1
|
Basurto E, González-Flores O, Hoffman K. Chronic MK-801 administration provokes persistent deficits in social memory in the prairie vole (Microtus ochrogaster): A potential animal model for social deficits of schizophrenia. Behav Brain Res 2024; 465:114948. [PMID: 38479476 DOI: 10.1016/j.bbr.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
The prairie vole (Microtus ochrogaster) is a rodent species that has been used extensively to study biological aspects of human social bonding. Nevertheless, this species has not been studied in the context of modeling social deficits characteristic of schizophrenia. Building on studies in rodents that show that sub-chronic administration of an NMDA receptor antagonist induces persistent behavioral and neurological characteristics of schizophrenia, we administered MK-801 (0.2 mg/kg, daily, for 7 days) or physiological saline to young adult (45 days old) virgin male voles. At 69 days of age, we paired these males with virgin females. 24 h later, we assessed the males' social investigation of each female across the first 5 min of a three-hour preference test, and side-by-side contact with each female during the last hour of the test. Unlike saline-treated males, MK-801-treated males did not preferentially investigate the unfamiliar female, indicating a deficit in social memory. Although males of both groups preferentially spent time with their female partner, regression analysis revealed that deficits in social memory predicted lower partner preference in MK-801-treated males. We interpret these results in the context of recent studies of the natural history of the prairie vole as well as in the context of cognitive deficits in schizophrenia and propose that the social component of episodic memory might influence an individual's capacity to form and maintain long-term social bonds.
Collapse
Affiliation(s)
- Enrique Basurto
- Centro de Investigación en Reproducción Animal Carlos Beyer, Universidad Autónoma de Tlaxcala-CINVESTAV, Panotla 90140, Mexico; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal Carlos Beyer, Universidad Autónoma de Tlaxcala-CINVESTAV, Panotla 90140, Mexico
| | - Kurt Hoffman
- Centro de Investigación en Reproducción Animal Carlos Beyer, Universidad Autónoma de Tlaxcala-CINVESTAV, Panotla 90140, Mexico.
| |
Collapse
|
2
|
Marín O. Parvalbumin interneuron deficits in schizophrenia. Eur Neuropsychopharmacol 2024; 82:44-52. [PMID: 38490084 PMCID: PMC11413553 DOI: 10.1016/j.euroneuro.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
Parvalbumin-expressing (PV+) interneurons represent one of the most abundant subclasses of cortical interneurons. Owing to their specific electrophysiological and synaptic properties, PV+ interneurons are essential for gating and pacing the activity of excitatory neurons. In particular, PV+ interneurons are critically involved in generating and maintaining cortical rhythms in the gamma frequency, which are essential for complex cognitive functions. Deficits in PV+ interneurons have been frequently reported in postmortem studies of schizophrenia patients, and alterations in gamma oscillations are a prominent electrophysiological feature of the disease. Here, I summarise the main features of PV+ interneurons and review clinical and preclinical studies linking the developmental dysfunction of cortical PV+ interneurons with the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
3
|
Roeske MJ, McHugo M, Rogers B, Armstrong K, Avery S, Donahue M, Heckers S. Modulation of hippocampal activity in schizophrenia with levetiracetam: a randomized, double-blind, cross-over, placebo-controlled trial. Neuropsychopharmacology 2024; 49:681-689. [PMID: 37833590 PMCID: PMC10876634 DOI: 10.1038/s41386-023-01730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Hippocampal hyperactivity is a novel pharmacological target in the treatment of schizophrenia. We hypothesized that levetiracetam (LEV), a drug binding to the synaptic vesicle glycoprotein 2 A, normalizes hippocampal activity in persons with schizophrenia and can be measured using neuroimaging methods. Thirty healthy control participants and 30 patients with schizophrenia (28 treated with antipsychotic drugs), were randomly assigned to a double-blind, cross-over trial to receive a single administration of 500 mg oral LEV or placebo during two study visits. At each visit, we assessed hippocampal function using resting state fractional amplitude of low frequency fluctuations (fALFF), cerebral blood flow (CBF) with arterial spin labeling, and hippocampal blood-oxygen-level-dependent (BOLD) signal during a scene processing task. After placebo treatment, we found significant elevations in hippocampal fALFF in patients with schizophrenia, consistent with hippocampal hyperactivity. Additionally, hippocampal fALFF in patients with schizophrenia after LEV treatment did not significantly differ from healthy control participants receiving placebo, suggesting that LEV may normalize hippocampal hyperactivity. In contrast to our fALFF findings, we did not detect significant group differences or an effect of LEV treatment on hippocampal CBF. In the context of no significant group difference in BOLD signal, we found that hippocampal recruitment during scene processing is enhanced by LEV more significantly in schizophrenia. We conclude that pharmacological modulation of hippocampal hyperactivity in schizophrenia can be studied with some neuroimaging methods, but not others. Additional studies in different cohorts, employing alternate neuroimaging methods and study designs, are needed to establish levetiracetam as a treatment for schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Bogie BJM, Noël C, Alftieh A, MacDonald J, Lei YT, Mongeon J, Mayaud C, Dans P, Guimond S. Verbal memory impairments in mood disorders and psychotic disorders: A systematic review of comparative studies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110891. [PMID: 37931773 DOI: 10.1016/j.pnpbp.2023.110891] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Mood and psychotic disorders are both associated with verbal memory impairments. Verbal memory represents an important treatment target for both disorders. However, whether the neurocognitive and neurophysiological profiles of verbal memory impairments differ between specific disorders within these two diagnostic categories and healthy controls remains unclear. The current systematic review synthesized findings from comparative studies which used behavioural and neuroimaging tasks to investigate verbal memory impairments between: (1) mood disorder, psychotic disorder, and healthy control groups; and (2) mood disorder without psychotic features, mood disorder with psychotic features, and healthy control groups. METHODS The search strategy combined terms related to three main concepts: 'mood disorders', 'psychotic disorders', and 'verbal memory'. Searches were executed in Embase, MEDLINE, PsycInfo, and PubMed databases. A total of 38 articles met the full eligibility criteria and were included in the final narrative synthesis. Findings were stratified by memory domain (overall composite score, verbal working memory, immediate recall, delayed recall, and recognition memory) and by illness phase (acute and non-acute). RESULTS Mood and psychotic disorders displayed consistent verbal memory impairments compared to healthy controls during the acute and non-acute phases. Few significant differences were identified in the literature between mood and psychotic disorders, and between mood disorders with and without psychotic features. Individuals with schizophrenia were found to have decreased immediate and delayed verbal recall performance compared to bipolar disorder groups during the acute phase. Major depressive disorder groups with psychotic features were also found to have decreased delayed verbal recall performance compared to those without psychosis during the acute phase. No consistent differences were identified between mood and psychotic disorders during the non-acute phase. Finally, preliminary evidence suggests there may be functional abnormalities in important frontal and temporal brain regions related to verbal memory difficulties in both mood and psychotic disorders. DISCUSSION The current findings have potential implications for the diagnosis and treatment of cognitive impairments in mood and psychotic disorders. Verbal recall memory may serve as a sensitive tool in the risk stratification of cognitive impairments for certain mood and psychotic disorders. Moreover, since no widespread differences between clinical groups were identified, the evidence supports providing targeted interventions for verbal memory, such as pharmacological and non-pharmacological interventions, through a trans-diagnostic approach in mood and psychotic disorders.
Collapse
Affiliation(s)
- Bryce J M Bogie
- MD/PhD Program, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Chelsea Noël
- Department of Psychology, Lakehead University, Thunder Bay, ON, Canada
| | - Ahmad Alftieh
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Julia MacDonald
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ya Ting Lei
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
| | - Jamie Mongeon
- The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada
| | - Claire Mayaud
- Department of Psychology, University of Bordeaux, France
| | - Patrick Dans
- Temerty Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Synthia Guimond
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; The Royal's Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Ottawa, ON, Canada; Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada; Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Voineskos AN, Hawco C, Neufeld NH, Turner JA, Ameis SH, Anticevic A, Buchanan RW, Cadenhead K, Dazzan P, Dickie EW, Gallucci J, Lahti AC, Malhotra AK, Öngür D, Lencz T, Sarpal DK, Oliver LD. Functional magnetic resonance imaging in schizophrenia: current evidence, methodological advances, limitations and future directions. World Psychiatry 2024; 23:26-51. [PMID: 38214624 PMCID: PMC10786022 DOI: 10.1002/wps.21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.
Collapse
Affiliation(s)
- Aristotle N Voineskos
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Neufeld
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression and McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alan Anticevic
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robert W Buchanan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristin Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Julia Gallucci
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil K Malhotra
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Dost Öngür
- McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Todd Lencz
- Institute for Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Psychiatry, Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY, USA
| | - Deepak K Sarpal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute and Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
6
|
Liu Y, Huang H, Qin X, Zheng F, Wang H. Altered functional connectivity in anterior cingulate cortex subregions in treatment-resistant schizophrenia patients. Neurosci Lett 2023; 814:137445. [PMID: 37597741 DOI: 10.1016/j.neulet.2023.137445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND The anterior cingulate cortex (ACC) plays a key role in motor control, attention, and cognitive control. It is well established that schizophrenia is associated with impaired functional connectivity (FC) of the ACC pathway. So far, however, there has been little discussion about the ACC subregions function in patients with treatment-resistant schizophrenia (TRS). AIM This study aims to characterize resting-state functional connectivity (rs-FC) profiles of ACC subregions in patients with TRS. The association between these FC and clinical symptoms, neurocognitive function, and grey matter volume (GMV) was studied as well. METHODS A total of 81 patients with schizophrenia (40 patients with TRS = 40, 41 patients with non-treatment-resistant schizophrenia (NTRS)) and 39 age- and gender-matched healthy controls (HC) were enrolled, and underwent structural magnetic resonance imaging (MRI), resting-state functional MRI (rs-fMRI), clinical evaluation. The ACC subregions, including subgenual ACC (sgACC), pregenual ACC (pgACC), and dorsal ACC (dACC), were selected as seed regions from the automated anatomical labelling atlas 3 (AAL3). The GMV of the ACC subregions were calculated and seed-based FC maps for all ACC subregions were generated and compared between the TRS and NTRS, HC group. Additionally, correlations between altered FC and clinical symptoms, GMV, and neurocognitive functions in the TRS patients were explored. RESULT Compared with HC, increased FC was observed in TRS and NTRS groups between bilateral sgACC and left cuneus, right cuneus, and left lingual gyrus, while decreased FC was found between bilateral dACC and thalamic. Additionally, compared with NTRS, the TRS group showed increased FC between bilateral dACC and right cuneus and decreased FC between bilateral dACC and thalamic. The TRS group showed decreased GMV in all ACC subregions than the HC group, and there is no significant difference between the TRS group and the NTRS group. CONCLUSION The findings in this study suggest that disrupted FC of subregional ACC has the potential as a marker for TRS. The dysconnectivity of bilateral dACC- right cuneus and bilateral dACC-thalamus, are likely to be the unique FC profiles of TRS. These findings further our understanding of the neurobiological impairments in TRS.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xucong Qin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fanfan Zheng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
7
|
Herold CJ, Lässer MM, Schröder J. Autobiographical memory impairment in chronic schizophrenia: Significance and clinical correlates. J Neuropsychol 2023; 17:89-107. [PMID: 36065152 DOI: 10.1111/jnp.12288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
Previous studies of autobiographical memory (AM) in schizophrenia yielded a reduction of specificity, richness of details and conscious recollection, which indicate both, quantitative and qualitative AM changes. However, their associations with psychopathological symptoms and neuropsychological deficits were not resolved. Therefore, we sought to investigate AM with respect to psychopathology and neuropsychology in patients with chronic schizophrenia to rule out the influence of different courses of the disease. AM of four lifetime periods was examined in 75 patients and 50 healthy controls by using a semi-structured interview. The recalled episodes were rated for memory specificity. Subsequently, one single event of each period of life was rated for details and experiential aspects of reliving (originality, vividness/visual imagery, emotional re-experiencing and emotional valence). When contrasted with healthy controls, patients recalled a significantly reduced number of episodes and personal semantic facts; moreover, memory specificity of AM was significantly lower in patients than controls. While the richness of details calculated for single events showed only minor, non-significant group differences, vividness and emotional re-experiencing were significantly less pronounced in the patient group. Along with this, AM performance correlated significantly with negative symptoms including apathy as well as verbal memory and executive functions. Our results underline the significance of overgenerality as a key feature of AM in schizophrenia as well as a dissociation between intact number of details of single events and reduced vividness and emotional re-experiencing. The extent of negative symptoms including apathy and impairments of verbal memory/executive functions may explain AM deficits in chronic schizophrenia.
Collapse
Affiliation(s)
- Christina J Herold
- Section of Geriatric Psychiatry, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Marc M Lässer
- Section of Geriatric Psychiatry, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany.,Rehaklinik Zihlschlacht, Centre for Neurological Rehabilitation, Zihlschlacht, Switzerland
| | - Johannes Schröder
- Section of Geriatric Psychiatry, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
McHugo M, Avery S, Armstrong K, Rogers BP, Vandekar SN, Woodward ND, Blackford JU, Heckers S. Anterior hippocampal dysfunction in early psychosis: a 2-year follow-up study. Psychol Med 2023; 53:160-169. [PMID: 33875028 PMCID: PMC8919704 DOI: 10.1017/s0033291721001318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cross-sectional studies indicate that hippocampal function is abnormal across stages of psychosis. Neural theories of psychosis pathophysiology suggest that dysfunction worsens with illness stage. Here, we test the hypothesis that hippocampal function is impaired in the early stage of psychosis and declines further over the next 2 years. METHODS We measured hippocampal function over 2 years using a scene processing task in 147 participants (76 individuals in the early stage of a non-affective psychotic disorder and 71 demographically similar healthy control individuals). Two-year follow-up was completed in 97 individuals (50 early psychosis, 47 healthy control). Voxelwise longitudinal analysis of activation in response to scenes was carried out within a hippocampal region of interest to test for group differences at baseline and a group by time interaction. RESULTS At baseline, we observed lower anterior hippocampal activation in the early psychosis group relative to the healthy control group. Contrary to our hypothesis, hippocampal activation remained consistent and did not show the predicted decline over 2 years in the early psychosis group. Healthy controls showed a modest reduction in hippocampal activation after 2 years. CONCLUSIONS The results of this study suggest that hippocampal dysfunction in early psychosis does not worsen over 2 years and highlight the need for longer-term longitudinal studies.
Collapse
Affiliation(s)
- Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA
| | - Simon N. Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil D. Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Research and Development, Tennessee Valley Healthcare System, United States Department of Veteran Affairs
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Sousa AE, Ryan JD, Lepage M. Exploring the sociodemographic, clinical and neuropsychological factors associated with relational memory in schizophrenia. Cogn Neuropsychiatry 2023; 28:67-84. [PMID: 36464633 DOI: 10.1080/13546805.2022.2153657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The Transverse Patterning (TP) task has been used to measure episodic relational memory (RM) deficits in clinical populations. Individuals with schizophrenia often fail to learn TP with standard, and sometimes extensive training. Identifying the differences between TP learners and non-learners can improve our understanding of successful TP performance and its underlying mechanisms, which may help improve interventions aimed at ameliorating RM performance. We investigated sociodemographic, clinical and neuropsychological factors associated with TP performance in schizophrenia. METHODS Sixty-six participants with schizophrenia completed a semantically rich and a relational-binding dependent version of the TP task and reported on their task awareness and strategy use. RESULTS Twenty-six participants failed to learn the task rules after extensive training. Learners had superior verbal, visual and working memory, executive functions and overall cognitive functioning compared to non-learners. Learners also had superior awareness of task rules and pairs relationships and used elaborated cognitive strategies more often. CONCLUSIONS Our results support previous findings that some individuals with schizophrenia show RM impairment even with extensive TP training. We shed light on neuropsychological and metacognitive factors associated with TP performance. This knowledge could enhance interventions targeted to improve relational memory in schizophrenia when extensive training fails.
Collapse
Affiliation(s)
- Ana Elisa Sousa
- Douglas Mental Health University Institute, Montreal, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | - Jennifer D Ryan
- Rotman Research Institute, Baycrest, Department of Psychology, University of Toronto, Toronto, Canada
| | - Martin Lepage
- Douglas Mental Health University Institute, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Shovestul B, Saxena A, Reda S, Dudek E, Wu C, Lamberti JS, Dodell-Feder D. Social affective forecasting and social anhedonia in schizophrenia-spectrum disorders: a daily diary study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:97. [PMID: 36376338 PMCID: PMC9663197 DOI: 10.1038/s41537-022-00310-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Social anhedonia (SA) is a trait-like phenomenon observed across schizophrenia-spectrum disorders (SSDs). While in-the-moment social pleasure experiences are intact in SSDs, anticipatory pleasure experiences may be disrupted. Thus, the prediction of future emotions in social situations, or social affective forecasting (SAF), may play a role in SA. Therefore, we utilized daily diary methods to examine SAF in SSD and the association between SAF and SA in 34 SSD and 43 non-SSD individuals. SAF was calculated as the absolute difference between anticipatory and consummatory ratings of 13 positive and negative emotions for daily social interactions reported across eight days. Results suggest that individuals with SSDs are less accurate in forecasting negative, but not positive emotions, for future social interactions. Further, poorer forecasting accuracy of negative emotions were associated with elevated levels of SA and lower social pleasure. Together, these data suggest that inaccuracies in forecasting negative emotions may be a worthwhile intervention target for reducing SA in SSDs.
Collapse
Affiliation(s)
| | - Abhishek Saxena
- Department of Psychology, University of Rochester, Rochester, USA
| | - Stephanie Reda
- Department of Psychology, University of Rochester, Rochester, USA
| | - Emily Dudek
- Department of Rehabilitation Medicine, Mt. Sinai School of Medicine, New York City, USA
| | - Chenwei Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
| | - J Steven Lamberti
- Department of Psychiatry, University of Rochester Medical Center, Rochester, USA
| | - David Dodell-Feder
- Department of Psychology, University of Rochester, Rochester, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
11
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Pezzella P, Mucci A, Galderisi S. Unveiling the Associations between EEG Indices and Cognitive Deficits in Schizophrenia-Spectrum Disorders: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12092193. [PMID: 36140594 PMCID: PMC9498272 DOI: 10.3390/diagnostics12092193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive dysfunctions represent a core feature of schizophrenia-spectrum disorders due to their presence throughout different illness stages and their impact on functioning. Abnormalities in electrophysiology (EEG) measures are highly related to these impairments, but the use of EEG indices in clinical practice is still limited. A systematic review of articles using Pubmed, Scopus and PsychINFO was undertaken in November 2021 to provide an overview of the relationships between EEG indices and cognitive impairment in schizophrenia-spectrum disorders. Out of 2433 screened records, 135 studies were included in a qualitative review. Although the results were heterogeneous, some significant correlations were identified. In particular, abnormalities in alpha, theta and gamma activity, as well as in MMN and P300, were associated with impairments in cognitive domains such as attention, working memory, visual and verbal learning and executive functioning during at-risk mental states, early and chronic stages of schizophrenia-spectrum disorders. The review suggests that machine learning approaches together with a careful selection of validated EEG and cognitive indices and characterization of clinical phenotypes might contribute to increase the use of EEG-based measures in clinical settings.
Collapse
|
12
|
Raucher-Chéné D, Lavigne KM, Lepage M. Episodic Memory and Schizophrenia: From Characterization of Relational Memory Impairments to Neuroimaging Biomarkers. Curr Top Behav Neurosci 2022; 63:115-136. [PMID: 35902545 DOI: 10.1007/7854_2022_379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Episodic memory research in schizophrenia has a long history already which has clearly established significant impairments and strong associations with brain measures and functional outcome. The purpose of this chapter is not to make an exhaustive review of the recent literature but to highlight some relatively recent developments in the cognitive neuroscience field of episodic memory and schizophrenia. Hence, we present a contemporary view focusing specifically of relational memory which represents a form of episodic memory that refers to associations or binding among items or elements presented together. We describe the major tasks used and illustrate how their combination with brain imaging has: (1) favored the use of experimental memory tasks to isolate specific processes with specific neural correlates, (2) led to a distributed view of the neural correlates of memory impairments in schizophrenia where multiple regions are contributing, and (3) made possible the identification of fMRI biomarkers specific to episodic memory. We then briefly propose what we see as the next steps for memory research in schizophrenia so that the impact of this work can be maximized.
Collapse
Affiliation(s)
- Delphine Raucher-Chéné
- Cognition, Health, and Society Laboratory (EA 6291), University of Reims Champagne-Ardenne, Reims, France.,Academic Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France
| | - Katie M Lavigne
- Douglas Research Centre, Verdun, QC, Canada.,Department of Psychiatry, McGill University, Montréal, QC, Canada.,McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Martin Lepage
- Douglas Research Centre, Verdun, QC, Canada. .,Department of Psychiatry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
13
|
Koch E, Nyberg L, Lundquist A, Kauppi K. Polygenic Risk for Schizophrenia Has Sex-Specific Effects on Brain Activity during Memory Processing in Healthy Individuals. Genes (Basel) 2022; 13:genes13030412. [PMID: 35327966 PMCID: PMC8950000 DOI: 10.3390/genes13030412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Genetic risk for schizophrenia has a negative impact on memory and other cognitive abilities in unaffected individuals, and it was recently shown that this effect is specific to males. Using functional MRI, we investigated the effect of a polygenic risk score (PRS) for schizophrenia on brain activation during working memory and episodic memory in 351 unaffected participants (167 males and 184 females, 25–95 years), and specifically tested if any effect of PRS on brain activation is sex-specific. Schizophrenia PRS was significantly associated with decreased brain activation in the left dorsolateral prefrontal cortex (DLPFC) during working-memory manipulation and in the bilateral superior parietal lobule (SPL) during episodic-memory encoding and retrieval. A significant interaction effect between sex and PRS was seen in the bilateral SPL during episodic-memory encoding and retrieval, and sex-stratified analyses showed that the effect of PRS on SPL activation was male-specific. These results confirm previous findings of DLPFC inefficiency in schizophrenia, and highlight the SPL as another important genetic intermediate phenotype of the disease. The observed sex differences suggest that the previously shown male-specific effect of schizophrenia PRS on cognition translates into an additional corresponding effect on brain functioning.
Collapse
Affiliation(s)
- Elise Koch
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden; (L.N.); (K.K.)
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Correspondence: ; Tel.: +46-90-786-50-00
| | - Lars Nyberg
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden; (L.N.); (K.K.)
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Department of Radiation Sciences, Diagnostic Radiology, University Hospital, Umeå University, 901 87 Umeå, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Department of Statistics, School of Business, Economics and Statistics, Umeå University, 901 87 Umeå, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden; (L.N.); (K.K.)
- Umeå Center for Functional Brain Imaging, Umeå University, 901 87 Umeå, Sweden;
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Nobels väg 12A, 171 65 Solna, Sweden
| |
Collapse
|
14
|
Choi S, Kim M, Park H, Kim T, Moon SY, Lho SK, Lee J, Kwon JS. Volume deficits in hippocampal subfields in unaffected relatives of schizophrenia patients with high genetic loading but without any psychiatric symptoms. Schizophr Res 2022; 240:125-131. [PMID: 34999371 DOI: 10.1016/j.schres.2021.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hippocampal volume changes have been reported in schizophrenia patients and their relatives and are proposed to contribute to the pathophysiology of schizophrenia. However, volume changes in the total hippocampus have not been consistently reported in relatives. The hippocampus consists of multiple subregions, and based on previous inconsistent results, subtle changes in specific subregions may occur in relatives. Here, we examined the subregion volumes in unaffected, high-functioning relatives (URs) without any psychiatric symptoms with high genetic loading with at least one first-degree relative diagnosed with schizophrenia and at least one or more other affected first- to third-degree relatives. METHODS We acquired structural magnetic resonance imaging data from 50 URs, 101 first-episode psychosis (FEP) patients, and 101 healthy controls (HCs). The cornu ammonis (CA), dentate gyrus, and subiculum subfields were automatically segmented using FreeSurfer 7.1.0. Each subregion volume was compared across the groups. RESULTS Compared with the HCs, the URs had a significant volume reduction in the left anterior CA (p = 0.039, Cohen's d = 0.480). In addition, the URs had a significantly larger right posterior subiculum (p = 0.001, Cohen's d = 0.541) than the FEP. CONCLUSIONS The smaller left anterior CA in the URs may reflect their genetic vulnerability to schizophrenia and supports previous findings suggesting specific vulnerability in this region. The volume differences between the URs and FEP patients in the right posterior subiculum may suggest that a smaller volume in this region may reflect a risk for schizophrenia other than genetic vulnerability.
Collapse
Affiliation(s)
- Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyungyou Park
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea; Department of Bio and Brain Engineering, Information & Electronics Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sun-Young Moon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Silvia Kyungjin Lho
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junhee Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Corripio I, Roldán A, McKenna P, Sarró S, Alonso-Solís A, Salgado L, Álvarez E, Molet J, Pomarol-Clotet E, Portella M. Target selection for deep brain stimulation in treatment resistant schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110436. [PMID: 34517055 DOI: 10.1016/j.pnpbp.2021.110436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022]
Abstract
The use of deep brain stimulation (DBS) in treatment resistant patients with schizophrenia is of considerable current interest, but where to site the electrodes is challenging. This article reviews rationales for electrode placement in schizophrenia based on evidence for localized brain abnormality in the disorder and the targets that have been proposed and employed to date. The nucleus accumbens and the subgenual anterior cingulate cortex are of interest on the grounds that they are sites of potential pathologically increased brain activity in schizophrenia and so susceptible to the local inhibitory effects of DBS; both sites have been employed in trials of DBS in schizophrenia. Based on other lines of reasoning, the ventral tegmental area, the substantia nigra pars reticulata and the habenula have also been proposed and in some cases employed. The dorsolateral prefrontal cortex has not been suggested, probably reflecting evidence that it is underactive rather than overactive in schizophrenia. The hippocampus is also of theoretical interest but there is no clear functional imaging evidence that it shows overactivity in schizophrenia. On current evidence, the nucleus accumbens may represent the strongest candidate for DBS electrode placement in schizophrenia, with the substantia nigra pars reticulata also showing promise in a single case report; the ventral tegmental area is also of potential interest, though it remains untried.
Collapse
Affiliation(s)
- Iluminada Corripio
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Alexandra Roldán
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Peter McKenna
- FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Anna Alonso-Solís
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Laura Salgado
- Neurosurgery Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Enric Álvarez
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Joan Molet
- Neurosurgery Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Maria Portella
- Psychiatry Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| |
Collapse
|
16
|
Altered Dynamic Functional Connectivity of Cuneus in Schizophrenia Patients: A Resting-State fMRI Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311392] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: Schizophrenia (SZ) is a functional mental condition that has a significant impact on patients’ social lives. As a result, accurate diagnosis of SZ has attracted researchers’ interest. Based on previous research, resting-state functional magnetic resonance imaging (rsfMRI) reported neural alterations in SZ. In this study, we attempted to investigate if dynamic functional connectivity (dFC) could reveal changes in temporal interactions between SZ patients and healthy controls (HC) beyond static functional connectivity (sFC) in the cuneus, using the publicly available COBRE dataset. Methods: Sliding windows were applied to 72 SZ patients’ and 74 healthy controls’ (HC) rsfMRI data to generate temporal correlation maps and, finally, evaluate mean strength (dFC-Str), variability (dFC-SD and ALFF) in each window, and the dwelling time. The difference in functional connectivity (FC) of the cuneus between two groups was compared using a two-sample t-test. Results: Our findings demonstrated decreased mean strength connectivity between the cuneus and calcarine, the cuneus and lingual gyrus, and between the cuneus and middle temporal gyrus (TPOmid) in subjects with SZ. Moreover, no difference was detected in variability (standard deviation and the amplitude of low-frequency fluctuation), the dwelling times of all states, or static functional connectivity (sFC) between the groups. Conclusions: Our verdict suggest that dynamic functional connectivity analyses may play crucial roles in unveiling abnormal patterns that would be obscured in static functional connectivity, providing promising impetus for understanding schizophrenia disease.
Collapse
|
17
|
Guillaume F, Thomas É. Recollection and familiarity in schizophrenia:An ERP investigation using face recognition exclusion tasks. Psychiatry Res 2021; 302:113973. [PMID: 34038807 DOI: 10.1016/j.psychres.2021.113973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/23/2021] [Indexed: 11/28/2022]
Abstract
Recent studies suggest that the recollection deficit observed in schizophrenia may not be a unitary phenomenon but could depend on the information to retrieve. Here we investigated whether the nature of the perceptual information affects recollection and familiarity in schizophrenia. ERP old/new effects were explored in 20 patients with schizophrenia and 20 healthy controls during unfamiliar face exclusion tasks, with either intrinsic (expression) or extrinsic (background) information either changing or remaining the same between study and test. Schizophrenia patients rejected old faces as distractors in a greater extent than healthy controls. The FN400 old/new effect (300-500ms) was found in both groups. It was sensitive to facial expression change for healthy controls but not schizophrenia patients. In addition, the parietal old/new effect was lower for correctly excluded faces for patients, but not for controls. This points to the conclusion that schizophrenia patients discriminate between target and non-target faces on the basis of the memory strength signal corresponding to the study-test mismatch rather than the recollection of the critical information, as observed in healthy controls. This functioning can be useful when study-test perceptual mismatch must be detected but, in return, can lead to the over-exclusion of old stimuli.
Collapse
Affiliation(s)
| | - Émilie Thomas
- Aix-Marseille University, APHM, La Conception, Psychiatrie Adulte, Marseille, France
| |
Collapse
|
18
|
Maini K, Gould H, Hicks J, Iqbal F, Patterson J, Edinoff AN, Cornett EM, Kaye AM, Viswanath O, Urits I, Kaye AD. Aripiprazole Lauroxil, a Novel Injectable Long-Acting Antipsychotic Treatment for Adults with Schizophrenia: A Comprehensive Review. Neurol Int 2021; 13:279-296. [PMID: 34287335 PMCID: PMC8293312 DOI: 10.3390/neurolint13030029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE OF REVIEW This is a comprehensive review of the literature regarding the use of Aripiprazole lauroxil for schizophrenia. This review presents the background, evidence, and indications for using aripiprazole lauroxil to treat schizophrenia in the context of current theories on the development of schizophrenia. RECENT FINDINGS Schizophrenia is a chronic mental health disorder that currently affects approximately 3.3 million people in the United States. Its symptoms, which must be present for more than six months, are comprised of disorganized behavior and speech, a diminished capacity to comprehend reality, hearing voices unheard by others, seeing things unseen by others, delusions, decreased social commitment, and decreased motivation. The majority of these symptoms can be managed with antipsychotic medication. Aripiprazole lauroxil is a long-acting intramuscular injection that works as a combination of partial agonist activity at D2 and 5-HT1A receptors combined with antagonist activity at 5-HT2A receptors. It can be dosed as a 4-, 6-, or 8-week injection, depending on oral dosage. Aripiprazole lauroxil was FDA approved in October of 2015. SUMMARY Schizophrenia is a severe psychiatric disorder if left untreated. There are multiple medications to help treat schizophrenia. One antipsychotic agent, aripiprazole lauroxil, offers long duration injections that optimize and improve compliance. Known side effects include weight gain, akathisia, neuroleptic malignant syndrome, tardive dyskinesia, and orthostatic hypotension. Aripiprazole lauroxil is an FDA-approved drug that can be administered monthly, every six weeks, or every two months and has been shown to be both safe and effective.
Collapse
Affiliation(s)
- Kunal Maini
- Department of Psychiatry, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (K.M.); (J.P.II)
| | - Haley Gould
- Shreveport School of Medicine, Louisiana State University, Shreveport, LA 71103, USA; (H.G.); (J.H.); (F.I.)
| | - Jessica Hicks
- Shreveport School of Medicine, Louisiana State University, Shreveport, LA 71103, USA; (H.G.); (J.H.); (F.I.)
| | - Fatima Iqbal
- Shreveport School of Medicine, Louisiana State University, Shreveport, LA 71103, USA; (H.G.); (J.H.); (F.I.)
| | - James Patterson
- Department of Psychiatry, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (K.M.); (J.P.II)
| | - Amber N. Edinoff
- Department of Psychiatry, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (K.M.); (J.P.II)
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (E.M.C.); (I.U.); (A.D.K.)
| | - Adam M. Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA;
| | - Omar Viswanath
- College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA;
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE 68124, USA
- Valley Anesthesiology and Pain Consultants—Envision Physician Services, Phoenix, AZ 85004, USA
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (E.M.C.); (I.U.); (A.D.K.)
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alan D. Kaye
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA 71103, USA; (E.M.C.); (I.U.); (A.D.K.)
| |
Collapse
|
19
|
Dugré JR, Dumais A, Tikasz A, Mendrek A, Potvin S. Functional connectivity abnormalities of the long-axis hippocampal subregions in schizophrenia during episodic memory. NPJ SCHIZOPHRENIA 2021; 7:19. [PMID: 33658524 PMCID: PMC7930183 DOI: 10.1038/s41537-021-00147-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023]
Abstract
Past evidence suggests that hippocampal subregions, namely the anterior and posterior parts, may be engaged in distinct networks underlying the memory functions which may be altered in patients with schizophrenia. However, of the very few studies that have investigated the hippocampal longitudinal axis subdivisions functional connectivity in patients with schizophrenia, the majority was based on resting-state data, and yet, none aimed to examine these during an episodic memory task. A total of 41 patients with schizophrenia and 45 healthy controls were recruited for a magnetic resonance imaging protocol in which they performed an explicit memory task. Seed-based functional connectivity analysis was employed to assess connectivity abnormalities between hippocampal subregions and voxel-wise connectivity targets in patients with schizophrenia. We observed a significantly reduced connectivity between the posterior hippocampus and regions from the default mode network, but increased connectivity with the primary visual cortex, in patients with schizophrenia compared to healthy subjects. Increased connectivity between the anterior hippocampus and anterior temporal regions also characterized patients with schizophrenia. In the current study, we provided evidence and support for studying hippocampal subdivisions along the longitudinal axis in schizophrenia. Our results suggest that the abnormalities in hippocampal subregions functional connectivity reflect deficits in episodic memory that may be implicated in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jules R Dugré
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Alexandre Dumais
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, QC, Canada
| | - Andras Tikasz
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Adriana Mendrek
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
- Department of Psychology, Bishop's University, Sherbrooke, QC, Canada
| | - Stéphane Potvin
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada.
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
20
|
O'Neill A, Wilson R, Blest-Hopley G, Annibale L, Colizzi M, Brammer M, Giampietro V, Bhattacharyya S. Normalization of mediotemporal and prefrontal activity, and mediotemporal-striatal connectivity, may underlie antipsychotic effects of cannabidiol in psychosis. Psychol Med 2021; 51:596-606. [PMID: 31994476 DOI: 10.1017/s0033291719003519] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recent evidence suggests that cannabidiol (CBD), a non-intoxicating ingredient present in cannabis extract, has an antipsychotic effect in people with established psychosis. However, the effect of CBD on the neurocognitive mechanisms underlying psychosis is unknown. METHODS Patients with established psychosis on standard antipsychotic treatment were studied on separate days at least one week apart, to investigate the effects of a single dose of orally administered CBD (600 mg) compared to a matched placebo (PLB), using a double-blind, randomized, PLB-controlled, repeated-measures, within-subject cross-over design. Three hours after taking the study drug participants were scanned using a block design functional magnetic resonance imaging (fMRI) paradigm, while performing a verbal paired associate learning task. Fifteen psychosis patients completed both study days, 13 completed both scanning sessions. Nineteen healthy controls (HC) were also scanned using the same fMRI paradigm under identical conditions, but without any drug administration. Effects of CBD on brain activation measured using the blood oxygen level-dependent hemodynamic response fMRI signal were studied in the mediotemporal, prefrontal, and striatal regions of interest. RESULTS Compared to HC, psychosis patients under PLB had altered prefrontal activation during verbal encoding, as well as altered mediotemporal and prefrontal activation and greater mediotemporal-striatal functional connectivity during verbal recall. CBD attenuated dysfunction in these regions such that activation under its influence was intermediate between the PLB condition and HC. CBD also attenuated hippocampal-striatal functional connectivity and caused trend-level symptom reduction in psychosis patients. CONCLUSIONS This suggests that normalization of mediotemporal and prefrontal dysfunction and mediotemporal-striatal functional connectivity may underlie the antipsychotic effects of CBD.
Collapse
Affiliation(s)
- Aisling O'Neill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robin Wilson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Grace Blest-Hopley
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Luciano Annibale
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Colizzi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mick Brammer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vincent Giampietro
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
21
|
Kwok SC, Xu X, Duan W, Wang X, Tang Y, Allé MC, Berna F. Autobiographical and episodic memory deficits in schizophrenia: A narrative review and proposed agenda for research. Clin Psychol Rev 2021; 83:101956. [DOI: 10.1016/j.cpr.2020.101956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/04/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
|
22
|
Gurler D, White DM, Kraguljac NV, Ver Hoef L, Martin C, Tennant B, Lahti AC. Neural Signatures of Memory Encoding in Schizophrenia Are Modulated by Antipsychotic Treatment. Neuropsychobiology 2021; 80:12-24. [PMID: 32316023 PMCID: PMC7874518 DOI: 10.1159/000506402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
There is no pharmacological treatment to remediate cognitive impairment in schizophrenia (SZ). It is imperative to characterize underlying pathologies of memory processing in order to effectively develop new treatments. In this longitudinal study, we combined functional magnetic resonance imaging during a memory encoding task with proton MR spectroscopy to measure hippocampal glutamate + glutamine (Glx). Seventeen SZ were scanned while unmedicated and after 6 weeks of treatment with risperidone and compared to a group of matched healthy controls (HC) scanned 6 weeks apart. Unmedicated patients showed reduced blood oxygen level dependent (BOLD) response in several regions, including the hippocampus, and greater BOLD response in regions of the default mode network (DMN) during correct memory encoding. Post hoc contrasts from significant group by time interactions indicated reduced hippocampal BOLD response at baseline with subsequent increase following treatment. Hippocampal Glx was not different between groups at baseline, but at week 6, hippocampal Glx was significantly lower in SZ compared to HC. Finally, in unmedicated SZ, higher hippocampal Glx predicted less deactivation of the BOLD response in regions of the DMN. Using 2 brain imaging modalities allowed us to concurrently investigate different mechanisms involved in memory encoding dysfunction in SZ. Hippocampal pathology during memory encoding stems from decreased hippocampal recruitment and faulty deactivation of the DMN, and hippocampal recruitment during encoding can be modulated by antipsychotic treatment. High Glx in unmedicated patients predicted less deactivation of the DMN; these results suggest a mechanism by which faulty DMN deactivation, a hallmark of pathological findings in SZ, is achieved.
Collapse
Affiliation(s)
- Demet Gurler
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - David Matthew White
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | | | - Clinton Martin
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Blake Tennant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA,
| |
Collapse
|
23
|
Wong H, Levenga J, LaPlante L, Keller B, Cooper-Sansone A, Borski C, Milstead R, Ehringer M, Hoeffer C. Isoform-specific roles for AKT in affective behavior, spatial memory, and extinction related to psychiatric disorders. eLife 2020; 9:e56630. [PMID: 33325370 PMCID: PMC7787664 DOI: 10.7554/elife.56630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
AKT is implicated in neurological disorders. AKT has three isoforms, AKT1/AKT2/AKT3, with brain cell type-specific expression that may differentially influence behavior. Therefore, we examined single Akt isoform, conditional brain-specific Akt1, and double Akt1/3 mutant mice in behaviors relevant to neuropsychiatric disorders. Because sex is a determinant of these disorders but poorly understood, sex was an experimental variable in our design. Our studies revealed AKT isoform- and sex-specific effects on anxiety, spatial and contextual memory, and fear extinction. In Akt1 mutant males, viral-mediated AKT1 restoration in the prefrontal cortex rescued extinction phenotypes. We identified a novel role for AKT2 and overlapping roles for AKT1 and AKT3 in long-term memory. Finally, we found that sex-specific behavior effects were not mediated by AKT expression or activation differences between sexes. These results highlight sex as a biological variable and isoform- or cell type-specific AKT signaling as potential targets for improving treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Josien Levenga
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Linda Crnic Institute, Anschutz Medical Center, Aurora, United States
| | - Lauren LaPlante
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Bailey Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | | | - Curtis Borski
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Ryan Milstead
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Marissa Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
- Linda Crnic Institute, Anschutz Medical Center, Aurora, United States
- Department of Integrative Physiology, University of Colorado, Boulder, United States
| |
Collapse
|
24
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
25
|
Memory Impairments and Psychosis Prediction: A Scoping Review and Theoretical Overview. Neuropsychol Rev 2020; 30:521-545. [PMID: 33226539 DOI: 10.1007/s11065-020-09464-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Impairments in memory functions are among the most robust correlates of schizophrenia and of poor functional outcomes in individuals with psychotic disorders. Prospective, longitudinal studies are crucial to determining the meaning of these deficits in relation to mechanisms associated with the onset and course of these disorders.The objective of this review is to examine the literature concerning premorbid memory impairments during the prodromal phase of psychosis to address three primary questions 1) are memory impairments present among individuals with a clinical high risk syndrome? 2) are memory deficits in clinical high risk cases predictive of future conversion to psychosis? and 3) what are the underlying neural correlates of memory impairment in clinical high risk individuals and are they also predictive of future conversion?PubMed and Google Scholar databases were systematically searched. The primary inclusion criteria were to select studies that 1) were original research articles published in a peer-reviewed journal in the past 25 years, 2) studied subjects at clinical high risk for psychosis or in the prodromal phase of illness, and 3) included examinations into verbal memory performance in those at clinical high risk for psychosis.64 articles were identified and screened for eligibility. The review included 34 studies investigating verbal memory impairment in clinical high risk individuals compared to controls. The average effect size of verbal learning total recall was .58, indicating a moderate level of impairment in verbal learning among individuals at clinical high risk for psychosis as compared to healthy controls. Of studies that predicted time to conversion, indices of memory, particularly declarative and verbal working memory, were especially predictive of future conversion. Finally, when examining investigations of the neural correlates of memory dysfunction in the clinical high risk state, findings suggest altered activation and functional connectivity among medial temporal lobe regions may underlie differences in memory performance between clinical high risk individuals and healthy controls.Findings to date strongly indicate that memory impairments are present during the premorbid phase of psychosis and that verbal memory impairment in particular is predictive of future conversion to psychosis. Evidence from fMRI studies is fairly consistent in showing greater activation of memory-related regions during retrieval among clinical high risk cases who convert, with less consistent evidence of altered functional connectivity in the encoding phase. These findings support the use of verbal learning and memory measures in the psychosis prediction and prevention field.
Collapse
|
26
|
O'Brien KJ, Barch DM, Kandala S, Karcher NR. Examining Specificity of Neural Correlates of Childhood Psychotic-like Experiences During an Emotional n-Back Task. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:580-590. [PMID: 32354687 DOI: 10.1016/j.bpsc.2020.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Psychotic-like experiences (PLEs) during childhood are associated with greater risk of developing a psychotic disorder in adulthood, highlighting the importance of identifying neural correlates of childhood PLEs. Furthermore, impairment of cognitive functions, such as working memory and emotion regulation, has also been linked to psychosis risk as well as to disruptions in several brain regions. However, impairments in these domains have also been linked to other disorders, including depression. Therefore, the aim of the current study was to examine whether neural impairments in regions associated with working memory and implicit emotion regulation impairments are specific to PLEs versus depression. METHODS The current study used an emotional n-back task to examine the relationship between childhood PLEs and neural activation of regions involved in both working memory and implicit emotion regulation using data from 8805 9- to 11-year-olds in the Adolescent Brain Cognitive Development (ABCD) Study 2.0 release. To examine specificity, we also analyzed associations with depressive symptoms. RESULTS Our results indicated that increased PLEs during middle childhood were associated with decreased activation of the dorsolateral prefrontal cortex, striatum, and pallidum during trials requiring working memory. In contrast, increased activation of the parahippocampus, caudate, nucleus accumbens, and rostral anterior cingulate during face-viewing trials was associated with increased depressive symptoms. CONCLUSIONS These results support the dimensional view of psychosis across the lifespan, providing evidence that neural correlates of PLEs, such as decreased activation during working memory, are present during middle childhood. Furthermore, these correlates are specific to psychotic-like symptoms as compared with depressive symptoms.
Collapse
Affiliation(s)
- Kathleen J O'Brien
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Psychology, Washington University, St. Louis, Missouri
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole R Karcher
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
27
|
Hua M, Peng Y, Zhou Y, Qin W, Yu C, Liang M. Disrupted pathways from limbic areas to thalamus in schizophrenia highlighted by whole-brain resting-state effective connectivity analysis. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109837. [PMID: 31830509 DOI: 10.1016/j.pnpbp.2019.109837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Numerous neuroimaging studies have revealed that schizophrenia was characterized by wide-spread dysconnection among brain regions during rest measured by functional connectivity (FC). In contrast with FC, effective connectivity (EC) provides information about directionality of brain connections and is thus valuable in mechanistic investigation of schizophrenic brain. However, a systematic characterization of whole-brain resting-state EC (rsEC) and how it captures different information compared with resting-state FC (rsFC) in schizophrenia are still lacking. AIMS To systematically characterize the abnormalities of rsEC, compared with rsFC, in schizophrenia, and to test its discriminative power as a neuroimaging marker for schizophrenia diagnosis. METHOD Whole-brain rsEC and rsFC networks were constructed using resting-state fMRI data and compared between 103 patients with schizophrenia and 110 healthy participants. Pattern classifications between patients and controls based on whole-brain rsEC and rsFC were further performed using multivariate pattern analysis. RESULTS We identified 17 rsEC significantly disrupted (mostly decreased) in patients, among which all were associated with the thalamus and 15 were from limbic areas (including hippocampus, parahippocampus and cingulate cortex) to the thalamus. In contrast, abnormal rsFC were widely distributed in the whole brain. The classification accuracies for distinguishing patients and controls using whole-brain rsEC and rsFC patterns were 78.6% and 82.7%, respectively, and was further improved to 84.5% when combining rsEC and rsFC. CONCLUSIONS Schizophrenia is featured by disrupted 'limbic areas-to-thalamus' rsEC, in contrast with diffusively altered rsFC. Moreover, both rsEC and rsFC contain valuable and complementary information which may be used as diagnostic markers for schizophrenia.
Collapse
Affiliation(s)
- Minghui Hua
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Yanmin Peng
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunshui Yu
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China; Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
28
|
Andersen R, Fagerlund B, Rasmussen H, Ebdrup B, Aggernaes B, Gade A, Oranje B, Glenthoj B. The influence of impaired processing speed on cognition in first-episode antipsychotic-naïve schizophrenic patients. Eur Psychiatry 2020; 28:332-9. [DOI: 10.1016/j.eurpsy.2012.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 12/30/2022] Open
Abstract
AbstractBackground:Impaired cognition is a prominent feature of schizophrenia. To what extent the heterogeneous cognitive impairments can be accounted for by considering only a single underlying impairment or a small number of core impairments remains elusive. This study examined whether cognitive impairments in antipsychotic-naïve, first-episode schizophrenia patients may be determined by a relative slower speed of information processing.Method:Forty-eight antipsychotic-naïve patients with first-episode schizophrenia and 48 matched healthy controls were administered a comprehensive battery of neuropsychological tests to assess domains of cognitive impairments in schizophrenia. Composite scores were calculated, grouping tests into cognitive domains.Results:There were significant differences between patients and healthy controls on global cognition and all cognitive domains, including verbal intelligence, processing speed, sustained attention, working memory, reasoning and problem solving, verbal learning and memory, visual learning and memory, and reaction time. All these significant differences, except for verbal intelligence and global cognition, disappeared when processing speed was included as a covariate.Conclusion:At the first stage of illness, antipsychotic-naïve patients with schizophrenia display moderate/severe impairments in all the cognitive domains assessed. The results support the contention of a global cognitive dysfunction in schizophrenia that to some extent may be determined by impaired processing speed.
Collapse
|
29
|
Daniju Y, Bossong MG, Brandt K, Allen P. Do the effects of cannabis on the hippocampus and striatum increase risk for psychosis? Neurosci Biobehav Rev 2020; 112:324-335. [PMID: 32057817 DOI: 10.1016/j.neubiorev.2020.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
Abstract
Cannabis use is associated with increased risk of psychotic symptoms and in a small number of cases it can lead to psychoses. This review examines the neurobiological mechanisms that mediate the link between cannabis use and psychosis risk. We use an established preclinical model of psychosis, the methylazoxymethanol acetate (MAM) rodent model, as a framework to examine if psychosis risk in some cannabis users is mediated by the effects of cannabis on the hippocampus, and this region's role in the regulation of mesolimbic dopamine. We also examine how cannabis affects excitatory neurotransmission known to regulate hippocampal neural activity and output. Whilst there is clear evidence that cannabis/cannabinoids can affect hippocampal and medial temporal lobe function and structure, the evidence that cannabis/cannabinoids increase striatal dopamine function is less robust. There is limited evidence that cannabis use affects cortical and striatal glutamate levels, but there are currently too few studies to draw firm conclusions. Future work is needed to test the MAM model in relation to cannabis using multimodal neuroimaging approaches.
Collapse
Affiliation(s)
- Y Daniju
- Department of Psychology, University of Roehampton, London, UK
| | - M G Bossong
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, the Netherlands
| | - K Brandt
- Department of Psychology, University of Roehampton, London, UK
| | - P Allen
- Department of Psychology, University of Roehampton, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Icahn School of Medicine at Mount Sinai Hospital, New York, USA.
| |
Collapse
|
30
|
McHugo M, Talati P, Armstrong K, Vandekar SN, Blackford JU, Woodward ND, Heckers S. Hyperactivity and Reduced Activation of Anterior Hippocampus in Early Psychosis. Am J Psychiatry 2019; 176:1030-1038. [PMID: 31623459 PMCID: PMC7716419 DOI: 10.1176/appi.ajp.2019.19020151] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE In schizophrenia, the anterior hippocampus is hyperactive and shows reduced task-related recruitment, but the relationship between these two findings is unclear. The authors tested the hypothesis that hyperactivity impairs recruitment of the anterior hippocampus during scene processing. METHODS Functional MRI data from 45 early-psychosis patients and 35 demographically matched healthy control subjects were analyzed using a block-design 1-back scene-processing task. Hippocampal activation in response to scenes and faces compared with scrambled images was measured. In a subset of 20 early-psychosis patients and 31 healthy control subjects, baseline hippocampal activity using cerebral blood volume (CBV) mapping was measured. Correlation analyses were used to examine the association between baseline hippocampal activity and task-related hippocampal activation. RESULTS Activation of the anterior hippocampus was significantly reduced and CBV in the anterior hippocampus was significantly increased in the early stages of psychosis. Increased CBV in early-psychosis patients was inversely correlated with task-related activation during scene processing in the anterior hippocampus. CONCLUSIONS Anterior hippocampal hyperactivity in early-psychosis patients appears to limit effective recruitment of this region during task performance. These findings provide novel support for the anterior hippocampus as a therapeutic target in the treatment of cognitive deficits in psychosis.
Collapse
Affiliation(s)
- Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA,Corresponding author: Maureen McHugo, PhD, Vanderbilt Psychiatric Hospital, Suite 3057, 1601 23rd Avenue South, Nashville, TN 37212,
| | - Pratik Talati
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon N. Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil D. Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
31
|
Cao H, McEwen SC, Chung Y, Chén OY, Bearden CE, Addington J, Goodyear B, Cadenhead KS, Mirzakhanian H, Cornblatt BA, Carrión RE, Mathalon DH, McGlashan TH, Perkins DO, Belger A, Seidman LJ, Thermenos H, Tsuang MT, van Erp TGM, Walker EF, Hamann S, Anticevic A, Woods SW, Cannon TD. Altered Brain Activation During Memory Retrieval Precedes and Predicts Conversion to Psychosis in Individuals at Clinical High Risk. Schizophr Bull 2019; 45:924-933. [PMID: 30215784 PMCID: PMC6581134 DOI: 10.1093/schbul/sby122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Memory deficits are a hallmark of psychotic disorders such as schizophrenia. However, whether the neural dysfunction underlying these deficits is present before the onset of illness and potentially predicts conversion to psychosis is unclear. In this study, we investigated brain functional alterations during memory processing in a sample of 155 individuals at clinical high risk (including 18 subjects who later converted to full psychosis) and 108 healthy controls drawn from the second phase of the North American Prodrome Longitudinal Study (NAPLS-2). All participants underwent functional magnetic resonance imaging with a paired-associate memory paradigm at the point of recruitment and were clinically followed up for approximately 2 years. We found that at baseline, subjects at high risk showed significantly higher activation during memory retrieval in the prefrontal, parietal, and bilateral temporal cortices (PFWE < .035). This effect was more pronounced in converters than nonconverters and was particularly manifested in unmedicated subjects (P < .001). The hyperactivation was significantly correlated with retrieval reaction time during scan in converters (P = .009) but not in nonconverters and controls, suggesting an exaggerated retrieval effort. These findings suggest that hyperactivation during memory retrieval may mark processes associated with conversion to psychosis, and such measures have potential as biomarkers for psychosis prediction.
Collapse
Affiliation(s)
- Hengyi Cao
- Department of Psychology, Yale University, New Haven, CT
| | - Sarah C McEwen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, CT
| | - Oliver Y Chén
- Department of Psychology, Yale University, New Haven, CT
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Canada
| | - Bradley Goodyear
- Department of Psychiatry, University of Calgary, Calgary, Canada,Department of Radiology, University of Calgary, Calgary, Canada,Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
| | | | | | | | - Ricardo E Carrión
- Department of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | | | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, NC
| | - Larry J Seidman
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Heidi Thermenos
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, San Diego, CA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA
| | | | | | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT,Department of Psychiatry, Yale University, New Haven, CT,To whom correspondence should be addressed; Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06511, US; tel: +1-2034361545, e-mail:
| |
Collapse
|
32
|
Dezhina Z, Ranlund S, Kyriakopoulos M, Williams SCR, Dima D. A systematic review of associations between functional MRI activity and polygenic risk for schizophrenia and bipolar disorder. Brain Imaging Behav 2019; 13:862-877. [PMID: 29748770 PMCID: PMC6538577 DOI: 10.1007/s11682-018-9879-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic factors account for up to 80% of the liability for schizophrenia (SCZ) and bipolar disorder (BD). Genome-wide association studies have successfully identified several genes associated with increased risk for both disorders. This has allowed researchers to model the aggregate effect of genes associated with disease status and create a polygenic risk score (PGRS) for each individual. The interest in imaging genetics using PGRS has grown in recent years, with several studies now published. We have conducted a systematic review to examine the effects of PGRS of SCZ, BD and cross psychiatric disorders on brain function and connectivity using fMRI data. Results indicate that the effect of genetic load for SCZ and BD on brain function affects task-related recruitment, with frontal areas having a more prominent role, independent of task. Additionally, the results suggest that the polygenic architecture of psychotic disorders is not regionally confined but impacts on the task-dependent recruitment of multiple brain regions. Future imaging genetics studies with large samples, especially population studies, would be uniquely informative in mapping the spatial distribution of the genetic risk to psychiatric disorders on brain processes during various cognitive tasks and may lead to the discovery of biological pathways that could be crucial in mediating the link between genetic factors and alterations in brain networks.
Collapse
Affiliation(s)
- Zalina Dezhina
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Siri Ranlund
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marinos Kyriakopoulos
- National and Specialist Acorn Lodge Inpatient Children Unit, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Psychology, School of Arts and Social Sciences, City, University of London, 10 Northampton Square, London, EC1V 0HB, UK.
| |
Collapse
|
33
|
Abstract
Episodic memory deficits are consistently documented as a core aspect of cognitive dysfunction in schizophrenia patients, present from the onset of the illness and strongly associated with functional disability. Over the past decade, research using approaches from experimental cognitive neuroscience revealed disproportionate episodic memory impairments in schizophrenia (Sz) under high cognitive demand relational encoding conditions and relatively unimpaired performance under item-specific encoding conditions. These specific deficits in component processes of episodic memory reflect impaired activation and connectivity within specific elements of frontal-medial temporal lobe circuits, with a central role for the dorsolateral prefrontal cortex (DLPFC), relatively intact function of ventrolateral prefrontal cortex and variable results in the hippocampus. We propose that memory deficits can be understood within the broader context of cognitive deficits in Sz, where impaired DLPFC-related cognitive control has a broad impact across multiple cognitive domains. The therapeutic implications of these findings are discussed.
Collapse
Affiliation(s)
- JY Guo
- Department of Psychiatry and Behavioral Sciences, Imaging Research Center, University of California at Davis, Sacramento, CA, United States,Department of Psychology, Center for Neuroscience, University of California at Davis, Davis, CA, United States
| | - JD Ragland
- Department of Psychiatry and Behavioral Sciences, Imaging Research Center, University of California at Davis, Sacramento, CA, United States
| | - CS Carter
- Department of Psychiatry and Behavioral Sciences, Imaging Research Center, University of California at Davis, Sacramento, CA, United States,Department of Psychology, Center for Neuroscience, University of California at Davis, Davis, CA, United States
| |
Collapse
|
34
|
Diamantopoulou A, Gogos JA. Neurocognitive and Perceptual Processing in Genetic Mouse Models of Schizophrenia: Emerging Lessons. Neuroscientist 2019; 25:597-619. [PMID: 30654694 DOI: 10.1177/1073858418819435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past two decades, the number of animal models of psychiatric disorders has grown exponentially. Of these, genetic animal models that are modeled after rare but highly penetrant mutations hold great promise for deciphering critical molecular, synaptic, and neurocircuitry deficits of major psychiatric disorders, such as schizophrenia. Animal models should aim to focus on core aspects rather than capture the entire human disease. In this context, animal models with strong etiological validity, where behavioral and neurophysiological phenotypes and the features of the disease being modeled are in unambiguous homology, are being used to dissect both elementary and complex cognitive and perceptual processing deficits present in psychiatric disorders at the level of neurocircuitry, shedding new light on critical disease mechanisms. Recent progress in neuroscience along with large-scale initiatives that propose a consistent approach in characterizing these deficits across different laboratories will further enhance the efficacy of these studies that will ultimately lead to identifying new biological targets for drug development.
Collapse
Affiliation(s)
- Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, New York, NY, USA.,Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
35
|
Neuroimaging Studies of Cognitive Function in Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:117-134. [PMID: 30747420 DOI: 10.1007/978-3-030-05542-4_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Persons suffering from schizophrenia present cognitive impairments that have a major functional impact on their lives. Particularly, executive functions and episodic memory are consistently found to be impaired. Neuroimaging allows the investigation of affected areas of the brain associated with these impairments and, moreover, the detection of brain functioning improvements after cognitive remediation interventions. For instance, executive function impairments have been associated with prefrontal cortex volume and thickness; cognitive control impairments are correlated with an increased activation in the anterior cingulate cortex, and episodic memory impairments are linked to hippocampal reduction. Some findings suggest the presence of brain compensatory mechanisms in schizophrenia, e.g. recruiting broader cortical areas to perform identical tasks. Similarly, neuroimaging studies of cognitive remediation in schizophrenia focus differentially on structural, functional and connectivity changes. Cognitive remediation improvements have been reported in two main areas: the prefrontal and thalamic regions. It has been suggested that those changes imply a functional reorganisation of neural networks, and cognitive remediation interventions might have a neuroprotective effect. Future studies should use multimodal neuroimaging procedures and more complex theoretical models to identify, confirm and clarify these and newer outcomes. This chapter highlights neuroimaging findings in anatomical and functional brain correlates of schizophrenia, as well as its application and potential use for identifying brain changes after cognitive remediation.
Collapse
|
36
|
Kelly S, Guimond S, Lyall A, Stone WS, Shenton ME, Keshavan M, Seidman LJ. Neural correlates of cognitive deficits across developmental phases of schizophrenia. Neurobiol Dis 2018; 131:104353. [PMID: 30582983 DOI: 10.1016/j.nbd.2018.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is associated with cognitive deficits across all stages of the illness (i.e., high risk, first episode, early and chronic phases). Identifying the underlying neurobiological mechanisms of these deficits is an important area of scientific inquiry. Here, we selectively review evidence regarding the pattern of deficits across the developmental trajectory of schizophrenia using the five cognitive domains identified by the Research Domain Criteria (RDoC) initiative. We also report associated findings from neuroimaging studies. We suggest that most cognitive domains are affected across the developmental trajectory, with corresponding brain structural and/or functional differences. The idea of a common mechanism driving these deficits is discussed, along with implications for cognitive treatment in schizophrenia.
Collapse
Affiliation(s)
- Sinead Kelly
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Synthia Guimond
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Amanda Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - William S Stone
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Matcheri Keshavan
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Larry J Seidman
- Massachusetts Mental Health Center, Public Psychiatry Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Nakahara S, Matsumoto M, van Erp TGM. Hippocampal subregion abnormalities in schizophrenia: A systematic review of structural and physiological imaging studies. Neuropsychopharmacol Rep 2018; 38:156-166. [PMID: 30255629 PMCID: PMC7021222 DOI: 10.1002/npr2.12031] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 01/30/2023] Open
Abstract
Aim The hippocampus is considered a key region in schizophrenia pathophysiology, but the nature of hippocampal subregion abnormalities and how they contribute to disease expression remain to be fully determined. This study reviews findings from schizophrenia hippocampal subregion volumetric and physiological imaging studies published within the last decade. Methods The PubMed database was searched for publications on hippocampal subregion volume and physiology abnormalities in schizophrenia and their findings were reviewed. Results The main replicated findings include smaller CA1 volumes and CA1 hyperactivation in schizophrenia, which may be predictive of conversion in individuals at clinical high risk of psychosis, smaller CA1 and CA4/DG volumes in first‐episode schizophrenia, and more widespread smaller hippocampal subregion volumes with longer duration of illness. Several studies have reported relationships between hippocampal subregion volumes and declarative memory or symptom severity. Conclusions Together these studies provide support for hippocampal formation circuitry models of schizophrenia. These initial findings must be taken with caution as the scientific community is actively working on hippocampal subregion method improvement and validation. Further improvements in our understanding of the nature of hippocampal formation subregion involvement in schizophrenia will require the collection of structural and physiological imaging data at submillimeter voxel resolution, standardization and agreement of atlases, adequate control for possible confounding factors, and multi‐method validation of findings. Despite the need for cautionary interpretation of the initial findings, we believe that improved localization of hippocampal subregion abnormalities in schizophrenia holds promise for the identification of disease contributing mechanisms. The hippocampus is considered a key region in schizophrenia pathophysiology but the nature of hippocampal subregion abnormalities and how they contribute to disease expression remains to be fully determined. This study reviews findings from schizophrenia hippocampal subregion volumetric and physiological imaging studies published within the last decade.
![]()
Collapse
Affiliation(s)
- Soichiro Nakahara
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California.,Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | | | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California
| |
Collapse
|
38
|
Pflueger MO, Calabrese P, Studerus E, Zimmermann R, Gschwandtner U, Borgwardt S, Aston J, Stieglitz RD, Riecher-Rössler A. The neuropsychology of emerging psychosis and the role of working memory in episodic memory encoding. Psychol Res Behav Manag 2018; 11:157-168. [PMID: 29785144 PMCID: PMC5953273 DOI: 10.2147/prbm.s149425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Episodic memory encoding and working memory (WM) deficits are among the first cognitive signs and symptoms in the course of schizophrenia spectrum disorders. However, it is not clear whether the deficit pattern is generalized or specific in nature. We hypothesized that encoding deficits at an early stage of the disease might be due to the more fundamental WM deficits. Methods We examined episodic memory encoding and WM by administering the California Verbal Learning Test, a 2-back task, and the Wisconsin Card Sorting Test in 90 first-episode psychosis (FE) patients and 116 individuals with an at-risk mental state for psychosis (ARMS) compared to 57 healthy subjects. Results Learning progress, but not span of apprehension, was diminished to a similar extent in both the ARMS and the FE. We showed that this was due to WM impairment by applying a structural equation approach. Conclusion Thus, we conclude that verbal memory encoding deficits are secondary to primary WM impairment in emerging psychosis.
Collapse
Affiliation(s)
- Marlon O Pflueger
- Department of Forensic Psychiatry, University of Basel Psychiatric Clinics, Basel, Switzerland
| | - Pasquale Calabrese
- Division of Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland
| | - Erich Studerus
- Center for Gender Research and Early Detection, University of Basel Psychiatric Hospital, Basel, Switzerland
| | - Ronan Zimmermann
- Department of Neurology and Neurosurgery, Hospital of the University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Neurology and Neurosurgery, Hospital of the University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Jacqueline Aston
- Center for Gender Research and Early Detection, University of Basel Psychiatric Hospital, Basel, Switzerland
| | - Rolf-Dieter Stieglitz
- Division of Clinical Psychology and Psychiatry, University of Basel, Basel, Switzerland
| | - Anita Riecher-Rössler
- Center for Gender Research and Early Detection, University of Basel Psychiatric Hospital, Basel, Switzerland
| |
Collapse
|
39
|
Li RR, Lyu HL, Liu F, Lian N, Wu RR, Zhao JP, Guo WB. Altered functional connectivity strength and its correlations with cognitive function in subjects with ultra-high risk for psychosis at rest. CNS Neurosci Ther 2018; 24:1140-1148. [PMID: 29691990 DOI: 10.1111/cns.12865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
AIMS Evidence of altered structural and functional connectivity in the frontal-occipital network is associated with cognitive deficits in patients with schizophrenia. However, the altered patterns of functional connectivity strength (FCS) in individuals with ultra-high risk (UHR) for psychosis remain unknown. In this study, whole-brain FCS was assessed to examine the altered patterns of FCS in UHR subjects. METHODS A total of 34 UHR subjects and 37 age- and sex-matched healthy controls were enrolled to undergo resting-state functional magnetic resonance imaging. The imaging data were analyzed using the graph theory method. RESULTS Compared with healthy controls, UHR subjects showed significantly decreased FCS in the left middle frontal gyrus and significantly increased FCS in the left calcarine cortex. The FCS values in the left middle frontal gyrus were positively correlated to the scores of the Brief Assessments of Cognitionin Schizophrenia Symbol Coding Test (r = 0.366, P = 0.033) in the UHR subjects. A negative correlation was found between the FCS values in the left calcarine cortex and the scores of the Stroop color-naming test (r = -0.475, P = 0.016) in the UHR subjects. A combination of the FCS values in the 2 brain areas showed an accuracy of 87.32%, a sensitivity of 73.53%, and a specificity of 100% for distinguishing UHR subjects from healthy controls. CONCLUSIONS Significantly altered FCS in the frontal-occipital network is observed in the UHR subjects. Furthermore, decreased FCS in the left middle frontal gyrus and increased FCS in the left calcarine have significant correlations with the cognitive measures of the UHR subjects and thus improve our understanding of the underlying pathophysiological mechanisms of schizophrenia. Moreover, a combination of the FCS values in the 2 brain areas can serve as a potential image marker to distinguish UHR subjects from healthy controls.
Collapse
Affiliation(s)
- Ran-Ran Li
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hai-Long Lyu
- Department of Psychiatry, The First Affiliated Hospital, The Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nan Lian
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ren-Rong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing-Ping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wen-Bin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Chen Q, Ursini G, Romer AL, Knodt AR, Mezeivtch K, Xiao E, Pergola G, Blasi G, Straub RE, Callicott JH, Berman KF, Hariri AR, Bertolino A, Mattay VS, Weinberger DR. Schizophrenia polygenic risk score predicts mnemonic hippocampal activity. Brain 2018; 141:1218-1228. [PMID: 29415119 PMCID: PMC5888989 DOI: 10.1093/brain/awy004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023] Open
Abstract
The use of polygenic risk scores has become a practical translational approach to investigating the complex genetic architecture of schizophrenia, but the link between polygenic risk scores and pathophysiological components of this disorder has been the subject of limited research. We investigated in healthy volunteers whether schizophrenia polygenic risk score predicts hippocampal activity during simple memory encoding, which has been proposed as a risk-associated intermediate phenotype of schizophrenia. We analysed the relationship between polygenic risk scores and hippocampal activity in a discovery sample of 191 unrelated healthy volunteers from the USA and in two independent replication samples of 76 and 137 healthy unrelated participants from Europe and the USA, respectively. Polygenic risk scores for each individual were calculated as the sum of the imputation probability of reference alleles weighted by the natural log of odds ratio from the recent schizophrenia genome-wide association study. We examined hippocampal activity during simple memory encoding of novel visual stimuli assessed using blood oxygen level-dependent functional MRI. Polygenic risk scores were significantly associated with hippocampal activity in the discovery sample [P = 0.016, family-wise error (FWE) corrected within Anatomical Automatic Labeling (AAL) bilateral hippocampal-parahippocampal mask] and in both replication samples (P = 0.033, FWE corrected within AAL right posterior hippocampal-parahippocampal mask in Bari sample, and P = 0.002 uncorrected in the Duke Neurogenetics Study sample). The relationship between polygenic risk scores and hippocampal activity was consistently negative, i.e. lower hippocampal activity in individuals with higher polygenic risk scores, consistent with previous studies reporting decreased hippocampal-parahippocampal activity during declarative memory tasks in patients with schizophrenia and in their healthy siblings. Polygenic risk scores accounted for more than 8% of variance in hippocampal activity during memory encoding in discovery sample. We conclude that polygenic risk scores derived from the most recent schizophrenia genome-wide association study predict significant variability in hippocampal activity during memory encoding in healthy participants. Our findings validate mnemonic hippocampal activity as a genetic risk associated intermediate phenotype of schizophrenia, indicating that the aggregate neurobiological effect of schizophrenia risk alleles converges on this pattern of neural activity.awy004media15749593779001.
Collapse
Affiliation(s)
- Qiang Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 855 North Wolfe Street, MD, USA
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 855 North Wolfe Street, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrienne L Romer
- Laboratory of NeuroGenetics, Department of Psychology and Neurosicence, Duke University, Durham, NC, USA
| | - Annchen R Knodt
- Laboratory of NeuroGenetics, Department of Psychology and Neurosicence, Duke University, Durham, NC, USA
| | - Karleigh Mezeivtch
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 855 North Wolfe Street, MD, USA
| | - Ena Xiao
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 855 North Wolfe Street, MD, USA
| | - Giulio Pergola
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Richard E Straub
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 855 North Wolfe Street, MD, USA
| | - Joseph H Callicott
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Karen F Berman
- Clinical and Translational Neuroscience Branch, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neurosicence, Duke University, Durham, NC, USA
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 855 North Wolfe Street, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 855 North Wolfe Street, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
41
|
Differential patterns of contextual organization of memory in first-episode psychosis. NPJ SCHIZOPHRENIA 2018; 4:3. [PMID: 29449557 PMCID: PMC5814439 DOI: 10.1038/s41537-018-0046-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/05/2018] [Accepted: 01/19/2018] [Indexed: 11/12/2022]
Abstract
Contextual information is used to support and organize episodic memory. Prior research has reliably shown memory deficits in psychosis; however, little research has characterized how this population uses contextual information during memory recall. We employed an approach founded in a computational framework of free recall to quantify how individuals with first episode of psychosis (FEP, N = 97) and controls (CON, N = 55) use temporal and semantic context to organize memory recall. Free recall was characterized using the Hopkins Verbal Learning Test-Revised (HVLT-R). We compared FEP and CON on three measures of free recall: proportion recalled, temporal clustering, and semantic clustering. Measures of temporal/semantic clustering quantified how individuals use contextual information to organize memory recall. We also assessed to what extent these measures relate to antipsychotic use and differentiated between different types of psychosis. We also explored the relationship between these measures and intelligence. In comparison to CON, FEP had reduced recall and less temporal clustering during free recall (p < 0.05, Bonferroni-corrected), and showed a trend towards greater semantic clustering (p = 0.10, Bonferroni-corrected). Within FEP, antipsychotic use and diagnoses did not differentiate between free recall accuracy or contextual organization of memory. IQ was related to free recall accuracy, but not the use of contextual information during recall in either group (p < 0.05, Bonferroni-corrected). These results show that in addition to deficits in memory recall, FEP differed in how they organize memories compared to CON. First-episode psychosis patients exhibit impaired memory recall and deviation in how context is used to support recall ability. A US team of researchers led by the University of Pittsburgh’s Vishnu Murty examined how FEP affects an individual’s ability to organize memory based on context, by noting how well patients could recall words from a spoken list. Alongside recollection accuracy, Murty’s team assesed participant ability to recall words said proximally in sequence, and the ability to recall words from the same category—measuring ‘temporal clustering’ and ‘semantic clustering.’ The researchers found that patients with FEP had reduced recall ability and less temporal clustering. Recall accuracy and IQ were also found to be related. This study increases knowledge of FEP-related cognitive changes and could help to target specific therapies.
Collapse
|
42
|
Wilkins LK, Girard TA, Herdman KA, Christensen BK, King J, Kiang M, Bohbot VD. Hippocampal activation and memory performance in schizophrenia depend on strategy use in a virtual maze. Psychiatry Res Neuroimaging 2017; 268:1-8. [PMID: 28780430 DOI: 10.1016/j.pscychresns.2017.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/20/2017] [Accepted: 07/30/2017] [Indexed: 11/23/2022]
Abstract
Different strategies may be spontaneously adopted to solve most navigation tasks. These strategies are associated with dissociable brain systems. Here, we use brain-imaging and cognitive tasks to test the hypothesis that individuals living with Schizophrenia Spectrum Disorders (SSD) have selective impairment using a hippocampal-dependent spatial navigation strategy. Brain activation and memory performance were examined using functional magnetic resonance imaging (fMRI) during the 4-on-8 virtual maze (4/8VM) task, a human analog of the rodent radial-arm maze that is amenable to both response-based (egocentric or landmark-based) and spatial (allocentric, cognitive mapping) strategies to remember and navigate to target objects. SSD (schizophrenia and schizoaffective disorder) participants who adopted a spatial strategy performed more poorly on the 4/8VM task and had less hippocampal activation than healthy comparison participants using either strategy as well as SSD participants using a response strategy. This study highlights the importance of strategy use in relation to spatial cognitive functioning in SSD. Consistent with a selective-hippocampal dependent deficit in SSD, these results support the further development of protocols to train impaired hippocampal-dependent abilities or harness non-hippocampal dependent intact abilities.
Collapse
Affiliation(s)
- Leanne K Wilkins
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON, Canada M5B 2K3
| | - Todd A Girard
- Department of Psychology, Ryerson University, 350 Victoria St, Toronto, ON, Canada M5B 2K3.
| | | | - Bruce K Christensen
- Research School of Psychology, Australian National University, Canberra, ACT, Australia
| | - Jelena King
- St. Joseph's Healthcare Hamilton, and Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Michael Kiang
- Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Veronique D Bohbot
- Douglas Institute, and Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Negative priming: a meta-analysis of fMRI studies. Exp Brain Res 2017; 235:3367-3374. [DOI: 10.1007/s00221-017-5065-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
44
|
Green AE, Fitzgerald PB, Johnston PJ, Nathan PJ, Kulkarni J, Croft RJ. Evidence for a differential contribution of early perceptual and late cognitive processes during encoding to episodic memory impairment in schizophrenia. World J Biol Psychiatry 2017; 18:369-381. [PMID: 27573041 DOI: 10.1080/15622975.2016.1208839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Schizophrenia is characterised by significant episodic memory impairment that is thought to be related to problems with encoding, however the neuro-functional mechanisms underlying these deficits are not well understood. The present study used a subsequent recognition memory paradigm and event-related potentials (ERPs) to investigate temporal aspects of episodic memory encoding deficits in schizophrenia. METHODS Electroencephalographic data was recorded in 24 patients and 19 healthy controls whilst participants categorised single words as pleasant/unpleasant. ERPs were generated to subsequently recognised versus unrecognised words on the basis of a forced-choice recognition memory task. Subsequent memory effects were examined with the late positive component (LPP). Group differences in N1, P2, N400 and LPP were examined for words correctly recognised. RESULTS Patients performed more poorly than controls on the recognition task. During encoding patients had significantly reduced N400 and LPP amplitudes than controls. LPP amplitude correlated with task performance however amplitudes did not differ between patients and controls as a function of subsequent memory. No significant differences in N1 or P2 amplitude or latency were observed. CONCLUSIONS The present results indicate that early sensory processes are intact and dysfunctional higher order cognitive processes during encoding are contributing to episodic memory impairments in schizophrenia.
Collapse
Affiliation(s)
- Amity E Green
- a Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital , Australia
| | - Paul B Fitzgerald
- a Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital , Australia
| | - Patrick J Johnston
- b Department of Psychology and York Neuroimaging Centre , University of York , UK.,c School of Psychology & Counselling, Queensland University of Technology , Australia
| | - Pradeep J Nathan
- d School of Psychology and Psychiatry, Monash University , Australia.,e Brain Mapping Unit, Department of Psychiatry , University of Cambridge , UK
| | - Jayashri Kulkarni
- a Monash Alfred Psychiatry Research Centre, Central Clinical School, Monash University and the Alfred Hospital , Australia
| | - Rodney J Croft
- f Illawarra Health & Medical Research Institute, University of Wollongong , Australia.,g School of Psychology, University of Wollongong , Australia
| |
Collapse
|
45
|
Murray RM, Englund A, Abi-Dargham A, Lewis DA, Di Forti M, Davies C, Sherif M, McGuire P, D'Souza DC. Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology 2017. [PMID: 28634109 DOI: 10.1016/j.neuropharm.2017.06.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prospective epidemiological studies have consistently demonstrated that cannabis use is associated with an increased subsequent risk of both psychotic symptoms and schizophrenia-like psychoses. Early onset of use, daily use of high-potency cannabis, and synthetic cannabinoids carry the greatest risk. The risk-increasing effects are not explained by shared genetic predisposition between schizophrenia and cannabis use. Experimental studies in healthy humans show that cannabis and its active ingredient, delta-9-tetrahydrocannabinol (THC), can produce transient, dose-dependent, psychotic symptoms, as well as an array of psychosis-relevant behavioral, cognitive and psychophysiological effects; the psychotogenic effects can be ameliorated by cannabidiol (CBD). Findings from structural imaging studies in cannabis users have been inconsistent but functional MRI studies have linked the psychotomimetic and cognitive effects of THC to activation in brain regions implicated in psychosis. Human PET studies have shown that acute administration of THC weakly releases dopamine in the striatum but that chronic users are characterised by low striatal dopamine. We are beginning to understand how cannabis use impacts on the endocannabinoid system but there is much still to learn about the biological mechanisms underlying how cannabis increases risk of psychosis. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- R M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.
| | - A Englund
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - A Abi-Dargham
- Department of Psychiatry, School of Medicine, Stony Brook University, New York, USA
| | - D A Lewis
- Department of Psychiatry, University of Pittsburg, PA, USA
| | - M Di Forti
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - C Davies
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - M Sherif
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| | - P McGuire
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - D C D'Souza
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| |
Collapse
|
46
|
Wei YY, Wang JJ, Yan C, Li ZQ, Pan X, Cui Y, Su T, Liu TS, Tang YX. Correlation Between Brain Activation Changes and Cognitive Improvement Following Cognitive Remediation Therapy in Schizophrenia: An Activation Likelihood Estimation Meta-analysis. Chin Med J (Engl) 2017; 129:578-85. [PMID: 26904993 PMCID: PMC4804440 DOI: 10.4103/0366-6999.176983] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Several studies using functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) have indicated that cognitive remediation therapy (CRT) might improve cognitive function by changing brain activations in patients with schizophrenia. However, the results were not consistent in these changed brain areas in different studies. The present activation likelihood estimation (ALE) meta-analysis was conducted to investigate whether cognitive function change was accompanied by the brain activation changes, and where the main areas most related to these changes were in schizophrenia patients after CRT. Analyses of whole-brain studies and whole-brain + region of interest (ROI) studies were compared to explore the effect of the different methodologies on the results. Methods: A computerized systematic search was conducted to collect fMRI and PET studies on brain activation changes in schizophrenia patients from pre- to post-CRT. Nine studies using fMRI techniques were included in the meta-analysis. Ginger ALE 2.3.1 was used to perform meta-analysis across these imaging studies. Results: The main areas with increased brain activation were in frontal and parietal lobe, including left medial frontal gyrus, left inferior frontal gyrus, right middle frontal gyrus, right postcentral gyrus, and inferior parietal lobule in patients after CRT, yet no decreased brain activation was found. Although similar increased activation brain areas were identified in ALE with or without ROI studies, analysis including ROI studies had a higher ALE value. Conclusions: The current findings suggest that CRT might improve the cognition of schizophrenia patients by increasing activations of the frontal and parietal lobe. In addition, it might provide more evidence to confirm results by including ROI studies in ALE meta-analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun-Xiang Tang
- Department of Medical Psychology, Faculty of Mental Health, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
47
|
Oh J, Chun JW, Kim E, Park HJ, Lee B, Kim JJ. Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia. Brain Behav 2017; 7:e00602. [PMID: 28127520 PMCID: PMC5256185 DOI: 10.1002/brb3.602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/04/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Patients with schizophrenia exhibit several cognitive deficits, including memory impairment. Problems with recognition memory can hinder socially adaptive behavior. Previous investigations have suggested that altered activation of the frontotemporal area plays an important role in recognition memory impairment. However, the cerebral networks related to these deficits are not known. The aim of this study was to elucidate the brain networks required for recognizing socially relevant information in patients with schizophrenia performing an old-new recognition task. METHODS Sixteen patients with schizophrenia and 16 controls participated in this study. First, the subjects performed the theme-identification task during functional magnetic resonance imaging. In this task, pictures depicting social situations were presented with three words, and the subjects were asked to select the best theme word for each picture. The subjects then performed an old-new recognition task in which they were asked to discriminate whether the presented words were old or new. Task performance and neural responses in the old-new recognition task were compared between the subject groups. An independent component analysis of the functional connectivity was performed. RESULTS The patients with schizophrenia exhibited decreased discriminability and increased activation of the right superior temporal gyrus compared with the controls during correct responses. Furthermore, aberrant network activities were found in the frontopolar and language comprehension networks in the patients. CONCLUSIONS The functional connectivity analysis showed aberrant connectivity in the frontopolar and language comprehension networks in the patients with schizophrenia, and these aberrations possibly contribute to their low recognition performance and social dysfunction. These results suggest that the frontopolar and language comprehension networks are potential therapeutic targets in patients with schizophrenia.
Collapse
Affiliation(s)
- Jooyoung Oh
- Department of Biomedical Science and Engineering (BMSE) Institute of Integrated Technology (IIT) Gwangju Institute of Science and Technology (GIST) Gwangju Korea
| | - Ji-Won Chun
- Institute of Behavioral Science in Medicine Yonsei University College of Medicine Seoul Korea
| | - Eunseong Kim
- Institute of Behavioral Science in Medicine Yonsei University College of Medicine Seoul Korea
| | - Hae-Jeong Park
- Department of Nuclear Medicine Yonsei University College of Medicine Seoul Korea
| | - Boreom Lee
- Department of Biomedical Science and Engineering (BMSE) Institute of Integrated Technology (IIT) Gwangju Institute of Science and Technology (GIST) Gwangju Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine Yonsei University College of Medicine Seoul Korea; Department of Psychiatry Yonsei University College of Medicine Seoul Korea
| |
Collapse
|
48
|
|
49
|
Francis MM, Hummer TA, Vohs JL, Yung MG, Liffick E, Mehdiyoun NF, Radnovich AJ, McDonald BC, Saykin AJ, Breier A. Functional neuroanatomical correlates of episodic memory impairment in early phase psychosis. Brain Imaging Behav 2016; 10:1-11. [PMID: 25749917 DOI: 10.1007/s11682-015-9357-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies have demonstrated that episodic memory (EM) is often preferentially disrupted in schizophrenia. The neural substrates that mediate EM impairment in this illness are not fully understood. Several functional magnetic resonance imaging (fMRI) studies have employed EM probe tasks to elucidate the neural underpinnings of impairment, though results have been inconsistent. The majority of EM imaging studies have been conducted in chronic forms of schizophrenia with relatively few studies in early phase patients. Early phase schizophrenia studies are important because they may provide information regarding when EM deficits occur and address potential confounds more frequently observed in chronic populations. In this study, we assessed brain activation during the performance of visual scene encoding and recognition fMRI tasks in patients with earlyphase psychosis (n = 35) and age, sex, and race matched healthy control subjects (n = 20). Patients demonstrated significantly lower activation than controls in the right hippocampus and left fusiform gyrus during scene encoding and lower activation in the posterior cingulate, precuneus, and left middle temporal cortex during recognition of target scenes. Symptom levels were not related to the imaging findings, though better cognitive performance in patients was associated with greater right hippocampal activation during encoding. These results provide evidence of altered function in neuroanatomical circuitry subserving EM early in the course of psychotic illness, which may have implications for pathophysiological models of this illness.
Collapse
Affiliation(s)
- Michael Matthew Francis
- Indiana University Psychotic Disorders Program, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Tom A Hummer
- Indiana University Psychotic Disorders Program, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jenifer L Vohs
- Indiana University Psychotic Disorders Program, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew G Yung
- Indiana University Psychotic Disorders Program, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily Liffick
- Indiana University Psychotic Disorders Program, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicole F Mehdiyoun
- Indiana University Psychotic Disorders Program, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander J Radnovich
- Indiana University Psychotic Disorders Program, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Indiana University Psychotic Disorders Program, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alan Breier
- Indiana University Psychotic Disorders Program, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
50
|
Biomarcadores sanguíneos diferenciales de las dimensiones psicopatológicas de la esquizofrenia. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2016; 9:219-227. [DOI: 10.1016/j.rpsm.2016.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
|