1
|
Guan D, Huang P, Liu X, Li Q, Zhang X, Liu N, Wang Y, Wan Y, Chai J, Cai S, Chen R, Ye Z. Deficiency of myeloid NPC1 exacerbates liver injury and fibrosis by impairing macrophage efferocytosis. J Adv Res 2024:S2090-1232(24)00539-3. [PMID: 39547438 DOI: 10.1016/j.jare.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Niemann-Pick C1 (NPC1), a lysosomal cholesterol transport protein, is required for efficient efferocytosis. Patients with Npc1 mutation are frequently accompanied with hepatic symptoms, including hepatomegaly, elevated liver transaminases, or even acute liver failure, but the pathogenic mechanism remains unknown. OBJECTIVES Our work aims to characterize the functional role of myeloid NPC1 in liver injury and elucidate its underlying mechanism. METHODS Analyses of injured livers from patients with liver diseases and mouse models were conducted to examine NPC1 expression. Myeloid cell-specific Npc1 knockout mice were constructed to determine the functional role of macrophage NPC1 in liver injury. Isolated macrophages were subjected to in vitro mechanistical assays. RESULTS We found that NPC1 is mainly expressed in hepatic macrophages. Its mRNA and protein expression are significantly elevated in injured livers from both patients and mouse models. Tissue-specific deletion of myeloid Npc1 increased liver inflammation, levels of serum liver function enzymes, and liver fibrosis in mouse models of liver injury induced by carbon tetrachloride (CCl4) injection and methionine-and-choline-deficient (MCD) diets. Further analyses indicate that Npc1 deficiency in mouse models of liver injury resulted in increased levels of serum HMGB1 and mitochondrial DNA, promoted hepatic macrophage proinflammatory activation, M1 polarization, led to overproduction of hepatic inflammatory cytokines/chemokines, e.g. CCL2 and STING/NFκB pathway activation. In vitro mechanistical studies reveal that Npc1-deficient macrophages exhibited inefficient efferocytosis, partly due to impaired cargo degradation. CONCLUSIONS These findings indicate that elevated expression of myeloid NPC1 in liver diseases protects liver from injury by promoting macrophage efferocytosis of damaged cells. Dysfunction of NPC1 aggravates liver injury, suggesting that NPC1 may be a potential therapeutic target for treating liver diseases.
Collapse
Affiliation(s)
- Dongwei Guan
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China.
| | - Pengju Huang
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xinlei Liu
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Qing Li
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Nan Liu
- Department of Urology Oncological Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yong Wang
- Department of Laboratory Animal Science, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic-Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shiying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rui Chen
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Zhijia Ye
- Laboratory Animal Research Center, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Anderson T, Sharma S, Kelberman MA, Ware C, Guo N, Qin Z, Weinshenker D, Parent MB. Obesity during preclinical Alzheimer's disease development exacerbates brain metabolic decline. J Neurochem 2024; 168:801-821. [PMID: 37391269 DOI: 10.1111/jnc.15900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Obesity in middle age increases AD risk and severity, which is alarming given that obesity prevalence peaks at middle age and obesity rates are accelerating worldwide. Midlife, but not late-life obesity increases AD risk, suggesting that this interaction is specific to preclinical AD. AD pathology begins in middle age, with accumulation of amyloid beta (Aβ), hyperphosphorylated tau, metabolic decline, and neuroinflammation occurring decades before cognitive symptoms appear. We used a transcriptomic discovery approach in young adult (6.5 months old) male and female TgF344-AD rats that overexpress mutant human amyloid precursor protein and presenilin-1 and wild-type (WT) controls to determine whether inducing obesity with a high-fat/high-sugar "Western" diet during preclinical AD increases brain metabolic dysfunction in dorsal hippocampus (dHC), a brain region vulnerable to the effects of obesity and early AD. Analyses of dHC gene expression data showed dysregulated mitochondrial and neurotransmission pathways, and up-regulated genes involved in cholesterol synthesis. Western diet amplified the number of genes that were different between AD and WT rats and added pathways involved in noradrenergic signaling, dysregulated inhibition of cholesterol synthesis, and decreased intracellular lipid transporters. Importantly, the Western diet impaired dHC-dependent spatial working memory in AD but not WT rats, confirming that the dietary intervention accelerated cognitive decline. To examine later consequences of early transcriptional dysregulation, we measured dHC monoamine levels in older (13 months old) AD and WT rats of both sexes after long-term chow or Western diet consumption. Norepinephrine (NE) abundance was significantly decreased in AD rats, NE turnover was increased, and the Western diet attenuated the AD-induced increases in turnover. Collectively, these findings indicate obesity during prodromal AD impairs memory, potentiates AD-induced metabolic decline likely leading to an overproduction of cholesterol, and interferes with compensatory increases in NE transmission.
Collapse
Affiliation(s)
- Thea Anderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Sumeet Sharma
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christopher Ware
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Nanxi Guo
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
- Department of Psychology, Georgia State University, Georgia, USA
| |
Collapse
|
3
|
Yamada Y, Fukaura‐Nishizawa M, Nishiyama A, Ishii A, Kawata T, Shirakawa A, Tanaka M, Kondo Y, Takeo T, Nakagata N, Miwa T, Takeda H, Orita Y, Motoyama K, Higashi T, Arima H, Seki T, Kurauchi Y, Katsuki H, Higaki K, Minami K, Yoshikawa N, Ikeda R, Matsuo M, Irie T, Ishitsuka Y. Different solubilizing ability of cyclodextrin derivatives for cholesterol in Niemann-Pick disease type C treatment. Clin Transl Med 2023; 13:e1350. [PMID: 37620691 PMCID: PMC10449817 DOI: 10.1002/ctm2.1350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C (NPC) is a fatal neurodegenerative disorder caused by abnormal intracellular cholesterol trafficking. Cyclodextrins (CDs), the most promising therapeutic candidates for NPC, but with concerns about ototoxicity, are cyclic oligosaccharides with dual functions of unesterified cholesterol (UC) shuttle and sink that catalytically enhance the bidirectional flux and net efflux of UC, respectively, between the cell membrane and the extracellular acceptors. However, the properties of CDs that regulate these functions and how they could be used to improve treatments for NPC are unclear. METHODS We estimated CD-UC complexation for nine CD derivatives derived from native α-, β-, and γ-CD with different cavity sizes, using solubility and molecular docking analyses. The stoichiometry and complexation ability of the resulting complexes were investigated in relation to the therapeutic effectiveness and toxicity of each CD derivative in NPC experimental models. FINDINGS We found that shuttle and sink activities of CDs are dependent on cavity size-dependent stoichiometry and substituent-associated stability of CD-UC complexation. The ability of CD derivatives to form 1:1 and 2:1 complexes with UC were correlated with their ability to normalize intracellular cholesterol trafficking serving as shuttle and with their cytotoxicity associated with cellular UC efflux acting as sink, respectively, in NPC model cells. Notably, the ability of CD derivatives to form an inclusion complex with UC was responsible for not only efficacy but ototoxicity, while a representative derivative without this ability negligibly affected auditory function, underscoring its preventability. CONCLUSIONS Our findings highlight the importance of strategies for optimizing the molecular structure of CDs to overcome this functional dilemma in the treatment of NPC.
Collapse
Affiliation(s)
- Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
- Department of PharmacyUniversity of Miyazaki HospitalMiyazakiJapan
| | - Madoka Fukaura‐Nishizawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Asami Nishiyama
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Akira Ishii
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Tatsuya Kawata
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Aina Shirakawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Mayuko Tanaka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD)Kumamoto UniversityKumamotoJapan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD)Kumamoto UniversityKumamotoJapan
| | - Toru Miwa
- Department of Otolaryngology, Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | - Hiroki Takeda
- Department of Otolaryngology‐Head and Neck SurgeryGraduate School of MedicineKumamoto UniversityKumamotoJapan
| | - Yorihisa Orita
- Department of Otolaryngology‐Head and Neck SurgeryGraduate School of MedicineKumamoto UniversityKumamotoJapan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Taishi Higashi
- Priority Organization for Innovation and ExcellenceKumamoto UniversityKumamotoJapan
| | - Hidetoshi Arima
- Laboratory of Evidence‐Based PharmacotherapyDaiichi University of PharmacyFukuokaJapan
| | - Takahiro Seki
- Department of Pharmacology, Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHyogoJapan
| | - Yuki Kurauchi
- Department of Chemico‐Pharmacological Sciences, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Hiroshi Katsuki
- Department of Chemico‐Pharmacological Sciences, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and PromotionTottori UniversityYonagoJapan
| | - Kentaro Minami
- Department of PharmacyUniversity of Miyazaki HospitalMiyazakiJapan
| | - Naoki Yoshikawa
- Department of PharmacyUniversity of Miyazaki HospitalMiyazakiJapan
| | - Ryuji Ikeda
- Department of PharmacyUniversity of Miyazaki HospitalMiyazakiJapan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of MedicineSaga UniversitySagaJapan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
4
|
Hastings C, Liu B, Hurst B, Cox GF, Hrynkow S. Intravenous 2-hydroxypropyl-β-cyclodextrin (Trappsol® Cyclo™) demonstrates biological activity and impacts cholesterol metabolism in the central nervous system and peripheral tissues in adult subjects with Niemann-Pick Disease Type C1: Results of a phase 1 trial. Mol Genet Metab 2022; 137:309-319. [PMID: 36279795 DOI: 10.1016/j.ymgme.2022.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Niemann-Pick Disease Type C1 (NPC1) is a disorder of intracellular cholesterol and lipid trafficking that leads to the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment, resulting in systemic manifestations (including hepatosplenomegaly and lung infiltration) and neurodegeneration. Preclinical studies have demonstrated that systemically administered 2-hydroxypropyl-β-cyclodextrin (HPβCD; Trappsol® Cyclo™) restores cholesterol metabolism and homeostasis in peripheral organs and tissues and in the central nervous system (CNS). Here, we assessed the safety, pharmacokinetics, and pharmacodynamics of HPβCD in peripheral tissues and the CNS in adult subjects with NPC1. METHODS A Phase 1, randomized, double-blind, parallel group study enrolled 13 subjects with NPC1 who received either 1500 mg/kg or 2500 mg/kg HPβCD intravenously every 2 weeks for a total of 7 doses (14 weeks). Subjects were 18 years or older, with a confirmed diagnosis of NPC1 and evidence of systemic involvement on clinical assessment. Pharmacokinetic evaluations in plasma and cerebrospinal fluid (CSF) were performed at the first and seventh infusions. Pharmacodynamic assessments included biomarkers of systemic cholesterol synthesis (serum lathosterol) and degradation (serum 4β-hydroxycholesterol), secondary sphingomyelin storage (plasma lysosphingomyelin-509, now more accurately referred to as N-palmitoyl-O-phosphocholineserine [PPCS]), and CNS-specific biomarkers of neurodegeneration (CSF total Tau) and cholesterol metabolism (serum 24(S)-hydroxycholesterol [24(S)-HC]). Safety monitoring included assessments of liver and kidney function, infusion related adverse events, and hearing evaluations. RESULTS Ten subjects completed the study, with 6 at the 1500 mg/kg dose and 4 at the 2500 mg/kg dose. One subject withdrew following the first infusion after experiencing hypersensitivity pneumonitis, and 2 subjects withdrew after meeting a stopping rule related to hearing loss. Overall, HPβCD had an acceptable safety profile. The observed pharmacokinetic profile of HPβCD was similar following the first and seventh infusions, with a plasma half-life of 2 h, a maximum concentration reached at 6 to 8 h, and no evidence of accumulation. Serum biomarkers of cholesterol metabolism showed reduced synthesis and increased degradation. Compared to Baseline, filipin staining of liver tissue showed significant reductions of trapped unesterified cholesterol at both dose levels at Week 14. Plasma PPCS levels were also reduced. HPβCD was detected at low concentrations in the CSF (maximum, 33 μM) at both dose levels and persisted longer in CSF than in plasma. Total Tau levels in CSF decreased in most subjects. Serum levels of 24(S)-HC, a cholesterol metabolite from the CNS that is exported across the blood-brain barrier and into the circulation, decreased after both the first and seventh doses. Hence, pharmacodynamic assessments in both peripheral and CNS-related tissue show target engagement. While not the aim of the study, subjects reported favorable impacts on their quality of life. CONCLUSIONS The plasma pharmacokinetics and pharmacodynamics of HPβCD administered at two intravenous dose levels to subjects with NPC1 were comparable to those observed in preclinical models. HPβCD cleared cholesterol from the liver and improved peripheral biomarkers of cholesterol homeostasis. At low CSF concentrations, HPβCD appeared to be pharmacologically active in the CNS based on the increased efflux of 24(S)-HC and reduction in CSF total Tau, a biomarker of CNS neurodegeneration. These data support the initiation of longer-term clinical trials to evaluate the safety and efficacy of intravenous HPβCD in subjects with NPC1. (ClinicalTrials.gov numbers: present trial, NCT02939547; open-label extension of the present trial, NCT03893071; global pivotal trial, NCT04860960).
Collapse
Affiliation(s)
- Caroline Hastings
- Department of Pediatric Hematology Oncology, UCSF Benioff Children's Hospital Oakland, 747 52(nd) Street, Oakland, CA 94609-1809, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Benny Liu
- GI & Liver Clinics, Highland Hospital, Alameda Health System, Highland Hospital, Oakland, CA, USA; Division of Gastroenterology & Hepatology, Highland Hospital, Alameda Health Systems, Highland Care Pavilion 5th floor, 1411 East 31st Street, Oakland, CA 94602, USA
| | - Bryan Hurst
- Boyd Consultants, Electra House, Electra Avenue, Crewe CW1 6GL, UK
| | - Gerald F Cox
- Cyclo Therapeutics, Inc., 6714 NW 16(th) St., Ste B, Gainesville, FL 32653, USA
| | - Sharon Hrynkow
- Cyclo Therapeutics, Inc., 6714 NW 16(th) St., Ste B, Gainesville, FL 32653, USA
| |
Collapse
|
5
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
6
|
Okada BY, Kuroiwa S, Noi A, Tanaka A, Nishikawa J, Kondo Y, Ishitsuka Y, Irie T, Higaki K, Matsuo M, Ichikawa A. Effects of 6-O-α-maltosyl-β cyclodextrin on lipid metabolism in Npc1-deficient Chinese hamster ovary cells. Mol Genet Metab 2022; 137:239-248. [PMID: 36182715 DOI: 10.1016/j.ymgme.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
Abstract
Niemann-Pick disease Type C (NPC) is a lysosomal storage disorder caused by mutation of the NPC1/NPC2 genes, which ultimately results in the accumulation of unesterified cholesterol (UEC) in lysosomes, thereby inducing symptoms such as progressive neurodegeneration and hepatosplenomegaly. This study determines the effects of 6-O-α-maltosyl-β cyclodextrin (Mal-βCD) on lipid levels and synthesis in Npc1-deficient (Npc1-KO cells) and vehicle CHO cells. Compared to vehicle cells, Npc1-KO cells exhibited high level of UEC, and low levels of esterified cholesterols (ECs) and long-chain fatty acids (LCFAs). The difference in lipid levels between Npc1-KO and CHO cells was largely ameliorated by Mal-βCD administration. Moreover, the effects of Mal-βCD were reproduced in the lysosomes prepared from Npc1-KO cells. Stable isotope tracer analysis with extracellular addition of D4-deuterated palmitic acid (D4-PA) to Npc1-KO cells increased the synthesis of D4-deuterated LCFAs (D4-LCFAs) and D4-deuterated ECs (D4-ECs) in a Mal-βCD-dependent manner. Simultaneous addition of D6-deuterated UEC (D6-UEC) and D4-PA promoted the Mal-βCD-dependent synthesis of D6-/D4-ECs, consisting of D6-UEC and D4-PA, D4-deuterated stearic acid, or D4-deuterated myristic acid, in Npc1-KO cells. These results suggest that Mal-βCD helps to maintain normal lipid metabolism by restoring balance among UEC, ECs, and LCFAs through acting on behalf of NPC1 in Npc1-KO cells and may therefore be useful in designing effective therapies for NPC.
Collapse
Affiliation(s)
- By Yasuyo Okada
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan.
| | - Sayako Kuroiwa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Ayaka Noi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Ayaka Tanaka
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Junichi Nishikawa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Atsushi Ichikawa
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo 663-8179, Japan; Bio-Education Laboratory, Tawara Building #702, 1-21-33 Higashinakajima, Osaka 533-0033, Japan.
| |
Collapse
|
7
|
Yamada Y, Miwa T, Nakashima M, Shirakawa A, Ishii A, Namba N, Kondo Y, Takeo T, Nakagata N, Motoyama K, Higashi T, Arima H, Kurauchi Y, Seki T, Katsuki H, Okada Y, Ichikawa A, Higaki K, Hayashi K, Minami K, Yoshikawa N, Ikeda R, Ishikawa Y, Kajii T, Tachii K, Takeda H, Orita Y, Matsuo M, Irie T, Ishitsuka Y. Fine-tuned cholesterol solubilizer, mono-6-O-α-D-maltosyl-γ-cyclodextrin, ameliorates experimental Niemann-Pick disease type C without hearing loss. Biomed Pharmacother 2022; 155:113698. [PMID: 36116252 DOI: 10.1016/j.biopha.2022.113698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a fatal disorder with abnormal intracellular cholesterol trafficking resulting in neurodegeneration and hepatosplenomegaly. A cyclic heptasaccharide with different degrees of substitution of 2-hydroxypropyl groups, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), acts as a strong cholesterol solubilizer and is under investigation for treating this disease in clinical trials, but its physicochemical properties and ototoxicity remain a concern. Here, we evaluated the potential of mono-6-O-α-maltosyl-γ-CD (G2-γ-CD), a single-maltose-branched cyclic octasaccharide with a larger cavity than HP-β-CD, for treating NPC. We identified that G2-γ-CD ameliorated NPC manifestations in model mice and showed lower ototoxicity in mice than HP-β-CD. To investigate the molecular mechanisms of action behind the differential ototoxicity of these CDs, we performed cholesterol solubility analysis, proton nuclear magnetic resonance spectroscopy, and molecular modeling, and estimated that the cholesterol inclusion mode of G2-γ-CD maintained solely the 1:1 inclusion complex, whereas that of HP-β-CD shifted to the highly-soluble 2:1 complex at higher concentrations. We predicted the associations of these differential complexations of CDs with cholesterol with the profile of disease attenuation and of the auditory cell toxicity using specific cell models. We proposed that G2-γ-CD can serve as a fine-tuned cholesterol solubilizer for treating NPC, being highly biocompatible and physicochemically suitable for clinical application.
Collapse
Affiliation(s)
- Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan.
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgi-machi, Kita-ku, Osaka 530-8480, Japan
| | - Masaki Nakashima
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Aina Shirakawa
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Akira Ishii
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Nanami Namba
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yasuyo Okada
- Institute Biosciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Atsushi Ichikawa
- Institute Biosciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Ken Hayashi
- Kawagoe Otology Institute, 103, Wakitamachi, Kawagoe-shi, Saitama 350-1122, Japan
| | - Kentaro Minami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Ryuji Ikeda
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | - Yoshihide Ishikawa
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohito Kajii
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kyoko Tachii
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Yorihisa Orita
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| | - Tetsumi Irie
- Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
8
|
Cholesterol sulfate alleviates ulcerative colitis by promoting cholesterol biosynthesis in colonic epithelial cells. Nat Commun 2022; 13:4428. [PMID: 35908039 PMCID: PMC9338998 DOI: 10.1038/s41467-022-32158-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Cholesterol sulfate, produced by hydroxysteroid sulfotransferase 2B1 (SULT2B1), is highly abundant in the intestine. Herein, we study the functional role and underlying intestinal epithelial repair mechanisms of cholesterol sulfate in ulcerative colitis. The levels of cholesterol and cholesterol sulfate, as well as the expression of Sult2b1 and genes involved in cholesterol biosynthesis, are significantly higher in inflamed tissues from patients with ulcerative colitis than in intestinal mucosa from healthy controls. Cholesterol sulfate in the gut and circulation is mainly catalyzed by intestinal epithelial SULT2B1. Specific deletion of the Sult2b1 gene in the intestinal epithelial cells aggravates dextran sulfate sodium-induced colitis; however, dietary supplementation with cholesterol sulfate ameliorates this effect in acute and chronic ulcerative colitis in mice. Cholesterol sulfate promotes cholesterol biosynthesis by binding to Niemann-Pick type C2 protein and activating sterol regulatory element binding protein 2 in colonic epithelial cells, thereby alleviates ulcerative colitis. In conclusion, cholesterol sulfate contributes to the healing of the mucosal barrier and exhibits therapeutic efficacy against ulcerative colitis in mice. New treatment strategies are required for ulcerative colitis. Here the authors show in mouse models that cholesterol sulfate, an endogenous active cholesterol derivative, contributes to the healing of the mucosal barrier by promoting cholesterol biosynthesis in colonic epithelial cells and exhibits therapeutic efficacy against ulcerative colitis.
Collapse
|
9
|
Prakash S, Saini S, Kumari S, Singh B, Kureel AK, Rai AK. Retinoic acid restores the levels of cellular cholesterol in Leishmania donovani infected macrophages by increasing npc1 and npc2 expressions. Biochimie 2022; 198:23-32. [PMID: 35272007 DOI: 10.1016/j.biochi.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/20/2022]
Abstract
Visceral leishmaniasis (VL) is a fatal form among all forms of leishmaniasis and is caused by visceralization of the Leishmania donovani (Ld) parasite to the critical organs. Mild to severe malnutrition is common in VL patients and the deficiency of retinoic acid (RA), an important micronutrient, results in a compromised state of immune response in macrophages (mφ) leading to the increased parasite load. In the continuation of our earlier work, we observed loss of cellular cholesterol in infected mφ in the absence of RA i.e., upon inhibition of RALDH pathway. Moreover, the Leishmania utilizes host cholesterol for the establishment of infection and causes a decrease in the expressions of Niemann-Pick C2 (npc2) and Niemann-Pick C1 (npc1) genes involved in the uptake of extracellular cholesterol. This results in reduced levels of cellular cholesterol in infected mφ. Intrigued by this, as the first sign of our hypothesis, we investigated the presence of RA Response Element (RARE) sequences in the upstream of npc1 and npc2 genes. To functionally confirm this, we measured their expressions and the levels of cellular cholesterol in Ld infected mφ in the absence (i.e., using an inhibitor of RALDH pathway) and presence of RA. We found restoration of the levels of cellular cholesterol in infected mφ under the supplementation of RA resulting in the decreased parasite load. Hence, the supplementation of RA with the standard therapy and/or preventive use of RA could be potentially an advancement in the treatment and cure of VL patients.
Collapse
Affiliation(s)
- Satya Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India.
| |
Collapse
|
10
|
Groenen AG, La Rose AM, Li M, Bazioti V, Svendsen AF, Kloosterhuis NJ, Ausema A, Pranger A, Heiner-Fokkema MR, Niezen-Koning KE, Houben T, Shiri-Sverdlov R, Westerterp M. Elevated granulocyte-colony stimulating factor and hematopoietic stem cell mobilization in Niemann-Pick type C1 disease. J Lipid Res 2022; 63:100167. [PMID: 35007562 PMCID: PMC8953690 DOI: 10.1016/j.jlr.2021.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a progressive lysosomal storage disorder caused by mutations of the NPC1 gene. While neurodegeneration is the most severe symptom, a large proportion of NPC1 patients also present with splenomegaly, which has been attributed to cholesterol and glycosphingolipid accumulation in late endosomes and lysosomes. However, recent data also reveal an increase in the inflammatory monocyte subset in the Npc1nih mouse model expressing an Npc1 null allele. We evaluated the contribution of hematopoietic cells to splenomegaly in NPC1 disease under conditions of hypercholesterolemia. We transplanted Npc1nih (Npc1 null mutation) or Npc1wt bone marrow (BM) into Ldlr-/- mice and fed these mice a cholesterol-rich Western-type diet. At 9 weeks after BM transplant, on a chow diet, the Npc1 null mutation increased plasma granulocyte-colony stimulating factor (G-CSF) by 2-fold and caused mild neutrophilia. At 18 weeks after BM transplant, including 9 weeks of Western-type diet feeding, the Npc1 mutation increased G-csf mRNA levels by ∼5-fold in splenic monocytes/macrophages accompanied by a ∼4-fold increase in splenic neutrophils compared with controls. We also observed ∼5-fold increased long-term and short-term hematopoietic stem cells (HSCs) in the spleen, and a ∼30-75% decrease of these populations in BM, reflecting HSC mobilization, presumably downstream of elevated G-CSF. In line with these data, four patients with NPC1 disease showed higher plasma G-CSF compared with age-matched and gender-matched healthy controls. In conclusion, we show elevated G-CSF levels and HSC mobilization in the setting of an Npc1 null mutation and propose that this contributes to splenomegaly in patients with NPC1 disease.
Collapse
Affiliation(s)
- Anouk G Groenen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anouk M La Rose
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mengying Li
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Venetia Bazioti
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arthur F Svendsen
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Niels J Kloosterhuis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertina Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alle Pranger
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht, Maastricht, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Severely impaired CTL killing is a feature of the neurological disorder Niemann-Pick Syndrome type C1. Blood 2022; 139:1833-1849. [PMID: 35081253 DOI: 10.1182/blood.2021013477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder resulting from mutations in an endo-lysosomal cholesterol transporter, NPC1. Despite typically presenting with pronounced neurological manifestations, NP-C1 also resembles long-term congenital immunodeficiencies that arise due to impairment of cytotoxic T lymphocyte (CTL) effector function. CTLs kill their targets through exocytosis of the contents of lysosome-like secretory cytotoxic granules (CGs) that store, and ultimately release the essential pore-forming protein perforin and pro-apoptotic serine proteases, granzymes, into the synapse formed between the CTL and a target cell. We have discovered that NPC1 deficiency increases CG lipid burden, impairs autophagic flux due to stalled trafficking of the transcription factor EB (TFEB), and dramatically reduces CTL cytotoxicity. Using a variety of immunological and cell biology techniques, we show that the cytotoxic defect arises specifically due to impaired perforin pore-formation. We demonstrated defects of CTL function of varying severity in NP-C1 patients, with the greatest loss of function associated with the most florid and/or earliest disease presentations. Remarkably, perforin function and CTL cytotoxicity were restored in vitro by promoting lipid clearance with therapeutic 2-hydroxypropyl-b-cyclodextrin (HPbCD), whereas restoring autophagy through TFEB over-expression was ineffective. Overall, our study revealed that NPC1 deficiency has a deleterious impact on CTL (but not natural killer cell) cytotoxicity that, in the long term, may predispose NP-C1 patients to atypical infections and impaired immune surveillance more generally.
Collapse
|
12
|
Jarazo J, Barmpa K, Modamio J, Saraiva C, Sabaté-Soler S, Rosety I, Griesbeck A, Skwirblies F, Zaffaroni G, Smits LM, Su J, Arias-Fuenzalida J, Walter J, Gomez-Giro G, Monzel AS, Qing X, Vitali A, Cruciani G, Boussaad I, Brunelli F, Jäger C, Rakovic A, Li W, Yuan L, Berger E, Arena G, Bolognin S, Schmidt R, Schröder C, Antony PMA, Klein C, Krüger R, Seibler P, Schwamborn JC. Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by 2-Hydroxypropyl-β-Cyclodextrin Treatment. Mov Disord 2021; 37:80-94. [PMID: 34637165 PMCID: PMC9291890 DOI: 10.1002/mds.28810] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)‐induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. Objectives We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. Methods Using two‐dimensional and three‐dimensional models of patients' derived neurons we recapitulated PD‐related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. Results PD patient‐derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2‐hydroxypropyl‐β‐cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient‐specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. Conclusion We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient‐derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Javier Jarazo
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg.,OrganoTherapeutics société à responsabilité limitée simplifiée (SARL-S), Esch-sur-Alzette, Luxembourg
| | - Kyriaki Barmpa
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jennifer Modamio
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cláudia Saraiva
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sònia Sabaté-Soler
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Isabel Rosety
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | | | - Gaia Zaffaroni
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - Lisa M Smits
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jihui Su
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Jonathan Arias-Fuenzalida
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jonas Walter
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna S Monzel
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Xiaobing Qing
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armelle Vitali
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gerald Cruciani
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Disease Modeling and Screening Platform, Luxembourg Institute of Systems Biomedicine, University of Luxembourg and Luxembourg Institute of Health, Belvaux, Luxembourg
| | - Ibrahim Boussaad
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Disease Modeling and Screening Platform, Luxembourg Institute of Systems Biomedicine, University of Luxembourg and Luxembourg Institute of Health, Belvaux, Luxembourg
| | | | - Christian Jäger
- Metabolomics Platform, Enzymology and Metabolism, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Wen Li
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Lin Yuan
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Emanuel Berger
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Giuseppe Arena
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Silvia Bolognin
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | | | - Paul M A Antony
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Centre Hospitalier de Luxembourg, Parkinson Research Clinic, Luxembourg, Luxembourg.,Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Jens C Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
13
|
Ding D, Jiang H, Manohar S, Liu X, Li L, Chen GD, Salvi R. Spatiotemporal Developmental Upregulation of Prestin Correlates With the Severity and Location of Cyclodextrin-Induced Outer Hair Cell Loss and Hearing Loss. Front Cell Dev Biol 2021; 9:643709. [PMID: 34109172 PMCID: PMC8181405 DOI: 10.3389/fcell.2021.643709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
2-Hyroxypropyl-beta-cyclodextrin (HPβCD) is being used to treat Niemann-Pick C1, a fatal neurodegenerative disease caused by abnormal cholesterol metabolism. HPβCD slows disease progression, but unfortunately causes severe, rapid onset hearing loss by destroying the outer hair cells (OHC). HPβCD-induced damage is believed to be related to the expression of prestin in OHCs. Because prestin is postnatally upregulated from the cochlear base toward the apex, we hypothesized that HPβCD ototoxicity would spread from the high-frequency base toward the low-frequency apex of the cochlea. Consistent with this hypothesis, cochlear hearing impairments and OHC loss rapidly spread from the high-frequency base toward the low-frequency apex of the cochlea when HPβCD administration shifted from postnatal day 3 (P3) to P28. HPβCD-induced histopathologies were initially confined to the OHCs, but between 4- and 6-weeks post-treatment, there was an unexpected, rapid and massive expansion of the lesion to include most inner hair cells (IHC), pillar cells (PC), peripheral auditory nerve fibers, and spiral ganglion neurons at location where OHCs were missing. The magnitude and spatial extent of HPβCD-induced OHC death was tightly correlated with the postnatal day when HPβCD was administered which coincided with the spatiotemporal upregulation of prestin in OHCs. A second, massive wave of degeneration involving IHCs, PC, auditory nerve fibers and spiral ganglion neurons abruptly emerged 4–6 weeks post-HPβCD treatment. This secondary wave of degeneration combined with the initial OHC loss results in a profound, irreversible hearing loss.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
14
|
Yamada Y, Ishitsuka Y, Kondo Y, Nakahara S, Nishiyama A, Takeo T, Nakagata N, Motoyama K, Higashi T, Arima H, Kamei S, Shuto T, Kai H, Hayashino Y, Sugita M, Kikuchi T, Hirata F, Miwa T, Takeda H, Orita Y, Seki T, Ohta T, Kurauchi Y, Katsuki H, Matsuo M, Higaki K, Ohno K, Matsumoto S, Era T, Irie T. Differential mode of cholesterol inclusion with 2-hydroxypropyl-cyclodextrins increases safety margin in treatment of Niemann-Pick disease type C. Br J Pharmacol 2021; 178:2727-2746. [PMID: 33782944 DOI: 10.1111/bph.15464] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Niemann-Pick disease type C (NPC) is a lysosomal storage disorder with disrupted intracellular cholesterol trafficking. A cyclic heptasaccharide, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), is a cholesterol solubilizer that is being developed to treat NPC, but its ototoxicity and pulmonary toxicity remain important issues. We have characterized 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD), a cyclic octasaccharide with a larger cavity than HP-β-CD, as a candidate drug to treat NPC. However, the molecular target of HP-γ-CD with respect to NPC and its potential for clinical application are still unclear. EXPERIMENTAL APPROACH We investigated the mode of interaction between HP-γ-CD and cholesterol by phase-solubility analysis, proton NMR spectroscopy and molecular dynamics simulations. We then evaluated the therapeutic effects of HP-γ-CD compared with HP-β-CD using cellular and murine NPC models. Mouse auditory and pulmonary function tests were also conducted. KEY RESULTS HP-γ-CD solely formed a 1:1 inclusion complex with cholesterol with an affinity similar to that of HP-β-CD. In vitro, HP-γ-CD and HP-β-CD amelioration of NPC-related manifestations was almost equivalent at lower concentrations. However, at higher concentrations, the cholesterol inclusion mode of HP-β-CD shifted to the highly soluble 2:1 complex whereas that of HP-γ-CD maintained solely the 1:1 complex. The constant lower cholesterol solubilizing ability of HP-γ-CD conferred it with significantly reduced toxicity compared with HP-β-CD, but equal efficacy in treating a mouse model of NPC. CONCLUSIONS AND IMPLICATIONS HP-γ-CD can serve as a fine-tuned cholesterol solubilizer for the treatment of NPC with a wider safety margin than HP-β-CD in terms of ototoxicity and pulmonary toxicity.
Collapse
Affiliation(s)
- Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuichi Nakahara
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Asami Nishiyama
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taishi Higashi
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Shunsuke Kamei
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
| | - Yuji Hayashino
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masatake Sugita
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takeshi Kikuchi
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Fumio Hirata
- Toyota Physical and Chemical Research Institute, Nagakute, Aichi, Japan
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Hiroki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Kumamoto, Japan
| | - Yorihisa Orita
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoko Ohta
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | | | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Genistein Activates Transcription Factor EB and Corrects Niemann-Pick C Phenotype. Int J Mol Sci 2021; 22:ijms22084220. [PMID: 33921734 PMCID: PMC8073251 DOI: 10.3390/ijms22084220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Niemann-Pick type C disease (NPCD) is a lysosomal storage disease (LSD) characterized by abnormal cholesterol accumulation in lysosomes, impaired autophagy flux, and lysosomal dysfunction. The activation of transcription factor EB (TFEB), a master lysosomal function regulator, reduces the accumulation of lysosomal substrates in LSDs where the degradative capacity of the cells is compromised. Genistein can pass the blood-brain barrier and activate TFEB. Hence, we investigated the effect of TFEB activation by genistein toward correcting the NPC phenotype. We show that genistein promotes TFEB translocation to the nucleus in HeLa TFEB-GFP, Huh7, and SHSY-5Y cells treated with U18666A and NPC1 patient fibroblasts. Genistein treatment improved lysosomal protein expression and autophagic flux, decreasing p62 levels and increasing those of the LC3-II in NPC1 patient fibroblasts. Genistein induced an increase in β-hexosaminidase activity in the culture media of NPC1 patient fibroblasts, suggesting an increase in lysosomal exocytosis, which correlated with a decrease in cholesterol accumulation after filipin staining, including cells treated with U18666A and NPC1 patient fibroblasts. These results support that genistein-mediated TFEB activation corrects pathological phenotypes in NPC models and substantiates the need for further studies on this isoflavonoid as a potential therapeutic agent to treat NPCD and other LSDs with neurological compromise.
Collapse
|
16
|
Ramirez CM, Taylor AM, Lopez AM, Repa JJ, Turley SD. Delineation of metabolic responses of Npc1 -/-nih mice lacking the cholesterol-esterifying enzyme SOAT2 to acute treatment with 2-hydroxypropyl-β-cyclodextrin. Steroids 2020; 164:108725. [PMID: 32890578 PMCID: PMC7680374 DOI: 10.1016/j.steroids.2020.108725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022]
Abstract
Lipids present in lipoproteins cleared from the circulation are processed sequentially by three major proteins within the late endosomal/lysosomal (E/L) compartment of all cells: lysosomal acid lipase (LAL), Niemann-Pick (NPC) C2 and NPC1. When all three of these proteins are functioning normally, unesterified cholesterol (UC) exits the E/L compartment and is used in plasma membrane maintenance and various pathways in the endoplasmic reticulum including esterification by sterol O-acyltransferase 2 (SOAT2) or SOAT1 depending partly on cell type. Mutations in either NPC2 or NPC1 result in continual entrapment of UC and glycosphingolipids leading to neurodegeneration, pulmonary dysfunction, splenomegaly and liver damage. To date, the most effective agent for promoting release of entrapped UC in nearly all organs of NPC1-deficient mice and cats is 2-hydroxypropyl-β-cyclodextrin (2HPβCD). The cytotoxic nature of the liberated UC triggers various defenses including suppression of sterol synthesis and increased esterification. The present studies, using the Npc1-/-nih mouse model, measured the comparative quantitative importance of these two responses in the liver versus the spleen of Npc1-/-: Soat2+/+ and Npc1-/-: Soat2-/- mice in the 24 h following a single acute treatment with 2HPβCD. In the liver but not the spleen of both types of mice suppression of synthesis alone or in combination with increased esterification provided the major defense against the rise in unsequestered cellular UC content. These findings have implications for systemic 2HPβCD treatment in NPC1 patients in view of the purportedly low levels of SOAT2 activity in human liver.
Collapse
Affiliation(s)
- Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
Visualisation of cholesterol and ganglioside GM1 in zebrafish models of Niemann-Pick type C disease and Smith-Lemli-Opitz syndrome using light sheet microscopy. Histochem Cell Biol 2020; 154:565-578. [PMID: 33079236 PMCID: PMC7609433 DOI: 10.1007/s00418-020-01925-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage diseases are the most common cause of neurodegeneration in children. They are characterised at the cellular level by the accumulation of storage material within lysosomes. There are very limited therapeutic options, and the search for novel therapies has been hampered as few good small animal models are available. Here, we describe the use of light sheet microscopy to assess lipid storage in drug and morpholino induced zebrafish models of two diseases of cholesterol homeostasis with lysosomal dysfunction: First, Niemann–Pick type C disease (NPC), caused by mutations in the lysosomal transmembrane protein NPC1, characterised by intralysosomal accumulation of cholesterol and several other lipids. Second, Smith–Lemli–Opitz syndrome (SLOS), caused by mutations in 7-dehydrocholesterol reductase, which catalyses the last step of cholesterol biosynthesis and is characterised by intralysosomal accumulation of dietary cholesterol. This is the first description of a zebrafish SLOS model. We find that zebrafish accurately model lysosomal storage and disease-specific phenotypes in both diseases. Increased cholesterol and ganglioside GM1 were observed in sections taken from NPC model fish, and decreased cholesterol in SLOS model fish, but these are of limited value as resolution is poor, and accurate anatomical comparisons difficult. Using light sheet microscopy, we were able to observe lipid changes in much greater detail and identified an unexpected accumulation of ganglioside GM1 in SLOS model fish. Our data demonstrate, for the first time in zebrafish, the immense potential that light sheet microscopy has in aiding the resolution of studies involving lysosomal and lipid disorders.
Collapse
|
18
|
Lopez AM, Ramirez CM, Taylor AM, Jones RD, Repa JJ, Turley SD. Ontogenesis and Modulation of Intestinal Unesterified Cholesterol Sequestration in a Mouse Model of Niemann-Pick C1 Disease. Dig Dis Sci 2020; 65:158-167. [PMID: 31312996 DOI: 10.1007/s10620-019-05736-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Mutations in the NPC1 gene result in sequestration of unesterified cholesterol (UC) and glycosphingolipids in most tissues leading to multi-organ disease, especially in the brain, liver, lungs, and spleen. Various data from NPC1-deficient mice suggest the small intestine (SI) is comparatively less affected, even in late stage disease. METHODS Using the Npc1nih mouse model, we measured SI weights and total cholesterol (TC) levels in Npc1-/- versus Npc1+/+ mice as a function of age, and then after prolonged ezetimibe-induced inhibition of cholesterol absorption. Next, we determined intestinal levels of UC and esterified cholesterol (EC), and cholesterol synthesis rates in Npc1-/- and Npc1+/+ mice, with and without the cholesterol-esterifying enzyme SOAT2, following a once-only subcutaneous injection with 2-hydroxypropyl-β-cyclodextrin (2HPβCD). RESULTS By ~ 42 days of age, intestinal TC levels averaged ~ 2.1-fold more (mostly UC) in the Npc1-/- versus Npc1+/+ mice with no further increase thereafter. Chronic ezetimibe treatment lowered intestinal TC levels in the Npc1-/- mice by only ~ 16%. In Npc1-/- mice given 2HPβCD 24 h earlier, UC levels fell, EC levels increased (although less so in mice lacking SOAT2), and cholesterol synthesis was suppressed equally in the Npc1-/-:Soat2+/+ and Npc1-/-:Soat2-/- mice. CONCLUSIONS The low and static levels of intestinal UC sequestration in Npc1-/- mice likely reflect the continual sloughing of cells from the mucosa. This sequestration is blunted by about the same extent following a single acute treatment with 2HPβCD as it is by a prolonged ezetimibe-induced block of cholesterol absorption.
Collapse
MESH Headings
- 2-Hydroxypropyl-beta-cyclodextrin/pharmacology
- Animals
- Cholesterol/metabolism
- Disease Models, Animal
- Ezetimibe/pharmacology
- Female
- Intestinal Absorption/drug effects
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Male
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Niemann-Pick C1 Protein
- Niemann-Pick Disease, Type C/drug therapy
- Niemann-Pick Disease, Type C/genetics
- Niemann-Pick Disease, Type C/metabolism
- Sterol O-Acyltransferase/genetics
- Sterol O-Acyltransferase/metabolism
- Sterol O-Acyltransferase 2
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Anna M Taylor
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
19
|
Hastings C, Vieira C, Liu B, Bascon C, Gao C, Wang RY, Casey A, Hrynkow S. Expanded access with intravenous hydroxypropyl-β-cyclodextrin to treat children and young adults with Niemann-Pick disease type C1: a case report analysis. Orphanet J Rare Dis 2019; 14:228. [PMID: 31639011 PMCID: PMC6805667 DOI: 10.1186/s13023-019-1207-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background Niemann-Pick Disease Type C (NPC) is an inherited, often fatal neurovisceral lysosomal storage disease characterized by cholesterol accumulation in every cell with few known treatments. Defects in cholesterol transport cause sequestration of unesterified cholesterol within the endolysosomal system. The discovery that systemic administration of hydroxypropyl-beta cyclodextrin (HPβPD) to NPC mice could release trapped cholesterol from lysosomes, normalize cholesterol levels in the liver, and prolong life, led to expanded access use in NPC patients. HPβCD has been administered to NPC patients with approved INDs globally since 2009. Results Here we present safety, tolerability and efficacy data from 12 patients treated intravenously (IV) for over 7 years with HPβCD in the US and Brazil. Some patients subsequently received intrathecal (IT) treatment with HPβCD following on average 13 months of IV HPβCD. Several patients transitioned to an alternate HPβCD. Moderately affected NPC patients treated with HPβCD showed slowing of disease progression. Severely affected patients demonstrated periods of stability but eventually showed progression of disease. Neurologic and neurocognitive benefits were seen in most patients with IV alone, independent of the addition of IT administration. Physicians and caregivers reported improvements in quality of life for the patients on IV therapy. There were no safety issues, and the drug was well tolerated and easy to administer. Conclusions These expanded access data support the safety and potential benefit of systemic IV administration of HPβCD and provide a platform for two clinical trials to study the effect of intravenous administration of HPβCD in NPC patients.
Collapse
Affiliation(s)
- Caroline Hastings
- Department of Pediatric Hematology Oncology, UCSF Benioff Children's Hospital Oakland, 747 52nd Street, Oakland, CA, 94609-1809, USA. .,Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.
| | - Camilo Vieira
- Universidade Federal da Bahia, Clínica Citta, Ed. Mundo Plaza, Av. Tancredo Neves, 620, Sala 1905, Camino dos Árvares, Salvador, Brazil
| | - Benny Liu
- GI & Liver Clinics, Highland Hospital, Alameda Health System, Highland Hospital, Oakland, CA, USA.,Division of Gastroenterology & Hepatology, Highland Hospital, Alameda Health Systems, Highland Care Pavilion 5th floor, 1411 East 31st Street, Oakland, CA, 94602, USA
| | - Cyrus Bascon
- Department of Pediatric Hematology Oncology, UCSF Benioff Children's Hospital Oakland, 747 52nd Street, Oakland, CA, 94609-1809, USA
| | - Claire Gao
- UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA.,Present Address: Neuroscience Graduate Program, Brown University, 185 Meeting Street, Box GL-N, Providence, RI, 02912, USA
| | - Raymond Y Wang
- Division of Metabolic Disorders, Children's Hospital of Orange County, CHOC Children's Specialists, 1201 W. La Veta Ave, Orange, CA, 92868, USA.,Department of Pediatrics, University of California, Irvine School of Medicine, Irvine, CA, 92868, USA
| | - Alicia Casey
- Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Sharon Hrynkow
- CTD Holdings, Inc., P.O. Box 1180, Alachua, FL, 32616, USA
| |
Collapse
|
20
|
Calias P. 2-Hydroxypropyl-β-cyclodextrins and the Blood-Brain Barrier: Considerations for Niemann-Pick Disease Type C1. Curr Pharm Des 2019; 23:6231-6238. [PMID: 29065825 PMCID: PMC5824462 DOI: 10.2174/1381612823666171019164220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 01/03/2023]
Abstract
The rare, chronic, autosomal-recessive lysosomal storage disease Niemann-Pick disease type C1 (NPC1) is characterized by progressively debilitating and ultimately fatal neurological manifestations. There is an urgent need for disease-modifying therapies that address NPC1 neurological pathophysiology, and passage through the blood-brain barrier represents an important consideration for novel NPC1 drugs. Animal investigations of 2-hydroxypropyl-β-cyclodextrins (HPβCD) in NPC1 in mice demonstrated that HPβCD does not cross the blood-brain barrier in significant amounts but suggested a potential for these complex oligosaccharides to moderately impact CNS manifestations when administered subcutaneously or intraperitoneally at very high doses; however, safety concerns regarding pulmonary toxicity were raised. Subsequent NPC1 investigations in cats demonstrated far greater HPβCD efficacy at much lower doses when the drug was administered directly to the CNS. Based on this, a phase 1/2a clinical trial was initiated with intrathecal administration of a specific, wellcharacterized mixture of HPβCD, with a tightly controlled molar substitution specification and a defined molecular "fingerprint" of the different species. The findings were very encouraging and a phase 2b/3 clinical trial has completed enrollment and is underway. In addition, phase 1 clinical studies utilizing high-dose intravenous administration of a different HPβCD are currently recruiting. Independent studies are needed for each product to satisfactorily address questions of safety, efficacy, dosing, and route of administration. The outcomes cannot be assumed to be translatable between HPβCD products and/or routes of administration.
Collapse
Affiliation(s)
- Pericles Calias
- Co-Founder and Pharmaceutical Development Consultant, Educational Trainers and Consultants, 39 Swains Pond Ave, Melrose, MA 02176, United States
| |
Collapse
|
21
|
Maeda Y, Motoyama K, Nishiyama R, Higashi T, Onodera R, Nakamura H, Takeo T, Nakagata N, Yamada Y, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H. In vivo Efficacy and Safety Evaluation of Lactosyl-β-cyclodextrin as a Therapeutic Agent for Hepatomegaly in Niemann-Pick Type C Disease. NANOMATERIALS 2019; 9:nano9050802. [PMID: 31130658 PMCID: PMC6566927 DOI: 10.3390/nano9050802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/02/2022]
Abstract
Niemann-Pick type C disease (NPC) is a fatal, autosomal recessive disorder, which causes excessive accumulation of free cholesterol in endolysosomes, resulting in progressive hepatomegaly and neurodegeneration. Currently, 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) is used at a high dose for the treatment of NPC, risking lung toxicity and hearing loss during treatment. One method to reduce the required dose of HP-β-CyD for the treatment of hepatomegaly is to actively deliver β-cyclodextrin (β-CyD) to hepatocytes. Previously, we synthesized lactosyl-β-CyD (Lac-β-CyD) and demonstrated that it lowers cholesterol in NPC model liver cells. In the present study, we studied the efficacy and safety of Lac-β-CyD treatment of hepatomegaly in Npc1−/− mice. After subcutaneous administration, Lac-β-CyD accumulated in the liver and reduced hepatomegaly with greater efficacy than HP-β-CyD. In addition, subcutaneous administration of a very high dose of Lac-β-CyD was less toxic to the lungs than HP-β-CyD. Notably, the accumulation of intracellular free cholesterol in endolysosomes of NPC-like liver cells was significantly lower after administration of Lac-β-CyD than after treatment with HP-β-CyD. In conclusion, these results suggest that Lac-β-CyD is a candidate for the effective treatment of hepatomegaly in NPC.
Collapse
Affiliation(s)
- Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan.
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Rena Nishiyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 862-0973, Japan.
| | | | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.
| | - Toru Takeo
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Naomi Nakagata
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Yusei Yamada
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Yuki Kondo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan.
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
22
|
Witt M, Thiemer R, Meyer A, Schmitt O, Wree A. Main Olfactory and Vomeronasal Epithelium Are Differently Affected in Niemann-Pick Disease Type C1. Int J Mol Sci 2018; 19:ijms19113563. [PMID: 30424529 PMCID: PMC6274921 DOI: 10.3390/ijms19113563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Olfactory impairment is one of the earliest symptoms in neurodegenerative disorders that has also been documented in Niemann-Pick disease type C1 (NPC1). NPC1 is a very rare, neurovisceral lipid storage disorder, characterized by a deficiency of Npc1 gene function that leads to progressive neurodegeneration. Here, we compared the pathologic effect of defective Npc1 gene on the vomeronasal neuroepithelium (VNE) with that of the olfactory epithelium (OE) in an NPC1 mouse model. METHODS Proliferation in the VNE and OE was assessed by applying a bromodeoxyuridine (BrdU) protocol. We further compared the immunoreactivities of anti-olfactory marker protein (OMP), and the lysosomal marker cathepsin-D in both epithelia. To investigate if degenerative effects of both olfactory systems can be prevented or reversed, some animals were treated with a combination of miglustat/allopregnanolone/2-hydroxypropyl-cyclodextrin (HPβCD), or a monotherapy with HPβCD alone. RESULTS Using BrdU to label dividing cells of the VNE, we detected a proliferation increase of 215% ± 12% in Npc1-/- mice, and 270% ± 10% in combination- treated Npc1-/- animals. The monotherapy with HPβCD led to an increase of 261% ± 10.5% compared to sham-treated Npc1-/- mice. Similar to the OE, we assessed the high regenerative potential of vomeronasal progenitor cells. OMP reactivity in the VNE of Npc1-/- mice was not affected, in contrast to that observed in the OE. Concomitantly, cathepsin-D reactivity in the VNE was virtually absent. Conclusion: Vomeronasal receptor neurons are less susceptible against NPC1 pathology than olfactory receptor neurons. Compared to control mice, however, the VNE of Npc1-/- mice displays an increased neuroregenerative potential, indicating compensatory cell renewal.
Collapse
Affiliation(s)
- Martin Witt
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - René Thiemer
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Anja Meyer
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Oliver Schmitt
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| | - Andreas Wree
- Department of Anatomy, University of Rostock, 18057 Rostock, Germany.
| |
Collapse
|
23
|
Lopez AM, Jones RD, Repa JJ, Turley SD. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function. Am J Physiol Gastrointest Liver Physiol 2018; 315:G454-G463. [PMID: 29878847 PMCID: PMC6230690 DOI: 10.1152/ajpgi.00124.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/31/2023]
Abstract
Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase (SOAT) 1 or SOAT2 in various cell types and lecithin cholesterol acyltransferase in plasma. Esterified cholesterol and triacylglycerol contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C (NPC) 2 and NPC 1, unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease, which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7-wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared with their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma alanine aminotransferase and aspartate aminotransferase activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency. NEW & NOTEWORTHY In Niemann-Pick type C1 (NPC1) disease, the entrapment of unesterified cholesterol (UC) in the endosomal/lysosomal compartment of all cells causes multiorgan disease, including neurodegeneration, pulmonary dysfunction, and liver failure. Some of this sequestered UC entered cells initially in the esterified form. When sterol O-acyltransferase 2, a cholesterol esterifying enzyme present in enterocytes and hepatocytes, is eliminated in NPC1-deficient mice, there is a reduction in their hepatomegaly, hepatic UC content, and cellular injury.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Joyce J Repa
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
24
|
Lamri A, Pigeyre M, Garver WS, Meyre D. The Extending Spectrum of NPC1-Related Human Disorders: From Niemann-Pick C1 Disease to Obesity. Endocr Rev 2018; 39:192-220. [PMID: 29325023 PMCID: PMC5888214 DOI: 10.1210/er.2017-00176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein regulates the transport of cholesterol and fatty acids from late endosomes/lysosomes and has a central role in maintaining lipid homeostasis. NPC1 loss-of-function mutations in humans cause NPC1 disease, a rare autosomal-recessive lipid-storage disorder characterized by progressive and lethal neurodegeneration, as well as liver and lung failure, due to cholesterol infiltration. In humans, genome-wide association studies and post-genome-wide association studies highlight the implication of common variants in NPC1 in adult-onset obesity, body fat mass, and type 2 diabetes. Heterozygous human carriers of rare loss-of-function coding variants in NPC1 display an increased risk of morbid adult obesity. These associations have been confirmed in mice models, showing an important interaction with high-fat diet. In this review, we describe the current state of knowledge for NPC1 variants in relationship to pleiotropic effects on metabolism. We provide evidence that NPC1 gene variations may predispose to common metabolic diseases by modulating steroid hormone synthesis and/or lipid homeostasis. We also propose several important directions of research to further define the complex roles of NPC1 in metabolism. This review emphasizes the contribution of NPC1 to obesity and its metabolic complications.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,INSERM 1190, European Genomics Institute for Diabetes, University of Lille, CHRU Lille, Lille, France
| | - William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Hayashino Y, Sugita M, Arima H, Irie T, Kikuchi T, Hirata F. Predicting the Binding Mode of 2-Hydroxypropyl-β-cyclodextrin to Cholesterol by Means of the MD Simulation and the 3D-RISM-KH Theory. J Phys Chem B 2018. [PMID: 29534570 DOI: 10.1021/acs.jpcb.8b02098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been found that a cyclodextrin derivative, 2-hydroxypropyl-β-cyclodextrin (HPβCD), has reasonable therapeutic effect on Niemann-Pick disease type C, which is caused by abnormal accumulation of unesterified cholesterol and glycolipids in the lysosomes and shortage of esterified cholesterol in other cellular compartments. We study the binding affinity and mode of HPβCD with cholesterol to elucidate the possible mechanism of HPβCD for removing cholesterol from the lysosomes. The dominant binding mode of HPβCD with cholesterol is found based on the molecular dynamics simulation and a statistical mechanics theory of liquids, or the three-dimensional reference interaction site model theory with Kovalenko-Hirata closure relation. We examine the two types of complexes between HPβCD and cholesterol, namely, one-to-one (1:1) and two-to-one (2:1). It is predicted that the 1:1 complex makes two or three types of stable binding mode in solution, in which the βCD ring tends to be located at the edge of the steroid skeleton. For the 2:1 complex, there are four different types of the complex conceivable, depending on the orientation between the two HPβCDs: head-to-head (HH), head-to-tail (HT), tail-to-head (TH), and tail-to-tail (TT). The HT and HH cyclodextrin dimers show higher affinity to cholesterol compared to the other dimers and to all the binding modes of 1:1 complexes. The physical reason why the HT and HH dimers have higher affinity compared to the other complexes is discussed based on the consistency with the 1:1 complex. On the one hand, in case of the HT and HH dimers, the position of each CD in the dimer along the cholesterol chain comes right on or close to one of the positions where a single CD makes a stable complex. On the other hand, one of the CD molecules is located on unstable region along the cholesterol chain, for the case of TH and TT dimers.
Collapse
Affiliation(s)
- Yuji Hayashino
- Ritsumeikan University, College of Life Science , Department of Bioinformatics , 1-1-1, Noji-higashi , Kusatsu , Shiga 525-8577 , Japan
| | - Masatake Sugita
- Ritsumeikan University, College of Life Science , Department of Bioinformatics , 1-1-1, Noji-higashi , Kusatsu , Shiga 525-8577 , Japan
| | | | | | - Takeshi Kikuchi
- Ritsumeikan University, College of Life Science , Department of Bioinformatics , 1-1-1, Noji-higashi , Kusatsu , Shiga 525-8577 , Japan
| | - Fumio Hirata
- Toyota Physical and Chemical Research Institute , 41-1, Yokomichi , Nagakute , Aichi 480-1192 , Japan
| |
Collapse
|
26
|
Tolerance of chronic HDACi treatment for neurological, visceral and lung Niemann-Pick Type C disease in mice. Sci Rep 2018; 8:3875. [PMID: 29497113 PMCID: PMC5832807 DOI: 10.1038/s41598-018-22162-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/15/2018] [Indexed: 01/24/2023] Open
Abstract
Histone deacetylase (HDAC) inhibitors are of significant interest as drugs. However, their use to treat neurological disorders has raised concern because HDACs are required for brain function. We have previously shown that a triple combination formulation (TCF) of the pan HDACi vorinostat (Vo), 2-hydroxypropyl-beta-cyclodextrin (HPBCD) and polyethylene glycol (PEG) 400 improves pharmacokinetic exposure and entry of Vo into the brain. TCF treatment significantly delayed both neurodegeneration and death in the Npc1nmf164 murine model of Niemann-Pick Type C (NPC) disease. The TCF induces no metabolic toxicity, but its risk to normal brain functions and potential utility in treating lung disease, a major NPC clinical complication, remain unknown. Here we report that TCF administered in healthy mice for 8–10 months was not detrimental to the brain or neuromuscular functions based on quantitative analyses of Purkinje neurons, neuroinflammation, neurocognitive/muscular disease symptom progression, cerebellar/hippocampal nerve fiber-staining, and Hdac gene-expression. The TCF also improved delivery of Vo to lungs and reduced accumulation of foamy macrophages in Npc1nmf164 mice, with no injury. Together, these data support feasibility of tolerable, chronic administration of an HDACi formulation that treats murine NPC neurological disease and lung pathology, a frequent cause of death in this and possibly additional disorders.
Collapse
|
27
|
Devany J, Chakraborty K, Krishnan Y. Subcellular Nanorheology Reveals Lysosomal Viscosity as a Reporter for Lysosomal Storage Diseases. NANO LETTERS 2018; 18:1351-1359. [PMID: 29313356 DOI: 10.1021/acs.nanolett.7b05040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe a new method to measure viscosity within subcellular organelles of a living cell using nanorheology. We demonstrate proof of concept by measuring viscosity in lysosomes in multiple cell types and disease models. The lysosome is an organelle responsible for the breakdown of complex biomolecules. When different lysosomal proteins are defective, they are unable to break down specific biological substrates, which get stored within the lysosome, causing about 70 fatal diseases called lysosomal storage disorders (LSDs). Although the buildup of storage material is critical to the pathology of these diseases, methods to monitor cargo accumulation in the lysosome are lacking for most LSDs. Using passive particle tracking nanorheology and fluorescence recovery after photobleaching, we report that viscosity in the lysosome increases significantly during cargo accumulation in several LSD models. In a mammalian cell culture model of Niemann Pick C, lysosomal viscosity directly correlates with the levels of accumulated cholesterol. We also observed increased viscosity in diverse LSD models in Caenorhabditis elegans, revealing that lysosomal viscosity is a powerful reporter with which to monitor substrate accumulation in LSDs for new diagnostics or to assay therapeutic efficacy.
Collapse
Affiliation(s)
- John Devany
- Department of Physics, ‡Department of Chemistry, and §Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago , Chicago, Illinois 60637, United States
| | - Kasturi Chakraborty
- Department of Physics, ‡Department of Chemistry, and §Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago , Chicago, Illinois 60637, United States
| | - Yamuna Krishnan
- Department of Physics, ‡Department of Chemistry, and §Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
28
|
Lopez AM, Chuang JC, Turley SD. Impact of loss of SOAT2 function on disease progression in the lysosomal acid lipase-deficient mouse. Steroids 2018; 130:7-14. [PMID: 29246491 PMCID: PMC5760480 DOI: 10.1016/j.steroids.2017.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Abstract
Although only a small proportion of cholesterol in the body is esterified, in several diseases marked expansion of the esterified cholesterol (EC) pool occurs. These include Wolman disease (WD) and Cholesteryl Ester Storage Disease (CESD) which both result from mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). The respective contributions that our three cholesterol esterifying enzymes make to EC production, especially in disorders like CESD, are not well defined. The current studies represent a detailed exploration of our earlier findings in young male LAL-deficient mice also missing sterol O-acyltransferase 2 (SOAT2, also called ACAT2). Here we show that, even as they aged, male and female Lal-/-: Soat2- /- mice, compared to Lal-/-: Soat2+/+ littermates, had appreciably less hepatomegaly as well as a marked reduction in the level of sequestration of EC, in liver transaminase activities, and in hepatic mRNA expression levels for markers of inflammation. Loss of SOAT2 function also dramatically curtailed EC entrapment in the small intestine of the LAL-deficient mice. Together, these data imply that SOAT2 inhibition, if applied concurrently with enzyme replacement therapy for LAL deficiency, may blunt the re-esterification of newly released unesterified cholesterol thereby improving clinical outcomes.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | - Jen-Chieh Chuang
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
29
|
Mashima R, Maekawa M. Lipid biomarkers for the peroxisomal and lysosomal disorders: their formation, metabolism and measurement. Biomark Med 2018; 12:83-95. [DOI: 10.2217/bmm-2017-0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lipid biomarkers play important roles in the diagnosis of and monitoring of treatment in peroxisomal disorders and lysosomal storage disorders. Today, a variety of lipids, including very long chain fatty acids, glycolipids, bile acids and the oxidation products of cholesterol, have been considered as biomarkers for these disorders. In this brief review, the authors summarized the recent advances regarding these lipid biomarkers in terms of their formation, metabolism and measurement in these disorders. An understanding of these biomarkers will offer a key to the development of novel diagnoses and help create more effective therapies in the future.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health & Development, 2–10–1 Okura, Setagaya-ku, Tokyo 157–8535, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai 980–8574, Japan
| |
Collapse
|
30
|
Role of 6-O-α-maltosyl-β-cyclodextrin in lysosomal cholesterol deprivation in Npc1-deficient Chinese hamster ovary cells. Carbohydr Res 2018; 455:54-61. [DOI: 10.1016/j.carres.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 11/17/2022]
|
31
|
Tamura A, Yui N. Polyrotaxane-based systemic delivery of β-cyclodextrins for potentiating therapeutic efficacy in a mouse model of Niemann-Pick type C disease. J Control Release 2017; 269:148-158. [PMID: 29138063 DOI: 10.1016/j.jconrel.2017.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/03/2017] [Accepted: 11/10/2017] [Indexed: 11/28/2022]
Abstract
Niemann-Pick type C (NPC) disease is a fatal metabolic disorder characterized by the lysosomal accumulation of cholesterol. Although 2-hydroxypropyl β-cyclodextrin (HP-β-CD) promotes the excretion of cholesterol and prolongs the life span in animal models of NPC disease, it requires extremely high dose. We developed acid-labile β-CD-based polyrotaxanes (PRXs) comprising multiple β-CDs threaded along a polymer chain capped with acid-cleavable stopper molecules for potentiating therapeutic efficacy of β-CD in NPC disease. The acid-labile PRXs dissociate under the acidic lysosomes and release threaded β-CDs in lysosomes, which promotes cholesterol excretion in NPC disease model cells at lower concentration than HP-β-CD. In this study, the therapeutic effect of the PRXs in a mouse model of NPC disease was investigated. Weekly administration of the PRXs significantly prolonged the life span and suppressed neurodegeneration in mice, even at a dose of 500mg/kg, a markedly lower dose than previously reported for HP-β-CD. Detailed analysis of tissue cholesterol revealed that PRX treatment markedly suppressed the tissue accumulation of cholesterol in the NPC mouse model, but did not alter cholesterol content in wild-type mice. Acid-labile PRX is therefore a promising candidate for potentiating the efficacy of β-CD in the treatment of NPC disease.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|
32
|
Reversal of Pathologic Lipid Accumulation in NPC1-Deficient Neurons by Drug-Promoted Release of LAMP1-Coated Lamellar Inclusions. J Neurosci 2017; 36:8012-25. [PMID: 27466344 DOI: 10.1523/jneurosci.0900-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/15/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Aging and pathologic conditions cause intracellular aggregation of macromolecules and the dysfunction and degeneration of neurons, but the mechanisms are largely unknown. Prime examples are lysosomal storage disorders such as Niemann-Pick type C (NPC) disease, where defects in the endosomal-lysosomal protein NPC1 or NPC2 cause intracellular accumulation of unesterified cholesterol and other lipids leading to neurodegeneration and fatal neurovisceral symptoms. Here, we investigated the impact of NPC1 deficiency on rodent neurons using pharmacologic and genetic models of the disease. Improved ultrastructural detection of lipids and correlative light and electron microscopy identified lamellar inclusions as the subcellular site of cholesterol accumulation in neurons with impaired NPC1 activity. Immunogold labeling combined with transmission electron microscopy revealed the presence of CD63 on internal lamellae and of LAMP1 on the membrane surrounding the inclusions, indicating their origins from intraluminal vesicles of late endosomes and of a lysosomal compartment, respectively. Lamellar inclusions contained cell-intrinsic cholesterol and surface-labeled GM1, indicating the incorporation of plasma membrane components. Scanning electron microscopy revealed that the therapeutic drug candidate β-cyclodextrin induces the subplasmalemmal location of lamellar inclusions and their subsequent release to the extracellular space. In parallel, β-cyclodextrin mediated the NPC1-independent redistribution of cholesterol within neurons and thereby abolished a deleterious cycle of enhanced cholesterol synthesis and its intracellular accumulation, which was indicated by neuron-specific transcript analysis. Our study provides new mechanistic insight into the pathologic aggregation of macromolecules in neurons and suggests exocytosis as cellular target for its therapeutic reversal. SIGNIFICANCE STATEMENT Many neurodegenerative diseases involve pathologic accumulation of molecules within neurons, but the subcellular location and the cellular impact are often unknown and therapeutic approaches lacking. We investigated these questions in the lysosomal storage disorder Niemann-Pick type C (NPC), where a defect in intracellular cholesterol transport causes loss of neurons and fatal neurovisceral symptoms. Here, we identify lamellar inclusions as the subcellular site of lipid accumulation in neurons, we uncover a vicious cycle of cholesterol synthesis and accretion, which may cause gradual neurodegeneration, and we reveal how β-cyclodextrin, a potential therapeutic drug, reverts these changes. Our study provides new mechanistic insight in NPC disease and uncovers new targets for therapeutic approaches.
Collapse
|
33
|
Tamura A, Yui N. Rational design of stimuli-cleavable polyrotaxanes for therapeutic applications. Polym J 2017. [DOI: 10.1038/pj.2017.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Davidson CD, Fishman YI, Puskás I, Szemán J, Sohajda T, McCauliff LA, Sikora J, Storch J, Vanier MT, Szente L, Walkley SU, Dobrenis K. Efficacy and ototoxicity of different cyclodextrins in Niemann-Pick C disease. Ann Clin Transl Neurol 2016; 3:366-80. [PMID: 27231706 PMCID: PMC4863749 DOI: 10.1002/acn3.306] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Niemann-Pick type C (NPC) disease is a fatal, neurodegenerative, lysosomal storage disorder characterized by intracellular accumulation of unesterified cholesterol (UC) and other lipids. While its mechanism of action remains unresolved, administration of 2-hydroxypropyl-β-cyclodextrin (HPβCD) has provided the greatest disease amelioration in animal models but is ototoxic. We evaluated other cyclodextrins (CDs) for treatment outcome and chemical interaction with disease-relevant substrates that could pertain to mechanism. METHODS NPC disease mice treated for 2 weeks with nine different CDs were evaluated for UC, and GM2 and GM3 ganglioside accumulation using immunohisto/cytochemical and biochemical assays. Auditory brainstem responses were determined in wild-type mice administered CDs. CD complexation with UC, gangliosides, and other lipids was quantified. RESULTS Four HPβCDs varying in degrees of substitution, including one currently in clinical trial, showed equivalent storage reduction, while other CDs showed significant differences in relative ototoxicity and efficacy, with reductions similar for the brain and liver. Importantly, HPγCD and two sulfobutylether-CDs showed efficacy with reduced ototoxicity. Complexation studies showed: incomplete correlation between CD efficacy and UC solubilization; an inverse correlation for ganglioside complexation; substantial interaction with several relevant lipids; and association between undesirable increases of UC storage in Kupffer cells and UC solubilization. INTERPRETATION CDs other than HPβCD identified here may provide disease amelioration without ototoxicity and merit long-term treatment studies. While direct interactions of CD-UC are thought central to the mechanism of correction, the data show that this does not strictly correlate with complexation ability and suggest interactions with other NPC disease-relevant substrates should be considered.
Collapse
Affiliation(s)
- Cristin D. Davidson
- Dominick P. Purpura Department of NeuroscienceRose F. Kennedy Center Intellectual and Developmental Disabilities Research CenterAlbert Einstein College of MedicineBronxNew York10461
| | - Yonatan I. Fishman
- Dominick P. Purpura Department of NeuroscienceRose F. Kennedy Center Intellectual and Developmental Disabilities Research CenterAlbert Einstein College of MedicineBronxNew York10461
| | - István Puskás
- CycloLab Cyclodextrin Research & Development Laboratory Ltd.BudapestH‐1097Hungary
| | - Julianna Szemán
- CycloLab Cyclodextrin Research & Development Laboratory Ltd.BudapestH‐1097Hungary
| | - Tamás Sohajda
- CycloLab Cyclodextrin Research & Development Laboratory Ltd.BudapestH‐1097Hungary
| | - Leslie A. McCauliff
- Department of Nutritional Sciences and Rutgers Center for Lipid ResearchRutgers UniversityNew BrunswickNew Jersey08901
| | - Jakub Sikora
- Dominick P. Purpura Department of NeuroscienceRose F. Kennedy Center Intellectual and Developmental Disabilities Research CenterAlbert Einstein College of MedicineBronxNew York10461
- Institute of Inherited Metabolic DisordersFirst Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid ResearchRutgers UniversityNew BrunswickNew Jersey08901
| | - Marie T. Vanier
- Institut National de la Santé et de la Recherche MédicaleUnit 820; EA4611 Lyon‐1 UniversityLyonFrance
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory Ltd.BudapestH‐1097Hungary
| | - Steven U. Walkley
- Dominick P. Purpura Department of NeuroscienceRose F. Kennedy Center Intellectual and Developmental Disabilities Research CenterAlbert Einstein College of MedicineBronxNew York10461
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of NeuroscienceRose F. Kennedy Center Intellectual and Developmental Disabilities Research CenterAlbert Einstein College of MedicineBronxNew York10461
| |
Collapse
|
35
|
Vite CH, Bagel JH, Swain GP, Prociuk M, Sikora TU, Stein VM, O'Donnell P, Ruane T, Ward S, Crooks A, Li S, Mauldin E, Stellar S, De Meulder M, Kao ML, Ory DS, Davidson C, Vanier MT, Walkley SU. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease. Sci Transl Med 2015; 7:276ra26. [PMID: 25717099 DOI: 10.1126/scitranslmed.3010101] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Niemann-Pick type C1 (NPC) disease is a lysosomal storage disease caused by mutations in the NPC1 gene, leading to an increase in unesterified cholesterol and several sphingolipids, and resulting in hepatic disease and progressive neurological disease. We show that subcutaneous administration of the pharmaceutical excipient 2-hydroxypropyl-β-cyclodextrin (HPβCD) to cats with NPC disease ameliorated hepatic disease, but doses sufficient to reduce neurological disease resulted in pulmonary toxicity. However, direct administration of HPβCD into the cisterna magna of presymptomatic cats with NPC disease prevented the onset of cerebellar dysfunction for greater than a year and resulted in a reduction in Purkinje cell loss and near-normal concentrations of cholesterol and sphingolipids. Moreover, administration of intracisternal HPβCD to NPC cats with ongoing cerebellar dysfunction slowed disease progression, increased survival time, and decreased the accumulation of brain gangliosides. An increase in hearing threshold was identified as a potential adverse effect. These studies in a feline animal model have provided critical data on efficacy and safety of drug administration directly into the central nervous system that will be important for advancing HPβCD into clinical trials.
Collapse
Affiliation(s)
- Charles H Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jessica H Bagel
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gary P Swain
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Prociuk
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tracey U Sikora
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Veronika M Stein
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia O'Donnell
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Therese Ruane
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Ward
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Crooks
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Li
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan Stellar
- Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ 08560, USA
| | - Marc De Meulder
- Janssen Research & Development, a division of Janssen Pharmaceutica NV, Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
| | - Mark L Kao
- Janssen Research & Development, LLC, Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, NJ 08560, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cristin Davidson
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marie T Vanier
- INSERM U820; EA4611, Université Claude Bernard Lyon 1, Lyon, France
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
36
|
Kilbride P, Woodward HJ, Tan KB, Thanh NTK, Chu KME, Minogue S, Waugh MG. Modeling the effects of cyclodextrin on intracellular membrane vesicles from Cos-7 cells prepared by sonication and carbonate treatment. PeerJ 2015; 3:e1351. [PMID: 26528413 PMCID: PMC4627923 DOI: 10.7717/peerj.1351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
Cholesterol has important functions in the organization of membrane structure and this may be mediated via the formation of cholesterol-rich, liquid-ordered membrane microdomains often referred to as lipid rafts. Methyl-beta-cyclodextrin (cyclodextrin) is commonly used in cell biology studies to extract cholesterol and therefore disrupt lipid rafts. However, in this study we reassessed this experimental strategy and investigated the effects of cyclodextrin on the physical properties of sonicated and carbonate-treated intracellular membrane vesicles isolated from Cos-7 fibroblasts. We treated these membranes, which mainly originate from the trans-Golgi network and endosomes, with cyclodextrin and measured the effects on their equilibrium buoyant density, protein content, represented by the palmitoylated protein phosphatidylinositol 4-kinase type IIα, and cholesterol. Despite the reduction in mass stemming from cholesterol removal, the vesicles became denser, indicating a possible large volumetric decrease, and this was confirmed by measurements of hydrodynamic vesicle size. Subsequent mathematical analyses demonstrated that only half of this change in membrane size was attributable to cholesterol loss. Hence, the non-selective desorption properties of cyclodextrin are also involved in membrane size and density changes. These findings may have implications for preceding studies that interpreted cyclodextrin-induced changes to membrane biochemistry in the context of lipid raft disruption without taking into account our finding that cyclodextrin treatment also reduces membrane size.
Collapse
Affiliation(s)
- Peter Kilbride
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Holly J Woodward
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Kuan Boone Tan
- Biophysics Group, Department of Physics & Astronomy, University College London , London , United Kingdom
| | - Nguyễn T K Thanh
- Biophysics Group, Department of Physics & Astronomy, University College London , London , United Kingdom
| | - K M Emily Chu
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Shane Minogue
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| | - Mark G Waugh
- UCL Institute for Liver & Digestive Health, University College London , London , United Kingdom
| |
Collapse
|
37
|
Palladino G, Loizzo S, Fortuna A, Canterini S, Palombi F, Erickson RP, Mangia F, Fiorenza MT. Visual evoked potentials of Niemann-Pick type C1 mice reveal an impairment of the visual pathway that is rescued by 2-hydroxypropyl-ß-cyclodextrin. Orphanet J Rare Dis 2015; 10:133. [PMID: 26458950 PMCID: PMC4603821 DOI: 10.1186/s13023-015-0348-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022] Open
Abstract
Background The lysosomal storage disorder, Niemann Pick type C1 (NPC1), presents a variable phenotype including neurovisceral and neurological symptoms. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD)-based therapies are presently the most promising route of intervention. While severe cerebellar dysfunction remains the main disabling feature of NPC1, sensory functions including auditory and olfactory ones are also affected. Morphological and functional anomalies of Npc1−/− mouse retina have also been observed, although the functional integrity of the visual pathway from retina to visual cortex is still unsettled. We have addressed this issue by characterizing the visual evoked potential (VEP) response of Npc1−/− mice and determining if/how HPßCD administration influences the VEPs of both Npc1−/− and Npc1+/+ mice. Methods VEP elicited by a brief visual stimulus were recorded from the scalp overlying the visual cortex of adult (PN, postnatal days 60, 75, 85 and 100) Npc1+/+ and Npc1−/− mice that had received repeated injections of either HPßCD or plain vehicle. The first injection was given at PN4 and was followed by a second one at PN7 and thereafter by weekly injections up to PN49. Cholesterol accumulation and myelin loss were finally assessed by filipin staining and myelin basic protein immunohistochemistry, respectively. Results and discussion We have found that the transmission of visual signals from retina to visual cortex is negatively influenced by the loss of Npc1 function. In fact, the VEP response of Npc1−/− mice displayed a highly significant increase in the latency compared to that of Npc1+/+ mice. HPßCD administration fully rescued this defect and counteracted the cholesterol accumulation in retinal ganglion cells and dorsal lateral geniculate nucleus neurons, as well as the myelin loss in optic nerve fibers and axons projecting to the visual cortex observed in of Npc1−/− mice. By contrast, HPßCD administration had no effect on the VEP response of Npc1+/+ mice, further strengthening the treatment efficacy. Conclusions This study pinpoints the analysis of VEP response as a potentially accurate and non-invasive approach to assess neural activity and visual information processing in NPC1 patients, as well as for monitoring the progression of the disease and assessing the efficacy of potential therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13023-015-0348-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giampiero Palladino
- Department of Psychology, Section of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, 00185, Rome, Italy
| | - Stefano Loizzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, via Regina Elena 299, 00161, Rome, Italy
| | - Andrea Fortuna
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, via Regina Elena 299, 00161, Rome, Italy
| | - Sonia Canterini
- Department of Psychology, Section of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, 00185, Rome, Italy
| | - Fioretta Palombi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona, Tucson, AZ, 85724-5073, USA
| | - Franco Mangia
- Department of Psychology, Section of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, 00185, Rome, Italy
| | - Maria Teresa Fiorenza
- Department of Psychology, Section of Neuroscience and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
38
|
Weekly Treatment of 2-Hydroxypropyl-β-cyclodextrin Improves Intracellular Cholesterol Levels in LDL Receptor Knockout Mice. Int J Mol Sci 2015; 16:21056-69. [PMID: 26404254 PMCID: PMC4613241 DOI: 10.3390/ijms160921056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, the importance of lysosomes in the context of the metabolic syndrome has received increased attention. Increased lysosomal cholesterol storage and cholesterol crystallization inside macrophages have been linked to several metabolic diseases, such as atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Two-hydroxypropyl-β-cyclodextrin (HP-B-CD) is able to redirect lysosomal cholesterol to the cytoplasm in Niemann-Pick type C1 disease, a lysosomal storage disorder. We hypothesize that HP-B-CD ameliorates liver cholesterol and intracellular cholesterol levels inside Kupffer cells (KCs). Hyperlipidemic low-density lipoprotein receptor knockout (Ldlr−/−) mice were given weekly, subcutaneous injections with HP-B-CD or control PBS. In contrast to control injections, hyperlipidemic mice treated with HP-B-CD demonstrated a shift in intracellular cholesterol distribution towards cytoplasmic cholesteryl ester (CE) storage and a decrease in cholesterol crystallization inside KCs. Compared to untreated hyperlipidemic mice, the foamy KC appearance and liver cholesterol remained similar upon HP-B-CD administration, while hepatic campesterol and 7α-hydroxycholesterol levels were back increased. Thus, HP-B-CD could be a useful tool to improve intracellular cholesterol levels in the context of the metabolic syndrome, possibly through modulation of phyto- and oxysterols, and should be tested in the future. Additionally, these data underline the existence of a shared etiology between lysosomal storage diseases and NAFLD.
Collapse
|
39
|
Lopez AM, Terpack SJ, Posey KS, Liu B, Ramirez CM, Turley SD. Systemic administration of 2-hydroxypropyl-β-cyclodextrin to symptomatic Npc1-deficient mice slows cholesterol sequestration in the major organs and improves liver function. Clin Exp Pharmacol Physiol 2015; 41:780-7. [PMID: 25115571 DOI: 10.1111/1440-1681.12285] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 06/10/2014] [Accepted: 07/04/2014] [Indexed: 11/27/2022]
Abstract
In Niemann-Pick type C (NPC) disease, loss-of-function mutations in either NPC1 or NPC2 result in progressive accumulation of unesterified cholesterol (UC) and glycosphingolipids in all organs, leading to neurodegeneration, pulmonary dysfunction and sometimes liver failure. There is no cure for this disorder. Studies using primarily NPC mouse models have shown that systemic administration of 2-hydroxypropyl-β-cyclodextrin (2HPβCD), starting in early neonatal life, diminishes UC accumulation in most organs, slows disease progression and extends lifespan. The key question now is whether delaying the start of 2HPβCD treatment until early adulthood, when the amount of entrapped UC throughout the body is markedly elevated, has any of the benefits found when treatment begins at 7 days of age. In the present study, Npc1(-/-) and Npc1(+/+) mice were given saline or 2HPβCD subcutaneously at 49, 56, 63 and 70 days of age, with measurements of organ weights, liver function tests and tissue cholesterol levels performed at 77 days. In Npc1(-/-) mice, treatment with 2HPβCD from 49 days reduced whole-liver cholesterol content at 77 days from 33.0 ± 1.0 to 9.1 ± 0.5 mg/organ. Comparable improvements were seen in other organs, such as the spleen, and in the animal as a whole. There was a transient increase in biliary cholesterol concentration in Npc1(-/-) mice after 2HPβCD. Plasma alanine aminotransferase and aspartate aminotransferase activities in 77-day-old 2HPβCD-treated Npc1(-/-) mice were reduced compared with saline-treated controls. The lifespan of Npc1(-/-) mice given 2HPβCD marginally exceeded that of the saline-treated controls (99 ± 1.1 vs 94 ± 1.4 days, respectively; P < 0.05). Thus, 2HPβCD is effective in mobilizing entrapped cholesterol in late-stage NPC disease leading to improved liver function.
Collapse
Affiliation(s)
- Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hendrikx T, Jeurissen MLJ, Bieghs V, Walenbergh SMA, van Gorp PJ, Verheyen F, Houben T, Guichot YD, Gijbels MJJ, Leitersdorf E, Hofker MH, Lütjohann D, Shiri-Sverdlov R. Hematopoietic overexpression of Cyp27a1 reduces hepatic inflammation independently of 27-hydroxycholesterol levels in Ldlr(-/-) mice. J Hepatol 2015; 62:430-6. [PMID: 25281859 DOI: 10.1016/j.jhep.2014.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/18/2014] [Accepted: 09/24/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic steatohepatitis (NASH) is characterized by hepatic lipid accumulation and inflammation. Currently, the underlying mechanisms, leading to hepatic inflammation, are still unknown. The breakdown of free cholesterol inside Kupffer cells (KCs) by the mitochondrial enzyme CYP27A1 produces 27-hydroxycholesterol (27HC). We recently demonstrated that administration of 27HC to hyperlipidemic mice reduced hepatic inflammation. In line, hematopoietic deletion of Cyp27a1 resulted in increased hepatic inflammation. In the current manuscript, the effect of hematopoietic overexpression of Cyp27a1 on the development of NASH and cholesterol trafficking was investigated. We hypothesized that Cyp27a1 overexpression in KCs will lead to reduced hepatic inflammation. METHODS Irradiated Ldlr(-/-) mice were transplanted (tp) with bone marrow from mice overexpressing Cyp27a1 (Cyp27a1(over)) and wild type (Wt) mice and fed either chow or a high-fat, high-cholesterol (HFC) diet for 3 months. Additionally, gene expression was assessed in bone marrow-derived macrophages (BMDM) from Cyp27a1(over) and Wt mice. RESULTS In line with our hypothesis, hepatic inflammation in HFC-fed Cyp27a1(over)-tp mice was reduced and KCs were less foamy compared to Wt-tp mice. Remarkably, these changes occurred even though plasma and liver levels of 27HC did not differ between both groups. BMDM from Cyp27a1(over) mice revealed reduced inflammatory gene expression and increased expression of cholesterol transporters compared to Wt BMDM after lipopolysaccharide (LPS) stimulation. CONCLUSIONS Our data suggest that overexpression of Cyp27a1 in KCs reduces hepatic inflammation independently of 27HC levels in plasma and liver, further pointing towards KCs as specific target for improving the therapy of NASH.
Collapse
Affiliation(s)
- Tim Hendrikx
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Mike L J Jeurissen
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Veerle Bieghs
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Sofie M A Walenbergh
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Patrick J van Gorp
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Fons Verheyen
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Tom Houben
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Yasmin Dias Guichot
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Marion J J Gijbels
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Eran Leitersdorf
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Marten H Hofker
- Department of Pathology & Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands; Department of Molecular Cell Biology, ELMI Unit (CRISP) and Pathology, Nutrition and Toxicology Research (NUTRIM) and Cardiovascular Research (CARIM), Institutes of Maastricht, University of Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
41
|
Aqul A, Lopez AM, Posey KS, Taylor AM, Repa JJ, Burns DK, Turley SD. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice. Am J Physiol Gastrointest Liver Physiol 2014; 307:G836-47. [PMID: 25147230 PMCID: PMC4200320 DOI: 10.1152/ajpgi.00243.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.
Collapse
Affiliation(s)
- Amal Aqul
- 2Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Adam M. Lopez
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Kenneth S. Posey
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Anna M. Taylor
- 3Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Joyce J. Repa
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; ,3Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Dennis K. Burns
- 4Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen D. Turley
- 1Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
42
|
Reiner Ž, Guardamagna O, Nair D, Soran H, Hovingh K, Bertolini S, Jones S, Ćorić M, Calandra S, Hamilton J, Eagleton T, Ros E. Lysosomal acid lipase deficiency--an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis 2014; 235:21-30. [PMID: 24792990 DOI: 10.1016/j.atherosclerosis.2014.04.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/15/2022]
Abstract
Lysosomal acid lipase deficiency (LAL-D) is a rare autosomal recessive lysosomal storage disease caused by deleterious mutations in the LIPA gene. The age at onset and rate of progression vary greatly and this may relate to the nature of the underlying mutations. Patients presenting in infancy have the most rapidly progressive disease, developing signs and symptoms in the first weeks of life and rarely surviving beyond 6 months of age. Children and adults typically present with some combination of dyslipidaemia, hepatomegaly, elevated transaminases, and microvesicular hepatosteatosis on biopsy. Liver damage with progression to fibrosis, cirrhosis and liver failure occurs in a large proportion of patients. Elevated low-density lipoprotein cholesterol levels and decreased high-density lipoprotein cholesterol levels are common features, and cardiovascular disease may manifest as early as childhood. Given that these clinical manifestations are shared with other cardiovascular, liver and metabolic diseases, it is not surprising that LAL-D is under-recognized in clinical practice. This article provides practical guidance to lipidologists, endocrinologists, cardiologists and hepatologists on how to recognize individuals with this life-limiting disease. A diagnostic algorithm is proposed with a view to achieving definitive diagnosis using a recently developed blood test for lysosomal acid lipase. Finally, current management options are reviewed in light of the ongoing development of enzyme replacement therapy with sebelipase alfa (Synageva BioPharma Corp., Lexington, MA, USA), a recombinant human lysosomal acid lipase enzyme.
Collapse
Affiliation(s)
- Željko Reiner
- University Hospital Center, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia.
| | - Ornella Guardamagna
- Department of Public and Health Sciences, Medical School, University of Turin, Piazza Polonia 94, I-10126 Turin, Italy
| | - Devaki Nair
- Department of Clinical Biochemistry, Royal Free Hospital NHS Foundation Trust, Pond Street, London NW3 2QG, UK
| | - Handrean Soran
- Cardiovascular Trials Unit, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam 1105 AZ, Netherlands
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV n. 6, 16132 Genoa, Italy
| | - Simon Jones
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, St. Mary's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Marijana Ćorić
- University Hospital Center, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, I-41125 Modena, Italy
| | - John Hamilton
- Biochemistry Department, Yorkhill Hospital, Glasgow, G3 8SJ, UK
| | - Terence Eagleton
- Synageva BioPharma Corp., 33 Hayden Ave., Lexington, MA 02421, USA
| | - Emilio Ros
- Lipid Clinic, Endocrinology & Nutrition Service, Institut d'Investigations Biomèdiques August Pi Sunyer, Hospital Clínic, C. Villarroel, 170, 08036 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carloss III (ISCIII), Spain.
| |
Collapse
|
43
|
Tortelli B, Fujiwara H, Bagel JH, Zhang J, Sidhu R, Jiang X, Yanjanin NM, Shankar RK, Carillo-Carasco N, Heiss J, Ottinger E, Porter FD, Schaffer JE, Vite CH, Ory DS. Cholesterol homeostatic responses provide biomarkers for monitoring treatment for the neurodegenerative disease Niemann-Pick C1 (NPC1). Hum Mol Genet 2014; 23:6022-33. [PMID: 24964810 DOI: 10.1093/hmg/ddu331] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Niemann-Pick C1 (NPC1) disease is a rare, neurodegenerative lysosomal cholesterol storage disorder, typified by progressive cognitive and motor function impairment. Affected individuals usually succumb to the disease in adolescence. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) has emerged as a promising intervention that reduces lipid storage and prolongs survival in NPC1 disease animal models. A barrier to the development of HP-β-CD and other treatments for NPC disease has been the lack of validated biochemical measures to evaluate efficacy. Here we explored whether cholesterol homeostatic responses resulting from HP-β-CD-mediated redistribution of sequestered lysosomal cholesterol could provide biomarkers to monitor treatment. Upon direct CNS delivery of HP-β-CD, we found increases in plasma 24(S)-HC in two independent NPC1 disease animal models, findings that were confirmed in human NPC1 subjects receiving HP-β-CD. Since circulating 24(S)-HC is almost exclusively CNS-derived, the increase in plasma 24(S)-HC provides a peripheral, non-invasive measure of the CNS effect of HP-β-CD. Our findings suggest that plasma 24(S)-HC, along with the other cholesterol-derived markers examined in this study, can serve as biomarkers that will accelerate development of therapeutics for NPC1 disease.
Collapse
Affiliation(s)
- Brett Tortelli
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Hideji Fujiwara
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jessica H Bagel
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessie Zhang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Nicole M Yanjanin
- Department of Health and Human Services, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Roopa Kanakatti Shankar
- Department of Health and Human Services, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Nuria Carillo-Carasco
- Department of Health and Human Services, Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA and
| | - John Heiss
- Department of Health and Human Services, Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, USA and
| | - Elizabeth Ottinger
- Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences (NCATS), Bethesda, MD, USA
| | - Forbes D Porter
- Department of Health and Human Services, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Charles H Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center and Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA,
| |
Collapse
|
44
|
Vance JE, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 2014; 55:1609-21. [PMID: 24664998 DOI: 10.1194/jlr.r047837] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease in which endocytosed cholesterol becomes sequestered in late endosomes/lysosomes (LEs/Ls) because of mutations in either the NPC1 or NPC2 gene. Mutations in either of these genes can lead to impaired functions of the NPC1 or NPC2 proteins and progressive neurodegeneration as well as liver and lung disease. NPC1 is a polytopic protein of the LE/L limiting membrane, whereas NPC2 is a soluble protein in the LE/L lumen. These two proteins act in tandem and promote the export of cholesterol from LEs/Ls. Consequently, a defect in either NPC1 or NPC2 causes cholesterol accumulation in LEs/Ls. In this review, we summarize the molecular mechanisms leading to NPC disease, particularly in the CNS. Recent exciting data on the mechanism by which the cholesterol-sequestering agent cyclodextrin can bypass the functions of NPC1 and NPC2 in the LEs/Ls, and mobilize cholesterol from LEs/Ls, will be highlighted. Moreover, the possible use of cyclodextrin as a valuable therapeutic agent for treatment of NPC patients will be considered.
Collapse
Affiliation(s)
- Jean E Vance
- The Group on Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
45
|
Appelqvist H, Wäster P, Kågedal K, Öllinger K. The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 2014; 5:214-26. [PMID: 23918283 DOI: 10.1093/jmcb/mjt022] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are ubiquitous membrane-bound intracellular organelles with an acidic interior. They are central for degradation and recycling of macromolecules delivered by endocytosis, phagocytosis, and autophagy. In contrast to the rather simplified view of lysosomes as waste bags, nowadays lysosomes are recognized as advanced organelles involved in many cellular processes and are considered crucial regulators of cell homeostasis. The function of lysosomes is critically dependent on soluble lysosomal hydrolases (e.g. cathepsins) as well as lysosomal membrane proteins (e.g. lysosome-associated membrane proteins). This review focuses on lysosomal involvement in digestion of intra- and extracellular material, plasma membrane repair, cholesterol homeostasis, and cell death. Regulation of lysosomal biogenesis and function via the transcription factor EB (TFEB) will also be discussed. In addition, lysosomal contribution to diseases, including lysosomal storage disorders, neurodegenerative disorders, cancer, and cardiovascular diseases, is presented.
Collapse
Affiliation(s)
- Hanna Appelqvist
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
46
|
Alam MS, Getz M, Yi S, Kurkewich J, Safeukui I, Haldar K. Plasma signature of neurological disease in the monogenetic disorder Niemann-Pick Type C. J Biol Chem 2014; 289:8051-66. [PMID: 24488491 DOI: 10.1074/jbc.m113.526392] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early diagnosis of neurological disorders would greatly improve their management and treatment. A major hurdle is that inflammatory products of cerebral disease are not easily detected in blood. Inflammation in multiple organs and heterogeneity in disease present additional challenges in distinguishing the extent to which a blood-based marker reflects disease in brain or other afflicted organs. Murine models of the monogenetic disorder Niemann-Pick Type C present aggressive forms of cerebral and liver inflammatory disease. Microarray analyses previously revealed age-dependent changes in innate immunity transcripts in the mouse brain. We have now validated four putative secretory inflammatory markers that are also elevated in mouse liver. We include limited, first time analysis of human Niemann-Pick Type C liver and cerebellum. Furthermore, we utilized 2-hydroxypropyl-β-cyclodextrin (HPβCD, an emerging therapeutic) administered intraperitoneally in mice, which abrogates inflammatory pathology in the liver but has limited effect on the brain. By analyzing the corresponding effects on inflammatory plasma proteins, we identified cathepsin S as a lead indicator of liver disease. In contrast, lysozyme was a marker of both brain and liver disease. 2-Hydroxypropyl-β-cyclodextrin had no effect on transcripts of neuron-specific 24-hydroxylase, and its product 24(S)-hydroxycholesterol was not a useful indicator in mouse plasma. Our data suggest that dual analysis of levels of the inflammatory markers lysozyme and cathepsin S may enable detection of multiple distinct states of neurodegeneration in plasma.
Collapse
Affiliation(s)
- Md Suhail Alam
- From the Center for Rare and Neglected Diseases and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | | | | | | | | | | |
Collapse
|
47
|
Ottinger EA, Kao ML, Carrillo-Carrasco N, Yanjanin N, Shankar RK, Janssen M, Brewster M, Scott I, Xu X, Cradock J, Terse P, Dehdashti SJ, Marugan J, Zheng W, Portilla L, Hubbs A, Pavan WJ, Heiss J, Vite CH, Walkley SU, Ory DS, Silber SA, Porter FD, Austin CP, McKew JC. Collaborative development of 2-hydroxypropyl-β-cyclodextrin for the treatment of Niemann-Pick type C1 disease. Curr Top Med Chem 2014; 14:330-9. [PMID: 24283970 PMCID: PMC4048128 DOI: 10.2174/1568026613666131127160118] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/15/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022]
Abstract
In 2010, the National Institutes of Health (NIH) established the Therapeutics for Rare and Neglected Diseases (TRND) program within the National Center for Advancing Translational Sciences (NCATS), which was created to stimulate drug discovery and development for rare and neglected tropical diseases through a collaborative model between the NIH, academic scientists, nonprofit organizations, and pharmaceutical and biotechnology companies. This paper describes one of the first TRND programs, the development of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) for the treatment of Niemann-Pick disease type C1 (NPC1). NPC is a neurodegenerative, autosomal recessive rare disease caused by a mutation in either the NPC1 (about 95% of cases) or the NPC2 gene (about 5% of cases). These mutations affect the intracellular trafficking of cholesterol and other lipids, which leads to a progressive accumulation of unesterified cholesterol and glycosphingolipids in the CNS and visceral organs. Affected individuals typically exhibit ataxia, swallowing problems, seizures, and progressive impairment of motor and intellectual function in early childhood, and usually die in adolescence. There is no disease modifying therapy currently approved for NPC1 in the US. A collaborative drug development program has been established between TRND, public and private partners that has completed the pre-clinical development of HP-β-CD through IND filing for the current Phase I clinical trial that is underway. Here we discuss how this collaborative effort helped to overcome scientific, clinical and financial challenges facing the development of new drug treatments for rare and neglected diseases, and how it will incentivize the commercialization of HP-β-CD for the benefit of the NPC patient community.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - John C McKew
- Division of PreClinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, MSC 3370, Rockville, MD 20850, United States.
| |
Collapse
|
48
|
Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease. Biochem Biophys Res Commun 2013; 443:1073-7. [PMID: 24370824 DOI: 10.1016/j.bbrc.2013.12.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 01/30/2023]
Abstract
Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD.
Collapse
|
49
|
Ontogenic changes in lung cholesterol metabolism, lipid content, and histology in mice with Niemann-Pick type C disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:54-61. [PMID: 24076310 DOI: 10.1016/j.bbalip.2013.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 11/21/2022]
Abstract
Niemann-Pick Type C (NPC) disease is caused by a deficiency of either NPC1 or NPC2. Loss of function of either protein results in the progressive accumulation of unesterified cholesterol in every tissue leading to cell death and organ damage. Most literature on NPC disease focuses on neurological and liver manifestations. Pulmonary dysfunction is less well described. The present studies investigated how Npc1 deficiency impacts the absolute weight, lipid composition and histology of the lungs of Npc1(-/-) mice (Npc1(nih)) at different stages of the disease, and also quantitated changes in the rates of cholesterol and fatty acid synthesis in the lung over this same time span (8 to 70days of age). Similar measurements were made in Npc2(-/-) mice at 70days. All mice were of the BALB/c strain and were fed a basal rodent chow diet. Well before weaning, the lung weight, cholesterol and phospholipid (PL) content, and cholesterol synthesis rate were all elevated in the Npc1(-/-) mice and remained so at 70days of age. In contrast, lung triacylglycerol content was reduced while there was no change in lung fatty acid synthesis. Despite the elevated PL content, the composition of PL in the lungs of the Npc1(-/-) mice was unchanged. H&E staining revealed an age-related increase in the presence of lipid-laden macrophages in the alveoli of the lungs of the Npc1(-/-) mice starting as early as 28days. Similar metabolic and histologic changes were evident in the lungs of the Npc2(-/-) mice. Together these findings demonstrate an intrinsic lung pathology in NPC disease that is of early onset and worsens over time.
Collapse
|
50
|
Collins CJ, McCauliff LA, Hyun SH, Zhang Z, Paul LN, Kulkarni A, Zick K, Wirth M, Storch J, Thompson DH. Synthesis, characterization, and evaluation of pluronic-based β-cyclodextrin polyrotaxanes for mobilization of accumulated cholesterol from Niemann-Pick type C fibroblasts. Biochemistry 2013; 52:3242-53. [PMID: 23560535 DOI: 10.1021/bi3010889] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several lines of evidence suggest that β-cyclodextrin (β-CD) derivatives initiate the efflux of accumulated, unesterified cholesterol from the late endosomal/lysosomal compartment in Niemann Pick C (NPC) disease models. Unfortunately, repeated injections or continuous infusions of current β-CD therapies are required to sustain suppression of symptoms and prolong life. In an effort to make CD treatment a more viable option by boosting efficacy and improving pharmacokinetics, a library of Pluronic surfactant-based β-CD polyrotaxanes has been developed using biocompatible poly(ethylene glycol) (PEG)-polypropylene glycol (PPG)-PEG triblock copolymers. These compounds carry multiple copies of β-CD as shown by (1)H NMR, 2D nuclear Overhouser effect spectroscopy, gel permeation chromatography/multiangle light scattering, analytical ultracentrifugation analysis, matrix assisted laser desorption/ionization mass spectrometry, and diffusion-ordered spectroscopy. Analyses of free β-cyclodextrin contamination in the compounds were made by reverse phase high pressure liquid chromatography and hydrophilic interaction liquid chromatography. Dethreading kinetics were studied by reverse phase high pressure liquid chromatography, UV/vis, and (1)H NMR analysis. Filipin staining studies using npc2(-/-) fibroblasts show significant reversal of cholesterol accumulation after treatment with polyrotaxane compounds. The rate and efficacy of reversal is similar to that achieved by equivalent amounts of monomeric β-CD alone.
Collapse
Affiliation(s)
- Christopher J Collins
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47904, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|