1
|
Yılmaz Tuncel N, Polat Kaya H, Andaç AE, Korkmaz F, Tuncel NB. A Comprehensive Review of Antinutrients in Plant-Based Foods and Their Key Ingredients. NUTR BULL 2025. [PMID: 39895386 DOI: 10.1111/nbu.12732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
In recent years, the growing popularity of vegan and vegetarian diets, along with the rising demand for plant-based foods, has led researchers to concentrate on examining the presence and effects of antinutrients. While there are existing literature reviews focusing on antinutritional compounds, particularly on their reduction, this review aims to provide a comprehensive description of antinutrients for producers, food scientists, professionals, legislators and consumers, emphasising the complexity of the subject and the necessity for diverse approaches while identifying aspects that still require further research. Antinutrients, including protease inhibitors, amylase inhibitors, phytic acid, lectins, saponins, tannins, cyanogenic glycosides, oxalic acid, polyphenols, goitrogens and pyrimidine glycosides, are described, encompassing various aspects such as their structural characteristics, analytical detection methods, distribution, physiological impacts and strategies for mitigation or elimination. Specifically, our review concentrates on assessing the presence of antinutrients in plant-based food products and the primary ingredients, categorised into five distinct groups, cereals, pseudocereals, pulses, seeds and nuts, which are commonly used in their production. Among these categories, legumes are identified as the richest source of anti-nutritional compounds, followed by cereal grains. However, certain pseudocereals, seeds and nuts also demonstrate high levels of specific antinutrients. While antinutrients are generally regarded as harmful to nutrient absorption, recent studies have revealed some potential health benefits associated with them. Therefore, further in vivo research is essential to elucidate the behaviour of antinutritional compounds within the human body. Additionally, there is a significant lack of formal regulations and guidelines regarding antinutrients, and food products currently do not feature labelling related to these compounds.
Collapse
Affiliation(s)
- Neşe Yılmaz Tuncel
- Department of Food Technology, Faculty of Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Havva Polat Kaya
- Department of Food Technology, Faculty of Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ali Emre Andaç
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Fatma Korkmaz
- Department of Food Engineering, Balıkesir University Faculty of Engineering, Balıkesir, Türkiye
| | - Necati Barış Tuncel
- Department of Food Engineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
2
|
Huang Y, Xu B. Critical review on the intervention effects of flavonoids from cereal grains and food legumes on lipid metabolism. Food Chem 2025; 464:141790. [PMID: 39509881 DOI: 10.1016/j.foodchem.2024.141790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Obesity, often caused by disorders of lipid metabolism, is a global health concern. Flavonoids from staple grains and legumes are expected as a safer and more cost-effective alternative for the future development of dietary flavonoid-based anti-obesity dietary supplements or drugs. This review systematically summarized their content variation, metabolism in the human body, effects and molecular mechanisms on lipid metabolism. These flavonoids intervene in lipid metabolism by inhibiting lipogenesis, promoting lipolysis, enhancing energy metabolism, reducing appetite, suppressing inflammation, enhancing insulin sensitivity, and improving the composition of the gut microbial. Fermentation and sprouting techniques enhance flavonoid content and these beneficial effects. The multidirectional intervention of lipid metabolism is mainly through regulating AMPK signaling pathway. This study provides potential improvement for challenges of application, including addressing high extraction costs and improving bioavailability, ensuring safety, filling clinical study gaps, and investigating potential synergistic effects between flavonoids in grains and legumes, and other components.
Collapse
Affiliation(s)
- Yin Huang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
3
|
Song Y, Hu Z, Liu S, Luo S, He R, Yang X, Li S, Yang X, An Y, Lu Y. Utilization of Microalgae and Duckweed as Sustainable Protein Sources for Food and Feed: Nutritional Potential and Functional Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39879156 DOI: 10.1021/acs.jafc.4c11610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Aquatic biomass, particularly microalgae and duckweed, presents a promising and sustainable alternative source of plant-based protein and bioactive compounds for food and feed applications. This review highlights the nutritional potential of these aquatic species, focusing on their high protein content, rapid growth rates, and adaptability to nonarable environments. Microalgae, such as Chlorella and Arthrospira spp., and duckweed, such as Lemna minor, are evaluated for their functional food applications, including their roles as protein supplements, bioactive components, antioxidants, and emulsifiers in food formulations. The study also examines their environmental benefits, including wastewater bioremediation, nutrient recycling, and greenhouse gas mitigation, which contribute to a more sustainable agricultural system. Technological advancements in the cultivation, harvesting, and processing of microalgae and duckweed are discussed to enhance their scalability and economic feasibility in food and feed production. The findings suggest that integrating microalgae and duckweed into agricultural and food systems can significantly improve food security, nutritional outcomes, and sustainability. Future research should focus on optimizing cultivation efficiencies, advancing protein extraction techniques, and expanding the applications of aquatic biomass in various food products.
Collapse
Affiliation(s)
- Yingjie Song
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Sizhao Liu
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530010, People's Republic of China
| | - Shasha Luo
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Ruimin He
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Xinyan Yang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Shuang Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Xuewei Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yuxing An
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| | - Yinglin Lu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510220, People's Republic of China
| |
Collapse
|
4
|
Kam MYY. Hidden hunger: from a plant biologist's perspective. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 39868583 DOI: 10.1002/jsfa.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
In recent years, changes in dietary patterns from an omnivore diet to a moderate-to-restrictive diet that includes more plant food are becoming popular for various reasons and the associated health benefits. Despite the increased consumption of plant food as recommended by these seemingly healthy diets, micronutrient deficiency is still prevalent particularly among the health-conscious populations. The aim of this review is to help guide interventions by understanding micronutrient deficiency trends from a dietary habit and plant physiology context. In this review, the author discusses how modern agricultural practices coupled with climate change, and with particular emphasis on the extreme dietary habits that lack variation and excessive consumption, may contribute to an increased ingestion of antinutrients which in turn potentially exacerbate vitamin and mineral deficiencies. While plants possess a wide range of secondary metabolites that exert beneficial health effects, some of these compounds are also antinutrients that interfere with the digestion and absorption of nutrients and micronutrients. Furthermore, the article also raises questions concerning the fate of antinutrient traits in future crops that were to be redesigned with improved stress tolerance, and the impacts it may have on human nutrition and the environment. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Melissa Yit Yee Kam
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
- Future Food Research Cluster, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
5
|
Tas O, Sumnu SG, Oztop MH. Effect of Extraction Methods and Preheat Treatments on the Functional Properties of Pumpkin Seed Protein Concentrate. ACS FOOD SCIENCE & TECHNOLOGY 2025; 5:105-117. [PMID: 39840405 PMCID: PMC11748320 DOI: 10.1021/acsfoodscitech.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 01/23/2025]
Abstract
This study explores the effect of different extraction methods and preheat treatments in obtaining protein concentrate from pumpkin seed flour. The effects on the yield and functional properties of pumpkin seed protein concentrate (PSPC) were compared alongside microwave and conventional preheating methods using alkali, salt, and enzyme-assisted alkali extraction techniques. Analytical assessments included proximate analysis, soluble protein content, water solubility index (WSI), emulsification activity (EA) and stability (ES), foaming capacity (FC) and stability (FS), and antioxidant activity (AA). Hydration and structural analyses were performed via time-domain nuclear magnetic resonance (TD-NMR) Relaxometry and Fourier-Transform Infrared (FTIR) Spectroscopy. In addition, color measurements were performed to evaluate the visual quality of the samples. The alkali extraction method paired with microwave heating (MH-AE) significantly outperformed other techniques, with an extraction yield and protein content of approximately 55% and 77%, respectively. This study demonstrated the superior yield and functional properties of PSPC using MH-AE, opening opportunities for future research in optimizing plant-based protein extraction techniques.
Collapse
Affiliation(s)
- Ozan Tas
- Department of Food Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - S. Gulum Sumnu
- Department of Food Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Mecit Halil Oztop
- Department of Food Engineering, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
6
|
Alehosseini E, McSweeney PLH, Miao S. Recent updates on plant protein-based dairy cheese alternatives: outlook and challenges. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39819182 DOI: 10.1080/10408398.2025.2452356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
In response to population growth, ethical considerations, and the environmental impacts of animal proteins, researchers are intensifying efforts to find alternative protein sources that replicate the functionality and nutritional profile of animal proteins. In this regard, plant-based cheese alternatives are becoming increasingly common in the marketplace, as one of the emerging dairy-free products. However, the dairy industry faces challenges in developing dairy-free products alternatives that meet the demands of customers with specific lifestyles or diets, ensure sustainability, and retain traditional customers. These challenges include food neophobia, the need to mimic the physicochemical, sensory, functional, and nutritional properties of dairy products, the inefficient conversion factor of plant-based proteins into animal proteins, and high production expenses. Given the distinct nature of plant-based milks, understanding their differences from cow's milk is crucial for formulating alternatives with comparable properties. Designing dairy-free cheese analogs requires overcoming electrostatic repulsion energy barriers among plant proteins to induce gelation and curd formation. Innovative approaches have substantially enhanced the physicochemical and sensory properties of these alternatives. Researchers are exploring the application of microalgae as a plant protein source and investigating new microbial fermentation methods to increase protein content in dairy-free products.
Collapse
Affiliation(s)
| | - Paul L H McSweeney
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
7
|
Angom J, Singh SK, Devi AG, Das P, Biswas P, Waikhom G, Ngasotter S, Debbarma R, Debbarma S, Yadav NK. Effects of Substituting Soybean Meal With Winged Bean on Growth, Physiological Function and Flesh Quality of Indian Butter Catfish ( Ompok bimaculatus). AQUACULTURE NUTRITION 2025; 2025:9959405. [PMID: 39850471 PMCID: PMC11756947 DOI: 10.1155/anu/9959405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/25/2025]
Abstract
Soybean meal (SBM) remains a primary protein source in aquafeeds. This study investigated the potential of winged bean (Psophocarpus tetragonolobus) meal as a SBM replacement in diets for butter catfish (Ompok bimaculatus) juveniles (mean weight: 1.24 ± 0.23 g). A response surface methodology (RSM) optimized processing conditions to minimize antinutritional factors (ANFs) in winged bean meal (WBM), resulting in minimized tannin (4.14 ± 0.018 mg/g at 40 min, 110°C), phytate (0.414 ± 0.0009 mg/g at 31.67 min, 104.5°C) and trypsin inhibitor activity (70.8 ± 0.06% inhibition at 20 min, 90°C). Experimental diets containing 30% crude protein and varying levels of WBM substitution (0%, 25%, 50%, 75% and 100%) were fed for 70 days. Growth performance, measured by weight gain, was significantly higher in the 25% substitution group (p < 0.05) but not significantly different from the control at 50% substitution. Quadratic regression analysis predicted an optimal inclusion level of 15.10% for maximizing weight gain. Survival rates did not differ significantly among treatments (p > 0.05). Feed utilization was most efficient in the 25% substitution group. Haematological and immunological parameters indicated improved fish health at the 25% substitution level. Flesh quality attributes, including texture profile analysis, pH and antioxidant activity, were superior in the 25% group compared to other treatments. However, colour enhancement was more pronounced at higher inclusion levels (≥50%). While flesh pH and antioxidant activity suggested potential stress at higher winged bean inclusion levels, the 25% group showed improved values compared to the control. These findings suggest that WBM can potentially replace up to 50% of SBM in butter catfish diets, offering a promising alternative protein source. This study provides preliminary data on the feasibility and prospects of utilizing WBM in O. bimaculatus diets.
Collapse
Affiliation(s)
- Jaya Angom
- College of Fisheries, Central Agricultural University, Lembucherra, Agartala 799210, Tripura, India
| | - Soibam Khogen Singh
- College of Fisheries, Central Agricultural University, Lembucherra, Agartala 799210, Tripura, India
- Krishi Vigyan Kendra, ICAR-Research Complex for NEH Region, Ukhrul 795142, Manipur, India
| | - Ayam Gangarani Devi
- ICAR-Research Complex for NEH Region, Tripura Centre, Agartala 799210, Tripura, India
| | - Pronob Das
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Guwahati 781006, Assam, India
| | - Pradyut Biswas
- College of Fisheries, Central Agricultural University, Lembucherra, Agartala 799210, Tripura, India
| | - Gusheinzed Waikhom
- College of Fisheries, Central Agricultural University, Lembucherra, Agartala 799210, Tripura, India
| | - Soibam Ngasotter
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, Maharashtra, India
| | - Reshmi Debbarma
- College of Fisheries, Central Agricultural University, Lembucherra, Agartala 799210, Tripura, India
| | - Sourabh Debbarma
- Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi 628 008, Tamil Nadu, India
| | - Nitesh Kumar Yadav
- College of Fisheries, Central Agricultural University, Lembucherra, Agartala 799210, Tripura, India
| |
Collapse
|
8
|
Sulaiman NS, Mohd Zaini H, Wan Ishak WR, Matanjun P, George R, Mantihal S, Ching FF, Pindi W. Duckweed protein: Extraction, modification, and potential application. Food Chem 2025; 463:141544. [PMID: 39388881 DOI: 10.1016/j.foodchem.2024.141544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Discovering alternative protein sources that are both nutritious and environmentally friendly is essential to meet the growing global population's needs. Duckweed offers promise due to its cosmopolitan distribution, rapid growth, high protein content, and scalability from household tanks to large lagoons without requiring arable land that competes for the major crops. Rich in essential amino acids, particularly branched-chain amino acids, duckweed supports human health. Extraction methods, such as ultrasound and enzymatic techniques, enhance protein yield compared to traditional methods. However, low protein solubility remains a challenge, addressed by protein modification techniques (physical, chemical, and biological) to broaden its applications. Duckweed proteins hold potential as functional food ingredients due to their unique physicochemical properties. This review also includes patents and regulations related to duckweed protein, filling a gap in current literature. Overall, duckweed presents a sustainable protein source with a lower environmental impact compared to conventional crops.
Collapse
Affiliation(s)
- Nurul Shaeera Sulaiman
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Hana Mohd Zaini
- Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Wan Rosli Wan Ishak
- School of Health Sciences, University Science Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Patricia Matanjun
- Food Security Laboratory Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Ramlah George
- Nutritional Biochemistry Research Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Sylvester Mantihal
- Food Security Laboratory Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Fui Fui Ching
- Higher Institution Centre of Excellence, Borneo Marine Research Institute, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Wolyna Pindi
- Food Security Laboratory Group, Faculty of Food Science and Nutrition, University Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
9
|
Linares-Castañeda A, Jiménez-Martínez C, Sánchez-Chino XM, Pérez-Pérez V, Cid-Gallegos MS, Corzo-Ríos LJ. Modifying of non-nutritional compounds in legumes: Processing strategies and new technologies. Food Chem 2025; 463:141603. [PMID: 39405829 DOI: 10.1016/j.foodchem.2024.141603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 11/14/2024]
Abstract
Legumes are consumed worldwide, are notable for their nutritional quality, however, contain certain non-nutritional compounds (NNCs) that can affect the absorption of nutrients, though these may exhibit bioactive properties. Various processing methods can modify the concentration of NNCs, including soaking and germination. These methods can be combined with other thermal, non-thermal, and bioprocessing treatments to enhance their efficiency. The efficacy of these methods is contingent upon the specific types of NNCs and legume in question. This work examines the effectiveness of these processing methods in terms of modifying the concentration of NNCs present in legumes as well as the potential use of emerging technologies, to enhance the level of NNCs modification in legumes. These technologies could increase the functional use of legume flours, potentially leading to new opportunities for incorporating legume-based ingredients in a range of culinary applications, thereby enhancing the diets of many individuals worldwide.
Collapse
Affiliation(s)
- Alejandra Linares-Castañeda
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Xariss M Sánchez-Chino
- Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Carr. Villahermsa-Reforma Km 15.5 S/N. Rancheria Guineo 2ª sección CP. 86280 Villahermosa,Tabasco, Mexico
| | - Viridiana Pérez-Pérez
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - María Stephanie Cid-Gallegos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - Luis Jorge Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico.
| |
Collapse
|
10
|
Kumar N, Kumar P, Pradhan A, Singh DK, Kumar T, Rane J, Reddy KS. Replacement of fishmeal with Quinoa Husk (Chenopodium quinoa) for mitigating multiple stresses in Pangasianodon Hypophthalmus. Sci Rep 2025; 15:2054. [PMID: 39814813 PMCID: PMC11736024 DOI: 10.1038/s41598-025-85617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
The fishmeal is boon for aquaculture production in this recent pollution and climate change era. However, the demand of fishmeal is enhancing in many folds which needs to find alternative to fishmeal in cheap price. The present investigation addresses these issues with quinoa husk (QH). An experiment was performed to evaluate replacement of fishmeal by QH in different proportionate at 0, 15, 20, 25, 30 and 35%. The study was designed with 12 treatments as control, stressors group (concurrent exposed to ammonia, arsenic and high temperature stress, NH3+As+T), group fed with QH at 15, 20, 25, 30 and 35% without and with stressors (NH3+As+T) in Pangasianodon hypophthalmus for 105 days. The optimization of QH dose for growth performance such as food conversion ratio, growth rate, protein efficiency ratio and specific growth rate with respect to protein percentage and obtained 26%. The oxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione-s-transferase (GST) and glutathione peroxidase (GPx) in gill, kidney and liver tissues were significantly lowered by replacement of fishmeal by QH at 25% in fish reared under arsenic and ammonia toxicity and high temperature stress (NH3+As+T). The neurotransmitter enzyme (AChE) in brain tissue was noticeably enhanced by QH at 25%. The aspartate amino transferase (AST) and alanine amino transferase (ALT) as well as malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) in gill and liver were significantly reduced by QH at 25% in fish reread under multiple stresses (NH3+As+T). The nitro blue tetrazolium (NBT), blood glucose, albumin, globulin, total protein, A:G ratio, myeloperoxidase (MPO) and total immunoglobulin (Ig) were noticeably improved by supplementation of QH at 25-30% in fish reared under NH3+As+T. The amylase, protease and lipase were significant improved with replacement of fishmeal by QH at 25%. The histo-pathological alterations were marked in liver and gill tissues, whereas these tissues were protected by QH at 25% in fish reared under control and stress condition (NH3+As+T). The present study revealed that replacement of fishmeal at 25% by QH could be a better replacement for improvement in anti-oxidative status, acetylcholine esterase and growth performance in fish reread under NH3+As+T stress.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Aliza Pradhan
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | - Tarkeshwar Kumar
- ICAR-Research Complex for Eastern Region (ICAR-RCER), Patna, 800014, India
| | - Jagadish Rane
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| |
Collapse
|
11
|
Choudhury DB, Gul K, Sehrawat R, Mir NA, Ali A. Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications. Int J Biol Macromol 2025; 295:139578. [PMID: 39793834 DOI: 10.1016/j.ijbiomac.2025.139578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed. The physiological benefits of bean proteins, such as antidiabetic, cardioprotective, antioxidant, and neuroprotective effects, are also presented, highlighting their potential for promoting well-being. Our review emphasizes the diversity of bean proteins and highlights ultrasound as the most effective extraction method among available techniques. Beyond their physiological benefits, bean proteins significantly enhance the structural, technological, and nutritional properties of food systems. The functionality can be further improved through various modification techniques, thereby expanding their applicability in the food industry. While studies have explored the impact of bean protein structure on their nutritional and functional properties, further research is needed to investigate advanced modification techniques and the structure-function relationship. This will enhance the utilization of bean proteins in innovative and sustainable food applications.
Collapse
Affiliation(s)
- Debojit Baidya Choudhury
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India.
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Nisar Ahmad Mir
- Department of Food Technology, Islamic University of Science and Technology, One University Avenue, Awantipora 192122, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom
| |
Collapse
|
12
|
John OD, Surugau N, Kansedo J, Panchal SK, Brown L. Plant-Based Functional Foods from Borneo. Nutrients 2025; 17:200. [PMID: 39861330 PMCID: PMC11767754 DOI: 10.3390/nu17020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Borneo, the third-largest island in the world, is shared between Malaysia (Sabah and Sarawak), Indonesia (Kalimantan) and Brunei. As a biodiversity hotspot, it is home to about 15,000 flowering plants and 3000 tree species, of which many are endemic to the region. Locally derived plant-based foods are gaining popularity due to their lower environmental impact, contribution to food sustainability and health benefits. The local fruits and vegetables of Borneo have been used traditionally by the indigenous community for medicinal purposes. This community knowledge can provide a valuable guide to their potential for use as functional foods. This review explores the contemporary foods from Borneo, including fruit, vegetables, seaweeds and plant-derived food products that are locally consumed. The findings show that the unique tropical food groups have a wide diversity of phytochemical compositions that possess a wide array of biological activities including anti-inflammatory, antioxidant, anti-microbial, anti-proliferative, anti-fungal, wound healing and expectorant properties. The wide range of plant-based foods in Borneo deserves further development for wider applications as functional foods.
Collapse
Affiliation(s)
- Oliver Dean John
- Nutritional Biochemistry Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Noumie Surugau
- Seaweed Research Unit, Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Jibrail Kansedo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Sarawak, Malaysia;
| | - Sunil K. Panchal
- School of Science, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia;
| | - Lindsay Brown
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
13
|
Jangra A, Kumar V, Kumar S, Mehra R, Kumar A. Unraveling the Role of Quinoa in Managing Metabolic Disorders: A Comprehensive Review. Curr Nutr Rep 2025; 14:4. [PMID: 39753698 DOI: 10.1007/s13668-024-00600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets. RECENT FINDINGS Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains. These compounds exhibit various health-promoting properties, such as anti-inflammatory, antioxidant, antidiabetic, and gut microbiota-modulating effects. Furthermore, research indicates that regular quinoa consumption can improve metabolic parameters, including reduced cholesterol levels, blood sugar, fat accumulation, and blood pressure. These findings highlight the potential of quinoa as a dietary tool for preventing and managing metabolic disorders, such as obesity, cardiovascular diseases, diabetes, and gut dysbiosis. The article concludes that quinoa has emerged as a promising solution to food security challenges due to its adaptability to diverse environments and rich nutritional profile. However, some findings are not consistent in the mentioned studies, therefore, well-designed cohort randomized clinical trials with diverse populations are needed. While in vivo studies are necessary to elucidate the specific mechanisms behind the potential benefits of quinoa.
Collapse
Affiliation(s)
- Aarzoo Jangra
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Vikram Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat, India
- Department of Food Technology, SRM University, Delhi NCR, Sonepat, 131029, India
| | - Shiv Kumar
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Rahul Mehra
- Symbiosis School of Culinary Arts and Nutritional Sciences, Symbiosis International University, Pune, India.
| | - Akash Kumar
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India.
- Department of Food Technology, SRM University, Delhi NCR, Sonepat, 131029, India.
| |
Collapse
|
14
|
Lee DY, Kim JS, Park J, Han D, Choi Y, Park JW, Lee J, Mariano E, Namkung S, Hur SJ. An Investigation of the Status of Commercial Meat Analogs and Their Ingredients: Worldwide and South Korea. Food Sci Anim Resour 2025; 45:31-61. [PMID: 39840252 PMCID: PMC11743835 DOI: 10.5851/kosfa.2024.e106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 01/23/2025] Open
Abstract
Meat analogs are a burgeoning industry, with plant-based meat analogs, insect-based meat analogs, algae-based meat analogs, mycoprotein-based meat analogs, and cell-based meat analogs. However, despite the industry's growth potential, market expansion faces hurdles due to taste and quality disparities compared to traditional meats. The composition and characteristics of meat analogs currently available in the market are analyzed in this study to inform the development of future products in this sector. The results show that plant-based meat analogs are mainly based on soy protein together with wheat gluten and methylcellulose or spices. Insect-based meat analogs tend to contain processed larvae as the protein source. Seaweed or spirulina is often the main ingredient in algae-based meat analogs. Mycoprotein-based meat analogs all use mycoproteins. Cell-based beef, pork, chicken, and seafood products are already under various stages of development around the world, although many are still at the prototype level.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ji Won Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seok Namkung
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
15
|
Rolands MR, Hackl LS, Bochud M, Lê KA. Protein Adequacy, Plant Protein Proportion, and Main Plant Protein Sources Consumed Across Vegan, Vegetarian, Pescovegetarian, and Semivegetarian Diets: A Systematic Review. J Nutr 2025; 155:153-167. [PMID: 39117040 DOI: 10.1016/j.tjnut.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND There are several types of plant-based diets, with unknown differences across diets on total/plant protein intake and variety of plant protein sources consumed. OBJECTIVES This systematic review aimed to compare total protein intake, proportion of plant proteins, and main plant protein sources consumed across 4 primarily plant-based diets: vegan, vegetarian, pescovegetarian, and semivegetarian. METHODS We included observational studies reporting on protein intake and/or protein sources in generally healthy adults that were published between 2002 and 2023. We determined the following: 1) % energy from total and plant protein; 2) the proportion of plant protein relative to total protein intake; and 3) main plant protein sources (median percentage contribution of each source to total plant protein intake; interquartile range) consumed across the 4 diets. The plant protein sources were broadly classified into the following United States Department of Agriculture food groups: grains; nuts and seeds; soy products; and beans, peas, and lentils. RESULTS We included 13 studies reporting on protein intake/sources that were conducted in the United States, Europe, and South Korea. Of these, 7 reported on vegan, 11 on vegetarian, 7 on pescovegetarian, and 7 on semivegetarian diets with total protein intake ranging from 10% to 17.4%. Vegan diets had the highest plant protein proportion (range: 77%-98%) and semivegetarian diets the lowest (range: 37%-83%). Plant protein source contribution was the highest from grains (range: 60%-78%). Nuts and seeds were the most consumed in vegetarian diets (7.9%; 2.9%-10.3%) and least in semivegetarian diets (3.7%; 2%-14.8%). Soy products and beans, peas, and lentils were most consumed in vegan diets (17.3%; 16.3%-19.9, and 19.6%; 14.6%-21.3, respectively) and least in semivegetarian (3.7%; 1.3%-13.9%, and 8.5%; 5.2%-10.2%) diets. CONCLUSIONS Vegan diets has the highest plant protein proportion and a variety of plant protein sources, while semivegetarian diets has the lowest plant protein proportion and mainly relied on grains as a plant protein source.
Collapse
Affiliation(s)
- Maryann R Rolands
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
| | - Laura S Hackl
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Murielle Bochud
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Epidemiology and Health Systems, Unisanté, Lausanne, Switzerland
| | - Kim Anne Lê
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
16
|
Klapp AL, Wyma N, Alessandrini R, Ndinda C, Perez-Cueto A, Risius A. Recommendations to address the shortfalls of the EAT-Lancet planetary health diet from a plant-forward perspective. Lancet Planet Health 2025; 9:e23-e33. [PMID: 39855229 DOI: 10.1016/s2542-5196(24)00305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 01/27/2025]
Abstract
Shifting to dietary patterns rich in plants and low in animal-source foods could substantially lower emissions from the food sector while reducing the global burden of non-communicable diseases. The EAT-Lancet Commission proposed the planetary health diet (PHD) to emphasise plant-forward diets and set global targets to guide an urgently needed food-system transformation. However, the PHD's meat-reduction approach has attracted criticism and prompted debate on the potential micronutrient shortfalls of the plant-forward dietary approach. Since the planet simply cannot sustain human diets defaulting towards animal-based solutions, the objective of this Viewpoint is to provide recommendations that address the shortfalls of the PHD, with an emphasis on plant-based sourcing of food. Using a socioecological approach, along with an Integrative Sustainability Framework to evaluate dietary guidelines, in this Viewpoint we recommend seven key thematic areas for further development of the PHD. These themes relate to the bioavailability of micronutrients from plant-based foods, the inclusion of indigenous foods and practices, fortification and supplementation, cultural inclusiveness, and gender-based differences, a broader perspective on processed foods, and strengthening the concept by integrating the One Health approach.
Collapse
Affiliation(s)
- Anna-Lena Klapp
- Department of Agricultural Economics and Rural Development, University of Göttingen, Göttingen, Germany; ProVeg International, Berlin, Germany.
| | - Nanine Wyma
- Africa Unit for Transdisciplinary Health Research (AUTHeR), North-West University, Potchefstroom, South Africa; PAN International Foundation, Grand Rapids, MI, USA
| | - Roberta Alessandrini
- PAN International Foundation, Grand Rapids, MI, USA; Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | | | - Armando Perez-Cueto
- Department of Food, Nutrition and Culinary Science, Umeå University, Umeå, Sweden
| | - Antje Risius
- Department of Agricultural Economics and Rural Development, University of Göttingen, Göttingen, Germany; Department of Nutrition, Fulda University of Applied Sciences, Fulda, Germany
| |
Collapse
|
17
|
Jiang L, Chen Y, Zhao T, Li P, Liao L, Liu Y. Analysis of differential metabolites in Liuyang douchi at different fermentation stages based on untargeted metabolomics approach. Food Chem X 2025; 25:102097. [PMID: 39844959 PMCID: PMC11751413 DOI: 10.1016/j.fochx.2024.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/24/2025] Open
Abstract
The quality and flavor of Liuyang Douchi are usually closely related to the metabolites compostion. This work described the metabolic profiles of Liuyang douchi during fermentation. Obvious hydrolysis of carbohydrates, proteins and slight lipids degradation were observed. Notably, the qu-making and pile-fermentation stage of douchi could be easily distinguished according to their metabolites profile, and pile-fermentation stage showed the most abundant metabolites. Specifically, organic acid, such as succinic acid and lactic acid, accumulated during pile-fermentation, as well as amino acids and derivatives. Especially glutamate (Glu), which contributed to the umami taste, increased form 0.82 mg/g to 15.90 mg/g after fermentation. Meanwhile, metabolisms related to amino acids were also the main enrichment metabolic pathways. Among them, some flavor compunds such as phenylacetaldehyde might drived from phenylalanine metabolism. These results could provide a new understanding on the metabolic characteristics during Liuyang douchi fermentation.
Collapse
Affiliation(s)
- Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Yi Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Pao Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Luyan Liao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Innovation Institute for Food, Changsha 410128, China
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
Yadav DK, Wadikar DD. Studies on the nutritional strength of various hyacinth bean varieties for their potential utilization as promising legume. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:98-108. [PMID: 39867617 PMCID: PMC11754774 DOI: 10.1007/s13197-024-06013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 01/28/2025]
Abstract
This study aimed to compare thirteen different varieties of hyacinth beans analyzedfor their nutritional and antinutritional constituents. The study classified HA-3, HA-4, and Kadale Avare as Lignosus varieties, while the remaining varieties Arka, Pusa, CO, and NS, were classified as Typicus. The protein content ranged from 19.02 to 29.96%, with HA4 having the highest value. Color profile analysis revealed that only Namdhari Seeds (NS-608) and Arka Soumya exhibited lighter grain colors, while the others had darker shades with yellowish-red pigmentation. The varieties contained significant amounts of minerals and crude fiber. Essential elements such as Calcium, Magnesium, Sodium, Potassium, Iron, Zinc, Manganese, Copper, and Cobalt were present, while heavy metals were negligible, except for Chromium.The varieties also contained higher concentrations of free and bound forms of Flavonoids compared to polyphenols. HA4 had the highest polyphenols content. Antinutritional factors such asphytate and phytic acid were investigated, with Coimbatore (CO14) having the lowest phytic acid content despite its dark color.The nutritional value of hyacinth beans as a potential legume source of essential nutrients is highlighted, along with the need to address antinutritional principles in different varieties for improved processability and utilization.
Collapse
Affiliation(s)
- Dev Kumar Yadav
- Grain Science and Technology Division, Defence Food Research Laboratory, Mysore, Karnataka 570011 India
| | - D. D. Wadikar
- Grain Science and Technology Division, Defence Food Research Laboratory, Mysore, Karnataka 570011 India
| |
Collapse
|
19
|
Abu Jadayil SM, Alsaed AK, Mahmoud IF, Ahmad LM, Afaneh F, Khalaf H, Soudi MZ. Proximate analysis and vitamin B contents of fresh-made, canned chickpea and broad bean dips commercially produced in Jordan. PLoS One 2024; 19:e0311149. [PMID: 39739948 DOI: 10.1371/journal.pone.0311149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/13/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Chickpea and broad bean dips are among the most popular legume-based dishes in the Middle Eastern countries. They are either made freshly by restaurants or sold in cans. Various manufacturing processes may enhance or reduce the chemical compositions of any food products, including these dips, which in turn can affect their nutritional values and health benefits. Therefore, this study aimed to evaluate the nutritional values of the chickpea and broad bean dips and examine the possible differences between those made freshly and those sold as canned products. METHODS Fresh-made and canned chickpea and broad bean dips were obtained from various restaurants and factories in Jordan and were analyzed for their proximate analysis, titratable acidity, and pH value. Furthermore, vitamins B were analyzed using liquid chromatography-mass spectrometry. RESULTS Significant differences were detected between fresh-made and canned chickpea dips, with the former containing higher quantities of fiber (10.96g ± 0.32) while the latter containing higher quantities of proteins (8.06g ± 0.29), fats (8.05g ± 1.08), and the vitamins B1 (0.46 ± 0.02) and B5 (0.87 ± 0.02). On the other hand, a significant difference was detected between fresh-made and canned broad bean dips, while the latter contained higher quantities of carbohydrates (20.94g ± 0.78) and tested B-vitamins (except for B6). These detected differences may be due to different variances of chickpeas and broad beans used, preparation methods, and/or the addition of other ingredients. CONCLUSION Our results indicate that both chickpea and broad bean dips prepared/sold in Jordan were of high nutrition values in terms of proximate analysis, and vitamins B, with higher quantities observed in the canned dips. Higher titratable acidity and lower pH were also significantly found in the canned dips. This study adds to the existing literature regarding the fresh-made and canned chickpea and broad beans dips produced and sold in Jordan. Moreover, this study shows that canned chickpea and broad beans dips can provide consumers with comparable nutrient values to those provided by the freshly made dips. Nevertheless, these findings warrant more investigations.
Collapse
Affiliation(s)
- Seham M Abu Jadayil
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Ali K Alsaed
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Iman F Mahmoud
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
- Department of Basic Human Sciences, Faculty of Arts and Sciences, University of Petra, Amman, Jordan
| | - Leena M Ahmad
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Fatena Afaneh
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Hanaa Khalaf
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Mohammed Z Soudi
- General Manager for Jordan Valley Food Industrial Company, Amman, Jordan
| |
Collapse
|
20
|
Waseem M, Akhtar S, Ismail T, Alsulami T, Qamar M, Sattar DES, Suleman R, Saeed W, Osei Tutu C. Effect of thermal and non-thermal processing on Technofunctional, nutritional, safety and sensorial attributes of potato powder. Food Chem X 2024; 24:101896. [PMID: 39687630 PMCID: PMC11647840 DOI: 10.1016/j.fochx.2024.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 12/18/2024] Open
Abstract
Potato is a highly nutritious staple food however, it also contains some antinutrients like alkaloids, phytates, tannins, oxalates as well as pesticide residues. Therefore, this study was conducted to reduce the loads of antinutrients and pesticides in potato powder (PP) using thermal and non-thermal processing techniques. Nutritional analysis revealed that the raw PP contained significantly (p < 0.05) higher magnitudes of dietary proteins (10.2 %), fibers (6.3 %), Na (50 mg/100 g), Ca (62 mg/100 g) and K (988 mg/100 g) when compared with the processed PP. The results demonstrated that all thermal and non-thermal processing techniques significantly reduced the antinutrients and pesticide residues. However, microwave heat treatment anticipated the highest reduction in alkaloids, oxalates, tannins and phytates contents from 60 to 14 mg/100 g (76 % reduction), 31-6 mg/100 g (80 % reduction), 91-15 mg/100 g (84 % reduction) and 45-8 mg/100 g (82 % reduction), respectively. Additionally, microwave heat processing also exhibited the highest decline in imidacloprid, cypermethrin, bifenthrin, chlorpyrifos and deltamethrin contents by 87 %, 76 %, 63 %, 79 % and 81 %, respectively. Later, microwave-treated PP (the most effective treatment) was used to develop unleavened flatbreads (i.e., chapatis) @ 2-10 %. Organoleptic evaluation of supplemented flatbreads suggested that 5 % supplementation with microwave treated PP has the highest overall acceptability. Therefore, it is concluded that thermal and non-thermal processing techniques are effective tools to reduce loads of antinutrients and pesticide burden in potatoes. Moreover, the study also suggests, PP can be efficiently used as natural food supplement for development of value-added foods.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Food Science & Technology, Faculty of Agriculture & Environment, Islamia University Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Food Science & Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Saeed Akhtar
- Department of Food Science & Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tariq Ismail
- Department of Food Science & Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tawfiq Alsulami
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Qamar
- Department of Food Science & Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Dur-e-shahwar Sattar
- Department of Food Science & Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Raheel Suleman
- Department of Food Science & Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Wisha Saeed
- Department of Food Science & Technology, Faculty of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Crossby Osei Tutu
- Department of Family and Consumer Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
21
|
Naveed H, Sultan W, Awan KA, Imtiaz A, Yaqoob S, Al-Asmari F, Faraz A, Qian JY, Sharma A, Mugabi R, Alotaibi SS, Nayik GA. Glycemic impact of cereal and legume-based bakery products: Implications for chronic disease management. Food Chem X 2024; 24:101959. [PMID: 39568514 PMCID: PMC11577150 DOI: 10.1016/j.fochx.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
This review examines the glycemic impact of cereal and legume-based bakery products and their potential role in chronic disease management, particularly in type II diabetes and cardiovascular diseases. The primary objective is to assess the glycemic index (GI) and glycemic load (GL) of bakery products made from cereals such as wheat and barley, and legumes like chickpeas, and to explore their effects on postprandial blood glucose response. Cereal-based products typically exhibit higher GIs (55-80), while legume-based bakery products demonstrate lower GIs (40-50), potentially contributing to better glycemic control. Incorporating legumes into bakery formulations can lower their glycemic index by up to 25 %. Legume-enriched bakery products may effectively manage blood glucose and reduce chronic disease risks like diabetes. However, more long-term studies are needed to confirm their broader benefits. This review emphasizes the need for innovation to improve the nutritional and sensory appeal of functional foods.
Collapse
Affiliation(s)
- Hiba Naveed
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
| | - Waleed Sultan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
| | - Aysha Imtiaz
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Sanabil Yaqoob
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agriculture and Food Sciences, King Faisal University, Saudi Arabia
| | - Ahmad Faraz
- Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Pakistan
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aanchal Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 110099, Taif 21944, Saudi Arabia
| | - Gulzar Ahmad Nayik
- Marwadi University Research Centre, Department of Microbiology, Marwadi University, Rajkot, Gujarat 360003, India
| |
Collapse
|
22
|
Manzanilla-Valdez ML, Boesch C, Orfila C, Montaño S, Hernández-Álvarez AJ. Unveiling the nutritional spectrum: A comprehensive analysis of protein quality and antinutritional factors in three varieties of quinoa ( Chenopodium quinoa Wild). Food Chem X 2024; 24:101814. [PMID: 39310886 PMCID: PMC11415592 DOI: 10.1016/j.fochx.2024.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Quinoa (Chenopodium quinoa) is renowned for its high protein content and balanced amino acid profile. Despite promising protein characteristics, plant-based sources usually possess antinutritional factors (ANFs). This study aimed to analyze the nutritional and ANFs composition of three quinoa varieties (Black, Yellow, and Red), and assessed the protein quality. Among these varieties, Black quinoa showed the highest protein content (20.90 g/100 g) and total dietary fiber (TDF) (22.97 g/100 g). In contrast, Red quinoa exhibited the highest concentration of phenolic compounds (338.9 mg/100 g). The predominant ANFs identified included oxalates (ranging from 396.9 to 715.2 mg/100 g), saponins (83.27-96.82 g/100 g), and trypsin inhibitors (0.35-0.46 TUI/100 g). All three varieties showed similar in vitro protein digestibility (IVPD) (> 76.9 %), while Black quinoa exhibited the highest protein quality. In conclusion to ensure reduction of ANFs, processing methods are necessary in order to fully benefit from the high protein and nutritional value of quinoa.
Collapse
Affiliation(s)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa CP 80030, Mexico
| | | |
Collapse
|
23
|
Ntsoane T, Nemukondeni N, Nemadodzi LE. A Systematic Review: Assessment of the Metabolomic Profile and Anti-Nutritional Factors of Cannabis sativa as a Feed Additive for Ruminants. Metabolites 2024; 14:712. [PMID: 39728493 DOI: 10.3390/metabo14120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Background:Cannabis sativa is a high-value crop that can be cultivated for ruminant's feed and medicinal purposes. The demand for Cannabis and Cannabis products has increased since the beginning of 21st century. Objectives: The increase in the production cost of high-protein feeds such as lucerne has led to an urgent need to investigate alternative high-protein sources. Methods: Cannabis has been identified as an alternative to lucerne due to its high protein content. Results: However, the cultivation and uses of Cannabis and its by-products in South Africa is limited due to the strict legislation. The metabolites and nutritional value of Cannabis are influenced by growing conditions and soil type. Furthermore, the available literature has shown that Cannabis contains anti-nutritional factors that may affect feed intake or bioavailability and digestibility. Conclusions: Therefore, it is crucial to employ a processing method that can reduce anti-nutritional factors to promote the feed intake and growth rate of sheep. Fermentation, as a processing method, can reduce anti-nutritional factors found in Cannabis, which will make it a palatable alternative feed supplement for ruminants such as Dorper sheep. Overall, this review paper aimed to examine the available literature on the use of Cannabis as an alternative high-protein feed supplement for Dorper sheep in South Africa.
Collapse
Affiliation(s)
- Tumisho Ntsoane
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| | - Ndivho Nemukondeni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| |
Collapse
|
24
|
Nayak A, Rühl M, Klüber P. Bioconversion efficiency and chemical composition of Hermetia illucens larvae fed spent mushroom substrates. AMB Express 2024; 14:133. [PMID: 39673033 PMCID: PMC11645357 DOI: 10.1186/s13568-024-01802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/28/2024] [Indexed: 12/15/2024] Open
Abstract
Spent mushroom substrate (SMS) is a by-product remaining after harvesting mushrooms. We evaluated the effect of substituting chicken feed with 0-100% of Pleurotus eryngii and Lentinula edodes SMS at different stocking densities (200-1000 larvae/box) on development, composition, and substrate reduction of black soldier fly (Hermetia illucens) larvae. Although the survival rate was not significantly different, feeding pure SMS led to a low growth rate. The substitution level of SMS negatively correlated with individual larval weight, total harvested biomass, larval growth rate (LGR), feed conversion ratio (FCR), substrate reduction, and waste reduction index (WRI) except for the 20% substitution. Feeding 40% SMS resulted in the highest number of prepupae. In the density experiment, the heaviest larvae (220-239 mg fresh weight) were obtained at 200 larvae/box in the 0% SMS group. The frass residue and FCR decreased with increased density. Remarkably, when feeding 20% SMS at 250 larvae/box, the harvested biomass, LGR, and FCR did not differ significantly from the 0% SMS control, whereas some of the higher densities led to a deterioration. In fact, the frass residue, substrate reduction, and WRI were even improved at 250 larvae/box in the 20% SMS group. The chemical analyses of larvae reared on 20% SMS at 250 larvae/box showed comparable ash and fat contents and a higher protein content compared to the 0% SMS group. Accordingly, up to 20% of a standard diet such as chicken feed can be replaced by low-cost SMS without disadvantages for breeding.
Collapse
Affiliation(s)
- Anjani Nayak
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Patrick Klüber
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
25
|
Dao TTT, Fotedar R. Can Different Dietary Protein Sources Influence the Survival, Growth, and Physiology of 0 +Marron ( Cherax cainii) Exposed to Feed Deprivation? Animals (Basel) 2024; 14:3591. [PMID: 39765494 PMCID: PMC11672809 DOI: 10.3390/ani14243591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
We investigated the effect of feed deprivation for 45 days on the growth, immunity, and health of 0+marron (Cherax cainii) initially fed for 110 days on various protein sources including fishmeal (FM), poultry by-product meal (PBM), black soldier fly meal (BSFM), soybean meal (SBM), lupin meal (LM), and tuna hydrolysate. The marron were weighed and sacrificed immediately after feeding stopped (day 0) and at days 15, 30, and 45 after the feed deprivation trial commenced. Total haemolymph count, differential haemocyte count, lysozyme activity, protease activity, total bacterial count in the digestive tract, and organosomatic indices were analysed. Initially feeding marron any protein sources did not influence the percentage of weight gain and specific growth rates of marron. All marron showed more than 83% survival; however, marron fed soybean meal showed significantly lower survival than others. Dietary sources of protein altered organosomatic indices of starved marron during various starvation periods and resulted in a significant decrease in total haemocyte counts, lysozyme activity, protease activity, and bacterial count in the digestive tract of marron. Starved marron initially fed PBM and BSFM showed higher tolerance to starvation, followed by marron initially fed FM and SBM, while marron initially fed TH and LM showed the highest susceptibility to starvation.
Collapse
Affiliation(s)
- Thi Thanh Thuy Dao
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia;
- Research Institute for Aquaculture No. 3 (RIA3), 02 Dang Tat Street, Nha Trang 650000, Vietnam
| | - Ravi Fotedar
- School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia;
| |
Collapse
|
26
|
Liu C, Ma J, Wang M, Xu J, Zhu C, Zhu G. Electrocatalytic nitrate reduction using iron single atoms for sustainable ammonium supplies to increase rice yield. Proc Natl Acad Sci U S A 2024; 121:e2408187121. [PMID: 39630859 DOI: 10.1073/pnas.2408187121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024] Open
Abstract
Increasing food production and ensuring drinking water safety have always been a focus of attention, especially for people in underdeveloped regions of the world. Traditional excessive fertilizer applications have increased crop yield but also caused groundwater nitrate pollution. Agricultural irrigating water is an important reservoir for nitrogen (N) (e.g., nitrate) accumulation after fertilization. Ammonium (NH4+-N) is a more readily absorbed N form by rice than nitrate (NO3--N). In this study, we proposed a strategy using iron single-atom catalysts (Fe-SAC) to selectively reduce NO3--N to NH4+-N from the real paddy field irrigating water to provide sustainable NH4+-N supplies for rice uptakes, thereby highlighting decreasing N fertilizer applications and mitigating NO3--N pollution. Then, we constructed a solar-energy-driven electrochemical reactor for NO3--N reduction, with the Fe single atom as the core catalyst, and achieved an average NH4+-N selectivity of 80.2 ± 2.6% with no additional energy input. Sustainable NH4+-N supplies resulted in a 30.4 % increase in the 100-grain weight of the cultivated rice and a 50% decrease of fertilizer application than those of the fertilization group in the pot experiment, which were one of the best values ever reported. Furthermore, the 15N isotope tracing results indicated a N use efficiency (NUE) from 15NO3--N of 71.2 ± 3.2%. Sustainable NH4+-N supplies played a key role in promoting rice root development which contributed to the high NUE. Our study shares unique insights in increasing grain yield, reducing fertilizer applications, and preventing nitrate leaching into groundwater.
Collapse
Affiliation(s)
- Chunlei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jingchen Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Manting Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jingru Xu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Chao Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
27
|
He M, Peng Q, Xu X, Shi B, Qiao Y. Antioxidant capacities and non-volatile metabolites changes after solid-state fermentation of soybean using oyster mushroom ( Pleurotus ostreatus) mycelium. Front Nutr 2024; 11:1509341. [PMID: 39713777 PMCID: PMC11660803 DOI: 10.3389/fnut.2024.1509341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Given the abundance of beneficial properties and enzymes secreted by edible oyster mushrooms, their mycelium could serve as a starter for fermented foods to enhance their nutritional and bioactive quality. This study aimed to investigate the effects on the nutritional ingredients, antioxidant activity, and non-volatile metabolites during solid-state fermentation (SSF) of soybeans by Pleurotus ostreatus mycelium. The results indicated that the contents of dietary fiber and starch in fermented soybeans decreased, while the amounts of protein and lipid increased after SSF (P < 0.05). Analysis of the total phenolic content (TPC) and antioxidant activities of the fermented soybeans revealed that the methanolic extracts significantly increased TPC and antioxidant activities against intracellular reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, as well as against DPPH and ABTS radicals in vitro. A total 154 differential metabolites were identified after SSF, and a Spearman correlation study revealed a direct relationship between antioxidant activities and certain metabolites including phenolic compounds, oligopeptides, and free fatty acids etc. Among these metabolites, phenolic compounds produced by the shikimic acid pathway were diverse in variety and had the greatest multiple differences. The study discovered that a potential mechanism involving SSF with P. ostreatus mycelium increased the antioxidant activity of soybeans.
Collapse
Affiliation(s)
| | | | | | | | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Dutta M, Dineshkumar R, Nagesh CR, Durga Lakshmi Y, Lekhak B, Bansal N, Goswami S, Kumar RR, Kundu A, Mandal PK, Arora B, Raje RS, Mandal S, Yadav A, Tyagi A, Ramesh SV, Rama Prashat G, Vinutha T. Exploring protein structural adaptations and polyphenol interactions: Influences on digestibility in pigeon pea dal and whole grains under heat and germination conditions. Food Chem 2024; 460:140561. [PMID: 39059329 DOI: 10.1016/j.foodchem.2024.140561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Pigeon pea, a protein-rich legume with low protein digestibility (PD) due to its high polyphenol content and other antinutritional factors (ANFs). Consequently, processing methods are crucial to improve PD. We investigated the effects of thermal treatments (cooking, hydrothermal, autoclaving, infrared rays) treatments and germination on modulation of PD, its properties and association with ANFs in two distinct genotypes based on polyphenol content: high (Pusa Arhar 2018-4) and low (ICP-1452). Treatments improved in vitro PD and essential amino acid content, with autoclaving showing significantly higher PD (ICP-1452: 90.4%, Pusa-Arhar 2018-4: 84.32%) ascribed to disruption of tight protein matrices. Significant increase in β-turn, reduction in protein: starch, protein: polyphenol interactions as well as breakdown of storage proteins revealed by the analysis of protein structural properties. This study suggests thermal treatments, particularly autoclaving, can enhance pigeon pea protein's nutritional quality for its utilization as a new ingredient in development of healthy foods.
Collapse
Affiliation(s)
- Minakshi Dutta
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - R Dineshkumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - C R Nagesh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Y Durga Lakshmi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Brijesh Lekhak
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Navita Bansal
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pranab Kumar Mandal
- National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Bindvi Arora
- Division of Food Science & Post Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Ranjeet Sharad Raje
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Somnath Mandal
- Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal, India
| | - Achchhelal Yadav
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Aruna Tyagi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - S V Ramesh
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671 124, India
| | - G Rama Prashat
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - T Vinutha
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
29
|
Lu J, Zamaratskaia G, Langton M, Röhnisch HE, Karkehabadi S. Minimizing anti-nutritional factors in wet protein extraction from Swedish faba beans through the application of response surface methodology. Food Chem 2024; 460:140700. [PMID: 39094337 DOI: 10.1016/j.foodchem.2024.140700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Faba beans, rich in protein and ideal for Swedish cultivation, are limited in food industry use due to anti-nutritional factors (ANFs) that hinder nutrient absorption. An extraction method was developed in our study to mitigate ANFs in faba beans, using aqueous alkaline methods and isoelectric precipitation with differential salt concentration. This method yielded 15.8 g of protein per 100 g of flour, with a protein concentration exceeding 83% of the total extract. It reduced ANFs like phytic acid (28.0%), lectins (87.5%), vicine (98.5%), and convicine (99.7%). Extraction conditions were optimized using response surface methodology, identifying pH 6, 2 h, and 20 °C as the most effective parameters, achieving an 86% reduction in phytic acid, closely matched the model's predictions (R2 = 0.945). This method effectively reduced ANFs, offering a sustainable approach for producing proteins suitable for diverse food products, including plant-based alternatives.
Collapse
Affiliation(s)
- Jing Lu
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden.
| | - Galia Zamaratskaia
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden
| | - Hanna Eriksson Röhnisch
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden
| |
Collapse
|
30
|
Wang Z, Xing T, Zhang L, Zhao L, Gao F. Effects of substituting soybean meal with fermented rapeseed meal mixture on the growth performance, slaughter performance, meat quality, blood biochemical indices and intestinal barrier function in Langshan Chickens. Poult Sci 2024; 103:104478. [PMID: 39500263 PMCID: PMC11570714 DOI: 10.1016/j.psj.2024.104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
This study aimed to explore the effects of substituting soybean meal with a mixture of solid-state fermented rapeseed meal, apple pomace, and wheat bran on the growth performance, slaughter performance, meat quality, blood biochemical indices and intestinal barrier function of Langshan chickens. A total of 144 30-day-old Langshan chickens with similar body weights were randomly divided into three treatment groups, with six replicates per group and eight chickens per replicate: the control group (CON) was fed a corn-soybean meal basal diet, while the rapeseed meal mixture group (RSM) and the fermented rapeseed meal mixture group (FRSM) were fed diets substituting 5 % of soybean meal with rapeseed meal mixture and fermented rapeseed meal mixture, respectively. The trial lasted from 30 to 58 days of age. The results showed that compared to the CON group, the RSM group exhibited no significant changes in average daily feed intake (ADFI), average daily gain (ADG) and feed to gain ratio (F/G) (P > 0.05); the dressing percentage, half-eviscerated yield and eviscerated yield decreased (P < 0.05); the pH24h and yellowness of breast muscle increased (P < 0.05); the crypt depth of the jejunum decreased, and the villus height/crypt depth ratio increased (P < 0.05); the serum D-lactic acid content decreased (P < 0.05). Compared to the CON group, the FRSM group exhibited no significant changes in ADFI, ADG and F/G (P > 0.05); the eviscerated yield increased (P < 0.05); the serum glucose and uric acid levels decreased (P < 0.05); the crypt depth of the jejunum decreased, and the villus height/crypt depth ratio increased (P < 0.05); the serum D-lactic acid content decreased (P < 0.05). Furthermore, compared to the RSM group, the FRSM group exhibited no significant changes in ADFI, ADG and F/G (P > 0.05); the dressing percentage, half-eviscerated yield and eviscerated yield increased (P < 0.05); the pH24h of breast muscle decreased; the serum glucose and uric acid levels decreased (P < 0.05).In conclusion, RSM reduced the slaughter performance of Langshan chickens, while FRSM improved their slaughter performance. Both RSM and FRSM improved the jejunal morphology and intestinal permeability in Langshan chickens. In conclusion, fermentation improved the feed value of the rapeseed meal mixture; replacing part of the soybean meal diet with fermented rapeseed meal mixture helped improve the slaughter performance and intestinal barrier of Langshan chickens.
Collapse
Affiliation(s)
- Zhaochen Wang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
31
|
Badran AA, Magouz FI, Zaineldin AI, Abdo SE, Amer AA, Gewaily MS, Dawood MAO. Using a blend of oilseed meals in the diets of Nile tilapia (Oreochromis niloticus): effects on the growth performance, feed utilization, intestinal health, growth, and metabolic-related genes. BMC Vet Res 2024; 20:529. [PMID: 39605040 PMCID: PMC11600596 DOI: 10.1186/s12917-024-04373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
In this study, Nile tilapia were fed a blend of oilseed meals (BOM) that includes cottonseed meal (CSM), linseed meal (LSM), sesame meal (SSM), and sunflower meal (SFM) at a ratio of 1 CSM: 1 LSM: 1 SSM: 1 SFM. Six diets were formulated where the first diet included FM and SBM as protein sources and considered the positive control diet (FM). Another five FM-free diets were formulated, where SBM was substituted with BOM and included at 0, 100, 200, 300, and 400 g/kg diet. After 90 days, the FBW, WG, and PER were markedly increased while FCR decreased by FM-based diet and BOM at 0, 100, or 200 g/kg compared to fish-fed BOM at 300, and 400 g/kg (P < 0.05). The groups treated with BOM at 100-200 g/kg demonstrated considerable impairments, followed by those treated with BOM at 300 g/kg. Furthermore, fish given BOM at 400 g/kg had significantly less intestinal histological characteristics than the other groups. The relative expression of the IGF-1, GHR1, FABP, and CCK genes were downregulated in tilapia-fed BOM at 200, 300, and 400 g/kg compared to fish-fed FM-based diet (P < 0.05). The relative cost of feed per kg fish gain showed 4.42, 7.11, 8.14, 10.32, and 8.10% reduction rates in fish-fed SBM, or BOM at 100, 200, 300, and 400 g/kg. In conclusion, dietary BOM can be incorporated in Nile tilapia diets at up to 200 g/kg without affecting growth performance or feed utilisation. High inclusion levels (300 and 400 g/kg) may impair growth performance and feed utilisation by disrupting intestinal histological characteristics and reducing expression of growth and metabolic genes (GHR1, IGF-1, FABP, and CCK) in the liver.
Collapse
Affiliation(s)
- Ahmed A Badran
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Fawzy I Magouz
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Amr I Zaineldin
- Unit of Biochemistry, Nutritional Deficiency Diseases and Toxicology, Agriculture Research Center, Animal Health Research Institute (AHRI-DOKI), Kafr El-Sheikh branch, Giza, 85871, Egypt
| | - Safaa E Abdo
- Genetics and Genetic Engineering, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Asem A Amer
- Department of Fish Nutrition and Feed Technology, Central Laboratory for Aquaculture Research, Agricultural Research Center, Abbassa, Abo-Hammad, Sharqia, Giza, 85871, Egypt
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Mahmoud A O Dawood
- Animal Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
- The Center for Applied Research on the Environment and Sustainability, The American University in Cairo, New Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
32
|
Campbell BE, Hassan MM, Moore RJ, Olchowy T, Ranjbar S, Soust M, Ramirez-Garzon O, Al Jassim R, Alawneh JI. Temporal Changes in Faecal Microbiota Composition and Diversity in Dairy Cows Supplemented with a Lactobacillus-Based Direct-Fed Microbial. Animals (Basel) 2024; 14:3437. [PMID: 39682401 DOI: 10.3390/ani14233437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The rumen microbiota of dairy cows plays a crucial role in fermenting fibrous material, essential for nutrient extraction and overall productivity, detoxification of anti-nutritional toxic compounds, synthesis of vital nutrients, and is essential for optimal animal health. This study investigated the impact of Lentilactobacillus-, Lactocaseibacillus-, and Lacticaseibacillus-based direct-fed microbial (DFM) supplementation on dairy cows' faecal microbial composition and diversity. The study was carried out on a commercial dairy farm using 50 Holstein-Friesian cows randomly assigned into control (CON) and treatment (TRT) groups. Faecal samples were collected directly from the rectum every two months from September 2021 to January 2023. The bacterial 16S rRNA gene and fungal ITS-1 regions were amplified, sequenced, and analysed. Microbial diversity was assessed through alpha- and beta-diversity metrics. Linear discriminant analysis effect size (LEfSe) was performed to identify which taxa were driving the changes seen in the microbiota over time and treatment. Bacteroidaceae were the most prevalent bacterial family, followed by Lachnospiraceae and Muribaculaceae in both CON and TRT cows. Ascomycota, Basidiomycota, and Mucoromycota were the dominant three fungal phyla in the faeces of both CON and TRT cows. Bacterial genera Fructilactobacillus was abundant in the CON and Absicoccus in the TRT groups. Fungal taxa Chaetothryriales_incertae_sedis and Pseudomentella were absent in the faeces of TRT cows. Significant temporal and specific taxonomic differences were observed between the CON and TRT groups. The study's findings underscore the dynamic nature of microbial communities and the importance of targeted dietary interventions. Further research is necessary to elucidate these microbial shifts, long-term impacts, and functional implications, aiming to optimise ruminant nutrition and enhance dairy cow performance.
Collapse
Affiliation(s)
- Bronwyn E Campbell
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3068, Australia
| | | | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3068, Australia
| | - Timothy Olchowy
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T3R 1J3, Canada
| | - Shahab Ranjbar
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD 4573, Australia
| | | | - Rafat Al Jassim
- Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - John I Alawneh
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
33
|
Jeżewska-Zychowicz M, Sajdakowska M, Gębski J, Kosicka-Gębska M, Gutkowska K. The Importance of Self-Identities and Habitual Behavior for Eating More Plant Foods. Nutrients 2024; 16:4063. [PMID: 39683457 DOI: 10.3390/nu16234063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVES This study aimed to identify the predictors of eating more plant-based foods and legumes in terms of previous changes in consumption, habitual frequency of consumption, intention to reduce the amount of meat consumed, and health and environmental identities. METHODS A cross-sectional survey was conducted between June and September 2023 in 881 Polish adults. Based on two self-descriptors, four groups of respondents were identified: no health identity and no environmental identity (nHI-nEI), health identity but no environmental identity (HI-nEI), no health identity but environmental identity (nHI-EI), and both health identity and environmental identity (HI-EI). A logistic regression analysis was used to verify associations between habitual eating of red meat, white meat, and legumes, changes in their intake over the past two years, familiarity with plant-based substitutes for animal products, health, and environmental identity, declared intentions to eat less meat, and the intentions to eat more plant-based food and eat more legumes next year. RESULTS Individuals were more likely to increase their consumption of plant foods (OR: 1.99, p = 0.001), including legumes (OR: 1.79, p = 0.045), when they represented the HI-EI group, had increased their consumption of legumes in the past two years (OR: 2.91, p = 0.009, and OR: 2.15, p = 0.017, respectively), declared an intention to reduce meat (OR: 8.02, p < 0.001, and OR: 12.08, p < 0.001, respectively), but also occasionally consumed plant-based meat substitutes (OR: 1.76, p = 0.002, and OR: 2.61, p < 0.001, respectively). However, individuals were more likely to increase their consumption of plant foods, but not legumes, if they currently consumed legumes frequently (OR: 1.36, p = 0.009, and OR: 1.22, p = 0.111, respectively) and had previously limited their consumption of red meat (OR: 2.40, p < 0.001, and OR: 1.09, p = 0.717, respectively). CONCLUSIONS The habitual frequency of eating red and white meat did not predict the increased consumption of plant foods in the future. It is equally important to increase people's awareness of the impact of the food they consume on health and the environment to support their health and pro-environmental motivation for food choices. Public health and sustainability campaigns should develop new methods to reach populations less willing to change.
Collapse
Affiliation(s)
- Marzena Jeżewska-Zychowicz
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Marta Sajdakowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Jerzy Gębski
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Małgorzata Kosicka-Gębska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Krystyna Gutkowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|
34
|
Anumudu CK, Miri T, Onyeaka H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024; 13:3714. [PMID: 39682785 DOI: 10.3390/foods13233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Lactic Acid Bacteria (LAB) have garnered significant attention in the food and beverage industry for their significant roles in enhancing safety, quality, and nutritional value. As starter cultures, probiotics, and bacteriocin producers, LAB contributes to the production of high-quality foods and beverages that meet the growing consumer demand for minimally processed functional and health-promoting food products. Industrial food processing, especially in the fresh produce and beverage sector, is shifting to the use of more natural bioproducts in food production, prioritizing not only preservation but also the enhancement of functional characteristics in the final product. Starter cultures, essential to this approach, are carefully selected for their robust adaptation to the food environment. These cultures, often combined with probiotics, contribute beyond their basic fermentation roles by improving the safety, nutritional value, and health-promoting properties of foods. Thus, their selection is critical in preserving the integrity, quality, and nutrition of foods, especially in fresh produce and fruits and vegetable beverages, which have a dynamic microbiome. In addition to reducing the risk of foodborne illnesses and spoilage through the metabolites, including bacteriocins they produce, the use of LAB in these products can contribute essential amino acids, lactic acids, and other bioproducts that directly impact food quality. As a result, LAB can significantly alter the organoleptic and nutritional quality of foods while extending their shelf life. This review is aimed at highlighting the diverse applications of LAB in enhancing safety, quality, and nutritional value across a range of food products and fermented beverages, with a specific focus on essential metabolites in fruit and vegetable beverages and their critical contributions as starter cultures, probiotics, and bacteriocin producers.
Collapse
Affiliation(s)
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
35
|
Ribet L, Kassis A, Jacquier E, Monnet C, Durand-Dubief M, Bosco N. The nutritional contribution and relationship with health of bread consumption: a narrative review. Crit Rev Food Sci Nutr 2024:1-28. [PMID: 39556205 DOI: 10.1080/10408398.2024.2428593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Bread consumption dates back thousands of years, being one of the oldest and most widespread staple food worldwide. While bread is often associated with taste, pleasure, and tradition, its perception as a vehicle of nutrition and health remains complex. Today, there is no scientific consensus on whether bread consumption is beneficial or deleterious to human health. The objective of this review is therefore to present and discuss epidemiological and clinical evidence on the nutritional contribution of bread and its relationship with health. We also present different aspects of bread such as flour type and inclusions that may modulate this relationship. Studies included in this review investigate bread as part of a dietary pattern as well as the effect of bread alone on overweight, cardiometabolic health, and digestive health. Bread is an integral part of diets around the world, with a significant contribution to key nutrients. Although evidence on the impact of bread consumption on health is still lacking and depends on the overall diet, whole grain breads have shown consistent beneficial effects on human health. Substitution modeling studies and well-designed clinical trials are warranted to fill the research gaps and understand the role of bread consumption in health and disease.
Collapse
Affiliation(s)
- Léa Ribet
- Lesaffre Institute of Science & Technology, Lesaffre International, Marcq-en-Barœul, France
| | - Amira Kassis
- Neat Science Consulting, Châtel-Saint-Denis, Fribourg, Switzerland
| | - Emma Jacquier
- Neat Science Consulting, Châtel-Saint-Denis, Fribourg, Switzerland
| | - Céline Monnet
- Lesaffre Institute of Science & Technology, Lesaffre International, Marcq-en-Barœul, France
| | | | - Nabil Bosco
- Neat Science Consulting, Châtel-Saint-Denis, Fribourg, Switzerland
| |
Collapse
|
36
|
Abdi R, Cao W, Joye IJ. Unlocking the potential health improving properties of sprouted wheat. Food Chem 2024; 458:140285. [PMID: 38970956 DOI: 10.1016/j.foodchem.2024.140285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Sprouting can enhance the bioavailability and stimulate the production of health-promoting compounds. This research explored the potential health benefits of wheat sprouting, focusing on underexplored areas in existing literature such as alterations in phenylalanine ammonia-lyase (PAL) activity and glutathione levels during wheat sprouting. Furthermore, special attention was directed toward asparagine (Asn), the main precursor of acrylamide formation, as regulatory agencies are actively seeking to impose limitations on the presence of acrylamide in baked products. The results demonstrate elevated levels of PAL (4.5-fold at 48 h of sprouting), antioxidants, and total phenolics (1.32 mg gallic acid equivalent/g dry matter at 72 h of sprouting), coupled with a reduction in Asn (i.e. 11-fold at 48 h of sprouting) and glutathione concentrations, after wheat sprouting. These findings suggest that sprouting can unlock health-promoting properties in wheat. Optimizing the sprouting process to harness these benefits, however, may have implications for the techno-functionality of wheat flour in food processing.
Collapse
Affiliation(s)
- Reihaneh Abdi
- Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Wei Cao
- Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1, Canada; School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Iris J Joye
- Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
37
|
He X, Shu H, Xu T, Yu M, Li H, Hu Y, Mo J, Ai C. Transcriptomics and Metabolomics Explain the Crisping Mechanisms of Broad Bean-Based Crisping Diets on Nile Tilapia ( Orechromis niloticus). Metabolites 2024; 14:616. [PMID: 39590852 PMCID: PMC11596958 DOI: 10.3390/metabo14110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: To investigate the crisping mechanism of broad bean-based crisping diets on Nile Tilapia. Methods: Four crisping diets were designed to feed 360 fish for 90 days, and multiomics analyses were employed. Results: Our results indicated that the designed crisping diets for Nile tilapia can effectively make tilapia muscle crispy. The ingestion of broad bean-based diets induced metabolic reprogramming dominated by glycolytic metabolism inhibition in fish, and metabolic reprogramming is the initiator of muscle structural remodeling. Among these, glucose is the main DAMP to be recognized by cellular PRRs, activating further immune response and oxidative stress and finally resulting in muscle change. Conclusions: Based on our results of multiomics, pck2, and ldh played main roles in crisping molecular mechanisms in driving the initial metabolic reprogram. Moreover, the addition of the crisping package further activated the ErbB signaling pathway and downstream MAPK signaling pathway to strengthen immune response, promoting muscle fiber development and growth. Our study delved into the effects of crisping formula diet on the liver of Nile tilapia at the molecular level, providing theoretical guidance for the nutritional regulation of crispy Nile tilapia.
Collapse
Affiliation(s)
- Xiaogang He
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
| | - Haoming Shu
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
- Anyou Biotechnology Group Co., Ltd., Jiangshu 215400, China
| | - Tian Xu
- Marine and Fishery Institute of Xiamen, Fujian 361000, China
| | - Minhui Yu
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
| | - Honglin Li
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
| | - Yanru Hu
- Anyou Biotechnology Group Co., Ltd., Jiangshu 215400, China
| | - Jiajun Mo
- Anyou Biotechnology Group Co., Ltd., Jiangshu 215400, China
| | - Chunxiang Ai
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
- State Key Laboratory of Mariculture Breeding, Xiamen 361102, China
| |
Collapse
|
38
|
Multescu M, Culetu A, Susman IE. Screening of the Nutritional Properties, Bioactive Components, and Antioxidant Properties in Legumes. Foods 2024; 13:3528. [PMID: 39593944 PMCID: PMC11593270 DOI: 10.3390/foods13223528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
This study provides an assessment of nutrients (protein, amino acid profiles, fiber, starch), phenolic content TPC, flavonoid content TFC, and antioxidant capacity through different in vitro methods in 12 legume species (red, green, yellow, brown, and black lentils; mung, pinto, black, and kidney beans; chickpea, soy, and lupin) and hemp. Legumes with a protein content above 30% were black lentil, lupin, and soy. Chickpea, soy, black bean, kidney bean, and mung bean did not have any limiting amino acids. All samples had moderate overall protein quality, except green and brown lentils. Black bean was less digestible (68.1%), while soy, hemp, and red lentil had higher protein digestibility (79.3-84.7%). Pinto bean had the highest TPC (425.19 mg GAE/100 g), comparable with hemp, but the lowest TFC (0.24 mg QE/100 g). Yellow and red lentils showed the lowest TPC (69-85.89 mg GAE/100 g). Mung bean presented the highest concentration of flavonoids (45.47 mg QE/100 g), followed by black lentil (28.57 mg QE/100 g). There were distinct variations in the antioxidant capacity across different legume samples and assays. Pinto bean, hemp, and green lentil had the highest relative antioxidant capacity index, while yellow lentil, red lentil, and chickpea presented the lowest. Dark-colored legume samples showed a higher TPC and a lower antioxidant capacity (CUPRAC and PCL assays), while yellow legumes had less antioxidant capacity (DPPH assay). A high correlation coefficient was observed between TPC and DPPH (r = 0.8133), TPC and FRAP (r = 0.8528), TPC and CUPRAC (r = 0.9425), and TPC and ACL (r = 0.8261) methods. The results highlight large variations in the legume properties and support the exploitation of the nutritional properties of legumes as raw materials for the development of products designed to fulfil modern consumer demands.
Collapse
Affiliation(s)
| | - Alina Culetu
- National Institute of Research & Development for Food Bioresources, IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania
| | | |
Collapse
|
39
|
Chin TGJ, Ruethers T, Chan BA, Lopata AL, Du J. Techno-functional properties and allergenicity of mung bean (Vigna radiata) protein isolates from Imara and KPS2 varieties. Food Chem 2024; 457:140069. [PMID: 38936132 DOI: 10.1016/j.foodchem.2024.140069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Mung bean is an increasingly cultivated legume. This study compared mung bean varieties 'KPS2' from Thailand (Th) and 'Imara' from Tanzania (T) with a focus on protein composition, allergenicity, and techno-functional properties. Two rounds alkaline-acid extraction were performed to produce mung bean protein isolate (MBPI - Th1/T1 and Th2/T2), supernatant (S) and protein-poor residue (PPR). Mass spectrometric analysis revealed high abundance of 8 s-vicilin and 11 s-legumin in MBPI and S. Extraction removed considerable amounts of the seed albumin allergen but increased the relative abundance of cupins in MBPI. Higher vicilin levels were found in Th1 samples, contributed to increased protein solubility above pH 6.5. Th formed stronger gels which were more stable at higher frequencies. In contrast, T proteins were structurally more flexible, leading to its improved foaming ability. This study provides the knowledge and methods for appropriate selection of mung bean varieties for various food applications.
Collapse
Affiliation(s)
- Tak Gun Jeremy Chin
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Thimo Ruethers
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Bing Aleo Chan
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Andreas Ludwig Lopata
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, Singapore 387380, Singapore; Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Queensland 4811, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore; Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, IN 47907, USA; Sengkang General Hospital, Singapore Health Services, 10 Hospital Boulevard, Singapore 15 168582, Singapore.
| |
Collapse
|
40
|
Bátora D, Dienes-Nagy Á, Zeng L, Gerber CE, Fischer JP, Lochner M, Gertsch J. Hypersensitive quantification of major astringency markers in food and wine by substoichiometric quenching of silicon-rhodamine conjugates. Food Chem X 2024; 23:101592. [PMID: 39040149 PMCID: PMC11261284 DOI: 10.1016/j.fochx.2024.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
Tannins are chemically diverse polyphenols in plant-derived products that not only show diverse biological activities but also play a crucial role in determining the sensory attributes of food and beverages. Therefore, their accurate and cost-effective quantification is essential. Here, we identified a novel fluorescence quenching mechanism of different synthetic rhodamine fluorophores, with a high selectivity towards tannic acid (TA) and catechin-3-gallate (C3G) compared to a structurally diverse panel of tannins and polyphenols. Specific chemical conjugates of silicon-rhodamine with alkyl linkers attached to bulky apolar moieties had a limit of detection near 500 pM and a linear range spanning 5-100 nM for TA. We validated the assay on 18 distinct red wine samples, which showed high linearity (R2 = 0.92) with methylcellulose precipitation with no interference from anthocyanins. In conclusion, a novel assay was developed and validated that allows the sensitive and selective quantification of major astringency markers abundant in food and beverages.
Collapse
Affiliation(s)
- Daniel Bátora
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Liming Zeng
- University of Applied Sciences and Arts of Western Switzerland (HES-SO), Changins Viticulture and Enology College, 1260 Nyon, Switzerland
| | - Christian E. Gerber
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jérôme P. Fischer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
41
|
Gunjal M, Singh J, Kaur S, Nanda V, Ullah R, Iqbal Z, Ercisli S, Rasane P. Assessment of bioactive compounds, antioxidant properties and morphological parameters in selected microgreens cultivated in soilless media. Sci Rep 2024; 14:23605. [PMID: 39384958 PMCID: PMC11464729 DOI: 10.1038/s41598-024-73973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
The study investigated the effect of soilless media (burlap), on the morphological traits and antioxidant activities of microgreens from Brassicaceae, Amaranthaceae, and Linaceae families. The results revealed significant variations were observed in the selected morphological, biochemical composition, and antioxidant capacity of the microgreens. The radish sango and microgreens showed superior morphological characteristics compared to other microgreens. The elemental composition analysis revealed consistent moisture, ash, fat, fiber, and protein content across all families. The results revealed significant variations in the biochemical composition and antioxidant capacity of the microgreens, depending on the growing medium and between microgreens. Notably, microgreens differed in photosynthetic pigment profiles, with flaxseed and cabbage showing the highest chlorophyll content of 26.59 to 27.18 µg/g, FW and carotenoid content in a range of 3.74 to 6.39 µg/g, FW was observed in microgreens. The radish sango and beetroot microgreens exhibited elevated anthocyanin levels of 27.94-28.25 µmol/100 g, FW. Biochemical analysis indicated varying levels of ascorbic acid (177.58 to 256.46 mg/100 g, FW), total glucosinolate content (4.09 to 47.38 µmol/g, FW), phenolic content (131.44 to 298.56 mg GAE/100 g, FW), and flavonoid content (10.94 to 18.14 mg QUE/100 g, FW) were observed in selected microgreens families. Radish sango microgreens demonstrated the highest DPPH (76.82%, FW) and ABTS (88.49%, FW) radical scavenging activities, indicating superior antioxidant potential. The study showed that Brassicaceae microgreens are particularly rich in bioactive and antioxidant properties. Additionally, studies could assess the economic feasibility and scalability of soilless cultivation methods for microgreens to support their inclusion in sustainable agricultural practices and health-promoting diets.
Collapse
Affiliation(s)
- Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Nanda
- Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab, India
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University, P.O.Box 7805, Riyadh, 11472, Kingdom of Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Türkiye
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
42
|
Jameel S, Hameed A, Shah TM, Coyne CJ. Demystifying the nutritional and anti-nutritional genetic divergence of Pakistani chickpea ( Cicer arietinum L.) genetic resource via multivariate approaches. Front Nutr 2024; 11:1407096. [PMID: 39439524 PMCID: PMC11494965 DOI: 10.3389/fnut.2024.1407096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Chickpeas are a highly versatile functional food legume that possesses the capacity to boost human health and has the potential to alleviate malnutrition-related deficiencies. To investigate whole seed-based nutritional and anti-nutritional composition, a set of 90 chickpea genotypes (66 desi and 24 kabuli) was collected from different research organizations in Pakistan. Significant variation (Tukey HSD test, p < 0.05) was perceived among genotypes for traits under investigation. The genotypes, with maximum total soluble proteins (TSPs) (34.92%), crude proteins (CPs) (30.13%), and reducing sugars (17.33 mg/g s. wt.), i.e., Punjab-2000 (desi); total free amino acids (TFAs) (3.34 g/100 g DW), i.e., Wild Hybrid-15 (desi), albumins (227.67 mg/g s. wt.), i.e., Sheenghar-2000 (desi); globulins (720 g s. wt.), i.e., ICCV-96030 (desi); salt-soluble proteins (200 mg/g s. wt.), i.e., ILWC-247 (desi); total soluble sugars (TSSs) (102.63 mg/g s. wt.), i.e., CM1051/11 (desi); non-reducing sugars (95.28 mg/g s. wt.), i.e., NIAB-CH2016 (desi); starch content (83.69%), i.e., CH55/09 (kabuli); and the genotypes with least value of anti-nutritional factors glutelin (3.33 mg/g s. wt.), i.e., Wild Hybrid-9 (desi); hordein (1.38 mg/g s. wt.), i.e., Noor-2013 (kabuli); tannins (5,425 uM/g s. wt.), i.e., Wild Hybrid-1 (desi); and phytic acid (PA) (0.18 mg/g s. wt.), i.e., Bhakhar-2011 (desi), could be the promising genotypes to formulate health-promoting plant-based food products. Data were also analyzed for principal component analysis (PCA), correlation, and agglomerative hierarchical clustering. PC-1 revealed the highest contribution (20.83%) toward cumulative variability, and maximum positive factor loading was delivered by TSSs (0.85) followed by starch content (0.729). Genotypes were grouped into three distinct clusters based on high average values of traits under investigation. Cluster I encompassed genotypes with a high mean value of CP content, albumins, hordein, and glutelin; Cluster II encompassed genotypes with a high mean value of TSPs, TSSs, non-reducing sugars, globulins, salt-soluble sugars, starch, and TFAs; Cluster III encompassed genotypes with high tannins, reducing sugars, and PA. Identified desi and kabuli genotypes exhibiting superior seed quality traits and minimal anti-nutritional factors can be used in chickpea breeding programs aimed at improving seed nutritional quality in future breeding lines.
Collapse
Affiliation(s)
- Saima Jameel
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Tariq Mahmud Shah
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Clarice J. Coyne
- USDA–ARS Plant Germplasm Introduction and Testing, Washington State University, Pullman, WA, United States
| |
Collapse
|
43
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
44
|
Mthana MS, Mthiyane DMN. High dietary Mucuna pruriens utilis seed meal compromises growth performance, carcass traits, haemato-biochemistry, and meat quality of broilers. Trop Anim Health Prod 2024; 56:310. [PMID: 39352513 PMCID: PMC11445329 DOI: 10.1007/s11250-024-04120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Usage of soyabean meal (SBM) in broiler diets is economically and environmentally unsustainable thus necessitating investigation of alternative protein sources. Therefore, this study investigated effects of incremental inclusion levels of Mucuna pruriens utilis seed meal (MSM) for partial substitution of SBM in broiler diets. In a completely randomized design (CRD), 400 day-old Ross 308 chicks were allotted to 5 iso-caloric-nitrogenous MSM-containing (0, 5, 10, 15, and 20%) dietary treatments. Each treatment was replicated 8 times, with each pen having 10 birds, during starter (d1 - 14), grower (d15 - 28), and finisher (d29 - 42) phases. Results showed that dietary MSM decreased feed intake (FI: quadratic: P < 0.001), body weight gain (BWG: linear: P < 0.001), and feed conversion efficiency (FCE: linear: P < 0.001) as it linearly decreased slaughter weight (SW: P < 0.001), hot carcass weight (HCW: P < 0.001), cold carcass weight (CCW: P < 0.001), dressing percentage (P < 0.001), and breast weight (P < 0.05). In contrast, dietary MSM linearly increased the weights of the liver (P < 0.01), proventriculus (P < 0.001), gizzard (P < 0.001), duodenum (P = 0.01), jejunum (P < 0.001), ileum (P < 0.001), caecum (P < 0.01), and colon (P < 0.01). Also, dietary MSM quadratically increased blood heterophils (P < 0.05) and alkaline phosphatase activity (P < 0.05) of the chickens whilst linearly increasing their serum amylase (P = 0.001) and lipase (P = 0.001) activities and linearly decreasing their serum symmetric dimethylarginine (SDMA: P = 0.001) and cholesterol (P < 0.05). Further, dietary MSM linearly decreased chicken breast meat ultimate pH (P < 0.05) whilst linearly increasing its cooking loss (P < 0.01), drip loss (P < 0.05) and shear force (P < 0.01). In conclusion, dietary MSM compromised growth performance, carcass characteristics, and meat quality of broilers as it increased the weights of their digestive-metabolic organs.
Collapse
Affiliation(s)
- Makiwa Simeon Mthana
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046, Mmabatho, 2735, South Africa
| | - Doctor Mziwenkosi Nhlanhla Mthiyane
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X 2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Mmabatho, 2735, South Africa.
| |
Collapse
|
45
|
Onwuka QI, Chinma CE, Ezeocha VC, Otegbayo B, Oyeyinka SA, Adebo JA, Wilkin J, Bamidele OP, Adebo OA. Short-term germinated legume flours as functional ingredients in food products. J Food Sci 2024; 89:6070-6085. [PMID: 39251487 DOI: 10.1111/1750-3841.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Unlocking the potential of legumes through short-term germination offers an innovative approach to improving the functionality of the resultant flour. This review examines the multifaceted benefits of short-term germinated legume flour, emphasizing the enzymatic activities that breakdown complex legume compounds into simpler forms and reduce anti-nutritional factors. This process improves digestibility, nutrient bioavailability, and health-promoting properties. Furthermore, short-term germination enhances the techno-functional properties of legume flours without compromising their quality, avoiding excessive starch and protein degradation associated with prolonged germination. This review also explores the applications of short-term germinated legume flours in developing nutritious and healthy food products tailored to diverse dietary needs. Subsequent integration of these short-term germinated flours into food products provides a route for the development of cost-effective, nutritious, and sustainable options that can address malnutrition and enhance overall well-being.
Collapse
Affiliation(s)
- Queeneth Ijeoma Onwuka
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
| | - Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Vanessa Chinelo Ezeocha
- Department of Food Science and Technology, Michael Okpara University of Agriculture Umudike, Umudike, Nigeria
| | - Bolanle Otegbayo
- Food Science and Technology Program, Bowen University, Iwo, Nigeria
| | - Samson Adeoye Oyeyinka
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
- National Centre for Food Manufacturing, University of Lincoln, Holbeach, UK
| | - Janet Adeyinka Adebo
- Food Evolution Research Laboratory, School of Tourism and Hospitality, University of Johannesburg, Johannesburg, South Africa
| | - Jon Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | | | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| |
Collapse
|
46
|
Yu Z, Gao Y, Duan H, Zheng D, Shang Z, Zhang L, Chen Y. Ultrasound-assisted germination of red kidney beans: Enhancements in physicochemical and nutritional profiles. Food Chem 2024; 454:139829. [PMID: 38810443 DOI: 10.1016/j.foodchem.2024.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
To improve the conventional germination process and improve the nutritional quality of red kidney beans, this study employed high-intensity ultrasound (HIU) supplemented with hydrogen peroxide as a pre-germination treatment. The results showed that the 350 W-10 min treatment yielded the highest germination rate (77.09%), with its sprout length 81.13% greater than that of the control group. The 350 W-10 min treatment increased total protein, soluble protein, and ash content, while simultaneously reducing the fat, starch, and soluble sugar content. The HIU treatment accelerated the accumulation of phenolic and flavonoid compounds, ascorbic acid, and γ-aminobutyric acid. The 350 W-10 min treatment also decreased the levels of phytic acid, trypsin inhibitor activity, and tannin by 42.71%, 65.58%, and 53.18%, respectively. Furthermore, ultrasonic cavitation enhanced antioxidative capacity and improved amino acid composition and protein digestibility. Consequently, HIU serves as a cost-efficient method to accelerate the germination process and enhance their nutritional composition.
Collapse
Affiliation(s)
- Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yating Gao
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Huiling Duan
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Dan Zheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Ziqi Shang
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taiyuan, Shanxi, China; Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan, Shanxi, China.
| |
Collapse
|
47
|
Machado AMR, Teodoro AJ, Mariutti LRB, Fonseca JCND. Tamarillo ( Solanum betaceum Cav.) wastes and by-products: Bioactive composition and health benefits. Heliyon 2024; 10:e37600. [PMID: 39309964 PMCID: PMC11416485 DOI: 10.1016/j.heliyon.2024.e37600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction During processing, a large amount of by-products is produced from tamarillo fruits in the form of stalks, outer skins, and pomace (residual seeds and inner skins). This material is a renewable source of bioactive compounds with high economic value and positive effects on human health. Previous reviews have focused on the ethnobotanical, traditional uses, and phytochemistry of the tamarillo fruit. This report aims to compile production and cultivation data, as well as the valorization of this agro-industrial residue, green extraction methods used for extracting the bioactive compounds, and their biological activity. Method In this study, a literature search was conducted in five scientific databases: Web of Science, ScienceDirect, Scopus, PubMed, and Google Scholar to retrieve research published in English, Spanish, or Portuguese between 2009 and 2024, which mentions the composition and extraction methods of bioactive compounds from tamarillo wastes and by-products and the health benefits associated with these compounds. The data extracted was compiled and shown in this scoping review. Results Tamarillo wastes and by products have a rich nutritional and bioactive composition, including high protein, vitamins A and C, minerals, dietary fiber, sugars, terpenes, flavonoids, carotenoids, anthocyanins, and other phytochemicals. Green methods have been effective, yielding high amounts of these compounds while preserving their integrity. Natural polyphenols have shown antioxidant, anticholinesterase, anti-inflammatory, antimicrobial, anti-diabetic, and anti-obesity properties. The antioxidant fibers, mucilage, and pectin of the pomace contribute to improved intestinal health. Conclusion Therefore, these wastes and by-products have potential uses as natural colorant, antioxidants, supplements, functional foods, active biobased films, and in pharmaceutical and cosmeceutical sectors due to their effective bioactive molecules. Future research should focus on the use of tamarillo by-products as a source of functional ingredients in several other formulations that are still little explored, as well as their use as a natural colorant and antioxidant. More studies are necessary on the composition-activity relationship, physiological mechanisms, and clinical response.
Collapse
Affiliation(s)
| | - Anderson Junger Teodoro
- Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
48
|
Ullah A, Bano A, Khan N. Antinutrients in Halophyte-Based Crops. FRONT BIOSCI-LANDMRK 2024; 29:323. [PMID: 39344318 DOI: 10.31083/j.fbl2909323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 10/01/2024]
Abstract
The cultivation of halophytes is an alternative approach to sustain agricultural productivity under changing climate. They are densely equipped with a diverse group of metabolites that serve multiple functions, such as providing tolerance to plants against extreme conditions, being used as a food source by humans and ruminants and containing bioactive compounds of medicinal importance. However, some metabolites, when synthesized in greater concentration above their threshold level, are considered antinutrients. Widely reported antinutrients include terpenes, saponins, phytate, alkaloids, cyanides, tannins, lectins, protease inhibitors, calcium oxalate, etc. They reduce the body's ability to absorb essential nutrients from the diet and also cause serious health problems. This review focuses on antinutrients found both in wild and edible halophytes and their beneficial as well as adverse effects on human health. Efforts were made to highlight such antinutrients with scientific evidence and describe some processing methods that might help in reducing antinutrients while using halophytes as a food crop in future biosaline agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biology, The Peace College, 24420 Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, 47000 Wah Cantt, Punjab, Pakistan
| | - Naeem Khan
- Agronomy Department, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
49
|
Sareen B, Pudake RN, Sevanthi AM, Solanke AU. Biotechnological approaches to reduce the phytic acid content in millets to improve nutritional quality. PLANTA 2024; 260:99. [PMID: 39294492 DOI: 10.1007/s00425-024-04525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
MAIN CONCLUSION The review article summarizes the approaches and potential targets to address the challenges of anti-nutrient like phytic acid in millet grains for nutritional improvement. Millets are a diverse group of minor cereal grains that are agriculturally important, nutritionally rich, and the oldest cereals in the human diet. The grains are important for protein, vitamins, macro and micronutrients, fibre, and energy sources. Despite a high amount of nutrients, millet grains also contain anti-nutrients that limit the proper utilization of nutrients and finally affect their dietary quality. Our study aims to outline the genomic information to identify the target areas of research for the exploration of candidate genes for nutritional importance and show the possibilities to address the presence of anti-nutrient (phytic acid) in millets. So, the physicochemical accessibility of micronutrients increases and the agronomic traits can do better. Several strategies have been adopted to minimize the phytic acid, a predominant anti-nutrient in cereal grains. In the present review, we highlight the potential of biotechnological tools and genome editing approaches to address phytic acid in millets. It also highlights the biosynthetic pathway of phytic acid and potential targets for knockout or silencing to achieve low phytic acid content in millets.
Collapse
Affiliation(s)
- Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ramesh Namdeo Pudake
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Amity University, Uttar Pradesh, Noida, India.
| | | | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
50
|
Abotsi EE, Panagodage Y, English M. Plant-based seafood alternatives: Current insights on the nutrition, protein-flavour interactions, and the processing of these foods. Curr Res Food Sci 2024; 9:100860. [PMID: 39381133 PMCID: PMC11460494 DOI: 10.1016/j.crfs.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024] Open
Abstract
Fish are an important food source; however, the sustainability of current seafood supplies is a major concern for key stakeholders. The development of plant-based seafood alternatives may be suitable products to alleviate some of the pressures on aquatic ecosystems and help support environmental sustainability. However, the wide-spread adoption of these products weighs heavily on the ingredients used in the formulations which should not only satisfy nutritional and sustainability targets but must also meet consumer approval and functionality. In this review, we highlight recent advances in our understanding of the nutritional quality and sensory challenges in particular flavour (which includes taste and aroma), that have so far proven difficult to overcome in the development of plant-based seafood alternatives. Protein interactions that contribute to flavour development in plant-based seafood alternatives and the factors that impact these interactions are also discussed. We also review the recent advances in the innovative technologies used to improve the texture of products in this emerging food category. Finally, we highlight key areas for targeted research to advance the development of this growing segment of food products.
Collapse
Affiliation(s)
- Enoch Enorkplim Abotsi
- Boreal Ecosystems, Grenfell Campus, Memorial University of Newfoundland, Newfoundland, Canada
| | - Yashodha Panagodage
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|