1
|
Qian S, Xu F, Wang M, Zhang M, Ding S, Jin G, Zhang X, Cheng W, Wang L, Zhu Y, Wang W, Ofosuhemaa P, Wang T, Lin X, Zhu Y, Lv Y, Hu A, Yang W, He G, Zhao Q. Association analyses between urinary concentrations of multiple trace elements and gastric precancerous lesions and gastric cancer in Anhui province, eastern China. Front Public Health 2024; 12:1423286. [PMID: 39220462 PMCID: PMC11363071 DOI: 10.3389/fpubh.2024.1423286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Limited epidemiological evidence suggests that exposure to trace elements adversely impacts the development of gastric precancerous lesions (GPL) and gastric cancer (GC). This study aimed to estimate the association of individual urinary exposure to multiple elements with GPL and GC. Methods A case-control investigation was conducted in Anhui Province from March 2021 to December 2022. A total of 528 subjects (randomly sampled from 1,020 patients with GPL, 200 patients with GC, and 762 normal controls) were included in our study. Urinary levels of iron (Fe), copper (Cu), zinc (Zn), nickel (Ni), strontium (Sr), and Cesium (Cs) were measured using inductively coupled plasma mass spectrometry (ICP-MS). Four different statistical approaches were employed to explore the risk of GPL and GC with mixed exposure, including multivariate logistic regression, weighted quantile regression (WQS), quantile g-computation (Qgcomp), and the Bayesian kernel machine regression (BKMR) model. Results The WQS model indicated that urinary exposure to a mixture of elements is positively correlated with both GPL and GC, with ORs for the mixture exposure of 1.34 (95% CI: 1.34-1.61) for GPL and 1.38 (95% CI: 1.27-1.50) for GC. The Qgcomp and BKMR models also demonstrated a statistically significant positive correlation between the mixture and both GPL and GC. Conclusion Considering the limitations of case-control studies, future prospective studies are warranted to elucidate the combined effects and mechanisms of trace elements exposure on human health.
Collapse
Affiliation(s)
- Shiqing Qian
- Department of Pathology, Lujiang County People's Hospital, Hefei, Anhui, China
| | - Fang Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shaopeng Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Guoqing Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wenli Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuting Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wuqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Princess Ofosuhemaa
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Tingting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yu Zhu
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Yaning Lv
- Technology Center of Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Gengsheng He
- Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
George MF, Paff S, Rojo J, Powell M, Benz C, Pope K, Kerlikowske K, Shepard J, Willis M, Ereman R, Prebil L. Assessment of salivary cadmium levels and breast density in the Marin Women's Study. Cancer Med 2024; 13:e6973. [PMID: 38379324 PMCID: PMC10831917 DOI: 10.1002/cam4.6973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND We aimed to determine if salivary cadmium (Cd) levels had any association with breast density, hoping to establish a less invasive cost-effective method of stratifying Cd burden as an environmental breast cancer risk factor. METHODS Salivary Cd levels were quantified from the Marin Women's Study, a Marin County, California population composite. Volumetric compositional breast density (BDsxa ) data were measured by single x-ray absorptiometry techniques. Digital screening mammography was performed by the San Francisco Mammography Registry. Radiologists reviewed mammograms and assigned a Breast Imaging-Reporting and Data System score. Early morning salivary Cd samples were assayed. Association analyses were then performed. RESULTS Cd was quantifiable in over 90% of saliva samples (mean = 55.7 pg/L, SD = 29). Women with higher saliva Cd levels had a non-significant odds ratio of 1.34 with BI-RAD scores (3 or 4) (95% CI 0.75-2.39, p = 0.329). Cd levels were higher in current smokers (mean = 61.4 pg/L, SD = 34.8) than former smokers or non-smokers. These results were non-significant. Pilot data revealed that higher age and higher BMI were associated with higher BI-RAD scores (p < 0.001). CONCLUSION Salivary Cd is a viable quantification source in large epidemiologic studies. Association analyses between Cd levels and breast density may provide additional information for breast cancer risk assessment, risk reduction plans, and future research directions. Further work is needed to demonstrate a more robust testing protocol before the extent of its usefulness can be established.
Collapse
Affiliation(s)
- Michaela F. George
- Global Public Health Department, School of Health and Natural SciencesDominican University of CaliforniaSan RafaelCaliforniaUSA
| | - Shayne Paff
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| | - Jenyse Rojo
- Global Public Health Department, School of Health and Natural SciencesDominican University of CaliforniaSan RafaelCaliforniaUSA
| | - Mark Powell
- Zero Breast CancerBuck Institute for Research on AgingSan RafaelCaliforniaUSA
| | - Christopher Benz
- Cancer & Developmental TherapeuticsBuck Institute for Research on AgingSan RafaelCaliforniaUSA
- Department of Medicine, Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Karl Pope
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| | - Karla Kerlikowske
- Department of Medicine, Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - John Shepard
- Population Sciences in the Pacific Program, Cancer EpidemiologyUniversity of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Matthew Willis
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| | - Rochelle Ereman
- Global Public Health Department, School of Health and Natural SciencesDominican University of CaliforniaSan RafaelCaliforniaUSA
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| | - LeeAnn Prebil
- Epidemiology and Community HealthMarin County Department of Health and Human ServicesSan RafaelCaliforniaUSA
| |
Collapse
|
3
|
Zhan J, Sun T, Wang X, Wu H, Yu J. Meta-analysis reveals the species-, dose- and duration-dependent effects of cadmium toxicities in marine bivalves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160164. [PMID: 36395852 DOI: 10.1016/j.scitotenv.2022.160164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a typical pollutant in marine environment. Increasing studies have focused on the toxicological effects of Cd in marine bivalves. However, there were many conflicting findings of toxicological effects of Cd in marine bivalves. An integrated analysis performed on the published data of Cd toxicity in marine bivalves is still absent. In this study, a meta-analysis was performed on the toxic endpoints in bivalves exposed to aqueous-phase Cd from 87 studies screened from 1519 papers. Subgroup analyses were conducted according to the categories of species, tissue, exposure dose and duration. The results showed significant species-, duration- and dose-dependent responses in bivalves to aqueous-phase Cd exposure. In details, clams were more sensitive to Cd than oysters, mussels and scallops, indicated by the largest effect size in clams. Gill, hepatopancreas and hemolymph were top three tissues used to indicate Cd-induced toxicity and did not present a significant tissue-specific manner among them. With regard to toxicological effect subgroups, oxidative stress and detoxification were top two subgroups indicating Cd toxicities. Detoxification and genotoxicity subgroups presented higher response magnitudes. What is more, toxicological effect subgroups presented multiple dose- and duration-dependent curves. Oxidative stress and genotoxicity related endpoints presented significant increase trends with Cd exposure dose and were preferable biomarkers to marine Cd pollution. Detoxification and energy metabolism related endpoints showed inverted U-shaped and U-shaped dose-response curves, both of which could be explained by hormesis. The linear decrease in oxidative stress and energy metabolism related endpoints over time suggested their involvement into the adaptive mechanism in bivalves. Overall, this study provided not only a better understanding the responsive mechanisms of marine bivalves to Cd stress, but also a selection reference for biomarkers to aqueous-phase Cd pollution in marine environment.
Collapse
Affiliation(s)
- Junfei Zhan
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xuehong Wang
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Junbao Yu
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
4
|
Tavakoli Pirzaman A, Ebrahimi P, Niknezhad S, Vahidi T, Hosseinzadeh D, Akrami S, Ashrafi AM, Moeen Velayatimehr M, Hosseinzadeh R, Kazemi S. Toxic mechanisms of cadmium and exposure as a risk factor for oral and gastrointestinal carcinomas. Hum Exp Toxicol 2023; 42:9603271231210262. [PMID: 37870872 DOI: 10.1177/09603271231210262] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Incidence and mortality rates of gastrointestinal (GI) and oral cancers are among the highest in the world, compared to other cancers. GI cancers include esophageal, gastric, colon, rectal, liver, and pancreatic cancers, with colorectal cancer being the most common. Oral cancer, which is included in the head and neck cancers category, is one of the most important causes of death in India. Cadmium (Cd) is a toxic element affecting humans and the environment, which has both natural and anthropogenic sources. Generally, water, soil, air, and food supplies are reported as some sources of Cd. It accumulates in organs, particularly in the kidneys and liver. Exposure to cadmium is associated with different types of health risks such as kidney dysfunction, cardiovascular disease, reproductive dysfunction, diabetes, cerebral infarction, and neurotoxic effects (Parkinson's disease (PD) and Alzheimer's disease (AD)). Exposure to Cd is also associated with various cancers, including lung, kidney, liver, stomach, hematopoietic system, gynecologic and breast cancer. In the present study, we have provided and summarized the association of Cd exposure with oral and GI cancers.
Collapse
Affiliation(s)
| | - Pouyan Ebrahimi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Shokat Niknezhad
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Turan Vahidi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash M Ashrafi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Science, Babol, Iran
| |
Collapse
|
5
|
Peana M, Pelucelli A, Chasapis CT, Perlepes SP, Bekiari V, Medici S, Zoroddu MA. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2022; 13:biom13010036. [PMID: 36671421 PMCID: PMC9855641 DOI: 10.3390/biom13010036] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal for the human organism and for all ecosystems. Cd is naturally found at low levels; however, higher amounts of Cd in the environment result from human activities as it spreads into the air and water in the form of micropollutants as a consequence of industrial processes, pollution, waste incineration, and electronic waste recycling. The human body has a limited ability to respond to Cd exposure since the metal does not undergo metabolic degradation into less toxic species and is only poorly excreted. The extremely long biological half-life of Cd essentially makes it a cumulative toxin; chronic exposure causes harmful effects from the metal stored in the organs. The present paper considers exposure and potential health concerns due to environmental cadmium. Exposure to Cd compounds is primarily associated with an elevated risk of lung, kidney, prostate, and pancreatic cancer. Cd has also been linked to cancers of the breast, urinary system, and bladder. The multiple mechanisms of Cd-induced carcinogenesis include oxidative stress with the inhibition of antioxidant enzymes, the promotion of lipid peroxidation, and interference with DNA repair systems. Cd2+ can also replace essential metal ions, including redox-active ones. A total of 12 cancer types associated with specific genes coding for the Cd-metalloproteome were identified in this work. In addition, we summarize the proper treatments of Cd poisoning, based on the use of selected Cd detoxifying agents and chelators, and the potential for preventive approaches to counteract its chronic exposure.
Collapse
Affiliation(s)
- Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Alessio Pelucelli
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Vlasoula Bekiari
- School of Agricultural Science, University of Patras, 30200 Messolonghi, Greece
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
Požgajová M, Navrátilová A, Kovár M. Curative Potential of Substances with Bioactive Properties to Alleviate Cd Toxicity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12380. [PMID: 36231680 PMCID: PMC9566368 DOI: 10.3390/ijerph191912380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have led to alarming cadmium (Cd) pollution. Cd is a toxic heavy metal without any known physiological function in the organism, leading to severe health threat to the population. Cd has a long half-life (10-30 years) and thus it represents serious concern as it to a great extent accumulates in organs or organelles where it often causes irreversible damage. Moreover, Cd contamination might further lead to certain carcinogenic and non-carcinogenic health risks. Therefore, its negative effect on population health has to be minimalized. As Cd is able to enter the body through the air, water, soil, and food chain one possible way to defend and eliminate Cd toxicities is via dietary supplements that aim to eliminate the adverse effects of Cd to the organism. Naturally occurring bioactive compounds in food or medicinal plants with beneficial, mostly antioxidant, anti-inflammatory, anti-aging, or anti-tumorigenesis impact on the organism, have been described to mitigate the negative effect of various contaminants and pollutants, including Cd. This study summarizes the curative effect of recently studied bioactive substances and mineral elements capable to alleviate the negative impact of Cd on various model systems, supposing that not only the Cd-derived health threat can be reduced, but also prevention and control of Cd toxicity and elimination of Cd contamination can be achieved in the future.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
7
|
Pei Z, Ning J, Zhang N, Zhang X, Zhang H, Zhang R. Genetic instability of lung induced by carbon black nanoparticles is related with Plk1 signals changes. NANOIMPACT 2022; 26:100400. [PMID: 35560285 DOI: 10.1016/j.impact.2022.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
As a possible carcinogen, carbon black has threatened public health. However, the evidences are insufficient and the mechanism of carcinogenesis is still not specified. Thirty rats were randomly divided into 3 groups, namely 0, 5 and 30 mg/m3 Carbon Black nanoparticles (CBNPs) groups, respectively. Rats were treated with CBNPs by nose-only inhalation for 28 days, 6 h/day. The human bronchial epithelial (16HBE) cells were treated with 0, 50, 100 and 200 μg/mL CBNPs for 24 h. Polo-like kinase 1 (PLK1) overexpression cell line was established by pcDNA3.1-PLK1 stable transfection. Our results showed that CBNPs exposure could induce DNA damage and genetic changes as well as apoptosis in vivo and in vitro. The DNA repair ability increased after CBNPs exposure. Cell cycle process was retarded at the G2/M phases in 16HBE cells after CBNPs treatment. The PLK1, ChK2 GADD45α and XRCC1 expression levels changed in rat lung and 16HBE cells after CBNPs treatment. Compared with NC 16HBE cells, DNA damage and repair, numbers of apoptotic cells and micronucleus (MN) rates, as well as the ChK2, GADD45α, XRCC1 expression levels decreased, whereas cytokinesis block proliferation index (CBPI) and replicative index (RI) increase in PLK overexpression (PLK+/+) cells after CBNPs treatment. This study highlighted that PLK1 related with the genetic toxicity of CBNPs in vitro and in vivo. Our results provided evidences supporting reclassification of carbon black as a human possible carcinogen.
Collapse
Affiliation(s)
- Zijie Pei
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Ning Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Helin Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
8
|
Pan J, Xue Y, Li S, Wang L, Mei J, Ni D, Jiang J, Zhang M, Yi S, Zhang R, Ma Y, Liu Y, Liu Y. PM 2.5 induces the distant metastasis of lung adenocarcinoma via promoting the stem cell properties of cancer cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118718. [PMID: 34942288 DOI: 10.1016/j.envpol.2021.118718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Lung cancer is the most common cancer in China and second worldwide, of which the incidence of lung adenocarcinoma is rising. As an independent factor, air pollution has drawn the attention of the public. An increasing body of studies has focused on the effect of PM2.5 on lung adenocarcinoma; however, the mechanism remains unclear. We collected the PM2.5 in two megacities, Beijing (BPM) and Shijiazhuang (SPM), located in the capital of China, and compared the different components and sources of PM2.5 in the two cities. Vehicle emissions are the primary sources of BPM, whereas SPM is industrial emissions. We found that chronic exposure to PM2.5 promotes the tumorigenesis and metastasis of lung adenocarcinoma in patient-derived xenograft (PDX) models, as well as the migration and invasion of lung adenocarcinoma cell lines. SPM has more severe effects in vivo and in vitro. The underlying mechanisms are related to the stem cell properties of cancer cells, the epithelial-mesenchymal transition (EMT) process, and the corresponding miRNAs. It is hopeful to provide a theoretical basis for improving air pollution in China, especially in the capital area, and is of the significance of long-term survival of lung cancer patients.
Collapse
Affiliation(s)
- Junyi Pan
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yueguang Xue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Liuxiang Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Dongqi Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China
| | - Jipeng Jiang
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Meng Zhang
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Shaoqiong Yi
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Rong Zhang
- Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Yongfu Ma
- Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Yang Liu
- School of Medicine, Nankai University, Tianjin, 300071, PR China; Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong, 510700, PR China.
| |
Collapse
|
9
|
Cadmium and Lead Content in Selected Fungi from Poland and Their Edible Safety Assessment. Molecules 2021; 26:molecules26237289. [PMID: 34885869 PMCID: PMC8658849 DOI: 10.3390/molecules26237289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023] Open
Abstract
Mushrooms are able to accumulate toxic trace elements. This study investigates the content of cadmium (Cd) and lead (Pb) in selected species of fungi (Boletus badius, Boletus edulis, and Cantharellus cibarius) from the northeastern part of Poland and estimates their edible safety. The amount of Cd and Pb was determined by flameless atomic spectrometry using the iCE 3000 Series-Thermo. The mean content of Cd in analyzed mushrooms ranged from 0.370 to 2.151 mg/kg d.w., while Pb was found at the level of 0.243–0.424 mg/kg d.w. Boletus edulis was characterized by the highest content of Cd, whereas Cantharellus cibarius contained the biggest amount of Pb. Estimated exposure to the Cd intake expressed as percentage share in TWI (Tolerable Weekly Intake) was at the highest level in Boletus edulis (30.87%), which could be associated with the risk of excessive Cd accumulation in the body.
Collapse
|
10
|
Keith N, Jackson CE, Glaholt SP, Young K, Lynch M, Shaw JR. Genome-Wide Analysis of Cadmium-Induced, Germline Mutations in a Long-Term Daphnia pulex Mutation-Accumulation Experiment. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:107003. [PMID: 34623885 PMCID: PMC8500294 DOI: 10.1289/ehp8932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Germline mutations provide the raw material for all evolutionary processes and contribute to the occurrence of spontaneous human diseases and disorders. Yet despite the daily interaction of humans and other organisms with an increasing number of chemicals that are potentially mutagenic, precise measurements of chemically induced changes to the genome-wide rate and spectrum of germline mutation are lacking. OBJECTIVES A large-scale Daphnia pulex mutation-accumulation experiment was propagated in the presence and absence of an environmentally relevant cadmium concentration to quantify the influence of cadmium on germline mutation rates and spectra. RESULTS Cadmium exposure dramatically changed the genome-wide rates and regional spectra of germline mutations. In comparison with those in control conditions, Daphnia exposed to cadmium had a higher overall A : T → G : C mutation rates and a lower overall C : G → G : C mutation rate. Daphnia exposed to cadmium had a higher intergenic mutation rate and a lower exonic mutation rate. The higher intergenic mutation rate under cadmium exposure was the result of an elevated intergenic A : T → G : C rate, whereas the lower exon mutation rate in cadmium was the result of a complete loss of exonic C : G → G : C mutations-mutations that are known to be enriched at 5-hydroxymethylcytosine. We experimentally show that cadmium exposure significantly reduced 5-hydroxymethylcytosine levels. DISCUSSION These results provide evidence that cadmium changes regional mutation rates and can influence regional rates by interfering with an epigenetic process in the Daphnia pulex germline. We further suggest these observed cadmium-induced changes to the Daphnia germline mutation rate may be explained by cadmium's inhibition of zinc-containing domains. The cadmium-induced changes to germline mutation rates and spectra we report provide a comprehensive view of the mutagenic perils of cadmium and give insight into its potential impact on human population health. https://doi.org/10.1289/EHP8932.
Collapse
Affiliation(s)
- Nathan Keith
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Craig E. Jackson
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Stephen P. Glaholt
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Kimberly Young
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA
| | - Joseph R. Shaw
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
11
|
Crosstalk between Environmental Inflammatory Stimuli and Non-Coding RNA in Cancer Occurrence and Development. Cancers (Basel) 2021; 13:cancers13174436. [PMID: 34503246 PMCID: PMC8430834 DOI: 10.3390/cancers13174436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Increasing evidence has indicated that chronic inflammatory processes have an influence on tumor occurrence and all stages of tumor development. A dramatic increase of studies into non-coding RNAs (ncRNAs) biology has shown that ncRNAs act as oncogenic drivers and tumor suppressors in various inflammation-induced cancers. Thus, this complex network of inflammation-associated cancers and ncRNAs offers targets for prevention from the malignant transformation from inflammation and treatment of malignant diseases. Abstract There is a clear relationship between inflammatory response and different stages of tumor development. Common inflammation-related carcinogens include viruses, bacteria, and environmental mutagens, such as air pollutants, toxic metals, and ultraviolet light. The expression pattern of ncRNA changes in a variety of disease conditions, including inflammation and cancer. Non-coding RNAs (ncRNAs) have a causative role in enhancing inflammatory stimulation and evading immune responses, which are particularly important in persistent pathogen infection and inflammation-to-cancer transformation. In this review, we investigated the mechanism of ncRNA expression imbalance in inflammation-related cancers. A better understanding of the function of inflammation-associated ncRNAs may help to reveal the potential of ncRNAs as a new therapeutic strategy.
Collapse
|
12
|
Association Between Serum Cadmium and Arsenic Levels with Bladder Cancer: A Case-control Study. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Bladder cancer is the second most common cancer of the genitourinary system and the eighth cause of cancer death. In addition to known risk factors such as smoking and urinary stones, trace elements are also effective in causing bladder cancer and other cancers. Objectives: This study was conducted to determine the association between bladder cancer and the carcinogens cadmium and arsenic. Methods: This case-control study was conducted on 40 patients with bladder cancer admitted to Shahid Bahonar Hospital and a control group of 40 healthy individuals in Kerman, Iran, in 2018. The serum levels of arsenic and cadmium were measured by atomic absorptiometry. The paired t-test and chi-square tests were employed to assess the difference between cases and controls groups. An unadjusted and 2 multivariable conditional regression models were separately adjusted on sex, family cancer history, residence, occupation, and smoking and were used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) to assess the association between arsenic and cadmium levels and bladder cancer. The statistical software SPSS version 26 and R software version 3.6.3 were used to perform the statistical analyses. Results: The mean cadmium level was 2.99 ± 1.45 and 2.59 ± 0.46 in the case and control groups, respectively, with no statistically significant difference between the groups (P = 0.100). The mean arsenic level was 2.12 ± 1.04 and 1.43 ± 0.73 in the case and control groups, respectively, demonstrating a statistically significant difference between the groups (P = 0.001). Unadjusted and adjusted conditional logistic regression models indicated significant association between arsenic levels and bladder cancer (unadjusted: odds ratio (OR) (95% CI): 0.66 (0.46 - 0.94), P-value = 0.022; adjusted: OR (95% CI): 0.64 (0.44 - 0.92), P-value = 0.018). Conclusions: Overall, cadmium and arsenic levels are higher in patients with bladder cancer, with a statistically significant difference for arsenic. However, these elements are not interrelated and are not related to other factors.
Collapse
|
13
|
Guo D, Hao C, Cui X, Wang Y, Liu Z, Xu B, Guo X. Molecular and functional characaterization of the novel odorant-binding protein gene AccOBP10 from Apis cerana cerana. J Biochem 2021; 169:215-225. [PMID: 32926109 DOI: 10.1093/jb/mvaa103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/29/2020] [Indexed: 11/14/2022] Open
Abstract
Odorant-binding proteins (OBPs) play an important role in odour perception and transport in insects. However, little is known about whether OBPs perform other functions in insects, particularly in Apis cerana cerana. Within this study, an OBP gene (AccOBP10) was isolated and identified from A. c. cerana. Both homology and phylogenetic relationship analyses indicated that the amino acid sequence of AccOBP10 had a high degree of sequence identity with other members of the gene family. Analysis of quantitative real-time PCR (qRT-PCR) showed that AccOBP10 mRNA was expressed at higher levels in the venom gland than in other tissues. The mRNA transcript expression of AccOBP10 was upregulated by low temperature (4°C), hydrogen peroxide (H2O2), pyridaben, methomyl and imidacloprid but downregulated by heat (42°C), ultraviolet light, vitamin C, mercuric chloride, cadmium chloride, paraquat and phoxim. Expression of AccOBP10 under abiotic stress was analysed by western blotting, and the results were consistent with those of qRT-PCR. And as a further study of AccOBP10 function, we demonstrated that knockdown of AccOBP10 by RNA interference could slightly increase the expression levels of some stress-related genes. Collectively, these results suggest that AccOBP10 is mainly involved in the response to stress conditions.
Collapse
Affiliation(s)
- Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences
| | - Cuihong Hao
- State Key Laboratory of Crop Biology, College of Life Sciences
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences
| |
Collapse
|
14
|
Guo D, Zhao G, Li G, Wang C, Wang H, Liu Z, Xu B, Guo X. Identification of a mitogen-activated protein kinase kinase (AccMKK4) from Apis cerana cerana and its involvement in various stress responses. INSECT MOLECULAR BIOLOGY 2021; 30:325-339. [PMID: 33538052 DOI: 10.1111/imb.12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/03/2020] [Accepted: 01/25/2021] [Indexed: 05/19/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade pathway is a ubiquitous signal transduction pathway in eukaryotes that regulates a variety of immune responses. This study accomplished the first isolation of an AccMKK4 gene from Apis cerana cerana and explored its function. Yeast two-hybrid experiments proved that AccMKK4 can interact with Accp38b, and the silencing of AccMKK4 in honeybees downregulated the expression level of Accp38b, which suggests that AccMKK4 might participate in the oxidative stress response through the p38 MAPK pathway. Tissue-specific expression levels of AccMKK4 analysis showed that AccMKK4 in the thorax, particularly muscle tissue, was higher than that in other tissues. The qRT-PCR results from different conditions demonstrated that AccMKK4 responds to various environmental stresses. After AccMKK4 silencing, the transcription level of some antioxidant genes and the activity of antioxidant-related enzymes are reduced, which indicated that AccMKK4 plays an important role in resistance against oxidative stress caused by external stimuli. In summary, our findings indicate that AccMKK4 probably plays an indispensable role in the response of honeybees to environmental stress and might aid for further research on the role of the MAPK cascade pathway in the antioxidant defence mechanisms of insects.
Collapse
Affiliation(s)
- D Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - G Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - G Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - C Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| | - H Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - Z Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - B Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, PR China
| | - X Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
15
|
Doria HB, Waldvogel AM, Pfenninger M. Measuring mutagenicity in ecotoxicology: A case study of Cd exposure in Chironomus riparius. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116004. [PMID: 33187849 DOI: 10.1016/j.envpol.2020.116004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Existing mutagenicity tests for metazoans lack the direct observation of enhanced germline mutation rates after exposure to anthropogenic substances, therefore being inefficient. Cadmium (Cd) is a metal described as a mutagen in mammalian cells and listed as a group 1 carcinogenic and mutagenic substance. But Cd mutagenesis mechanism is not yet clear. Therefore, in the present study, we propose a method coupling short-term mutation accumulation (MA) lines with subsequent whole genome sequencing (WGS) and a dedicated data analysis pipeline to investigate if chronic Cd exposure on Chironomus riparius can alter the rate at which de novo point mutations appear. Results show that Cd exposure did not affect the basal germline mutation rate nor the mutational spectrum in C. riparius, thereby arguing that exposed organisms might experience a range of other toxic effects before any mutagenic effect may occur. We show that it is possible to establish a practical and easily implemented pipeline to rapidly detect germ cell mutagens in a metazoan test organism. Furthermore, our data implicate that it is questionable to transfer mutagenicity assessments based on in vitro methods to complex metazoans.
Collapse
Affiliation(s)
- Halina Binde Doria
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany.
| | - Ann-Marie Waldvogel
- Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Department of Ecological Genomics, Institute of Zoology, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Department of Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| |
Collapse
|
16
|
Lener MR, Reszka E, Marciniak W, Lesicka M, Baszuk P, Jabłońska E, Białkowska K, Muszyńska M, Pietrzak S, Derkacz R, Grodzki T, Wójcik J, Wojtyś M, Dębniak T, Cybulski C, Gronwald J, Kubisa B, Pieróg J, Waloszczyk P, Scott RJ, Jakubowska A, Narod SA, Lubiński J. Blood cadmium levels as a marker for early lung cancer detection. J Trace Elem Med Biol 2021; 64:126682. [PMID: 33249371 DOI: 10.1016/j.jtemb.2020.126682] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/16/2020] [Accepted: 11/06/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND We assessed whether blood cadmium levels were associated with incident lung cancer and could be used in the context of a screening program for early-stage lung cancer. MATERIAL AND METHODS We measured blood cadmium levels among 205 lung cancer patients and 205 matched controls. Cases and controls were matched for sex, age and smoking history (total pack-years, years since cessation for former smokers). RESULTS The odds ratio for those in the highest quartile of cadmium level (versus lowest) was four-fold (OR = 4.41, 95 % CI:2.01-9.67, p < 0.01). The association was present in former smokers (OR = 16.8, 95 % CI:3.96-71.2, p < 0.01), but not in current smokers (OR = 1.23, 95 % CI: 0.34-4.38) or in never smokers (OR not defined). Among former smokers, the association was present in both early- and late-stage lung cancer. CONCLUSION Blood cadmium levels may be a marker to help with the early detection of lung cancer among former smokers.
Collapse
Affiliation(s)
- Marcin R Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, ul.św. Teresy od Dzieciątka Jezus 8, 91-348 Łódź, Poland
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Monika Lesicka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, ul.św. Teresy od Dzieciątka Jezus 8, 91-348 Łódź, Poland
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Ewa Jabłońska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, ul.św. Teresy od Dzieciątka Jezus 8, 91-348 Łódź, Poland
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | | | - Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Tomasz Grodzki
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Małgorzata Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland
| | - Bartosz Kubisa
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Jarosław Pieróg
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Piotr Waloszczyk
- Independent Laboratory of Pathology, Zdunomed, ul. Energetyków 2, 70-656 Szczecin, Poland
| | - Rodney J Scott
- Medical Genetics, Hunter Medical Research Institute, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Pathology North, John Hunter Hospital, Cnr King and Auckland Streets, Newcastle NSW 2300 Australia
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra (Szczecińska), Poland.
| |
Collapse
|
17
|
Guo X, Seo JE, Petibone D, Tryndyak V, Lee UJ, Zhou T, Robison TW, Mei N. Performance of HepaRG and HepG2 cells in the high-throughput micronucleus assay for in vitro genotoxicity assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:702-717. [PMID: 32981483 DOI: 10.1080/15287394.2020.1822972] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The micronucleus (MN) assay is a core test used to evaluate genotoxic potential of xenobiotics. The traditional in vitro MN assay is usually conducted in cells lacking metabolic competency or by supplementing cultures with an exogenous rat S9 metabolic system, which creates a significant assay limitation for detecting genotoxic metabolites. Our previous study demonstrated that compared to HepG2, HepaRG cells exhibited a significantly higher level of CYP450 enzyme activities and detected a greater portion of genotoxic carcinogens requiring metabolic activation using the Comet assay. The aim of this study was to assess the performance of HepaRG cells in the flow cytometry-based MN assay by testing 28 compounds with known genotoxic or carcinogenic modes of action (MoA). HepaRG cells exhibited higher sensitivity (83%) than HepG2 cells (67%) in detecting 12 indirect-acting genotoxicants or carcinogens. The HepaRG MN assay was 100% specific and 93% accurate in detecting genotoxic potential of the 28 compounds. Quantitative comparison of the MN concentration-response data using benchmark dose analysis showed that most of the tested compounds induced higher % MN in HepaRG than HepG2 cells. In addition, HepaRG cells were compatible with the Multiflow DNA damage assay, which predicts the genotoxic MoA of compounds tested. These results suggest that high-throughput flow cytometry-based MN assay may be adapted using HepaRG cells for genotoxicity assessment, and that HepaRG cells appear to be more sensitive than HepG2 cells in detecting genotoxicants or carcinogens that require metabolic activation.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Dayton Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| | - Un Jung Lee
- Department of Medicine, Epidemiology and Population Health, Albert Einstein College of Medicine , Bronx, NY, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration , Rockville, MD, USA
| | - Timothy W Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration , Silver Spring, MD, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration , Jefferson, AR, USA
| |
Collapse
|
18
|
Abstract
Metal exposure is pervasive and not limited to sporadic poisoning events or toxic waste sites. Hundreds of millions of people around the globe are affected by chronic metal exposure, which is associated with serious health concerns, including cancer, as demonstrated in a variety of studies at the molecular, systemic, and epidemiologic levels. Metal-induced toxicity and carcinogenicity are sophisticated and complex in nature. This review provides a broad context and holistic view of currently available studies on the mechanisms of metal-induced carcinogenesis. Specifically, we focus on the five most prevalent carcinogenic metals, arsenic, nickel, cadmium, chromium, and beryllium, and their potential to drive carcinogenesis in humans. A comprehensive understanding of the mechanisms behind the development of metal-induced cancer can provide valuable insights for therapeutic intervention involving molecular targets in metal-induced carcinogenesis.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Departments of Environmental Medicine, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10010, USA;
| | - Thomas DesMarais
- Departments of Environmental Medicine, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10010, USA;
| | - Max Costa
- Departments of Environmental Medicine, and Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10010, USA;
| |
Collapse
|
19
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
20
|
Vukašinović EL, Čelić TV, Kojić D, Franeta F, Milić S, Ninkov J, Blagojević D, Purać J. The effect of long term exposure to cadmium on Ostrinia nubilalis growth, development, survival rate and oxidative status. CHEMOSPHERE 2020; 243:125375. [PMID: 31778918 DOI: 10.1016/j.chemosphere.2019.125375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
In this study the effect of long term exposure to cadmium (Cd) on Ostrinia nubilalis larval growth, development, survival rate and oxidative status was analyzed. Newly hatched first instar - L1 larvae were reared on a Cd contaminated diet until the larvae reached the final, fifth instar - L5 or developed into pupae. In total, six experimental groups, five treatments (concentrations of Cd in fresh diet: Cd I: 0.73, Cd II: 3.70, Cd III: 6.85, Cd IV: 41.71 and Cd V: 77.53 mg kg-1) and a control group (C) were set up. The results of the experiment showed that exposure to higher concentrations of Cd (41.71 and 77.53 mg kg-1) had a significant influence on development and redox status of O. nubilalis larvae: (1) the development rate was strongly reduced resulting in a prolonged pupation time; (2) the survival rate of larvae was prominently lower; (3) bioaccumulation factor (measured in pupae) was reduced which indicated that larvae could accumulate Cd to a certain level; (4) the level of the lipid peroxidation was significantly higher, which points to oxidative damage; (5) the expression of Mtn was significantly up-regulated while Cat and GPx genes down-regulated. In conclusion, long term exposure to dietary Cd in a concentration of 41.7 mg kg-1 and higher, induced oxidative stress and slowed down growth and development of O. nubilalis larvae.
Collapse
Affiliation(s)
- Elvira L Vukašinović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Tatjana V Čelić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Danijela Kojić
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Filip Franeta
- Institute of Field and Vegetable Crops, 21000, Novi Sad, Serbia
| | - Stanko Milić
- Institute of Field and Vegetable Crops, 21000, Novi Sad, Serbia
| | - Jordana Ninkov
- Institute of Field and Vegetable Crops, 21000, Novi Sad, Serbia
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Jelena Purać
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
21
|
Luo S, Terciolo C, Bracarense APFL, Payros D, Pinton P, Oswald IP. In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier. ENVIRONMENT INTERNATIONAL 2019; 132:105082. [PMID: 31400600 DOI: 10.1016/j.envint.2019.105082] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 05/11/2023]
Abstract
Deoxynivalenol (DON), one of the most widespread mycotoxins in Europe, and cadmium (Cd), a widespread environmental pollutant, are common food contaminants. They exert adverse effects on different organs including kidney, liver, and intestine. The intestine is a common target of DON and Cd when they are ingested. Most studies have focused on their individual effects whereas their combined toxicity has rarely been studied. The aim of this study was thus to evaluate their individual and combined effects on the intestinal barrier function in vitro and in vivo. In vitro, Caco-2 cells were treated with increasing concentrations of DON and Cd (1-30 μM). In vivo, Wistar rats were used as controls or exposed to DON contaminated feed (8.2 mg/kg feed), Cd-contaminated water (5 mg/l) or both for four weeks. In Caco-2 cells, DON, Cd and the DON+Cd mixture reduced transepithelial electrical resistance (TEER) and increased paracellular permeability in a dose-dependent manner. Impairment of the barrier function was associated with a decrease in the amount of E-cadherin and occludin after exposure to the two contaminants alone or combined. A decrease in E-cadherin expression was observed in rats exposed to the two contaminants alone or combined, whereas occludin expression only decreased in animals exposed to DON and DON+Cd. Jejunal crypt depth was reduced in rats exposed to DON or Cd, whereas villi height was not affected. In vitro and in vivo results showed that the effects of exposure to combined DON and Cd on the intestinal barrier function in the jejunum of Wistar rats and in the colorectal cancer cell line (Caco-2) was similar to the effects of each individual contaminant. This suggests that regulations for each individual contaminant are sufficiently protective for consumers.
Collapse
Affiliation(s)
- Su Luo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Chloe Terciolo
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Delphine Payros
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Pinton
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Isabelle P Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
22
|
Safarzad M, Besharat S, Salimi S, Azarhoush R, Behnampour N, Joshaghani HR. Association between selenium, cadmium, and arsenic levels and genetic polymorphisms in DNA repair genes (XRCC5, XRCC6) in gastric cancerous and non-cancerous tissue. J Trace Elem Med Biol 2019; 55:89-95. [PMID: 31345372 DOI: 10.1016/j.jtemb.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/05/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most prevalent cancers in northern Iran. The DNA repair genes X-ray repair cross-complementing (XRCC) group 5, XRCC6, which are important members of non-homologous end-joining repair system, play an important role in repairing the DNA double-strand breaks. Chronic exposure to heavy metals has long been recognized as being capable of augmenting gastric cancer incidence among exposed human populations. Since trace elements could directly or indirectly damage DNA, and polymorphism in DNA DSBs-repair genes can alter the capacity of system repair, we assumed that XRCC5 VNTR and XRCC6-61C >G polymorphism also impress the DSBs-repair system ability and contribute to gastric cancer. Therefore, the objective of this research was to evaluate the tissue accumulation of Selenium (Se), Cadmium (Cd) and Arsenic (As), and XRCC5 VNTR, XRCC6-61C >G polymorphisms in cancerous and non-cancerous tissues in Golestan province. The study population included 46 gastric cancer patients and 43 cancer-free controls. Two polymorphisms of XRCC5, XRCC6 were genotyped using polymerase chain reaction (PCR) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Further employed was atomic absorption spectroscopy so as to determine the levels of Se, Cd and As. Finally, the data were analyzed by SPSS (version 16) statistical software. The Se level was significantly higher in tumors as compared to non-tumor tissues, but there was no significant correlation between As and Cd in cancerous and noncancerous tissues. Allele frequencies of the selected genes were not statistically different between groups regarding XRCC6 (-61C>G). XRCC5 0R/0R, 0R/1R, 1R/1R, and 0R/2R genotypes were more common in cancerous group. High levels of Se in cancerous tissues vs. non-cancerous tissues may be one of the carcinogenic factors; in Golestan province, unlike other regions of Iran and the world, the level of Se is high, hence the higher risks of gastric cancer.
Collapse
Affiliation(s)
- Mahdieh Safarzad
- Metabolic disorders research center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Besharat
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran and Department of Clinical Biochemistry, School of Medicine, ZahedanUniversity of Medical Sciences, Zahedan, Iran
| | - Ramin Azarhoush
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naser Behnampour
- Biostatistics Department, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Laboratory sciences research center, Golestan University of Medical Sciences, Gorgan, Iran; Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
23
|
Fatima G, Raza AM, Hadi N, Nigam N, Mahdi AA. Cadmium in Human Diseases: It's More than Just a Mere Metal. Indian J Clin Biochem 2019; 34:371-378. [PMID: 31686724 DOI: 10.1007/s12291-019-00839-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/15/2019] [Indexed: 11/24/2022]
Abstract
Cadmium (Cd), poisoning has been reported from all around the World, causing many deaths annually. Cd is a toxic heavy metal, and is widely present in environment. It has been reported that chronic Cd exposure is associated with kidney disease, osteoporosis, cardiovascular diseases and cancer. Smoking causes exposure to significantly higher Cd levels in humans. Tobacco smoke transports Cd into the lungs. Blood then transport it to the rest of the body where it increases effects by potentiating Cd that is already present from Cd-rich food. Other high exposures of Cd can occur with people, who live near hazardous waste sites, or factories that release Cd into the air and people who work in the metal refinery industry. Breathing of Cd can severely damage the lungs and may even cause death. Multiple studies have shown an association between environmental exposure to hazardous chemicals including toxic metals and obesity, diabetes, and metabolic syndrome. At the same time, the existing data on the impact of Cd exposure on obesity and diabetes are contradictory. On the converse, results of epidemiologic studies linking Cd exposure and Osteoporosis, overweight or obesity are far less consistent and even conflicting, also depending on differences in exposure levels. In turn, laboratory studies demonstrated that Cd adversely affects adipose tissue physiopathology through several mechanisms, thus contributing to increased insulin resistance and enhancing diabetes. However, intimate biological mechanisms linking Cd exposure with human diseases are still to be adequately investigated. Therefore, the aim of the present review was to explore the impact of Cd exposure and status on the risk of Cd in human diseases.
Collapse
Affiliation(s)
- Ghizal Fatima
- Department of Biotechnology, Era's Medical College and Hospital, Lucknow, India
| | | | - Najah Hadi
- 3Department of Pharmacology, College of Medicine, Kufa University, Kufa, Iraq
| | - Nitu Nigam
- 4Department of Cytogenetics, King George Medical University, Lucknow, India
| | - Abbas Ali Mahdi
- 5Department of Biochemistry, King George Medical University, Lucknow, India
| |
Collapse
|
24
|
Vizuete J, Pérez-López M, Míguez-Santiyán MP, Hernández-Moreno D. Mercury (Hg), Lead (Pb), Cadmium (Cd), Selenium (Se), and Arsenic (As) in Liver, Kidney, and Feathers of Gulls: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 247:85-146. [PMID: 30413976 DOI: 10.1007/398_2018_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mercury (Hg), lead (Pb), cadmium (Cd), selenium (Se), and arsenic (As) are metals or metalloids of high concern because of their effects on the environment and, specially, their potential toxicity on the animals inhabiting there. Due to their relevance, these elements have been object of several biomonitoring studies in different animal species around the world. Birds are widespread and, as species, are able to supply specific and relevant information about the regions where they live, being useful as bioindicators, as long as they are not birds with a strong migratory character. The main goal of this review is to summarize data collected from different studies using seabirds, paying special attention to gulls, in order to be helpful for coming studies and regulatory affairs.Several tissues have been used to evaluate Hg, Cd, Pb, Se, and As concentrations in seabirds, being focused the present review in those analyzing the liver, kidneys, and feathers. The most frequently analyzed tissue for Hg was the liver, followed by feathers, and finally kidney. For Cd levels, most of the studies were carried out in the liver, followed by feathers and kidneys. Pb, Se, and As levels were determined to a lesser extent. Feathers should be taken carefully as indicator of accumulation of pollutants, since procedure during analysis may lead to controversial results.Some authors reported that interspecific differences in the exposure of elements are determined by multiple factors, including properties of the contaminant, species, feeding habits, migratory status, sex, and age.The present review provides a comprehensive overview of the analyzed elements' occurrence in different species of seabirds, including gulls. Therefore, it can be a useful database providing for Hg, Pb, Cd, Se, and As levels in different tissues of seabirds.
Collapse
Affiliation(s)
- Jorge Vizuete
- Faculty of Veterinary Medicine (UEX), Toxicology Area, Cáceres, Spain
| | - Marcos Pérez-López
- Faculty of Veterinary Medicine (UEX), Toxicology Area, Cáceres, Spain
- INBIO G+C Research Institutes, Cáceres, Spain
| | - María Prado Míguez-Santiyán
- Faculty of Veterinary Medicine (UEX), Toxicology Area, Cáceres, Spain.
- INBIO G+C Research Institutes, Cáceres, Spain.
| | | |
Collapse
|
25
|
Biochemical mechanisms of free-radical damage to the nuclear genome by cadmium. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Qayyum MA, Shah MH. Study of trace metal imbalances in the blood, scalp hair and nails of oral cancer patients from Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:191-201. [PMID: 28343039 DOI: 10.1016/j.scitotenv.2017.03.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
Oral cancer is an important cause of cancer morbidity and mortality globally and exposure to trace metals alongside tobacco, alcohol and HPV are the important etiological factors in its development. Selected essential and toxic trace metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were measured in the blood, scalp hair and nails of oral cancer patients and counterpart controls by atomic absorption spectrometry. Mean concentrations of Cd, Ni and Pb were found to be significantly higher (p<0.05) and those of Cu, Fe and Zn were considerably lower in the blood, scalp hair and nails of the patients than the controls. Most of the metal concentrations exhibited higher dispersion and asymmetry in the blood, scalp hair and nails of the patients compared with the controls. The correlation study revealed significantly diverse relationships among the metals in blood, scalp hair and nails of both donor groups. Variations in the metal levels were also noted for various stages (I, II, III & IV) as well as the types (adenocarcinoma and squamous cell carcinoma) of oral cancer. Multivariate cluster analysis of the metal levels in the patients were also significantly dissimilar than the controls. The study evidenced considerably divergent variations in the metal levels in oral cancer patients in comparison with the controls.
Collapse
Affiliation(s)
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
27
|
Matić D, Vlahović M, Kolarević S, Perić Mataruga V, Ilijin L, Mrdaković M, Vuković Gačić B. Genotoxic effects of cadmium and influence on fitness components of Lymantria dispar caterpillars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1270-1277. [PMID: 27613326 DOI: 10.1016/j.envpol.2016.08.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The current study extends our previous findings concerning the sensitivity of Lymantria dispar larvae to cadmium in light of ecotoxicological risk assessment. Here we report the results of the comet assay performed for the first time on this species. We examined the chronic effects of two cadmium concentrations (50 and 100 μg Cd/g dry food) on DNA integrity and haemocyte viability, as well as on fitness-related traits (larval mass and development duration parameters). All parameters were assessed individually and then used to calculate the integrated biomarker response (IBR) index. Egg-masses of L. dispar were collected from two locations in Serbia - the uncontaminated Homolje mountains and a metal-polluted area near Bor copper mines, smelter and refinery. Distinctive patterns in the response of these populations to cadmium exposure were noticed. In haemocytes of larvae from the pollution-free location both cadmium treatments increased the level of DNA damage, although in a similar range. Haemocyte viability and larval mass were reduced, while duration of the fourth instar and total development time were prolonged in a concentration-dependent manner. Cadmium tolerance was noticeable in the population from the metal-contaminated site at all organizational levels. Nevertheless, haemocyte viability in that population was reduced by the stronger treatment. Haemocyte viability was recognized as a promising biomarker due to the evident response of both populations to dietary cadmium. Genotoxicity, fitness-related traits and the IBR index could be used for biomonitoring of sensitive populations not previously exposed to metals.
Collapse
Affiliation(s)
- Dragana Matić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Milena Vlahović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Stoimir Kolarević
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| | - Vesna Perić Mataruga
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Marija Mrdaković
- University of Belgrade, Institute for Biological Research "Siniša Stanković", Department of Insect Physiology and Biochemistry, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Branka Vuković Gačić
- University of Belgrade, Faculty of Biology, Chair of Microbiology, Center for Genotoxicology and Ecogenotoxicology, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
28
|
Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7825432. [PMID: 27803929 PMCID: PMC5075591 DOI: 10.1155/2016/7825432] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
Abstract
With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.
Collapse
|
29
|
Santana VP, Salles ÉS, Correa DE, Gonçalves BF, Campos SG, Justulin LA, Godinho AF, Scarano WR. Long-term effects of perinatal exposure to low doses of cadmium on the prostate of adult male rats. Int J Exp Pathol 2016; 97:310-316. [PMID: 27469444 PMCID: PMC5061764 DOI: 10.1111/iep.12193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 04/15/2016] [Indexed: 11/29/2022] Open
Abstract
Developmental toxicity caused by environmental exposure to heavy metals during the perinatal period has raised questions about offspring health. Cadmium (Cd) is an endocrine-disrupting chemical with the potential to interfere with morphogenesis and susceptibility to diseases in reproductive organs. Taking into account that in the rat prostate morphogenesis occurs during the perinatal period, and that pregnant females absorb and retain more dietary Cd than their non-pregnant counterparts, it is important to understand the effects of perinatal Cd exposure on the adult rat prostate. Therefore this study investigated the effects of gestational and lactational Cd exposure on adult offspring rat prostate histopathology. Pregnant rats (n = 20) were divided into two groups: Control (treated with aqueous solution of sodium acetate 10 mg/l) and treated (treated with aqueous solution of cadmium acetate 10 mg/l) administered in the drinking water. After weaning, male offspring from different litters (n = 10) received food and water 'ad libitum'. The animals were euthanized at postnatal day 90 (PND90), the ventral prostates (VPs) were removed, weighed and examined histopathologically. Blood was collected for the measurement of testosterone (T) levels. Immunohistochemistry for androgen receptor (AR) and Ki67, and a TUNEL assay were performed. There were no differences in T levels, cell proliferation and apoptosis indexes, or AR immunostaining between the experimental groups. Stromal inflammatory foci and multifocal inflammation increased significantly in the treated group. These changes were associated with inflammatory reactive epithelial atypia and stromal fibrillar rearrangement. In conclusion, VP was permanently affected by perinatal Cd exposition, with increased incidence of inflammatory disorders with ageing.
Collapse
Affiliation(s)
| | - Évila S Salles
- Federal University of Alfenas, UNIFAL-MG, Alfenas, MG, Brazil
| | | | | | - Silvana G Campos
- Institute of Biosciences, Letters and Exact Sciences, UNESP, São José do Rio Preto, SP, Brazil
| | - Luiz A Justulin
- Institute of Biosciences of Botucatu, UNESP, Botucatu, SP, Brazil
| | | | | |
Collapse
|
30
|
Denuncio P, Panebianco MV, Del Castillo D, Rodríguez D, Cappozzo HL, Bastida R. Beak deviations in the skull of Franciscana dolphins Pontoporia blainvillei from Argentina. DISEASES OF AQUATIC ORGANISMS 2016; 120:1-7. [PMID: 27304865 DOI: 10.3354/dao03012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Franciscana dolphin Pontoporia blainvillei is characterized by a long rostrum, a feature that is shared with the families formerly classified as river dolphins (Pontoporiidae, Platanistidae, Iniidae, Lipotidae). Although there are occasional reports on the existence of beak deformations, very little published information exists describing this process. The object of the present study was to describe and quantify the beak anomalies of Franciscana dolphins from the coastal waters of Argentina. Of 239 skulls analyzed 12% showed beak deviations (BD), affecting the premaxillary-maxillary and dentary bones to different extents. The occurrence of BD in the dentary bone represented 58%, whereas premaxillary-maxillary BDs were observed in 14% of the studied specimens, while the complete rostrum (dentary, premaxillary and maxillary) was affected in 28% of the skulls. Dorsoventral axis BD was more frequent than lateral BD (48 and 38%, respectively), and double BD was only observed in the dentary bone. Most of the BD observed in this study could be classified as mild/moderate, and we assume that it did not affect the feeding activities of individuals; however, 2 specimens (<1%) showed a severe and complex curvature that probably did affect them. The cause of these anomalies (natural or anthropogenic origins) is unknown but may be related to important parasite loads, heavy metal and organic contaminants and plastic ingestion that could affect the coastal dolphin in different ways. A more detailed and thorough study of these cranial anomalies is necessary.
Collapse
Affiliation(s)
- Pablo Denuncio
- Instituto de Investigaciones Marinas y Costeras (IIMyC), Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, B7602AYL Mar del Plata, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Characterization and Sorptivity of the Plesiomonas shigelloides Strain and Its Potential Use to Remove Cd2+ from Wastewater. WATER 2016. [DOI: 10.3390/w8060241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Miandare HK, Niknejad M, Shabani A, Safari R. Exposure of Persian sturgeon (Acipenser persicus) to cadmium results in biochemical, histological and transcriptional alterations. Comp Biochem Physiol C Toxicol Pharmacol 2016; 181-182:1-8. [PMID: 26687766 DOI: 10.1016/j.cbpc.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022]
Abstract
Sturgeon is one of the endangered families of fish in the Caspian Sea region, where there is up to 80% of their global caching. Unfortunately, in recent years, increase of pollutants has been resulted in their total population reduction. Due to their benthic nature, sturgeons are at great risk of exposing to contaminants such as cadmium. Despite their endangered status in the Caspian Sea, there are only a few studies on characterizing the relative sensitivity of sturgeons to cadmium. Adverse effects associated with pollution on angiogenesis are mediated by hypoxia inducing factor-1 (HIF-1) and vascular endothelial growth factor (VEGF). In this investigation, gene expression of two distinct HIFs-1, HIF-1α and HIF-2α, and VEGF was investigated at the mRNA transcript levels after exposure of Persian sturgeon (Acipenser persicus) to cadmium. VEGF, HIF-1α and HIF-2α expressions in treated Persian sturgeon were greater than controls. Significant increases (P<0.05) were also observed in cortisol and glucose levels compared to the control group especially in the fish exposed to higher cadmium concentration (800 μg/L). Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactic acid dehydrogenase (LDH) levels were increased in the cadmium-exposed fish, although the observed increases were not significant between the control and 200 μg/L cadmium treatment at some sampling time points. Gill tissues also showed histopathological changes in the cadmium treatments. Overall, results indicated that cadmium resulted in some alterations in biochemical parameters, mRNA transcript level expression of two important angiogenesis related genes as well as histological alterations in Persian sturgeon.
Collapse
Affiliation(s)
- Hamed Kolangi Miandare
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mahtab Niknejad
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ali Shabani
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Roghieh Safari
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
33
|
Li G, Zhao H, Wang H, Guo X, Guo X, Sun Q, Xu B. Characterization of a Decapentapletic Gene (AccDpp) from Apis cerana cerana and Its Possible Involvement in Development and Response to Oxidative Stress. PLoS One 2016; 11:e0149117. [PMID: 26881804 PMCID: PMC4755538 DOI: 10.1371/journal.pone.0149117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022] Open
Abstract
To tolerate many acute and chronic oxidative stress-producing agents that exist in the environment, organisms have evolved many classes of signal transduction pathways, including the transforming growth factor β (TGFβ) signal pathway. Decapentapletic gene (Dpp) belongs to the TGFβ superfamily, and studies on Dpp have mainly focused on its role in the regulation of development. No study has investigated the response of Dpp to oxidative pressure in any organism, including Apis cerana cerana (A. cerana cerana). In this study, we identified a Dpp gene from A. cerana cerana named AccDpp. The 5΄ flanking region of AccDpp had many transcription factor binding sites that relevant to development and stress response. AccDpp was expressed at all stages of A. cerana cerana, with its highest expression in 15-day worker bees. The mRNA level of AccDpp was higher in the poison gland and midgut than other tissues. Furthermore, the transcription of AccDpp could be repressed by 4°C and UV, but induced by other treatments, according to our qRT-PCR analysis. It is worth noting that the expression level of AccDpp protein was increased after a certain time when A. cerana cerana was subjected to all simulative oxidative stresses, a finding that was not completely consistent with the result from qRT-PCR. It is interesting that recombinant AccDpp restrained the growth of Escherichia coli, a function that might account for the role of the antimicrobial peptides of AccDpp. In conclusion, these results provide evidence that AccDpp might be implicated in the regulation of development and the response of oxidative pressure. The findings may lay a theoretical foundation for further genetic studies of Dpp.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Xulei Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- * E-mail: (QS); (BX)
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, P. R. China
- * E-mail: (QS); (BX)
| |
Collapse
|
34
|
Song SY, Bae CH, Choi YS, Kim YD. Cadmium induces mucin 8 expression via Toll-like receptor 4-mediated extracellular signal related kinase 1/2 and p38 mitogen-activated protein kinase in human airway epithelial cells. Int Forum Allergy Rhinol 2016; 6:638-45. [PMID: 26782637 DOI: 10.1002/alr.21705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/18/2015] [Accepted: 11/29/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Inhalation of cadmium can lead to development of inflammatory airway diseases such as acute pulmonary edema and chronic obstructive pulmonary disease. In inflammatory airway diseases, expression of mucins is increased, which leads to increased morbidity and mortality of the affected patients. However, no study on the effect of cadmium on expression of mucin genes in airway epithelial cells has been reported. Therefore, this study was conducted in order to investigate the effect and the brief signaling pathway of cadmium on expression of mucin genes in human airway epithelial cells. METHODS In mucin-producing human NCI-H292 airway epithelial cells and primary cultures of normal nasal epithelial cells, the effect and signaling pathway of cadmium on expression of mucin genes were investigated using reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with several specific inhibitors and small interfering RNA (siRNA). RESULTS Cadmium increased mucin 8 (MUC8) expression and Toll-like receptor (TLR) 4 messenger RNA (mRNA) expression. Cadmium significantly activated phosphorylation of extracellular signal related kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) and p38 MAPK. ERK1/2 MAPK inhibitor, p38 MAPK inhibitor, TLR4 siRNA, ERK1/2 MAPK siRNA, and p38 MAPK siRNA significantly blocked cadmium-induced MUC8 mRNA expression. TLR4 siRNA significantly blocked cadmium-activated phosphorylation of ERK1/2 MAPK and p38 MAPK. CONCLUSION The results of this study suggest for the first time that cadmium induces MUC8 expression via TLR4-mediated ERK1/2 and p38 MAPK signaling pathway in human airway epithelial cells.
Collapse
Affiliation(s)
- Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea.,Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
35
|
2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation. Toxicol Appl Pharmacol 2015. [DOI: 10.1016/j.taap.2015.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Fongsupa S, Soodvilai S, Muanprasat C, Chatsudthipong V, Soodvilai S. Activation of liver X receptors inhibits cadmium-induced apoptosis of human renal proximal tubular cells. Toxicol Lett 2015; 236:145-53. [DOI: 10.1016/j.toxlet.2015.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 12/16/2022]
|
37
|
Lane E, Canty M, More S. Cadmium exposure and consequence for the health and productivity of farmed ruminants. Res Vet Sci 2015; 101:132-9. [DOI: 10.1016/j.rvsc.2015.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/14/2015] [Accepted: 06/06/2015] [Indexed: 02/08/2023]
|
38
|
Szczygłowska M, Bodnar M, Namieśnik J, Konieczka P. The use of vegetables in the biomonitoring of cadmium and lead pollution in the environment. Crit Rev Anal Chem 2015; 44:2-15. [PMID: 25391210 DOI: 10.1080/10408347.2013.822788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lead and cadmium emitted from various anthropogenic sources have the ability to accumulate in tissues of living organisms. The phenomenon of accumulation of metals in the body is harmful and undesirable. The ability of plants to accumulate heavy metals from the individual elements of the environment has been used in biomonitoring of pollution. Leaves and roots of vegetables have particular predisposition for accumulating toxic metals such as lead and cadmium and therefore can be used for biomonitoring of the environment, mainly as a tool for assessing the extent of soil contamination. The article discusses information in the literature on entry paths of lead and cadmium into the body, toxic effects of lead and cadmium on the human organism, and the use of vegetables as a tool in the biomonitoring of heavy metals in different elements of the environment.
Collapse
Affiliation(s)
- Marzena Szczygłowska
- a Department of Analytical Chemistry, Chemistry Faculty , Gdansk University of Technology , Gdansk , Poland
| | | | | | | |
Collapse
|
39
|
Morales ME, Servant G, Ade C, Roy-Enge AM. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage. Biol Trace Elem Res 2015; 166:24-33. [PMID: 25774044 PMCID: PMC4696754 DOI: 10.1007/s12011-015-0298-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022]
Abstract
Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.
Collapse
Affiliation(s)
- Maria E. Morales
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Geraldine Servant
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Catherine Ade
- Department of Cellular and Molecular Biology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Astrid M. Roy-Enge
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
- Corresponding author: Astrid M. Roy-Engel, Ph.D., Department of Epidemiology, Tulane Cancer Center, SL66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112. , Phone: (504) 988-6316, Fax: (504) 988-5516
| |
Collapse
|
40
|
Chen S, Ren Q, Zhang J, Ye Y, Zhang Z, Xu Y, Guo M, Ji H, Xu C, Gu C, Gao W, Huang S, Chen L. N-acetyl-L-cysteine protects against cadmium-induced neuronal apoptosis by inhibiting ROS-dependent activation of Akt/mTOR pathway in mouse brain. Neuropathol Appl Neurobiol 2015; 40:759-77. [PMID: 24299490 DOI: 10.1111/nan.12103] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/27/2013] [Indexed: 01/24/2023]
Abstract
AIMS This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). METHODS NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signalling pathway in brain neurones were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. RESULTS Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. CONCLUSIONS NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Sujuan Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
El-Sonbaty SM, El-Hadedy DE. Combined effect of cadmium, lead, and UV rays on Bacillus cereus using comet assay and oxidative stress parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3400-3407. [PMID: 23089956 DOI: 10.1007/s11356-012-1250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/06/2012] [Indexed: 06/01/2023]
Abstract
Exposure to environmental chemicals and oxidative stress particularly at low dose levels may produce additive or synergistic interactions not seen in single component exposure. Exposure to cadmium, lead, and ultraviolet rays occurs in many occupational settings, such as pigment and battery production, galvanization, and recycling of electric tools. However, little is known about interactions between heavy metals and ultraviolet rays. This study aimed to evaluate the interactions of ultraviolet rays of 254 nm (UV-B) with cadmium or lead on Bacillus cereus. B. cereus was treated with different concentrations of cadmium or lead followed by exposure to UV-B radiation as combined effect. Photoirradiation of B. cereus with UV-B with exposure to cadmium or lead results in DNA damage, cytotoxicity, depletion of glutathione, and formation of lipid peroxidation. UV-B rays alone enhanced glutathione production which was depleted with lead and high doses of cadmium. Lead alone does not increase DNA breaking. The mechanism behind these interactions might be repair inhibition of oxidative DNA damage, since a decrease in repair capacity will increase susceptibility to reactive oxygen species generated by cadmium or lead. Lipid peroxidation was increased with exposure to UV-B and cadmium or lead. DNA, glutathione, and lipid peroxidation can be used as biomarkers to identify possible environmental contamination in bacteria. One conclusion from this model is the existence of more than multiplicative effects for co-exposures of cadmium or lead and UV rays.
Collapse
Affiliation(s)
- S M El-Sonbaty
- Department of Microbiology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (AEA), Cairo, Egypt,
| | | |
Collapse
|
42
|
Isolation, Identification, and Characterization of Cadmium Resistant Pseudomonas sp. M3 from Industrial Wastewater. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/160398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study deals with the isolation, identification, and characterization of the cadmium resistant bacteria from wastewater collected from industrial area of Penang, Malaysia. The isolate was selected based on high level of the cadmium and antibiotic resistances. On the basis of morphological, biochemical characteristics, 16S rDNA gene sequencing and phylogeny analysis revealed that the strain RZCd1 was authentically identified as Pseudomonas sp. M3. The industrial isolate showed more than 70% of the cadmium removal in log phase. The cadmium removal capacity of strain RZCd1 was affected by temperature and pH. At pH 7.0 and 35°C, strain RZCd1 showed maximum cadmium removal capacity. The minimal inhibitory concentration of strain RZCd1 against the cadmium was 550 µg/mL. The resistance against the cadmium was associated with resistance to multiple antibiotics: amoxicillin, penicillin, cephalexin, erythromycin, and streptomycin. The strain RZCd1 also gave thick bands of proteins in front of 25 kDa in cadmium stress condition after 3 h of incubation. So the identified cadmium resistant bacteria may be useful for the bioremediation of cadmium contaminated industrial wastewater.
Collapse
|
43
|
Sharma B, Singh S, Siddiqi NJ. Biomedical implications of heavy metals induced imbalances in redox systems. BIOMED RESEARCH INTERNATIONAL 2014; 2014:640754. [PMID: 25184144 PMCID: PMC4145541 DOI: 10.1155/2014/640754] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/28/2014] [Accepted: 07/10/2014] [Indexed: 02/03/2023]
Abstract
Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals.
Collapse
Affiliation(s)
- Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Shweta Singh
- Department of Genetics, SGPGIMS, Lucknow 226014, India
| | - Nikhat J. Siddiqi
- Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
44
|
Wu G, Sun M, Liu P, Zhang X, Yu Z, Zheng Z, Chen Y, Li X. Enterococcus faecalis
strain LZ-11 isolated from Lanzhou reach of the Yellow River is able to resist and absorb Cadmium. J Appl Microbiol 2014; 116:1172-80. [DOI: 10.1111/jam.12460] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/06/2014] [Accepted: 01/23/2014] [Indexed: 11/28/2022]
Affiliation(s)
- G. Wu
- Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou Gansu China
| | - M. Sun
- The Cuiying Honors College; Lanzhou University; Lanzhou Gansu China
| | - P. Liu
- Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou Gansu China
| | - X. Zhang
- Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou Gansu China
| | - Z. Yu
- Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou Gansu China
| | - Z. Zheng
- Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou Gansu China
| | - Y. Chen
- Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou Gansu China
| | - X. Li
- Key Laboratory of Cell Activities and Stress Adaptations; School of Life Sciences; Lanzhou University; Lanzhou Gansu China
| |
Collapse
|
45
|
Gaur N, Flora G, Yadav M, Tiwari A. A review with recent advancements on bioremediation-based abolition of heavy metals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:180-93. [PMID: 24362580 DOI: 10.1039/c3em00491k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
There has been a significant rise in the levels of heavy metals (Pb, As, Hg and Cd) due to their increased industrial usage causing a severe concern to public health. The accumulation of heavy metals generates oxidative stress in the body causing fatal effects to important biological processes leading to cell death. Therefore, there is an imperative need to explore efficient and effective methods for the eradication of these heavy metals as against the conventionally used uneconomical and time consuming strategies that have numerous environmental hazards. One such eco-friendly, low cost and efficient alternative to target heavy metals is bioremediation technology that utilizes various microorganisms, green plants or enzymes for the abolition of heavy metals from polluted sites. This review comprehensively discusses toxicological manifestations of heavy metals along with the detailed description of bioremediation technologies employed such as phytoremediation and biosorption for the potential removal of these metals. It also updates readers about recent advances in bioremediation technologies like the use of nanoparticles, non-living biomass and transgenic crops.
Collapse
Affiliation(s)
- Nisha Gaur
- School of Biotechnology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, M.P., India.
| | | | | | | |
Collapse
|
46
|
|
47
|
Fucoxanthin, a marine carotenoid protects cadmium-induced oxidative renal dysfunction in rats. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bionut.2013.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Fan L, Niu Y, Zhang S, Shi L, Guo H, Liu Y, Zhang R. Development of a screening system for DNA damage and repair of potential carcinogens based on dual luciferase assay in human HepG2 cell. Mutagenesis 2013; 28:515-24. [DOI: 10.1093/mutage/get028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
49
|
|
50
|
Lin S, Huo X, Zhang Q, Fan X, Du L, Xu X, Qiu S, Zhang Y, Wang Y, Gu J. Short placental telomere was associated with cadmium pollution in an electronic waste recycling town in China. PLoS One 2013; 8:e60815. [PMID: 23565277 PMCID: PMC3614985 DOI: 10.1371/journal.pone.0060815] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/02/2013] [Indexed: 02/05/2023] Open
Abstract
In Guiyu, an electronic waste recycling site near Shantou, Guangdong province, China, primitive ways of e-waste processing have caused severe cadmium and lead pollution to the local residents. However, the possible effects of cadmium or lead pollution to genomic integrity of the local residents have not been investigated. We examined the possible relationship between cadmium and lead concentrations in placenta and placental telomere length in Guiyu and compared the data with that of a non-polluted town. Graphite furnace atomic absorption spectrometry and real-time PCR were used to determine placental cadmium and lead concentrations, and placental telomere length. We found that placental cadmium concentration was negatively correlated with placental telomere length (r = -0.138, p = 0.013). We also found that placental cadmium concentration of 0.0294 µg/g might be a critical point at which attrition of placental telomere commenced. No significant correlation between placental lead concentration and placental telomere length was detected (r = 0.027, p = 0.639). Our data suggest that exposure to cadmium pollution during pregnancy may be a risk factor for shortened placental telomere length that is known to be related to cancer development and aging. Furthermore, grave consequence on the offspring from pregnancies in e-waste polluted area is indicated.
Collapse
Affiliation(s)
- Shuiqin Lin
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xia Huo
- Analytical Cytology Laboratory, Shantou University Medical College, Shantou, China
| | - Qingying Zhang
- Department of Preventive Medicine of Shantou University Medical College, Shantou, China
| | - Xiaojuan Fan
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xijin Xu
- Analytical Cytology Laboratory, Shantou University Medical College, Shantou, China
| | - Shaoshan Qiu
- Analytical Cytology Laboratory, Shantou University Medical College, Shantou, China
| | - Yuling Zhang
- Analytical Cytology Laboratory, Shantou University Medical College, Shantou, China
| | - Yun Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Jiang Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Department of Pathology, School of Basic Medical Science, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|