. fonticola , whereas CRISPR1 is not. We searched for potential spacer targets and revealed an interesting difference between the two systems: only 9 % of CRISPR1 (type I-E) targets are in phage sequences and 91 % are in plasmid sequences. Conversely, ~66 % of CRISPR2 (type I-F) targets are found within phage genomes. Our results highlight the presence of CRISPR loci in gut-associated bacteria of mosquitoes and indicate interplay between symbionts and invasive mobile genetic elements over evolutionary time.
Collapse
Affiliation(s)
- Shivanand Hegde
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Centre for Neglected Tropical Disease, Liverpool, UK
- Present address: School of Life Sciences, University of Keele, Newcastle, UK
| | - Hallie E. Rauch
- Department of Biology, Gettysburg College, Gettysburg, PA, USA
| | - Grant L. Hughes
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Centre for Neglected Tropical Disease, Liverpool, UK
| | - Nikki Shariat
- Department of Population Health, University of Georgia, Athens, GA, USA
| |
Collapse
|
34
|
Garrido M, Veiga J, Garrigós M, Martínez-de la Puente J. The interplay between vector microbial community and pathogen transmission on the invasive Asian tiger mosquito, Aedes albopictus: current knowledge and future directions. Front Microbiol 2023; 14:1208633. [PMID: 37577425 PMCID: PMC10413570 DOI: 10.3389/fmicb.2023.1208633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The invasive Asian tiger mosquito Aedes albopictus is nowadays broadly distributed with established populations in all continents except Antarctica. In the invaded areas, this species represents an important nuisance for humans and, more relevant, it is involved in the local transmission of pathogens relevant under a public health perspective. Aedes albopictus is a competent vector of parasites such as Dirofilaria and viruses including dengue virus, Zika virus, and chikungunya virus, among others. The mosquito microbiota has been identified as one of the major drivers of vector competence, acting upon relevant vector functions as development or immunity. Here, we review the available literature on the interaction between Ae. albopictus microbiota and pathogen transmission and identify the knowledge gaps on the topic. Most studies are strictly focused on the interplay between pathogens and Wolbachia endosymbiont while studies screening whole microbiota are still scarce but increasing in recent years, supported on Next-generation sequencing tools. Most experimental trials use lab-reared mosquitoes or cell lines, exploring the molecular mechanisms of the microbiota-pathogen interaction. Yet, correlational studies on wild populations are underrepresented. Consequently, we still lack sufficient evidence to reveal whether the microbiota of introduced populations of Ae. albopictus differ from those of native populations, or how microbiota is shaped by different environmental and anthropic factors, but especially, how these changes affect the ability of Ae. albopictus to transmit pathogens and favor the occurrence of outbreaks in the colonized areas. Finally, we propose future research directions on this research topic.
Collapse
Affiliation(s)
- Mario Garrido
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jesús Veiga
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Marta Garrigós
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Josué Martínez-de la Puente
- Department of Parasitology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
35
|
Accoti A, Damiani C, Nunzi E, Cappelli A, Iacomelli G, Monacchia G, Turco A, D’Alò F, Peirce MJ, Favia G, Spaccapelo R. Anopheline mosquito saliva contains bacteria that are transferred to a mammalian host through blood feeding. Front Microbiol 2023; 14:1157613. [PMID: 37533823 PMCID: PMC10392944 DOI: 10.3389/fmicb.2023.1157613] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Malaria transmission occurs when Plasmodium sporozoites are transferred from the salivary glands of anopheline mosquitoes to a human host through the injection of saliva. The need for better understanding, as well as novel modes of inhibiting, this key event in transmission has driven intense study of the protein and miRNA content of saliva. Until now the possibility that mosquito saliva may also contain bacteria has remained an open question despite the well documented presence of a rich microbiome in salivary glands. Methods Using both 16S rRNA sequencing and MALDI-TOF approaches, we characterized the composition of the saliva microbiome of An. gambiae and An. stephensi mosquitoes which respectively represent two of the most important vectors for the major malaria-causing parasites P. falciparum and P. vivax. Results To eliminate the possible detection of non-mosquito-derived bacteria, we used a transgenic, fluorescent strain of one of the identified bacteria, Serratiamarcescens, to infect mosquitoes and detect its presence in mosquito salivary glands as well as its transfer to, and colonization of, mammalian host tissues following a mosquito bite. We also showed that Plasmodium infection modified the mosquito microbiota, increasing the presence of Serratia while diminishing the presence of Elizabethkingia and that both P. berghei and Serratia were transferred to, and colonized mammalian tissues. Discussion These data thus document the presence of bacteria in mosquito saliva, their transfer to, and growth in a mammalian host as well as possible interactions with Plasmodium transmission. Together they raise the possible role of mosquitoes as vectors of bacterial infection and the utility of commensal mosquito bacteria for the development of transmission-blocking strategies within a mammalian host.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Gloria Iacomelli
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Giulia Monacchia
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Antonella Turco
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Francesco D’Alò
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Matthew J. Peirce
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
- Interuniversity Consortium for Biotechnology (C.I.B.), Trieste, Italy
| |
Collapse
|
36
|
Baltar JMC, Pavan MG, Corrêa-Antônio J, Couto-Lima D, Maciel-de-Freitas R, David MR. Gut Bacterial Diversity of Field and Laboratory-Reared Aedes albopictus Populations of Rio de Janeiro, Brazil. Viruses 2023; 15:1309. [PMID: 37376609 DOI: 10.3390/v15061309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The mosquito microbiota impacts different parameters in host biology, such as development, metabolism, immune response and vector competence to pathogens. As the environment is an important source of acquisition of host associate microbes, we described the microbiota and the vector competence to Zika virus (ZIKV) of Aedes albopictus from three areas with distinct landscapes. METHODS Adult females were collected during two different seasons, while eggs were used to rear F1 colonies. Midgut bacterial communities were described in field and F1 mosquitoes as well as in insects from a laboratory colony (>30 generations, LAB) using 16S rRNA gene sequencing. F1 mosquitoes were infected with ZIKV to determine virus infection rates (IRs) and dissemination rates (DRs). Collection season significantly affected the bacterial microbiota diversity and composition, e.g., diversity levels decreased from the wet to the dry season. Field-collected and LAB mosquitoes' microbiota had similar diversity levels, which were higher compared to F1 mosquitoes. However, the gut microbiota composition of field mosquitoes was distinct from that of laboratory-reared mosquitoes (LAB and F1), regardless of the collection season and location. A possible negative correlation was detected between Acetobacteraceae and Wolbachia, with the former dominating the gut microbiota of F1 Ae. albopictus, while the latter was absent/undetectable. Furthermore, we detected significant differences in infection and dissemination rates (but not in the viral load) between the mosquito populations, but it does not seem to be related to gut microbiota composition, as it was similar between F1 mosquitoes regardless of their population. CONCLUSIONS Our results indicate that the environment and the collection season play a significant role in shaping mosquitoes' bacterial microbiota.
Collapse
Affiliation(s)
- João M C Baltar
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Márcio G Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Jessica Corrêa-Antônio
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Dinair Couto-Lima
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
- Department of Arbovirology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| | - Mariana R David
- Laboratório de Mosquitos Transmissores de Hematozoários, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
37
|
Joseph RE, Urakova N, Werling KL, Metz HC, Montanari K, Rasgon JL. Culex tarsalis Is a Competent Host of the Insect-Specific Alphavirus Eilat Virus (EILV). J Virol 2023; 97:e0196022. [PMID: 37098948 PMCID: PMC10231209 DOI: 10.1128/jvi.01960-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 04/27/2023] Open
Abstract
Eilat virus (EILV) is an insect-specific alphavirus that has the potential to be developed into a tool to combat mosquito-borne pathogens. However, its mosquito host range and transmission routes are not well understood. Here, we fill this gap by investigating EILV's host competence and tissue tropism in five mosquito species: Aedes aegypti, Culex tarsalis, Anopheles gambiae, Anopheles stephensi, and Anopheles albimanus. Of the tested species, C. tarsalis was the most competent host for EILV. The virus was found in C. tarsalis ovaries, but no vertical or venereal transmission was observed. Culex tarsalis also transmitted EILV via saliva, suggesting the potential for horizontal transmission between an unknown vertebrate or invertebrate host. We found that reptile (turtle and snake) cell lines were not competent for EILV infection. We tested a potential invertebrate host (Manduca sexta caterpillars) but found they were not susceptible to EILV infection. Together, our results suggest that EILV could be developed as a tool to target pathogenic viruses that use Culex tarsalis as a vector. Our work sheds light on the infection and transmission dynamics of a poorly understood insect-specific virus and reveals it may infect a broader range of mosquito species than previously recognized. IMPORTANCE The recent discovery of insect-specific alphaviruses presents opportunities both to study the biology of virus host range and to develop them into tools against pathogenic arboviruses. Here, we characterize the host range and transmission of Eilat virus in five mosquito species. We find that Culex tarsalis-a vector of harmful human pathogens, including West Nile virus-is a competent host of Eilat virus. However, how this virus is transmitted between mosquitoes remains unclear. We find that Eilat virus infects the tissues necessary for both vertical and horizontal transmission-a crucial step in discerning how Eilat virus maintains itself in nature.
Collapse
Affiliation(s)
- Renuka E. Joseph
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nadya Urakova
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristine L. Werling
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hillery C. Metz
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kaylee Montanari
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jason L. Rasgon
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, Pennsylvania, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
38
|
Foo A, Cerdeira L, Hughes GL, Heinz E. Recovery of metagenomic data from the Aedes aegypti microbiome using a reproducible snakemake pipeline: MINUUR. Wellcome Open Res 2023; 8:131. [PMID: 37577055 PMCID: PMC10412942 DOI: 10.12688/wellcomeopenres.19155.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Ongoing research of the mosquito microbiome aims to uncover novel strategies to reduce pathogen transmission. Sequencing costs, especially for metagenomics, are however still significant. A resource that is increasingly used to gain insights into host-associated microbiomes is the large amount of publicly available genomic data based on whole organisms like mosquitoes, which includes sequencing reads of the host-associated microbes and provides the opportunity to gain additional value from these initially host-focused sequencing projects. Methods: To analyse non-host reads from existing genomic data, we developed a snakemake workflow called MINUUR (Microbial INsights Using Unmapped Reads). Within MINUUR, reads derived from the host-associated microbiome were extracted and characterised using taxonomic classifications and metagenome assembly followed by binning and quality assessment. We applied this pipeline to five publicly available Aedes aegypti genomic datasets, consisting of 62 samples with a broad range of sequencing depths. Results: We demonstrate that MINUUR recovers previously identified phyla and genera and is able to extract bacterial metagenome assembled genomes (MAGs) associated to the microbiome. Of these MAGS, 42 are high-quality representatives with >90% completeness and <5% contamination. These MAGs improve the genomic representation of the mosquito microbiome and can be used to facilitate genomic investigation of key genes of interest. Furthermore, we show that samples with a high number of KRAKEN2 assigned reads produce more MAGs. Conclusions: Our metagenomics workflow, MINUUR, was applied to a range of Aedes aegypti genomic samples to characterise microbiome-associated reads. We confirm the presence of key mosquito-associated symbionts that have previously been identified in other studies and recovered high-quality bacterial MAGs. In addition, MINUUR and its associated documentation are freely available on GitHub and provide researchers with a convenient workflow to investigate microbiome data included in the sequencing data for any applicable host genome of interest.
Collapse
Affiliation(s)
- Aidan Foo
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Louise Cerdeira
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant L. Hughes
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
39
|
Chen TY, Bozic J, Mathias D, Smartt CT. Immune-related transcripts, microbiota and vector competence differ in dengue-2 virus-infected geographically distinct Aedes aegypti populations. Parasit Vectors 2023; 16:166. [PMID: 37208697 PMCID: PMC10199558 DOI: 10.1186/s13071-023-05784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Vector competence in Aedes aegypti is influenced by various factors. Crucial new control methods can be developed by recognizing which factors affect virus and mosquito interactions. METHODS In the present study we used three geographically distinct Ae. aegypti populations and compared their susceptibility to infection by dengue virus serotype 2 (DENV-2). To identify any differences among the three mosquito populations, we evaluated expression levels of immune-related genes and assessed the presence of microbiota that might contribute to the uniqueness in their vector competence. RESULTS Based on the results from the DENV-2 competence study, we categorized the three geographically distinct Ae. aegypti populations into a refractory population (Vilas do Atlântico), a susceptible population (Vero) and a susceptible but low transmission population (California). The immune-related transcripts were highly expressed in the California population but not in the refractory population. However, the Rel-1 gene was upregulated in the Vilas do Atlântico population following ingestion of a non-infectious blood meal, suggesting the gene's involvement in non-viral responses, such as response to microbiota. Screening of the bacteria, fungi and flaviviruses revealed differences between populations, and any of these could be one of the factors that interfere with the vector competence. CONCLUSIONS The results reveal potential factors that might impact the virus and mosquito interaction, as well as influence the Ae. aegypti refractory phenotype.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jovana Bozic
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Department of Entomology, The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA USA
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| |
Collapse
|
40
|
Zhao SY, Hughes GL, Coon KL. A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. PLoS Negl Trop Dis 2023; 17:e0011234. [PMID: 37018374 PMCID: PMC10109488 DOI: 10.1371/journal.pntd.0011234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/17/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti-a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity.
Collapse
Affiliation(s)
- Serena Y. Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
41
|
Hegde S, Brettell LE, Quek S, Etebari K, Saldaña MA, Asgari S, Coon KL, Heinz E, Hughes GL. Aedes aegypti gut transcriptomes respond differently to microbiome transplants from field-caught or laboratory-reared mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532926. [PMID: 36993663 PMCID: PMC10055144 DOI: 10.1101/2023.03.16.532926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, far more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities are associated with variability in host-microbiome interactions and further demonstrate the utility of the microbiome transplantation technique.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Laura E Brettell
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel A Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
42
|
Relevant Day/Night Temperatures Simulating Belgian Summer Conditions Reduce Japanese Encephalitis Virus Dissemination and Transmission in Belgian Field-Collected Culex pipiens Mosquitoes. Viruses 2023; 15:v15030764. [PMID: 36992473 PMCID: PMC10053291 DOI: 10.3390/v15030764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic mosquito-borne Flavivirus, can be considered an emerging infectious disease. Therefore, vector competence studies with indigenous mosquitoes from regions where JEV is not yet endemic are of great importance. In our study, we compared the vector competence of Culex pipiens mosquitoes emerged from Belgian field-caught larvae under two different temperature conditions: a constant 25 °C and a 25/15 °C day/night temperature gradient representing typical summer temperatures in Belgium. Three- to seven-day-old F0-generation mosquitoes were fed on a JEV genotype 3 Nakayama strain spiked blood-meal and incubated for 14 days at the two aforementioned temperature conditions. Similar infection rates of 36.8% and 35.2% were found in both conditions. The observed dissemination rate in the gradient condition was, however, significantly lower compared to the constant temperature condition (8% versus 53.6%, respectively). JEV was detected by RT-qPCR in the saliva of 13.3% of dissemination positive mosquitoes in the 25 °C condition, and this transmission was confirmed by virus isolation in 1 out of 2 RT-qPCR positive samples. No JEV transmission to saliva was detected in the gradient condition. These results suggest that JEV transmission by Culex pipiens mosquitoes upon an accidental introduction in our region is unlikely under current climatic conditions. This could change in the future when temperatures increase due to climate change.
Collapse
|
43
|
Terradas G, Novelo M, Metz H, Brustolin M, Rasgon JL. Anopheles albimanus is a Potential Alphavirus Vector in the Americas. Am J Trop Med Hyg 2023; 108:412-423. [PMID: 36535260 PMCID: PMC9896319 DOI: 10.4269/ajtmh.22-0417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 12/23/2022] Open
Abstract
Despite its ecological flexibility and geographical co-occurrence with human pathogens, little is known about the ability of Anopheles albimanus to transmit arboviruses. To address this gap, we challenged An. albimanus females with four alphaviruses and one flavivirus and monitored the progression of infections. We found this species is an efficient vector of the alphaviruses Mayaro virus, O'nyong-nyong virus, and Sindbis virus, although the latter two do not currently exist in its habitat range. An. albimanus was able to become infected with Chikungunya virus, but virus dissemination was rare (indicating the presence of a midgut escape barrier), and no mosquito transmitted. Mayaro virus rapidly established disseminated infections in An. albimanus females and was detected in the saliva of a substantial proportion of infected mosquitoes. Consistent with previous work in other anophelines, we find that An. albimanus is refractory to infection with flaviviruses, a phenotype that did not depend on midgut-specific barriers. Our work demonstrates that An. albimanus may be a vector of neglected emerging human pathogens and adds to recent evidence that anophelines are competent vectors for diverse arboviruses.
Collapse
Affiliation(s)
- Gerard Terradas
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Hillery Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Marco Brustolin
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
44
|
Suh PF, Elanga-Ndille E, Tchouakui M, Sandeu MM, Tagne D, Wondji C, Ndo C. Impact of insecticide resistance on malaria vector competence: a literature review. Malar J 2023; 22:19. [PMID: 36650503 PMCID: PMC9847052 DOI: 10.1186/s12936-023-04444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Since its first report in Anopheles mosquitoes in 1950s, insecticide resistance has spread very fast to most sub-Saharan African malaria-endemic countries, where it is predicted to seriously jeopardize the success of vector control efforts, leading to rebound of disease cases. Supported mainly by four mechanisms (metabolic resistance, target site resistance, cuticular resistance, and behavioural resistance), this phenomenon is associated with intrinsic changes in the resistant insect vectors that could influence development of invading Plasmodium parasites. A literature review was undertaken using Pubmed database to collect articles evaluating directly or indiretly the impact of insecticide resistance and the associated mechanisms on key determinants of malaria vector competence including sialome composition, anti-Plasmodium immunity, intestinal commensal microbiota, and mosquito longevity. Globally, the evidence gathered is contradictory even though the insecticide resistant vectors seem to be more permissive to Plasmodium infections. The actual body of knowledge on key factors to vectorial competence, such as the immunity and microbiota communities of the insecticide resistant vector is still very insufficient to definitively infer on the epidemiological importance of these vectors against the susceptible counterparts. More studies are needed to fill important knowledge gaps that could help predicting malaria epidemiology in a context where the selection and spread of insecticide resistant vectors is ongoing.
Collapse
Affiliation(s)
- Pierre Fongho Suh
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 837, Yaoundé, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Darus Tagne
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Charles Wondji
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Cyrille Ndo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.
| |
Collapse
|
45
|
de Angeli Dutra D, Salloum PM, Poulin R. Vector microbiome: will global climate change affect vector competence and pathogen transmission? Parasitol Res 2023; 122:11-17. [PMID: 36401142 DOI: 10.1007/s00436-022-07734-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Vector-borne diseases are among the greatest causes of human suffering globally. Several studies have linked climate change and increasing temperature with rises in vector abundance, and in the incidence and geographical distribution of diseases. The microbiome of vectors can have profound effects on how efficiently a vector sustains pathogen development and transmission. Growing evidence indicates that the composition of vectors' gut microbiome might change with shifts in temperature. Nonetheless, due to a lack of studies on vector microbiome turnover under a changing climate, the consequences for vector-borne disease incidence are still unknown. Here, we argue that climate change effects on vector competence are still poorly understood and the expected increase in vector-borne disease transmission might not follow a relationship as simple and straightforward as past research has suggested. Furthermore, we pose questions that are yet to be answered to enhance our current understanding of the effect of climate change on vector microbiomes, competence, and, ultimately, vector-borne diseases transmission.
Collapse
Affiliation(s)
| | | | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
46
|
Wheeler NJ, Hallem EA, Zamanian M. Making sense of sensory behaviors in vector-borne helminths. Trends Parasitol 2022; 38:841-853. [PMID: 35931639 PMCID: PMC9481669 DOI: 10.1016/j.pt.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 10/16/2022]
Abstract
Migrations performed by helminths are impressive and diverse, and accumulating evidence shows that many are controlled by sophisticated sensory programs. The migrations of vector-borne helminths are particularly complex, requiring precise, stage-specific regulation. We review the contrasting states of knowledge on snail-borne schistosomes and mosquito-borne filarial nematodes. Rich observational data exist for the chemosensory behaviors of schistosomes, while the molecular sensory pathways in nematodes are well described. Recent investigations on the molecular mechanisms of sensation in schistosomes and filarial nematodes have revealed some features conserved within their respective phyla, but adaptations correlated with parasitism are pronounced. Technological developments are likely to extend these advances, and we forecast how these technologies may be applied.
Collapse
Affiliation(s)
- Nicolas J Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
47
|
Kinga H, Kengne-Ouafo JA, King SA, Egyirifa RK, Aboagye-Antwi F, Akorli J. Water Physicochemical Parameters and Microbial Composition Distinguish Anopheles and Culex Mosquito Breeding Sites: Potential as Ecological Markers for Larval Source Surveillance. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1817-1826. [PMID: 35920087 DOI: 10.1093/jme/tjac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 05/19/2023]
Abstract
The presence of mosquitoes in an area is dependent on the availability of suitable breeding sites that are influenced by several environmental factors. Identification of breeding habitats for vector surveillance and larval source management is key to disease control programs. We investigated water quality parameters and microbial composition in selected mosquito breeding sites in urban Accra, Ghana and associated these with abundance of Anopheles (Diptera: Culicidae) and Culex (Diptera: Culicidae) larvae. Physicochemical parameters and microbial composition explained up to 72% variance among the breeding sites and separated Anopheles and Culex habitats (P < 0.05). Anopheles and Culex abundances were commonly influenced by water temperature, pH, nitrate, and total hardness with contrasting impacts on the two mosquito species. In addition, total dissolved solids, biochemical oxygen demand, and alkalinity uniquely influenced Anopheles abundance, while total suspended solids, phosphate, sulphate, ammonium, and salinity were significant determinants for Culex. The correlation of these multiple parameters with the occurrence of each mosquito species was high (R2 = 0.99, P < 0.0001). Bacterial content assessment of the breeding ponds revealed that the most abundant bacterial phyla were Patescibacteria, Cyanobacteria, and Proteobacteria, constituting >70% of the total bacterial richness. The oligotrophic Patescibacteria was strongly associated with Anopheles suggestive of the mosquito's adaptation to environments with less nutrients, while predominance of Cyanobacteria, indicative of rich nutritional source was associated with Culex larval ponds. We propose further evaluation of these significant abiotic and biotic parameters in field identification of larval sources and how knowledge of these can be harnessed effectively to reduce conducive breeding sites for mosquitoes.
Collapse
Affiliation(s)
- Harriet Kinga
- African Regional Postgraduate Program in Insect Science, University of Ghana, Legon, Ghana
| | - Jonas A Kengne-Ouafo
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Medical Entomology Department, Centre of Research in Infectious Diseases (CRID), Yaounde, Cameroon
| | - Sandra A King
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Richardson K Egyirifa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Fred Aboagye-Antwi
- African Regional Postgraduate Program in Insect Science, University of Ghana, Legon, Ghana
- Department of Animal Biology and Conservation Sciences, University of Ghana, Legon, Ghana
| | - Jewelna Akorli
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
48
|
Sandeu MM, Maffo CGT, Dada N, Njiokou F, Hughes GL, Wondji CS. Seasonal variation of microbiota composition in Anopheles gambiae and Anopheles coluzzii in two different eco-geographical localities in Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:269-282. [PMID: 35579271 DOI: 10.1111/mve.12583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Understanding the environmental factors affecting the microbiota in malaria vectors may help in the development of novel vector control interventions, similar to paratransgenesis. This study evaluated seasonal and geographical variations in the microbial community of the two major malaria vectors. Adult Anopheles mosquitoes were collected across two different eco-geographical settings in Cameroon, during the dry and wet seasons. DNA was extracted from the whole individual mosquitoes from each group and processed for microbial analysis using Illumina Miseq sequencing of the V3-V4 region of the 16S rRNA gene. Data analysis was performed using QIIME2 and R software programs. A total of 1985 mosquitoes were collected and among them, 120 were selected randomly corresponding to 30 mosquitoes per season and locality. Overall, 97 bacterial taxa were detected across all mosquito samples, with 86 of these shared between dry and wet seasons in both localities and species. There were significant differences in bacterial composition between both seasons, with a clear separation observed between the dry and wet seasons (PERMANOVA comparisons of beta diversity, Pseudo-F = 10.45; q-value = 0.01). This study highlights the influence of seasonal variation on microbial communities and this variation's impact on mosquito biology and vectorial capacity should be further investigated.
Collapse
Affiliation(s)
- Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Claudine Grâce Tatsinkou Maffo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Nsa Dada
- Faculty of Science and Technology, Norwegian University of Life Science, Aas, Norway
- Tropical Infectious Disease Research Center, University of Abomey-Calavi, Cotonou, Benin
| | - Flobert Njiokou
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Charles S Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), LSTM Research Unit, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
49
|
Alomar AA, Eastmond BH, Rapti Z, Walker ED, Alto BW. Ingestion of spinosad-containing toxic sugar bait alters Aedes albopictus vector competence and vectorial capacity for dengue virus. Front Microbiol 2022; 13:933482. [PMID: 36090120 PMCID: PMC9459233 DOI: 10.3389/fmicb.2022.933482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Dengue virus (DENV) is a highly prevalent vector-borne virus that causes life-threatening illnesses to humans worldwide. The development of a tool to control vector populations has the potential to reduce the burden of DENV. Toxic sugar bait (TSB) provides a form of vector control that takes advantage of the sugar-feeding behavior of adult mosquitoes. However, studies on the effect of ingestion of toxins in TSB on vector competence and vectorial capacity for viruses are lacking. This study evaluated vector competence for DENV serotype-1 of Aedes albopictus at 7 and 14 days post-ingestion of TSB formulated with spinosad (of bacteria origin) as an oral toxin. Our results and others were modeled to estimate effects on Ae. albopictus vectorial capacity for DENV. Ingestion of TSB caused a reduction in survival of females, but increased mosquito susceptibility to DENV infection, disseminated infection, and transmission. However, this increase in vector competence was obviated by the reduction in survival, leading to a lower predicted vectorial capacity. The findings of this study highlight the importance of evaluating the net impact of TSB ingestion on epidemiological parameters of vectorial capacity in the context of vector control efforts to reduce the risk of transmission of vector-borne viruses.
Collapse
Affiliation(s)
- Abdullah A. Alomar
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, United States
- *Correspondence: Abdullah A. Alomar,
| | - Bradley H. Eastmond
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, United States
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Edward D. Walker
- Department of Entomology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, United States
| |
Collapse
|
50
|
Oke CE, Ingham VA, Walling CA, Reece SE. Vector control: agents of selection on malaria parasites? Trends Parasitol 2022; 38:890-903. [PMID: 35981937 DOI: 10.1016/j.pt.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
Insect vectors are responsible for spreading many infectious diseases, yet interactions between pathogens/parasites and insect vectors remain poorly understood. Filling this knowledge gap matters because vectors are evolving in response to the deployment of vector control tools (VCTs). Yet, whilst the evolutionary responses of vectors to VCTs are being carefully monitored, the knock-on consequences for parasite evolution have been overlooked. By examining how mosquito responses to VCTs impact upon malaria parasite ecology, we derive a framework for predicting parasite responses. Understanding how VCTs affect the selection pressures imposed on parasites could help to mitigate against parasite evolution that leads to unfavourable epidemiological outcomes. Furthermore, anticipating parasite evolution will inform monitoring strategies for VCT programmes as well as uncovering novel VCT strategies.
Collapse
Affiliation(s)
- Catherine E Oke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Victoria A Ingham
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69210 Heidelberg, Germany
| | - Craig A Walling
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Sarah E Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK; Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|