1
|
Wang H, Wang W, Jiang Y, Cui S, Kong Y, Chen YQ, Zhu S. F2RL1 Inhibition Alleviates Lipotoxicity-Induced Kidney Injury Through the Hippo Pathway in Diabetic Kidney Disease. Inflammation 2024:10.1007/s10753-024-02215-y. [PMID: 39738821 DOI: 10.1007/s10753-024-02215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Diabetic kidney disease (DKD), which is emerging as a pervasive global health concern and a considerable economic burden, is characterized by a detrimental effect on renal function and structure. Recent research indicates that the progression of DKD is facilitated by lipotoxic injury to tubular epithelial cells (TECs). However, the specific mechanisms that contribute to this cellular damage have yet to be fully elucidated. Our results revealed a significant upregulation of F2RL1 in vivo and in vitro models, which was positively correlated with the expression of inflammatory factors. Knockdown of F2RL1 significantly reduced inflammatory response in palmitate-stimulated HK-2 cells. Mechanistically, F2RL1 might exacerbate lipotoxicity-induced DKD through the modulation of the Hippo signaling pathway. Collectively, these findings suggest that modulating F2RL1 expression may be a strategic approach to mitigate the inflammatory damage to RTECs associated with DKD, potentially through its involvement in the Hippo signaling pathway. Given these findings, F2RL1 merits consideration as a candidate therapeutic target for DKD.
Collapse
Affiliation(s)
- Hui Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Wang
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yao Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- The Affiliated Wuxi No.2, People's Hospital of Nanjing Medical University , Wuxi, China
| | - Yulin Kong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, School of Medicine, Jiangnan University, Wuxi, China.
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Esselman AB, Moser FA, Tideman LEM, Migas LG, Djambazova KV, Colley ME, Pingry EL, Patterson NH, Farrow MA, Yang H, Fogo AB, de Caestecker M, Van de Plas R, Spraggins JM. In situ molecular profiles of glomerular cells by integrated imaging mass spectrometry and multiplexed immunofluorescence microscopy. Kidney Int 2024:S0085-2538(24)00801-9. [PMID: 39571907 DOI: 10.1016/j.kint.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Glomeruli filter blood through the coordination of podocytes, mesangial cells, fenestrated endothelial cells, and the glomerular basement membrane. Cellular changes, such as podocyte loss, are associated with pathologies like diabetic kidney disease. However, little is known regarding the in situ molecular profiles of specific cell types and how these profiles change with disease. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is well-suited for untargeted tissue mapping of a wide range of molecular classes. Importantly, additional imaging modalities can be integrated with MALDI IMS to associate these biomolecular distributions to specific cell types. Here, we integrated workflow combining MALDI IMS and multiplexed immunofluorescence (MxIF) microscopy. High spatial resolution MALDI IMS (5 μm) was used to determine lipid distributions within human glomeruli from a normal portion of fresh-frozen kidney cancer nephrectomy tissue revealing intra-glomerular lipid heterogeneity. Mass spectrometric data were linked to specific glomerular cell types and substructures through new methods that enable MxIF microscopy to be performed on the same tissue section following MALDI IMS, without sacrificing signal quality from either modality. Machine learning approaches were combined enabling cell type segmentation and identification based on MxIF data. This was followed by mining of cell type or cluster-associated MALDI IMS signatures using classification and interpretable machine learning. This allowed automated discovery of spatially specific molecular markers for glomerular cell types and substructures as well as lipids correlated to deep and superficial glomeruli. Overall, our work establishes a toolbox for probing molecular signatures of glomerular cell types and substructures within tissue microenvironments providing a framework applicable to other kidney tissue features and organ systems.
Collapse
Affiliation(s)
- Allison B Esselman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Felipe A Moser
- Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
| | - Léonore E M Tideman
- Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
| | - Lukasz G Migas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Madeline E Colley
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ellie L Pingry
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Melissa A Farrow
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Haichun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark de Caestecker
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Tasca P, van den Berg BM, Rabelink TJ, Wang G, Heijs B, van Kooten C, de Vries APJ, Kers J. Application of spatial-omics to the classification of kidney biopsy samples in transplantation. Nat Rev Nephrol 2024; 20:755-766. [PMID: 38965417 DOI: 10.1038/s41581-024-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Improvement of long-term outcomes through targeted treatment is a primary concern in kidney transplant medicine. Currently, the validation of a rejection diagnosis and subsequent treatment depends on the histological assessment of allograft biopsy samples, according to the Banff classification system. However, the lack of (early) disease-specific tissue markers hinders accurate diagnosis and thus timely intervention. This challenge mainly results from an incomplete understanding of the pathophysiological processes underlying late allograft failure. Integration of large-scale multimodal approaches for investigating allograft biopsy samples might offer new insights into this pathophysiology, which are necessary for the identification of novel therapeutic targets and the development of tailored immunotherapeutic interventions. Several omics technologies - including transcriptomic, proteomic, lipidomic and metabolomic tools (and multimodal data analysis strategies) - can be applied to allograft biopsy investigation. However, despite their successful application in research settings and their potential clinical value, several barriers limit the broad implementation of many of these tools into clinical practice. Among spatial-omics technologies, mass spectrometry imaging, which is under-represented in the transplant field, has the potential to enable multi-omics investigations that might expand the insights gained with current clinical analysis technologies.
Collapse
Affiliation(s)
- Paola Tasca
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (Renew), Leiden University Medical Center, Leiden, the Netherlands
| | - Gangqi Wang
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (Renew), Leiden University Medical Center, Leiden, the Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
- Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| | - Cees van Kooten
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Aiko P J de Vries
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands.
- Department of Internal Medicine, Division of Nephrology, Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Jesper Kers
- Leiden Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Center for Analytical Sciences Amsterdam, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Jagdale AD, Angal MM, Patil RS, Tupe RS. Exploring the glycation association with dyslipidaemia: Novel approach for diabetic nephropathy. Biochem Pharmacol 2024; 229:116513. [PMID: 39218042 DOI: 10.1016/j.bcp.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The transcription factor known as sterol regulatory element-binding protein (SREBP) and the glycation pathways, specifically the formation of Advanced Glycation End Products (AGEs), have a significant and deleterious impact on the kidney. They alter renal lipid metabolism and promote glomerulosclerosis, mesangial cell expansion, tubulointerstitial fibrosis, and inflammation, leading to diabetic nephropathy (DN) progression. Although several pieces of scientific evidence are reported for potential causes of glycation and lipotoxicity in DN, the underlying mechanism of renal lipid accumulation still needs to be fully understood. We provide a rationalized view on how AGEs exert multiple effects that cause SREBP activation and inflammation, contributing to DN through Receptor for AGEs (RAGE) signaling, AGE-R1-dependent downregulation of Sirtuin 1 (SIRT-1), and increased SREBP Cleavage Activating Protein (SCAP) glycosylation. This review emphasizes the association between glycation and the SREBP pathway and how it affects the onset of DN associated with obesity. Finally, we discuss the correlation of glycation and the SREBP pathway with insulin resistance (IR), oxidative stress, endoplasmic reticulum stress, inflammation, and existing and emerging therapeutic approaches toward better controlling obesity-related DN.
Collapse
Affiliation(s)
- Ashwini D Jagdale
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Mukul M Angal
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India.
| |
Collapse
|
5
|
Fan X, Hu X, Cong P, Wang X, Song Y, Liu Y, Wang X, Meng N, Xue C, Xu J. Combined UPLC-QqQ-MS/MS and AP-MALDI Mass Spectrometry Imaging Method for Phospholipidomics in Obese Mouse Kidneys: Alleviation by Feeding Sea Cucumber Phospholipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16312-16322. [PMID: 38985073 DOI: 10.1021/acs.jafc.4c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sea cucumber phospholipids have ameliorative effects on various diseases related to lipid metabolism. However, it is unclear whether it can ameliorate obesity-associated glomerulopathy (ORG) induced by a high-fat diet (HFD). The present study applied UPLC-QqQ-MS/MS and atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry imaging (AP-MALDI MSI) to investigate the effects of sea cucumber phospholipids, including plasmalogen PlsEtn and plasmanylcholine PakCho, on phospholipid profiles in the HFD-induced ORG mouse kidney. Quantitative analysis of 135 phospholipids revealed that PlsEtn and PakCho significantly modulated phospholipid levels. Notably, PlsEtn modulated kidney overall phospholipids better than PakCho. Imaging the "space-content" of 9 phospholipids indicated that HFD significantly increased phospholipid content within the renal cortex. Furthermore, PlsEtn and PakCho significantly decreased the expression of transport-related proteins CD36, while elevating the expression of fatty acid β-oxidation-related protein PPAR-α in the renal cortex. In conclusion, sea cucumber phospholipids reduced renal lipid accumulation, ameliorated renal damage, effectively regulated the content and distribution of renal phospholipids, and improved phospholipid homeostasis, exerting an anti-OGR effect.
Collapse
Affiliation(s)
- Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xinxin Hu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Peixu Cong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xincen Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
- Institute of Nutrition and Health, Qingdao University, Qingdao, Shandong 266073, China
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Yanjun Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Xiaoxu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong 266235, China
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266404, China
| |
Collapse
|
6
|
Colley ME, Esselman AB, Scott CF, Spraggins JM. High-Specificity Imaging Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:1-24. [PMID: 38594938 DOI: 10.1146/annurev-anchem-083023-024546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Imaging mass spectrometry (IMS) enables highly multiplexed, untargeted tissue mapping for a broad range of molecular classes, facilitating in situ biological discovery. Yet, challenges persist in molecular specificity, which is the ability to discern one molecule from another, and spatial specificity, which is the ability to link untargeted imaging data to specific tissue features. Instrumental developments have dramatically improved IMS spatial resolution, allowing molecular observations to be more readily associated with distinct tissue features across spatial scales, ranging from larger anatomical regions to single cells. High-performance mass analyzers and systems integrating ion mobility technologies are also becoming more prevalent, further improving molecular coverage and the ability to discern chemical identity. This review provides an overview of recent advancements in high-specificity IMS that are providing critical biological context to untargeted molecular imaging, enabling integrated analyses, and addressing advanced biomedical research applications.
Collapse
Affiliation(s)
- Madeline E Colley
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Allison B Esselman
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Claire F Scott
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey M Spraggins
- 1Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA;
- 2Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
- 3Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- 4Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- 5Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Han YZ, Du BX, Zhu XY, Wang YZY, Zheng HJ, Liu WJ. Lipid metabolism disorder in diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1336402. [PMID: 38742197 PMCID: PMC11089115 DOI: 10.3389/fendo.2024.1336402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.
Collapse
Affiliation(s)
- Yi-Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang-Zhi-Yuan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Lin S, Wang L, Jia Y, Sun Y, Qiao P, Quan Y, Liu J, Hu H, Yang B, Zhou H. Lipin-1 deficiency deteriorates defect of fatty acid β-oxidation and lipid-related kidney damage in diabetic kidney disease. Transl Res 2024; 266:1-15. [PMID: 37433392 DOI: 10.1016/j.trsl.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Diabetic lipo-toxicity is a fundamental pathophysiologic mechanism in DM and is now increasingly recognized a key determinant of DKD. Targeting lipid metabolic disorders is an important therapeutic strategy for the treatment of DM and its complications, including DKD. This study aimed to explore the molecular mechanism of lipid metabolic regulation in kidney, especially renal PTECs, and elucidate the role of lipid metabolic related molecule lipin-1 in diabetic lipid-related kidney damage. In this study, lipin-1-deficient db/db mouse model and STZ/HFD-induced T2DM mouse model were used to determine the effect of lipin-1 on DKD development. Then RPTCs and LPIN1 knockdown or overexpressed HK-2 cells induced by PA were used to investigate the mechanism. We found that the expression of lipin-1 increased early and then decreased in kidney during the progression of DKD. Glucose and lipid metabolic disorders and renal insufficiency were found in these 2 types of diabetic mouse models. Interestingly, lipin-1 deficiency might be a pathogenic driver of DKD-to-CKD transition, which could further accelerate the imbalance of renal lipid homeostasis, the dysfunction of mitochondrial and energy metabolism in PTECs. Mechanistically, lipin-1 deficiency resulted in aggravated PTECs injury to tubulointerstitial fibrosis in DKD by downregulating FAO via inhibiting PGC-1α/PPARα mediated Cpt1α/HNF4α signaling and upregulating SREBPs to promote fat synthesis. This study provided new insights into the role of lipin-1 as a regulator for maintaining lipid homeostasis in the kidney, especially PTECs, and its deficiency led to the progression of DKD.
Collapse
Affiliation(s)
- Simei Lin
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Liang Wang
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingli Jia
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Panshuang Qiao
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yazhu Quan
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jihan Liu
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Huihui Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoxue Yang
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hong Zhou
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| |
Collapse
|
9
|
Ning Y, Zhou X, Wang G, Zhang L, Wang J. Bioinformatics to Identify Biomarkers of Diabetic Nephropathy based on Sphingolipid Metabolism and their Molecular Mechanisms. Curr Diabetes Rev 2024; 21:e070524229720. [PMID: 38712372 DOI: 10.2174/0115733998297749240418071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) frequently results in Diabetic Nephropathy (DN), which has a significant negative impact on the quality of life of diabetic patients. Sphingolipid metabolism is associated with diabetes, but its relationship with DN is unclear. Therefore, screening biomarkers related to sphingolipid metabolism is crucial for treating DN. METHODS To identify Differentially Expressed Genes (DEGs) in the GSE142153 dataset, we conducted a differential expression analysis (DN samples versus control samples). The intersection genes were obtained by overlapping DEGs and Sphingolipid Metabolism-Related Genes (SMRGs). Furthermore, The Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to filter biomarkers. We further analyzed the Gene Set Enrichment analysis (GSEA) and the immunoinfiltrational analysis based on biomarkers. RESULTS We identified 2,186 DEGs associated with DN. Then, five SMR-DEGs were obtained. Subsequently, biomarkers associated with sphingolipid metabolism (S1PR1 and SELL) were identified by applying machine learning and expression analysis. In addition, GSEA showed that these biomarkers were correlated with cytokine cytokine receptor interaction'. Significant variations in B cells, DCs, Tems, and Th2 cells between the two groups suggested that these cells might have a role in DN. CONCLUSION Overall, we obtained two sphingolipid metabolism-related biomarkers (S1PR1 and SELL) associated with DN, which laid a theoretical foundation for treating DN.
Collapse
Affiliation(s)
- Yaxian Ning
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Gouqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Lili Zhang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Jianqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| |
Collapse
|
10
|
Ivanov SV, Rose KL, Colon S, Hudson BG, Bhave G, Voziyan P. Mechanism of peroxidasin inactivation in hyperglycemia: Heme damage by reactive oxygen species. Biochem Biophys Res Commun 2023; 689:149237. [PMID: 37984175 PMCID: PMC10702573 DOI: 10.1016/j.bbrc.2023.149237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Diabetic complications present a serious health problem. Functional damage to proteins due to post-translational modifications by glycoxidation reactions is a known factor contributing to pathology. Extracellular proteins are especially vulnerable to diabetic damage because robust antioxidant defenses are lacking outside the cell. We investigated glucose-induced inactivation of peroxidasin (PXDN), a heme protein catalyzing sulfilimine crosslinking of collagen IV that reinforce the basement membranes (BM). Experiments using physiological diabetic glucose levels were carried out to exclude several potential mechanisms of PXDN inactivation i.e., direct adduction of glucose, reactive carbonyl damage, steric hindrance, and osmotic stress. Further experiments established that PXDN activity was inhibited via heme degradation by reactive oxygen species. Activity of another extracellular heme protein, myeloperoxidase, was unaffected by glucose because its heme was resistant to glucose-induced oxidative degradation. Our findings point to specific mechanisms which may compromise BM structure and stability in diabetes and suggest potential modes of protection.
Collapse
Affiliation(s)
- Sergey V Ivanov
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - Selene Colon
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Billy G Hudson
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Gautam Bhave
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37212, USA; Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Paul Voziyan
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA; Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Wang L, Yu X, Li H, He D, Zeng S, Xiang Z. Cell and rat serum, urine and tissue metabolomics analysis elucidates the key pathway changes associated with chronic nephropathy and reveals the mechanism of action of rhein. Chin Med 2023; 18:158. [PMID: 38041193 PMCID: PMC10691122 DOI: 10.1186/s13020-023-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Rhein can significantly delay the progression of chronic nephropathy. However, its mechanism of action has not been adequately elaborated, which hinders its extensive clinical application. In this work, the effects of rhein on models of TGF-β-induced NRK-49F cellular fibrosis and rat renal ischemia-reperfusion fibrosis were evaluated using metabolomics and western blotting. METHODS The metabolic profiles of NRK-49F cells and rat urine, serum, and kidney tissues in the control, model, and rhein groups were investigated using UPLC-QTOF-MS. The levels of p-P65, p-IKK, p-AKT, p-P38, p-JNK and AP-1 in NRK-49F cells were measured using western blotting and immunofluorescence methods. Molecular docking and network pharmacology methods were employed to explore the relationship between the potential targets of rhein and key proteins in the NF-κB and MAPK signaling pathways. RESULTS Various potential metabolites, including sphingolipids, ceramides, phosphatidylcholine, and lysophosphatidylcholine,14-hydroxy-E4-neuroprostane E, and 5-HPETE, were present in the cell, tissue, urine, and serum samples; however, few metabolites matches exactly among the four type of biological samples. These differential metabolites can effectively differentiated between the control, model, and rhein groups. Pathway enrichment analysis of differential metabolites unveiled that sphingolipid metabolism, arachidonic acid metabolism, and glycerophospholipid metabolism were closely related to nephropathy. Phosphorylation levels of AKT, IKK, P65 and AP-1 in NRK-49F cells was reduced by rhein treatment. Network pharmacology and molecular docking showed that the potential targets of rhein might regulated the expression of MAPK and AKT in the NF-κB and MAPK signaling pathways. CONCLUSION In brief, rhein might delays the progression of chronic nephropathy via the metabolic pathways, NF-κB and MAPKs signaling pathways, which provides the foundation for its development and clinical application.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- Medical School, Hangzhou City University, Hangzhou, 310015, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Xixi Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongju Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dahong He
- Medical School, Hangzhou City University, Hangzhou, 310015, China
| | - Su Zeng
- Department of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
| | - Zheng Xiang
- Medical School, Hangzhou City University, Hangzhou, 310015, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
| |
Collapse
|
12
|
Zhu W, Chen M, Wang Y, Chen Y, Zhang Y, Wang Y, Liu P, Li P. Regulation of renal lipid deposition in diabetic nephropathy on morroniside via inhibition of NF-KB/TNF-a/SREBP1c signaling pathway. Chem Biol Interact 2023; 385:110711. [PMID: 37769864 DOI: 10.1016/j.cbi.2023.110711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Morroniside (MOR), a cyclic enol ether terpene glycoside isolated from Cornus officinalis, has been shown to inhibit lipid accumulation, although the mechanism of action is uncertain. The aim of this study was to investigate the potential pathways by which MOR affects renal lipid deposition in diabetic nephropathy (DN). In vitro and in vivo experiments were performed using the PA-induced HK-2 cell model and a KKAy animal model, respectively. Network pharmacological analysis was used to identify potential MOR signaling pathways for DN therapy, with results verified via Western blotting and immunofluorescence experiments. The effect of MOR on lipid metabolism was investigated using BODIPY 493/503 staining. Our results indicate that MOR significantly reduces lipid accumulation both in vitro and in vivo. According to network pharmacology studies, the NF-κB/TNF-α/SREBP1c signaling pathway may be the mechanism of action of MOR in DN. MOR was found to inhibit this pathway by reducing the phosphorylation of NF-κB p65 and the expression of TNF-α and SREBP1c, similar to the effects of Bay11-7082. Additionally, MOR significantly inhibited the expression of lipid factors such as ACC, FAS, and SCD1. In conclusion, MOR can regulate the disruption of lipid metabolism in DN and reduce renal lipid deposition via suppression of the NF-κB/TNF-α/SREBP1c signaling pathway.
Collapse
Affiliation(s)
- Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yonggang Zhang
- First People's Hospital of Qiqihaer City, Heilongjiang Province, China
| | - Yan Wang
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
13
|
Esselman AB, Patterson NH, Migas LG, Dufresne M, Djambazova KV, Colley ME, Van de Plas R, Spraggins JM. Microscopy-Directed Imaging Mass Spectrometry for Rapid High Spatial Resolution Molecular Imaging of Glomeruli. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37319264 DOI: 10.1021/jasms.3c00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The glomerulus is a multicellular functional tissue unit (FTU) of the nephron that is responsible for blood filtration. Each glomerulus contains multiple substructures and cell types that are crucial for their function. To understand normal aging and disease in kidneys, methods for high spatial resolution molecular imaging within these FTUs across whole slide images is required. Here we demonstrate a workflow using microscopy-driven selected sampling to enable 5 μm pixel size matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) of all glomeruli within whole slide human kidney tissues. Such high spatial resolution imaging entails large numbers of pixels, increasing the data acquisition times. Automating FTU-specific tissue sampling enables high-resolution analysis of critical tissue structures, while concurrently maintaining throughput. Glomeruli were automatically segmented using coregistered autofluorescence microscopy data, and these segmentations were translated into MALDI IMS measurement regions. This allowed high-throughput acquisition of 268 glomeruli from a single whole slide human kidney tissue section. Unsupervised machine learning methods were used to discover molecular profiles of glomerular subregions and differentiate between healthy and diseased glomeruli. Average spectra for each glomerulus were analyzed using Uniform Manifold Approximation and Projection (UMAP) and k-means clustering, yielding 7 distinct groups of differentiated healthy and diseased glomeruli. Pixel-wise k-means clustering was applied to all glomeruli, showing unique molecular profiles localized to subregions within each glomerulus. Automated microscopy-driven, FTU-targeted acquisition for high spatial resolution molecular imaging maintains high-throughput and enables rapid assessment of whole slide images at cellular resolution and identification of tissue features associated with normal aging and disease.
Collapse
Affiliation(s)
- Allison B Esselman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Lukasz G Migas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 Delft, The Netherlands
| | - Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Madeline E Colley
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 Delft, The Netherlands
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
14
|
Kim D, Ban KY, Lee GH, Jun HS. Lysophosphatidic Acid Induces Podocyte Pyroptosis in Diabetic Nephropathy by an Increase of Egr1 Expression via Downregulation of EzH2. Int J Mol Sci 2023; 24:9968. [PMID: 37373116 DOI: 10.3390/ijms24129968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Podocyte damage and renal inflammation are the main features and pathogenesis of diabetic nephropathy (DN). Inhibition of lysophosphatidic acid (LPA) receptor 1 (LPAR1) suppresses glomerular inflammation and improves DN. Herein, we investigated LPA-induced podocyte damage and its underlying mechanisms in DN. We investigated the effects of AM095, a specific LPAR1 inhibitor, on podocytes from streptozotocin (STZ)-induced diabetic mice. E11 cells were treated with LPA in the presence or absence of AM095, and the expression of NLRP3 inflammasome factors and pyroptosis were measured. A chromatin immunoprecipitation assay and Western blotting were performed to elucidate underlying molecular mechanisms. Gene knockdown by transfecting small interfering RNA was used to determine the role of the transcription factor Egr1 (early growth response protein 1) and histone methyltransferase EzH2 (Enhancer of Zeste Homolog 2) in LPA-induced podocyte injury. AM095 administration inhibited podocyte loss, NLRP3 inflammasome factor expression, and cell death in STZ-induced diabetic mice. In E11 cells, LPA increased NLRP3 inflammasome activation and pyroptosis via LPAR1. Egr1 mediated NLRP3 inflammasome activation and pyroptosis in LPA-treated E11 cells. LPA decreased H3K27me3 enrichment at the Egr1 promoter in E11 cells by downregulating EzH2 expression. EzH2 knockdown further increased LPA-induced Egr1 expression. In podocytes from STZ-induced diabetic mice, AM095 suppressed Egr1 expression increase and EzH2/H3K27me3 expression reduction. Collectively, these results demonstrate that LPA induces NLRP3 inflammasome activation by downregulating EzH2/H3K27me3 and upregulating Egr1 expression, resulting in podocyte damage and pyroptosis, which may be a potential mechanism of DN progression.
Collapse
Affiliation(s)
- Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ka-Yun Ban
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Geon-Ho Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Republic of Korea
| |
Collapse
|
15
|
Njeim R, Alkhansa S, Fornoni A. Unraveling the Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15051360. [PMID: 37242602 DOI: 10.3390/pharmaceutics15051360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
16
|
Rietjens RGJ, Wang G, van der Velden AIM, Koudijs A, Avramut MC, Kooijman S, Rensen PCN, van der Vlag J, Rabelink TJ, Heijs B, van den Berg BM. Phosphatidylinositol metabolism of the renal proximal tubule S3 segment is disturbed in response to diabetes. Sci Rep 2023; 13:6261. [PMID: 37069341 PMCID: PMC10110589 DOI: 10.1038/s41598-023-33442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Diabetes is a main risk factor for kidney disease, causing diabetic nephropathy in close to half of all patients with diabetes. Metabolism has recently been identified to be decisive in cell fate decisions and repair. Here we used mass spectrometry imaging (MSI) to identify tissue specific metabolic dysregulation, in order to better understand early diabetes-induced metabolic changes of renal cell types. In our experimental diabetes mouse model, early glomerular glycocalyx barrier loss and systemic metabolic changes were observed. In addition, MSI targeted at small molecule metabolites and glycero(phospho)lipids exposed distinct changes upon diabetes in downstream nephron segments. Interestingly, the outer stripe of the outer medullar proximal tubular segment (PT_S3) demonstrated the most distinct response compared to other segments. Furthermore, phosphatidylinositol lipid metabolism was altered specifically in PT_S3, with one of the phosphatidylinositol fatty acid tails being exchanged from longer unsaturated fatty acids to shorter, more saturated fatty acids. In acute kidney injury, the PT_S3 segment and its metabolism are already recognized as important factors in kidney repair processes. The current study exposes early diabetes-induced changes in membrane lipid composition in this PT_S3 segment as a hitherto unrecognized culprit in the early renal response to diabetes.
Collapse
Affiliation(s)
- Rosalie G J Rietjens
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Anouk I M van der Velden
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela Koudijs
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - M Cristina Avramut
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cell and Chemical Biology (Electron Microscopy), Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine (Endocrinology), Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Internal Medicine (Endocrinology), Leiden University Medical Center, Leiden, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Bram Heijs
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
17
|
Wang YN, Zhang ZH, Liu HJ, Guo ZY, Zou L, Zhang YM, Zhao YY. Integrative phosphatidylcholine metabolism through phospholipase A 2 in rats with chronic kidney disease. Acta Pharmacol Sin 2023; 44:393-405. [PMID: 35922553 PMCID: PMC9889763 DOI: 10.1038/s41401-022-00947-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Dysregulation in lipid metabolism is the leading cause of chronic kidney disease (CKD) and also the important risk factors for high morbidity and mortality. Although lipid abnormalities were identified in CKD, integral metabolic pathways for specific individual lipid species remain to be clarified. We conducted ultra-high-performance liquid chromatography-high-definition mass spectrometry-based lipidomics and identified plasma lipid species and therapeutic effects of Rheum officinale in CKD rats. Adenine-induced CKD rats were administered Rheum officinale. Urine, blood and kidney tissues were collected for analyses. We showed that exogenous adenine consumption led to declining kidney function in rats. Compared with control rats, a panel of differential plasma lipid species in CKD rats was identified in both positive and negative ion modes. Among the 50 lipid species, phosphatidylcholine (PC), lysophosphatidylcholine (LysoPC) and lysophosphatidic acid (LysoPA) accounted for the largest number of identified metabolites. We revealed that six PCs had integral metabolic pathways, in which PC was hydrolysed into LysoPC, and then converted to LysoPA, which was associated with increased cytosolic phospholipase A2 protein expression in CKD rats. The lower levels of six PCs and their corresponding metabolites could discriminate CKD rats from control rats. Receiver operating characteristic curves showed that each individual lipid species had high values of area under curve, sensitivity and specificity. Administration of Rheum officinale significantly improved impaired kidney function and aberrant PC metabolism in CKD rats. Taken together, this study demonstrates that CKD leads to PC metabolism disorders and that the dysregulation of PC metabolism is involved in CKD pathology.
Collapse
Affiliation(s)
- Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Zhi-Hao Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hong-Jiao Liu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Zhi-Yuan Guo
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Ya-Mei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610081, China
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, China.
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610081, China.
| |
Collapse
|
18
|
Voziyan P, Uppuganti S, Leser M, Rose KL, Nyman JS. Mapping glycation and glycoxidation sites in collagen I of human cortical bone. BBA ADVANCES 2023; 3:100079. [PMID: 37082268 PMCID: PMC10074956 DOI: 10.1016/j.bbadva.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023] Open
Abstract
Accumulation of advanced glycation end products (AGEs), particularly in long-lived extracellular matrix proteins, has been implicated in pathogenesis of diabetic complications and in aging. Knowledge about specific locations of AGEs and their precursors within protein primary structure is critical for understanding their physiological and pathophysiological impact. However, the information on specific AGE sites is lacking. Here, we identified sequence positions of four major AGEs, carboxymethyllysine, carboxyethyllysine, 5-hydro-5-methyl imidazolone, and 5-hydro-imidazolone, and an AGE precursor fructosyllysine within the triple helical region of collagen I from cortical bone of human femurs. The presented map provides a basis for site-specific quantitation of AGEs and other non-enzymatic post-translational modifications and identification of those sites affected by aging, diabetes, and other diseases such as osteoporosis; it can also help in guiding future studies of AGE impact on structure and function of collagen I in bone.
Collapse
Affiliation(s)
- Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Micheal Leser
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Kristie L. Rose
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
19
|
McCrimmon A, Corbin S, Shrestha B, Roman G, Dhungana S, Stadler K. Redox phospholipidomics analysis reveals specific oxidized phospholipids and regions in the diabetic mouse kidney. Redox Biol 2022; 58:102520. [PMID: 36334379 PMCID: PMC9640328 DOI: 10.1016/j.redox.2022.102520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/08/2022] Open
Abstract
While it is generally accepted that oxidative stress impacts the diabetic kidney and contributes to pathogenesis, there is a substantial lack of knowledge about the molecular entity and anatomic location of a variety of reactive species. Here we provide a novel "oxidative stress map" of the diabetic kidney - the first of its kind, and identify specific, oxidized and other reactive lipids and their location. We used the db/db mouse model and Desorption Electrospray Ionization (DESI) mass spectrometry combined with heatmap image analysis. We analyzed a comprehensive array of phospholipid peroxide species in normal (db/m) and diabetic (db/db) kidneys using DESI imaging. Oxilipidomics heatmaps of the kidneys were generated focusing on phospholipids and their potential peroxidized products. We identified those lipids that undergo peroxidation in diabetic nephropathy. Several phospholipid peroxides and their spatial distribution were identified that were specific to the diabetic kidney, with significant enrichment in oxygenated phosphatidylethanolamines (PE) and lysophosphatidylethanolamine. Beyond qualitative and semi-quantitative information about the targets, the approach also reveals the anatomic location and the extent of lipid peroxide signal propagation across the kidney. Our approach provides novel, in-depth information of the location and molecular entity of reactive lipids in an organ with a very heterogeneous landscape. Many of these reactive lipids have been previously linked to programmed cell death mechanisms. Thus, the findings may be relevant to understand what impact phospholipid peroxidation has on cell and mitochondria membrane integrity and redox lipid signaling in diabetic nephropathy.
Collapse
Affiliation(s)
- Allison McCrimmon
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA
| | - Sydney Corbin
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA
| | | | | | | | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, 70808, LA, USA.
| |
Collapse
|
20
|
Groessl M, Vogt B. Mass spectrometry imaging and its place in nephrology. Nephrol Dial Transplant 2022; 37:2363-2365. [PMID: 34940875 DOI: 10.1093/ndt/gfab359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Michael Groessl
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Willett TL, Voziyan P, Nyman JS. Causative or associative: A critical review of the role of advanced glycation end-products in bone fragility. Bone 2022; 163:116485. [PMID: 35798196 PMCID: PMC10062699 DOI: 10.1016/j.bone.2022.116485] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of advanced glycation end-products (AGEs) in the organic matrix of bone with aging and chronic disease such as diabetes is thought to increase fracture risk independently of bone mass. However, to date, there has not been a clinical trial to determine whether inhibiting the accumulation of AGEs is effective in preventing low-energy, fragility fractures. Moreover, unlike with cardiovascular or kidney disease, there are also no pre-clinical studies demonstrating that AGE inhibitors or breakers can prevent the age- or diabetes-related decrease in the ability of bone to resist fracture. In this review, we critically examine the case for a long-standing hypothesis that AGE accumulation in bone tissue degrades the toughening mechanisms by which bone resists fracture. Prior research into the role of AGEs in bone has primarily measured pentosidine, an AGE crosslink, or bulk fluorescence of hydrolysates of bone. While significant correlations exist between these measurements and mechanical properties of bone, multiple AGEs are both non-fluorescent and non-crosslinking. Since clinical studies are equivocal on whether circulating pentosidine is an indicator of elevated fracture risk, there needs to be a more complete understanding of the different types of AGEs including non-crosslinking adducts and multiple non-enzymatic crosslinks in bone extracellular matrix and their specific contributions to hindering fracture resistance (biophysical and biological). By doing so, effective strategies to target AGE accumulation in bone with minimal side effects could be investigated in pre-clinical and clinical studies that aim to prevent fragility fractures in conditions that bone mass is not the underlying culprit.
Collapse
Affiliation(s)
- Thomas L Willett
- Biomedical Engineering Program, Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
22
|
Lee JH, Khin PP, Lee G, Lim OK, Jun HS. Effect of BBT-877, a novel inhibitor of ATX, on a mouse model of type 1 diabetic nephropathy. Aging (Albany NY) 2022; 14:6467-6480. [PMID: 36036755 PMCID: PMC9467391 DOI: 10.18632/aging.204249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022]
Abstract
Diabetic nephropathy (DN) is one of the common microvascular complications of diabetes. Autotaxin (ATX) is an enzyme with lysophospholipase D activity, producing lysophosphatidic acid (LPA). LPA signaling has been implicated in renal fibrosis, thereby inducing renal dysfunction. BBT-877 is an orally administered small molecule inhibitor of ATX. However, its effect on DN has not been studied so far. In this study, we investigated the effect of BBT-877, a novel inhibitor of ATX, on the pathogenesis of DN in a mouse model of streptozotocin (STZ)-induced diabetes. BBT-877 treatment significantly reduced albuminuria, albumin-to-creatinine ratio (ACR), neutrophil gelatinase-associated lipocalin (NGAL), and glomerular volume compared to the STZ-vehicle group. Interestingly, BBT-877 treatment attenuated hyperglycemia and dyslipidemia in STZ-induced diabetes mice. In the liver, the expression levels of β-oxidation-related genes such as PPAR α and CPT1 were significantly decreased in STZ-induced diabetic mice. However, this effect was reversed by BBT-877 treatment. BBT-877 treatment also suppressed mRNA levels of pro-inflammatory cytokines IL-6, MCP-1, and TNF-α and protein levels of fibrotic factors (TGF-β, fibronectin, CTGF, and collagen type Ι alpha Ι (COL1A1)) in the kidneys of STZ-induced diabetic mice. In conclusion, our results indicate that BBT-877 is effective in preventing the pathogenesis of DN by reducing systemic blood glucose levels and inhibiting inflammation and fibrosis in the renal tissue of diabetes mice. These novel findings suggest that inhibition of ATX may be a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Jong Han Lee
- Department of Marine Bio and Medical Science, Hanseo University, Seosan, Korea
| | - Phyu Phyu Khin
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - GwangHee Lee
- Bridge Biotherapeutics Incorporation, Seongnam, Korea
- Boostimmune Therapeutics Incorporation, Seongnam, Korea
| | - Oh Kyung Lim
- Department of Rehabilitation Medicine, Gachon University, Incheon, Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| |
Collapse
|
23
|
Harkin C, Smith KW, MacKay CL, Moore T, Brockbank S, Ruddock M, Cobice DF. Spatial localization of β-unsaturated aldehyde markers in murine diabetic kidney tissue by mass spectrometry imaging. Anal Bioanal Chem 2022; 414:6657-6670. [PMID: 35881173 PMCID: PMC9411223 DOI: 10.1007/s00216-022-04229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Limitations in current diagnosis and screening methods have sparked a search for more specific and conclusive biomarkers. Hyperglycemic conditions generate a plethora of harmful molecules in circulation and within tissues. Oxidative stress generates reactive α-dicarbonyls and β-unsaturated hydroxyhexenals, which react with proteins to form advanced glycation end products. Mass spectrometry imaging (MSI) enables the detection and spatial localization of molecules in biological tissue sections. Here, for the first time, the localization and semiquantitative analysis of “reactive aldehydes” (RAs) 4-hydroxyhexenal (4-HHE), 4-hydroxynonenal (4-HNE), and 4-oxo-2-nonenal (4-ONE) in the kidney tissues of a diabetic mouse model is presented. Ionization efficiency was enhanced through on-tissue chemical derivatization (OTCD) using Girard’s reagent T (GT), forming positively charged hydrazone derivatives. MSI analysis was performed using matrix-assisted laser desorption ionization (MALDI) coupled with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR). RA levels were elevated in diabetic kidney tissues compared to lean controls and localized throughout the kidney sections at a spatial resolution of 100 µm. This was confirmed by liquid extraction surface analysis–MSI (LESA-MSI) and liquid chromatography–mass spectrometry (LC–MS). This method identified β-unsaturated aldehydes as “potential” biomarkers of DN and demonstrated the capability of OTCD-MSI for detection and localization of poorly ionizable molecules by adapting existing chemical derivatization methods. Untargeted exploratory distribution analysis of some precursor lipids was also assessed using MALDI-FT-ICR-MSI.
Collapse
Affiliation(s)
- Carla Harkin
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Karl W Smith
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310-4005, USA.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - C Logan MacKay
- Scottish Instrumentation and Research Centre for Advanced Mass Spectrometry (SIRCAMS), EastChem School of Chemistry, University of Edinburgh, Edinburgh, Scotland, UK
| | - Tara Moore
- Genomic Medicine, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | | | - Mark Ruddock
- Randox Laboratories Ltd, 55 The Diamond Rd, Crumlin, UK
| | - Diego F Cobice
- Mass Spectrometry Centre, Biomedical Sciences Research Institute (BMSRI), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK.
| |
Collapse
|
24
|
Naito S, Kawashima N, Ishii D, Fujita T, Iwamura M, Takeuchi Y. Decreased GM3 correlates with proteinuria in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Exp Nephrol 2022; 26:1078-1085. [PMID: 35804208 DOI: 10.1007/s10157-022-02249-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Glycolipids on cell membrane rafts play various roles by interacting with glycoproteins. Recently, it was reported that the glycolipid GM3 is expressed in podocytes and may play a role in podocyte protection. In this report, we describe the correlation between changes in GM3 expression in glomeruli and proteinuria in minimal change nephrotic syndrome (MCNS) and focal segmental glomerulosclerosis (FSGS) patients. METHODS We performed a case-control study of the correlation between nephrin/GM3 expression levels and proteinuria in MCNS and FSGS patients who underwent renal biopsy at our institution between 2009 and 2014. Normal renal tissue sites were used from patients who had undergone nephrectomy at our institution and gave informed consent. RESULTS Both MCNS and FSGS had decreased GM3 and Nephrin expression compared with the normal (normal vs. MCNS, FSGS; all p < 0.01). Furthermore, in both MCNS and FSGS, GM3 expression was negatively correlated with proteinuria (MCNS: r = - 0.61, p < 0.01, FSGS: r = - 0.56, p < 0.05). However, nephrin expression had a trend to correlate with proteinuria in FSGS (MCNS: r = 0.19, p = 0.58, FSGS: r = - 0.48, p = 0.06). Furthermore, in a simple linear regression analysis, GM3 expression also correlated with proteinuric change after 12 months of treatment (MCNS: r = 0.40, p = 0.38, FSGS: r = 0. 68, p < 0.05). CONCLUSION We showed for the first time that decreased GM3 expression correlates with proteinuria in MCNS and FSGS patients. Further studies are needed on the podocyte-protective effects of GM3.
Collapse
Affiliation(s)
- Shokichi Naito
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Nagako Kawashima
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Daisuke Ishii
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tetsuo Fujita
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masatsugu Iwamura
- Department of Urology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuo Takeuchi
- Department of Nephrology, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
25
|
Magkrioti C, Antonopoulou G, Fanidis D, Pliaka V, Sakellaropoulos T, Alexopoulos LG, Ullmer C, Aidinis V. Lysophosphatidic Acid Is a Proinflammatory Stimulus of Renal Tubular Epithelial Cells. Int J Mol Sci 2022; 23:ijms23137452. [PMID: 35806457 PMCID: PMC9267536 DOI: 10.3390/ijms23137452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis, permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells (HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This quantification revealed a large amount of information concerning the signaling and the physiology of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκΒα, and MEK1, as well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells. The identified LPA-induced signal-transduction pathways, which were pharmacologically validated, and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in CKD pathogenesis.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Georgia Antonopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Vaia Pliaka
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
| | | | - Leonidas G. Alexopoulos
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
- School of Mechanical Engineering, National Technical University of Athens, 15780 Zografou, Greece
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
- Correspondence:
| |
Collapse
|
26
|
Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells. J Biomed Sci 2022; 29:31. [PMID: 35538534 PMCID: PMC9092836 DOI: 10.1186/s12929-022-00814-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/29/2022] [Indexed: 12/20/2022] Open
Abstract
Background Mesangial cell fibrosis, a typical symptom of diabetic nephropathy (DN), is a major contributor to glomerulosclerosis. We previously reported that the pharmacological blockade of lysophosphatidic acid (LPA) signaling improves DN. Although LPA signaling is implicated in diabetic renal fibrosis, the underlying molecular mechanisms remain unclear. Here, the role of carbohydrate-responsive element-binding protein (ChREBP) in LPA-induced renal fibrosis and the underlying mechanisms were investigated. Methods Eight-week-old wild-type and db/db mice were intraperitoneally injected with the vehicle or an LPAR1/3 antagonist, ki16425 (10 mg/kg), for 8 weeks on a daily basis, following which the mice were sacrificed and renal protein expression was analyzed. SV40 MES13 cells were treated with LPA in the presence or absence of ki16425, and the expression of ChREBP and fibrotic factors, including fibronectin, TGF-β, and IL-1β, was examined. The role of ChREBP in the LPA-induced fibrotic response was investigated by ChREBP overexpression or knockdown. The involvement of Smad ubiquitination regulatory factor-2 (Smurf2), an E3 ligase, in LPA-induced expression of ChREBP and fibrotic factors was investigated by Smurf2 overexpression or knockdown. To identify signaling molecules regulating Smurf2 expression by LPA, pharmacological inhibitors such as A6370 (Akt1/2 kinase inhibitor) and Ly 294002 (PI3K inhibitor) were used. Results The renal expression of ChREBP increased in diabetic db/db mice, and was reduced following treatment with the ki16425. Treatment with LPA induced the expression of ChREBP and fibrotic factors, including fibronectin, TGF-β, and IL-1β, in SV40 MES13 cells, which were positively correlated. The LPA-induced expression of fibrotic factors increased or decreased following ChREBP overexpression and knockdown, respectively. The production of reactive oxygen species (ROS) mediated the LPA-induced expression of ChREBP and fibrotic factors, and LPA decreased Smurf2 expression via Traf4-mediated ubiquitination. The LPA-induced expression of ubiquitinated-ChREBP increased or decreased following Smurf2 overexpression and knockdown, respectively. Additionally, Smurf2 knockdown significantly increased the expression of ChREBP and fibrotic factors. The pharmacological inhibition of Akt signaling suppressed the LPA-induced alterations in the expression of ChREBP and Smurf2. Conclusion Collectively, the results demonstrated that the ROS/Akt-dependent downregulation of Smurf2 and the subsequent increase in ChREBP expression might be one of the mechanisms by which LPA induces mesangial cell fibrosis in DN. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00814-1.
Collapse
|
27
|
Boi R, Ebefors K, Henricsson M, Borén J, Nyström J. Modified lipid metabolism and cytosolic phospholipase A2 activation in mesangial cells under pro-inflammatory conditions. Sci Rep 2022; 12:7322. [PMID: 35513427 PMCID: PMC9072365 DOI: 10.1038/s41598-022-10907-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease is a consequence of hyperglycemia and other complex events driven by early glomerular hemodynamic changes and a progressive expansion of the mesangium. The molecular mechanisms behind the pathophysiological alterations of the mesangium are yet to be elucidated. This study aimed at investigating whether lipid signaling might be the missing link. Stimulation of human mesangial cells with high glucose primed the inflammasome-driven interleukin 1 beta (IL-1β) secretion, which in turn stimulated platelet-derived growth factor (PDGF-BB) release. Finally, PDGF-BB increased IL-1β secretion synergistically. Both IL-1β and PDGF-BB stimulation triggered the formation of phosphorylated sphingoid bases, as shown by lipidomics, and activated cytosolic phospholipase cPLA2, sphingosine kinase 1, cyclooxygenase 2, and autotaxin. This led to the release of arachidonic acid and lysophosphatidylcholine, activating the secretion of vasodilatory prostaglandins and proliferative lysophosphatidic acids. Blocking cPLA2 release of arachidonic acid reduced mesangial cells proliferation and prostaglandin secretion. Validation was performed in silico using the Nephroseq database and a glomerular transcriptomic database. In conclusion, hyperglycemia primes glomerular inflammatory and proliferative stimuli triggering lipid metabolism modifications in human mesangial cells. The upregulation of cPLA2 was critical in this setting. Its inhibition reduced mesangial secretion of prostaglandins and proliferation, making it a potential therapeutical target.
Collapse
Affiliation(s)
- Roberto Boi
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Kerstin Ebefors
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Marcus Henricsson
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden.
| |
Collapse
|
28
|
Promsan S, Thongnak L, Pengrattanachot N, Phengpol N, Sutthasupha P, Lungkaphin A. Agomelatine, a structural analog of melatonin, improves kidney dysfunction through regulating the AMPK/mTOR signaling pathway to promote autophagy in obese rats. Food Chem Toxicol 2022; 165:113190. [DOI: 10.1016/j.fct.2022.113190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
|
29
|
Suteanu-Simulescu A, Zamfir AD, Ica R, Sarbu M, Munteanu CVA, Gadalean F, Vlad A, Bob F, Jianu DC, Petrica L. High-Resolution Tandem Mass Spectrometry Identifies a Particular Ganglioside Pattern in Early Diabetic Kidney Disease of Type 2 Diabetes Mellitus Patients. Molecules 2022; 27:2679. [PMID: 35566027 PMCID: PMC9103338 DOI: 10.3390/molecules27092679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the valuable information provided by glycosphingolipids as molecular markers and the limited data available for their detection and characterization in patients suffering from Type 2 diabetic kidney disease (DKD), we developed and implemented a superior method based on high-resolution (HR) mass spectrometry (MS) and tandem MS (MS/MS) for the determination of gangliosides in the urine of DKD patients. This study was focused on: (i) testing of the HR MS and MS/MS feasibility and performances in mapping and sequencing of renal gangliosides in Type 2 DM patients; (ii) determination of the changes in the urine gangliosidome of DKD patients in different stages of the disease-normo-, micro-, and macroalbuminuria-in a comparative assay with healthy controls. Due to the high resolution and mass accuracy, the comparative MS screening revealed that the sialylation status of the ganglioside components; their modification by O-acetyl, CH3COO-, O-fucosyl, and O-GalNAc; as well as the composition of the ceramide represent possible markers for early DKD detection, the assessment of disease progression, and follow-up treatment. Moreover, structural investigation by MS/MS demonstrated that GQ1d(d18:1/18:0), GT1α(d18:1/18:0) and GT1b(d18:1/18:0) isomers are associated with macroalbuminuria, meriting further investigation in relation to their role in DKD.
Collapse
Affiliation(s)
- Anca Suteanu-Simulescu
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.S.-S.); (F.B.); (L.P.)
- Department of Nephrology, County Emergency Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
| | - Alina Diana Zamfir
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania; (A.D.Z.); (R.I.); (M.S.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| | - Raluca Ica
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania; (A.D.Z.); (R.I.); (M.S.)
- Department of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- Department of Condensed Matter, National Institute for Research and Development in Electrochemistry and Condensed Matter, 300569 Timisoara, Romania; (A.D.Z.); (R.I.); (M.S.)
| | - Cristian V. A. Munteanu
- Department of Bioinformatics & Structural Biochemistry, Institute of Biochemistry, 060031 Bucharest, Romania;
| | - Florica Gadalean
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.S.-S.); (F.B.); (L.P.)
- Department of Nephrology, County Emergency Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
| | - Adrian Vlad
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
- Department of Internal Medicine II, Division of Diabetes and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Diabetes and Metabolic Diseases, County Emergency Hospital, 300723 Timisoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.S.-S.); (F.B.); (L.P.)
- Department of Nephrology, County Emergency Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
| | - Dragos Catalin Jianu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
- Department of Neurosciences, Division of Neurology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), Department of Neurosciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- First Department of Neurology, County Emergency Hospital, 300723 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.S.-S.); (F.B.); (L.P.)
- Department of Nephrology, County Emergency Hospital, 300723 Timisoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.V.); (D.C.J.)
- Department of Neurosciences, Division of Neurology, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
30
|
Martín‐Saiz L, Guerrero‐Mauvecin J, Martín‐Sanchez D, Fresnedo O, Gómez MJ, Carrasco S, Cannata‐Ortiz P, Ortiz A, Fernandez JA, Sanz AB. Ferrostatin‐1 modulates dysregulated kidney lipids in acute kidney injury. J Pathol 2022; 257:285-299. [DOI: 10.1002/path.5882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/18/2022] [Accepted: 02/11/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Lucía Martín‐Saiz
- Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | - Juan Guerrero‐Mauvecin
- Laboratory of Experimental Nephrology. Research Institute‐Fundacion Jimenez Diaz, Universidad Autonoma de Madrid Madrid Spain
| | - Diego Martín‐Sanchez
- Laboratory of Experimental Nephrology. Research Institute‐Fundacion Jimenez Diaz, Universidad Autonoma de Madrid Madrid Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing University of the Basque Country (UPV/EHU) Leioa Spain
| | - Manuel J. Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid Spain
| | - Susana Carrasco
- Laboratory of Experimental Nephrology. Research Institute‐Fundacion Jimenez Diaz, Universidad Autonoma de Madrid Madrid Spain
| | - Pablo Cannata‐Ortiz
- Department of Pathology Research Institute ‐ Fundación Jiménez Díaz, Universidad Autonoma de Madrid Madrid Spain
| | - Alberto Ortiz
- Laboratory of Experimental Nephrology. Research Institute‐Fundacion Jimenez Diaz, Universidad Autonoma de Madrid Madrid Spain
- REDINREN Madrid Spain
- Department of Medicine Universidad Autonoma de Madrid Madrid 28049 Spain
- IRSIN Madrid Spain
| | - José A. Fernandez
- Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | - Ana B Sanz
- Laboratory of Experimental Nephrology. Research Institute‐Fundacion Jimenez Diaz, Universidad Autonoma de Madrid Madrid Spain
- REDINREN Madrid Spain
| |
Collapse
|
31
|
Kruse ARS, Spraggins JM. Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry. Front Physiol 2022; 13:837773. [PMID: 35222094 PMCID: PMC8874197 DOI: 10.3389/fphys.2022.837773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
Collapse
Affiliation(s)
- Angela R. S. Kruse
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Jeffrey M. Spraggins,
| |
Collapse
|
32
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
33
|
Wang W, Li T, Li Z, Wang H, Liu X. Differential lipidomics of HK-2 cells and exosomes under high glucose stimulation. Int J Med Sci 2022; 19:393-401. [PMID: 35165524 PMCID: PMC8795806 DOI: 10.7150/ijms.67326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Abnormal cellular lipid metabolism has a very important role in the occurrence and progression of diabetic kidney disease (DKD). However, the lipid composition and differential expression by high glucose stimulation of renal tubular cells and their exosomes, which is a vital part of the development of DKD, are largely unknown. In this study, based on targeted lipid analysis by isotope labeling and tandem mass spectrometry, a total of 421 and 218 lipid species were quantified in HK-2 cells and exosomes, respectively. More importantly, results showed that GM3 d18:1/22:0, GM3 d18:1/16:0, GM3 d18:0/16:0, GM3 d18:1/22:1 were significantly increased, while LPE18:1, LPE, CL66:4 (16:1), BMP36:3, CL70:7 (16:1), CL74:8 (16:1) were significantly decreased in high glucose-stimulated HK-2 cells. Also, PG36:1, FFA22:5, PC38:3, SM d18:1/16:1, CE-16:1, CE-18:3, CE-20:5, and CE-22:6 were significantly increased, while GM3 d18:1/24:1, GM3 were significantly decreased in exosomes secreted by high glucose-stimulated HK-2 cells. Furthermore, TAG, PC, CL were decreased significantly in the exosomes comparing with the HK-2 cells, and LPA18:2, LPI22:5, PG32:2, FFA16:1, GM3 d18:1/18:1, GM3 d18:1/20:1, GM3 d18:0/20:0, PC40:6p, TAG52:1(18:1), TAG52:0(18:0), CE-20:5, CE-20:4, CE-22:6 were only found in exosomes. In addition, the expression of PI4P in HK-2 cells decreased under a high glucose state. These data may be useful to provide new targets for exploring the mechanisms of DKD.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Tingting Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Zhijie Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Hongmiao Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Xiaodan Liu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| |
Collapse
|
34
|
Sun Y, Cui S, Hou Y, Yi F. The Updates of Podocyte Lipid Metabolism in Proteinuric Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:438-451. [PMID: 34901191 DOI: 10.1159/000518132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Podocytes, functionally specialized and terminally differentiated glomerular visceral epithelial cells, are critical for maintaining the structure and function of the glomerular filtration barrier. Podocyte injury is considered as the most important early event contributing to proteinuric kidney diseases such as obesity-related renal disease, diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. Although considerable advances have been made in the understanding of mechanisms that trigger podocyte injury, cell-specific and effective treatments are not clinically available. SUMMARY Emerging evidence has indicated that the disorder of podocyte lipid metabolism is closely associated with various proteinuric kidney diseases. Excessive lipid accumulation in podocytes leads to cellular dysfunction which is defined as lipotoxicity, a phenomenon characterized by mitochondrial oxidative stress, actin cytoskeleton remodeling, insulin resistance, and inflammatory response that can eventually result in podocyte hypertrophy, detachment, and death. In this review, we summarize recent advances in the understanding of lipids in podocyte biological function and the regulatory mechanisms leading to podocyte lipid accumulation in proteinuric kidney disease. KEY MESSAGES Targeting podocyte lipid metabolism may represent a novel therapeutic strategy for patients with proteinuric kidney disease.
Collapse
Affiliation(s)
- Yu Sun
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Sijia Cui
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yunfeng Hou
- Intensive Care Unit, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
35
|
DeFronzo RA, Abdul-Ghani M. Sodium-Glucose Cotransporter 2 Inhibitors and the Kidney. Diabetes Spectr 2021; 34:225-234. [PMID: 34511848 PMCID: PMC8387612 DOI: 10.2337/ds20-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic kidney disease (DKD) accounts for about half of individuals entering end-stage renal disease programs. Patients with DKD frequently have associated microvascular complications and are at very high risk for developing macrovascular complications. Comprehensive treatment involves slowing or preventing the decline in glomerular filtration rate (GFR) and preventing macrovascular and further microvascular complications. Maintaining an A1C <6.5% represents primary prevention; in established DKD, tight blood pressure control is essential. ACE inhibitors/angiotensin receptor blockers (ARBs) and sodium-glucose cotransporter 2 (SGLT2) inhibitors can be used in combination to slow the rate of decline in GFR. This article reviews the general approach to DKD treatment and summarizes renal outcomes in four cardiovascular outcomes trials of SGLT2 inhibitors. Together, these trials provide conclusive evidence that SGLT2 inhibitors, added to an ACE inhibitor or ARB, slow the progression of DKD.
Collapse
|
36
|
Baek J, Pennathur S. Urinary 2-Hydroxyglutarate Enantiomers Are Markedly Elevated in a Murine Model of Type 2 Diabetic Kidney Disease. Metabolites 2021; 11:metabo11080469. [PMID: 34436410 PMCID: PMC8400583 DOI: 10.3390/metabo11080469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolic reprogramming is a hallmark of diabetic kidney disease (DKD); nutrient overload leads to increased production of metabolic byproducts that may become toxic at high levels. One metabolic byproduct may be 2-hydroxyglutarate (2-HG), a metabolite with many regulatory functions that exists in both enantiomeric forms physiologically. We quantitatively determined the levels of L and D-2HG enantiomers in the urine, plasma, and kidney cortex of db/db mice, a pathophysiologically relevant murine model of type 2 diabetes and DKD. We found increased fractional excretion of both L and D-2HG enantiomers, suggesting increased tubular secretion and/or production of the two metabolites in DKD. Quantitation of TCA cycle metabolites in db/db cortex suggests that TCA cycle overload and an increase in 2-HG precursor substrate, α-ketoglutarate, drive the increased L and D-2HG production in DKD. In conclusion, we demonstrated increased 2-HG enantiomer production and urinary excretion in murine type 2 DKD, which may contribute to metabolic reprogramming and progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Judy Baek
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Subramaniam Pennathur
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA;
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
- Correspondence:
| |
Collapse
|
37
|
Sas KM, Lin J, Wang CH, Zhang H, Saha J, Rajendiran TM, Soni T, Nair V, Eichinger F, Kretzler M, Brosius FC, Michailidis G, Pennathur S. Renin-angiotensin system inhibition reverses the altered triacylglycerol metabolic network in diabetic kidney disease. Metabolomics 2021; 17:65. [PMID: 34219205 PMCID: PMC8312633 DOI: 10.1007/s11306-021-01816-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Dyslipidemia is a significant risk factor for progression of diabetic kidney disease (DKD). Determining the changes in individual lipids and lipid networks across a spectrum of DKD severity may identify lipids that are pathogenic to DKD progression. METHODS We performed untargeted lipidomic analysis of kidney cortex tissue from diabetic db/db and db/db eNOS-/- mice along with non-diabetic littermate controls. A subset of mice were treated with the renin-angiotensin system (RAS) inhibitors, lisinopril and losartan, which improves the DKD phenotype in the db/db eNOS-/- mouse model. RESULTS Of the three independent variables in this study, diabetes had the largest impact on overall lipid levels in the kidney cortex, while eNOS expression and RAS inhibition had smaller impacts on kidney lipid levels. Kidney lipid network architecture, particularly of networks involving glycerolipids such as triacylglycerols, was substantially disrupted by worsening kidney disease in the db/db eNOS-/- mice compared to the db/db mice, a feature that was reversed with RAS inhibition. This was associated with decreased expression of the stearoyl-CoA desaturases, Scd1 and Scd2, with RAS inhibition. CONCLUSIONS In addition to the known salutary effect of RAS inhibition on DKD progression, our results suggest a previously unrecognized role for RAS inhibition on the kidney triacylglycerol lipid metabolic network.
Collapse
Affiliation(s)
- Kelli M Sas
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
| | - Jiahe Lin
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Chih-Hong Wang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
| | - Jharna Saha
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
| | - Thekkelnaycke M Rajendiran
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, Michigan, 48105, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, Michigan, 48105, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Felix Eichinger
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Frank C Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
- Division of Nephrology, Department of Medicine, University of Arizona, Tucson, Arizona, 85724, USA
| | - George Michailidis
- Department of Statistics and Computer and Information Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA.
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, Michigan, 48105, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
38
|
Martín-Saiz L, Mosteiro L, Solano-Iturri JD, Rueda Y, Martín-Allende J, Imaz I, Olano I, Ochoa B, Fresnedo O, Fernández JA, Larrinaga G. High-Resolution Human Kidney Molecular Histology by Imaging Mass Spectrometry of Lipids. Anal Chem 2021; 93:9364-9372. [PMID: 34192457 PMCID: PMC8922278 DOI: 10.1021/acs.analchem.1c00649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
For many years, traditional histology
has been the gold standard
for the diagnosis of many diseases. However, alternative and powerful
techniques have appeared in recent years that complement the information
extracted from a tissue section. One of the most promising techniques
is imaging mass spectrometry applied to lipidomics. Here, we demonstrate
the capabilities of this technique to highlight the architectural
features of the human kidney at a spatial resolution of 10 μm.
Our data demonstrate that up to seven different segments of the nephron
and the interstitial tissue can be readily identified in the sections
according to their characteristic lipid fingerprints and that such
fingerprints are maintained among different individuals (n = 32). These results set the foundation for further studies on the
metabolic bases of the diseases affecting the human kidney.
Collapse
Affiliation(s)
- Lucía Martín-Saiz
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Lorena Mosteiro
- Service of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Cruces (Barakaldo) 48903, Spain
| | - Jon D Solano-Iturri
- Service of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Cruces (Barakaldo) 48903, Spain.,BioCruces Health Research Institute, Cruces (Barakaldo) 48903, Spain
| | - Yuri Rueda
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Javier Martín-Allende
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Igone Imaz
- Service of Anatomic Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Cruces (Barakaldo) 48903, Spain
| | - Iván Olano
- Service of Urology, Cruces University Hospital, Cruces (Barakaldo) 48903, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Olatz Fresnedo
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - José A Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| | - Gorka Larrinaga
- BioCruces Health Research Institute, Cruces (Barakaldo) 48903, Spain.,Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain.,Department of Nursing I, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain
| |
Collapse
|
39
|
Tang W, Gordon A, Wang F, Chen Y, Li B. Hydralazine as a Versatile and Universal Matrix for High-Molecular Coverage and Dual-Polarity Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2021; 93:9083-9093. [PMID: 34152727 DOI: 10.1021/acs.analchem.1c00498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Few matrices have the potential to be universally applicable for imaging vast endogenous compounds ranging from micro to macromolecules. In this article, we present hydralazine (HZN) as a versatile and universal matrix for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) of a wide range of endogenous compounds between 50.0 and 20,000.0 Da. HZN was prepared from its hydrochloride by alkalizing HZN·HCl with ammonia to enhance the optical absorptivity at the preferred MALDI UV laser wavelength. To further improve its performance for MALDI MS, HZN was doped with NH4OH or TFA, resulting in matrix superior performance for imaging biologically relevant compounds in the negative and positive-ion modes, respectively. The analyte-matrix interaction was also enhanced by the optimized matrix solvent and the deposition amount. Compared with conventional matrices such as 2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, and 9-aminoacridine (9-AA), the HZN matrix provided higher sensitivity, broader molecular coverage, and improved signal intensities. Its broad acquisition range makes it versatile for imaging small molecular metabolites and lipids, as well as proteins. In addition, HZN was applied successfully for the visualization of tissue-specific distributions and changes of small molecules, lipids, and proteins in the kidney and liver sections of obese ob/ob and diabetic db/db mice. The use of the HZN matrix shows great potential application in the field of pathological research.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Andrew Gordon
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Wang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanwen Chen
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol 2021; 17:319-334. [PMID: 33547417 DOI: 10.1038/s41581-021-00393-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
Diabetic kidney disease is the leading cause of kidney failure worldwide; in the USA, it accounts for over 50% of individuals entering dialysis or transplant programmes. Unlike other complications of diabetes, the prevalence of diabetic kidney disease has failed to decline over the past 30 years. Hyperglycaemia is the primary aetiological factor responsible for the development of diabetic kidney disease. Once hyperglycaemia becomes established, multiple pathophysiological disturbances, including hypertension, altered tubuloglomerular feedback, renal hypoxia, lipotoxicity, podocyte injury, inflammation, mitochondrial dysfunction, impaired autophagy and increased activity of the sodium-hydrogen exchanger, contribute to progressive glomerular sclerosis and the decline in glomerular filtration rate. The quantitative contribution of each of these abnormalities to the progression of diabetic kidney disease, as well as their role in type 1 and type 2 diabetes mellitus, remains to be determined. Sodium-glucose co-transporter 2 (SGLT2) inhibitors have a beneficial impact on many of these pathophysiological abnormalities; however, as several pathophysiological disturbances contribute to the onset and progression of diabetic kidney disease, multiple agents used in combination will likely be required to slow the progression of disease effectively.
Collapse
|
41
|
Savas B, Astarita G, Aureli M, Sahali D, Ollero M. Gangliosides in Podocyte Biology and Disease. Int J Mol Sci 2020; 21:E9645. [PMID: 33348903 PMCID: PMC7766259 DOI: 10.3390/ijms21249645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Gangliosides constitute a subgroup of glycosphingolipids characterized by the presence of sialic acid residues in their structure. As constituents of cellular membranes, in particular of raft microdomains, they exert multiple functions, some of them capital in cell homeostasis. Their presence in cells is tightly regulated by a balanced expression and function of the enzymes responsible for their biosynthesis, ganglioside synthases, and their degradation, glycosidases. The dysregulation of their abundance results in rare and common diseases. In this review, we make a point on the relevance of gangliosides and some of their metabolic precursors, such as ceramides, in the function of podocytes, the main cellular component of the glomerular filtration barrier, as well as their implications in podocytopathies. The results presented in this review suggest the pertinence of clinical lipidomic studies targeting these metabolites.
Collapse
Affiliation(s)
- Berkan Savas
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, 20007 Washington, DC, USA;
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano Italy, 20090 Segrate (Milano), Italy;
| | - Dil Sahali
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
- Service Néphrologie, AP-HP, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Mario Ollero
- INSERM, IMRB, Univ Paris Est Créteil, F-94010 Créteil, France; (B.S.); (D.S.)
| |
Collapse
|
42
|
Hirata T, Smith SV, Takahashi T, Miyata N, Roman RJ. Increased Levels of Renal Lysophosphatidic Acid in Rodent Models with Renal Disease. J Pharmacol Exp Ther 2020; 376:240-249. [PMID: 33277348 DOI: 10.1124/jpet.120.000353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that has been implicated in the pathophysiology of kidney disease. However, few studies have attempted to measure changes in the levels of various LPA species in the kidney after the development of renal disease. The present study measured the renal LPA levels during the development of kidney disease in rat models of hypertension, diabetes, and obstructive nephropathy using liquid chromatography/mass spectrometry/mass spectrometry. LPA levels (sum of 16:0, 18:0, 18:1, 18:2, and 20:4 LPA) were higher in the renal cortex of hypertensive Dahl salt-sensitive (Dahl S) rats fed a high-salt diet than those in normotensive rats fed a low-salt diet (296.6 ± 22.9 vs. 196.3 ± 8.5 nmol/g protein). LPA levels were elevated in the outer medulla of the kidney of streptozotocin-induced type 1 diabetic Dahl S rats compared with control rats (624.6 ± 129.5 vs. 318.8 ± 17.1 nmol/g protein). LPA levels were also higher in the renal cortex of 18-month-old, type 2 diabetic nephropathy (T2DN) rats with more severe renal injury than in 6-month-old T2DN rats (184.9 ± 20.9 vs. 116.9 ± 6.0 nmol/g protein). LPA levels also paralleled the progression of renal fibrosis in the renal cortex of Sprague-Dawley rats after unilateral ureteral obstruction (UUO). Administration of an LPA receptor antagonist, Ki16425, reduced the degree of renal fibrosis in UUO rats. These results suggest that the production of renal LPA increases during the development of renal injury and contributes to renal fibrosis. SIGNIFICANCE STATEMENT: The present study reveals that the lysophosphatidic acid (LPA) levels increase in the kidney in rat models of hypertension, diabetes, and obstructive nephropathy, and administration of an LPA receptor antagonist attenuates renal fibrosis. Therapeutic approaches that target the formation or actions of renal LPA might be renoprotective and have therapeutic potential.
Collapse
Affiliation(s)
- Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Stanley V Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Teisuke Takahashi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Noriyuki Miyata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi (T.H., S.V.S., R.J.R.); and Pharmacology Laboratories (T.H., T.T.) and Research Headquarters of Pharmaceutical Operation (N.M.), Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| |
Collapse
|
43
|
Lukowski JK, Pamreddy A, Velickovic D, Zhang G, Pasa-Tolic L, Alexandrov T, Sharma K, Anderton CR. Storage Conditions of Human Kidney Tissue Sections Affect Spatial Lipidomics Analysis Reproducibility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2538-2546. [PMID: 32897710 PMCID: PMC8162764 DOI: 10.1021/jasms.0c00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lipids often are labile, unstable, and tend to degrade overtime, so it is of the upmost importance to study these molecules in their most native state. We sought to understand the optimal storage conditions for spatial lipidomic analysis of human kidney tissue sections. Specifically, we evaluated human kidney tissue sections on several different days throughout the span of a week using our established protocol for elucidating lipids using high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). We studied kidney tissue sections stored under five different conditions: open stored at -80 °C, vacuumed sealed and stored at -80 °C, with matrix preapplied before storage at -80 °C, under a nitrogen atmosphere and stored at -80 °C, and at room temperature in a desiccator. Results were compared to data obtained from kidney tissue sections that were prepared and analyzed immediately after cryosectioning. Data was processed using METASPACE. After a week of storage, the sections stored at room temperature showed the largest amount of lipid degradation, while sections stored under nitrogen and at -80 °C retained the greatest number of overlapping annotations in relation to freshly cut tissue. Overall, we found that molecular degradation of the tissue sections was unavoidable over time, regardless of storage conditions, but storing tissue sections in an inert gas at low temperatures can curtail molecular degradation within tissue sections.
Collapse
Affiliation(s)
- Jessica K Lukowski
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Annapurna Pamreddy
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
| | - Dusan Velickovic
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Guanshi Zhang
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78284, United States
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas 78284, United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington99352, United States
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health, San Antonio, Texas 78284, United States
| |
Collapse
|
44
|
Promsan S, Lungkaphin A. The roles of melatonin on kidney injury in obese and diabetic conditions. Biofactors 2020; 46:531-549. [PMID: 32449276 DOI: 10.1002/biof.1637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
Obesity is a common and complex health problem worldwide and can induce the development of Type 2 diabetes. Chronic kidney disease (CKD) is a complication occurring as a result of obesity and diabetic conditions that lead to an increased mortality rate. There are several mechanisms and pathways contributing to kidney injury in obese and diabetic conditions. The expansion of adipocytes triggers proinflammatory cytokines release into blood circulation and bind with the receptors at the cell membranes of renal tissues leading to kidney injury. Obesity-mediated inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction are the important causes and progression of CKD. Melatonin (N-acetyl-5-methoxytryptamine) is a neuronal hormone that is synthesized by the pineal gland and plays an essential role in regulating several physiological functions in the human body. Moreover, melatonin has pleiotropic effects such as antioxidant, anti-inflammation, antiapoptosis. In this review, the relationship between obesity, diabetic condition, and kidney injury and the renoprotective effect of melatonin in obese and diabetic conditions from in vitro and in vivo studies have been summarized and discussed.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue/pathology
- Animals
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/pharmacology
- Antioxidants/metabolism
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Cytokines/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Humans
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Melatonin/metabolism
- Melatonin/pharmacology
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Oxidative Stress/drug effects
- Protective Agents/metabolism
- Protective Agents/pharmacology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/prevention & control
Collapse
Affiliation(s)
- Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University Chiang Mai, Thailand
| |
Collapse
|
45
|
Hou B, He P, Ma P, Yang X, Xu C, Lam SM, Shui G, Yang X, Zhang L, Qiang G, Du G. Comprehensive Lipidome Profiling of the Kidney in Early-Stage Diabetic Nephropathy. Front Endocrinol (Lausanne) 2020; 11:359. [PMID: 32655493 PMCID: PMC7325916 DOI: 10.3389/fendo.2020.00359] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic changes associated with diabetes are reported to lead to the onset of early-stage diabetic nephropathy (DN). Furthermore, lipotoxicity is implicated in renal dysfunction. Most studies of DN have focused on a single or limited number of lipids, and the lipidome of the kidney during early-stage DN remains to be elucidated. In the present study, we aimed to comprehensively identify lipid abnormalities during early-stage DN; to this end, we established an early-stage DN rat model by feeding a high-sucrose and high-fat diet combined with administration of low-dose streptozotocin. Using a high-coverage, targeted lipidomic approach, we established the lipid profile, comprising 437 lipid species and 25 lipid classes, of the kidney cortex in normal rats and the DN rat model. Our findings additionally confirmed that the DN rat model had been successfully established. We observed distinct lipidomic signatures in the DN kidney, with characteristic alterations in side chain composition and degree of unsaturation. Glyceride lipids, especially cholesteryl esters, showed a significant increase in the DN kidney cortex. The levels of most phospholipids exhibited a decline, except those of phospholipids with side chain of 36:1. Furthermore, the levels of lyso-phospholipids and sphingolipids, including ceramide and its derivatives, were dramatically elevated in the present DN rat model. Our findings, which provide a comprehensive lipidome of the kidney cortex in rats with DN, are expected to be useful for the identification of pathologically relevant lipid species in DN. Furthermore, the results represent novel insights into the mechanistic basis of DN.
Collapse
Affiliation(s)
- Biyu Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Ping He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunyang Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Sin Man Lam
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Beijing Key Laboratory of Drug Target, Screening Research, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Nowling TK, Rodgers J, Thiyagarajan T, Wolf B, Bruner E, Sundararaj K, Molano I, Gilkeson G. Targeting glycosphingolipid metabolism as a potential therapeutic approach for treating disease in female MRL/lpr lupus mice. PLoS One 2020; 15:e0230499. [PMID: 32187230 PMCID: PMC7080257 DOI: 10.1371/journal.pone.0230499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Glycosphingolipids (GSLs) hexosylceramides and lactosylceramides are elevated in lupus mice and human patients with nephritis. Whereas other renal diseases characterized by increased GSL levels are thought to be a result of upregulated GSL synthesis, our results suggest elevated hexosylceramides and lactosylceramides in lupus nephritis is a result of increased catabolism of ganglioside GM3 due to significantly increased neuraminidase (NEU) activity. Thus, we hypothesized GM3 would be decreased in lupus nephritis kidneys and blocking NEU activity would reduce GSLs and improve disease in lupus mice. Female MRL/lpr lupus mice were treated with water or the NEU inhibitor oseltamivir phosphate at the onset of proteinuria to block GSL catabolism. Age-matched (non-nephritic) female MRL/MpJ lupus mice served as controls. Renal GM3 levels were significantly higher in the nephritic MRL/lpr water-treated mice compared to non-nephritic MRL/MpJ mice, despite significantly increased renal NEU activity. Blocking GSL catabolism increased, rather than decreased, renal and urine GSL levels and disease was not significantly impacted. A pilot study treating MRL/lpr females with GlcCer synthase inhibitor Genz-667161 to block GSL synthesis resulted in a strong significant negative correlation between Genz-667161 dose and renal GSL hexosylceramide and GM3 levels. Splenomegaly was negatively correlated and serum IgG levels were marginally correlated with increasing Genz-667161 dose. These results suggest accumulation of renal GM3 may be due to dysregulation of one or more of the GSL ganglioside pathways and inhibiting GSL synthesis, but not catabolism, may be a therapeutic approach for treating lupus nephritis.
Collapse
Affiliation(s)
- Tamara K. Nowling
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| | - Jessalyn Rodgers
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thirumagal Thiyagarajan
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Bethany Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Evelyn Bruner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kamala Sundararaj
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ivan Molano
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
47
|
Zhang G, Zhang J, DeHoog RJ, Pennathur S, Anderton CR, Venkatachalam MA, Alexandrov T, Eberlin LS, Sharma K. DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules. Metabolomics 2020; 16:11. [PMID: 31925564 PMCID: PMC7301343 DOI: 10.1007/s11306-020-1637-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is the most prevalent complication in diabetic patients, which contributes to high morbidity and mortality. Urine and plasma metabolomics studies have been demonstrated to provide valuable insights for DKD. However, limited information on spatial distributions of metabolites in kidney tissues have been reported. OBJECTIVES In this work, we employed an ambient desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) coupled to a novel bioinformatics platform (METASPACE) to characterize the metabolome in a mouse model of DKD. METHODS DESI-MSI was performed for spatial untargeted metabolomics analysis in kidneys of mouse models (F1 C57BL/6J-Ins2Akita male mice at 17 weeks of age) of type 1 diabetes (T1D, n = 5) and heathy controls (n = 6). RESULTS Multivariate analyses (i.e., PCA and PLS-DA (a 2000 permutation test: P < 0.001)) showed clearly separated clusters for the two groups of mice on the basis of 878 measured m/z's in kidney cortical tissues. Specifically, mice with T1D had increased relative abundances of pseudouridine, accumulation of free polyunsaturated fatty acids (PUFAs), and decreased relative abundances of cardiolipins in cortical proximal tubules when compared with healthy controls. CONCLUSION Results from the current study support potential key roles of pseudouridine and cardiolipins for maintaining normal RNA structure and normal mitochondrial function, respectively, in cortical proximal tubules with DKD. DESI-MSI technology coupled with METASPACE could serve as powerful new tools to provide insight on fundamental pathways in DKD.
Collapse
Affiliation(s)
- Guanshi Zhang
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Jialing Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Rachel J DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Kumar Sharma
- Center for Renal Precision Medicine, Division of Nephrology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Audie L. Murphy Memorial VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
48
|
Nicholson RJ, Pezzolesi MG, Summers SA. Rotten to the Cortex: Ceramide-Mediated Lipotoxicity in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2020; 11:622692. [PMID: 33584550 PMCID: PMC7876379 DOI: 10.3389/fendo.2020.622692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and progressive comorbidity of diabetes mellitus that increases one's risk of developing renal failure. Progress toward development of better DKD therapeutics is limited by an incomplete understanding of forces driving and connecting the various features of DKD, which include renal steatosis, fibrosis, and microvascular dysfunction. Herein we review the literature supporting roles for bioactive ceramides as inducers of local and systemic DKD pathology. In rodent models of DKD, renal ceramides are elevated, and genetic and pharmacological ceramide-lowering interventions improve kidney function and ameliorate DKD histopathology. In humans, circulating sphingolipid profiles distinguish human DKD patients from diabetic controls. These studies highlight the potential for ceramide to serve as a central and therapeutically tractable lipid mediator of DKD.
Collapse
Affiliation(s)
- Rebekah J. Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Marcus G. Pezzolesi
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Diabetes and Metabolism Research Center, University of Utah School of Medicine, Salt Lake City, UT, United States
- *Correspondence: Scott A. Summers,
| |
Collapse
|
49
|
Thongnak L, Pongchaidecha A, Lungkaphin A. Renal Lipid Metabolism and Lipotoxicity in Diabetes. Am J Med Sci 2019; 359:84-99. [PMID: 32039770 DOI: 10.1016/j.amjms.2019.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/13/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
The pathogenesis of diabetic kidney disease is a complex process caused by both glucotoxicity and lipotoxicity due to lipid accumulation. In cases of diabetic animals, lipid deposition is found in both tubular and glomerular portions of the kidneys, which are the major sites of diabetic nephropathy lesions. The aim of this review was to provide insights into the mechanisms that lead to the development of renal lipid accumulation and the effects of renal lipotoxicity in the diabetic condition. An increased number of lipogenic genes and a decreased number of lipid oxidation genes are also detected in diabetic kidneys, both of which lead to lipid accumulation. The induction of oxidative stress, inflammation, fibrosis and apoptosis caused by lipid accumulation and lipid metabolites is called lipotoxicity. Renal lipotoxicity due to derangement in lipid metabolism may be a pathogenic mechanism leading to diabetic nephropathy and renal dysfunction.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
50
|
Afshinnia F, Nair V, Lin J, Rajendiran TM, Soni T, Byun J, Sharma K, Fort PE, Gardner TW, Looker HC, Nelson RG, Brosius FC, Feldman EL, Michailidis G, Kretzler M, Pennathur S. Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians. JCI Insight 2019; 4:130317. [PMID: 31573977 PMCID: PMC6948762 DOI: 10.1172/jci.insight.130317] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDIn this study, we identified the lipidomic predictors of early type 2 diabetic kidney disease (DKD) progression, which are currently undefined.METHODSThis longitudinal study included 92 American Indians with type 2 diabetes. Serum lipids (406 from 18 classes) were quantified using mass spectrometry from baseline samples when iothalamate-based glomerular filtration rate (GFR) was at least 90 mL/min. Affymetrix GeneChip Array was used to measure renal transcript expression. DKD progression was defined as at least 40% decline in GFR during follow-up.RESULTSParticipants had a mean age of 45 ± 9 years and median urine albumin/creatinine ratio of 43 (interquartile range 11-144). The 32 progressors had significantly higher relative abundance of polyunsaturated triacylglycerols (TAGs) and a lower abundance of C16-C20 acylcarnitines (ACs) (P < 0.001). In a Cox regression model, the main effect terms of unsaturated free fatty acids and phosphatidylethanolamines and the interaction terms of C16-C20 ACs and short-low-double-bond TAGs by categories of albuminuria independently predicted DKD progression. Renal expression of acetyl-CoA carboxylase-encoding gene (ACACA) correlated with serum diacylglycerols in the glomerular compartment (r = 0.36, and P = 0.006) and with low-double-bond TAGs in the tubulointerstitial compartment (r = 0.52, and P < 0.001).CONCLUSIONCollectively, the findings reveal a previously unrecognized link between lipid markers of impaired mitochondrial β-oxidation and enhanced lipogenesis and DKD progression in individuals with preserved GFR. Renal acetyl-CoA carboxylase activation accompanies these lipidomic changes and suggests that it may be the underlying mechanism linking lipid abnormalities to DKD progression.TRIAL REGISTRATIONClinicalTrials.gov, NCT00340678.FUNDINGNIH R24DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, and P30DK020572.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jiahe Lin
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Thekkelnaycke M. Rajendiran
- Michigan Regional Comprehensive Metabolomics Resource Core and
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core and
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kumar Sharma
- Division of Nephrology, Department of Internal Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Frank C. Brosius
- Division of Nephrology, Department of Medicine, University of Arizona College of Medicine, Tuscan, Arizona, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - George Michailidis
- Department of Statistics and
- Informatics Institute, University of Florida, Gainesville, Florida, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Michigan Regional Comprehensive Metabolomics Resource Core and
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|