1
|
Althaher AR. An Overview of Hormone-Sensitive Lipase (HSL). ScientificWorldJournal 2022; 2022:1964684. [PMID: 36530555 PMCID: PMC9754850 DOI: 10.1155/2022/1964684] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 07/30/2023] Open
Abstract
Hormone-sensitive lipase (HSL) is a pivotal enzyme that mediates triglyceride hydrolysis to provide free fatty acids and glycerol in adipocytes in a hormonally controlled lipolysis process. Elevated plasma-free fatty acids were accompanied by insulin resistance, type-2 diabetes, and obesity. Inhibition of lipolysis through HSL inhibition may provide a mechanism to prevent the accumulation of free fatty acids and to improve the affectability of insulin and blood glucose handling in type II diabetes. The published studies that examine the structure, regulation, and function of HSL and major inhibitors were reviewed in this paper.
Collapse
Affiliation(s)
- Arwa R. Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
2
|
Rosiglitazone Reverses Inflammation in Epididymal White Adipose Tissue in Hormone-Sensitive Lipase-Knockout Mice. J Lipid Res 2022; 64:100305. [PMID: 36273647 PMCID: PMC9760656 DOI: 10.1016/j.jlr.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/05/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Hormone-sensitive lipase (HSL) plays a crucial role in intracellular lipolysis, and loss of HSL leads to diacylglycerol (DAG) accumulation, reduced FA mobilization, and impaired PPARγ signaling. Hsl knockout mice exhibit adipose tissue inflammation, but the underlying mechanisms are still not clear. Here, we investigated if and to what extent HSL loss contributes to endoplasmic reticulum (ER) stress and adipose tissue inflammation in Hsl knockout mice. Furthermore, we were interested in how impaired PPARγ signaling affects the development of inflammation in epididymal white adipose tissue (eWAT) and inguinal white adipose tissue (iWAT) of Hsl knockout mice and if DAG and ceramide accumulation contribute to adipose tissue inflammation and ER stress. Ultrastructural analysis showed a markedly dilated ER in both eWAT and iWAT upon loss of HSL. In addition, Hsl knockout mice exhibited macrophage infiltration and increased F4/80 mRNA expression, a marker of macrophage activation, in eWAT, but not in iWAT. We show that treatment with rosiglitazone, a PPARγ agonist, attenuated macrophage infiltration and ameliorated inflammation of eWAT, but expression of ER stress markers remained unchanged, as did DAG and ceramide levels in eWAT. Taken together, we show that HSL loss promoted ER stress in both eWAT and iWAT of Hsl knockout mice, but inflammation and macrophage infiltration occurred mainly in eWAT. Also, PPARγ activation reversed inflammation but not ER stress and DAG accumulation. These data indicate that neither reduction of DAG levels nor ER stress contribute to the reversal of eWAT inflammation in Hsl knockout mice.
Collapse
|
3
|
Approaches to Measuring the Activity of Major Lipolytic and Lipogenic Enzymes In Vitro and Ex Vivo. Int J Mol Sci 2022; 23:ijms231911093. [PMID: 36232405 PMCID: PMC9570359 DOI: 10.3390/ijms231911093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Since the 1950s, one of the goals of adipose tissue research has been to determine lipolytic and lipogenic activity as the primary metabolic pathways affecting adipocyte health and size and thus representing potential therapeutic targets for the treatment of obesity and associated diseases. Nowadays, there is a relatively large number of methods to measure the activity of these pathways and involved enzymes, but their applicability to different biological samples is variable. Here, we review the characteristics of mean lipogenic and lipolytic enzymes, their inhibitors, and available methodologies for assessing their activity, and comment on the advantages and disadvantages of these methodologies and their applicability in vivo, ex vivo, and in vitro, i.e., in cells, organs and their respective extracts, with the emphasis on adipocytes and adipose tissue.
Collapse
|
4
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
5
|
Chiu YJ, Tu HH, Kung ML, Wu HJ, Chen YW. Fluoxetine ameliorates high-fat diet-induced metabolic abnormalities partially via reduced adipose triglyceride lipase-mediated adipocyte lipolysis. Biomed Pharmacother 2021; 141:111848. [PMID: 34198047 DOI: 10.1016/j.biopha.2021.111848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes mellitus have more risk to develop depression. Fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI), is drug for mood and anxiety disorders. Previous studies showed that FLX could induce weight loss in non-depressed clinically overweight individuals. Although the anti-appetite effect of FLX is well-documented, its potential effects on metabolic abnormalities have not been investigated. In this study, we want to investigate whether FLX could be a therapeutic drug against high fat diet (HFD)-induced metabolic disorder. We generated metabolic disorders and depressed mouse model by feeding HFD for 12 weeks at the age of 8 weeks. Then, mice were intraperitoneally injected once daily with FLX (10 mg/kg or 20 mg/kg) for four weeks. Our results showed that FLX alleviated the HFD-induced metabolic dysfunctions and depressive phenotypes in mice. FLX improved systemic glucose homeostasis, at least in part, by improving visceral white adipose tissue (vWAT) insulin signaling. Moreover, FLX reduced circulating plasma leptin level, and decreased the expression of adipose triglyceride lipase (ATGL) and peroxisome proliferator-activated receptor gamma (PPARγ) in vWAT. Our data revealed that FLX also reduced the triglyceride (TG) accumulation in vWAT. Therefore, these findings suggest that FLX exhibits significant potential on comorbidity of metabolic disorder and depression in mice.
Collapse
Affiliation(s)
- Yen-Ju Chiu
- Departments of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ho-Hsiang Tu
- Emergency Department, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hung-Ju Wu
- Departments of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Wen Chen
- Departments of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Gerstner C, Saín J, Lavandera J, González M, Bernal C. Functional milk fat enriched in conjugated linoleic acid prevented liver lipid accumulation induced by a high-fat diet in male rats. Food Funct 2021; 12:5051-5065. [PMID: 33960342 DOI: 10.1039/d0fo03296d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim was to investigate the potential effect of functional milk fat (FMF), naturally enriched in conjugated linoleic acid, on the prevention of liver lipid accumulation and some biochemical mechanisms involved in the liver triacylglycerol (TAG) regulation in high-fat (HF) fed rats. Male Wistar rats were fed (60 days) with S7 (soybean oil, 7%) or HF diets: S30 (soybean oil, 30%), MF30 (soybean oil, 3% + milk fat -MF-, 27%) or FMF30 (soybean oil, 3% + FMF, 27%). Nutritional parameters, hepatic fatty acid (FA) composition, liver and serum TAG levels, hepatic TAG secretion rate (TAG-SR), lipoprotein lipase (LPL) activity in adipose tissue and muscle, activities and/or mRNA levels of lipogenic and β-oxidative enzymes, and mRNA levels of transcription factors and FA transport proteins were assessed. The hepatic lipid accumulation induced by the S30 diet was associated with increased mRNA levels of FA transporters; and it was prevented by FMF through an increase in the hepatic TAG-SR, carnitine palmitoyltransferase-1a activity and peroxisome proliferator-activated receptor alpha mRNA levels, as well as by a reduction of the mRNA levels of FA transporters. The hypotriacylglyceridaemia observed in S30 was related with an increased LPL activity in adipose tissue and it was reverted by FMF through the increased hepatic TAG-SR. In brief, FMF prevented the liver lipid accumulation induced by HF diets by increasing the hepatic TAG-SR and β-oxidation, and reducing the hepatic FA uptake. The increased hepatic TAG-SR induced by FMF could be responsible for the attenuation of serum TAG alterations.
Collapse
Affiliation(s)
- Carolina Gerstner
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Juliana Saín
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Jimena Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Marcela González
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Claudio Bernal
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| |
Collapse
|
7
|
Pajed L, Taschler U, Tilp A, Hofer P, Kotzbeck P, Kolleritsch S, Radner FPW, Pototschnig I, Wagner C, Schratter M, Eder S, Huetter S, Schreiber R, Haemmerle G, Eichmann TO, Schweiger M, Hoefler G, Kershaw EE, Lass A, Schoiswohl G. Advanced lipodystrophy reverses fatty liver in mice lacking adipocyte hormone-sensitive lipase. Commun Biol 2021; 4:323. [PMID: 33692445 PMCID: PMC7946939 DOI: 10.1038/s42003-021-01858-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 02/16/2021] [Indexed: 11/09/2022] Open
Abstract
Modulation of adipocyte lipolysis represents an attractive approach to treat metabolic diseases. Lipolysis mainly depends on two enzymes: adipose triglyceride lipase and hormone-sensitive lipase (HSL). Here, we investigated the short- and long-term impact of adipocyte HSL on energy homeostasis using adipocyte-specific HSL knockout (AHKO) mice. AHKO mice fed high-fat-diet (HFD) progressively developed lipodystrophy accompanied by excessive hepatic lipid accumulation. The increased hepatic triglyceride deposition was due to induced de novo lipogenesis driven by increased fatty acid release from adipose tissue during refeeding related to defective insulin signaling in adipose tissue. Remarkably, the fatty liver of HFD-fed AHKO mice reversed with advanced age. The reversal of fatty liver coincided with a pronounced lipodystrophic phenotype leading to blunted lipolytic activity in adipose tissue. Overall, we demonstrate that impaired adipocyte HSL-mediated lipolysis affects systemic energy homeostasis in AHKO mice, whereby with older age, these mice reverse their fatty liver despite advanced lipodystrophy.
Collapse
Affiliation(s)
- Laura Pajed
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anna Tilp
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Petra Kotzbeck
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | | | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Carina Wagner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Sandra Eder
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Sabrina Huetter
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic & Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Hundahl C, Kotzbeck P, Burm HB, Christiansen SH, Torz L, Helge AW, Madsen MP, Ratner C, Serup AK, Thompson JJ, Eichmann TO, Pers TH, Woldbye DPD, Piomelli D, Kiens B, Zechner R, Skov LJ, Holst B. Hypothalamic hormone-sensitive lipase regulates appetite and energy homeostasis. Mol Metab 2021; 47:101174. [PMID: 33549847 PMCID: PMC7903013 DOI: 10.1016/j.molmet.2021.101174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The goal of this study was to investigate the importance of central hormone-sensitive lipase (HSL) expression in the regulation of food intake and body weight in mice to clarify whether intracellular lipolysis in the mammalian hypothalamus plays a role in regulating appetite. Methods Using pharmacological and genetic approaches, we investigated the role of HSL in the rodent brain in the regulation of feeding and energy homeostasis under basal conditions during acute stress and high-fat diet feeding. Results We found that HSL, a key enzyme in the catabolism of cellular lipid stores, is expressed in the appetite-regulating centers in the hypothalamus and is activated by acute stress through a mechanism similar to that observed in adipose tissue and skeletal muscle. Inhibition of HSL in rodent models by a synthetic ligand, global knockout, or brain-specific deletion of HSL prevents a decrease in food intake normally seen in response to acute stress and is associated with the increased expression of orexigenic peptides neuropeptide Y (NPY) and agouti-related peptide (AgRP). Increased food intake can be reversed by adeno-associated virus-mediated reintroduction of HSL in neurons of the mediobasal hypothalamus. Importantly, metabolic stress induced by a high-fat diet also enhances the hyperphagic phenotype of HSL-deficient mice. Specific deletion of HSL in the ventromedial hypothalamic nucleus (VMH) or AgRP neurons reveals that HSL in the VMH plays a role in both acute stress-induced food intake and high-fat diet-induced obesity. Conclusions Our results indicate that HSL activity in the mediobasal hypothalamus is involved in the acute reduction in food intake during the acute stress response and sensing of a high-fat diet. HSL is expressed in appetite-regulating nuclei of the mouse hypothalamus. HSL in the hypothalamus is activated via β-adrenergic receptor signaling. The anorexic response to acute stress is blunted in mice without hypothalamic HSL. Central HSL deficiency results in obesity in mice on a high-fat diet. HSL in SF1-positive neurons contributes to the anorexigenic stress response.
Collapse
Affiliation(s)
- Cecilie Hundahl
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Petra Kotzbeck
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Hayley B Burm
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Søren H Christiansen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lola Torz
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Aske W Helge
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin P Madsen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Cecilia Ratner
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Annette K Serup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jonatan J Thompson
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - David P D Woldbye
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Daniele Piomelli
- Center for Explorative Lipidomics, BioTechMed-Graz, Graz, Austria; Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Louise J Skov
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
9
|
Oliva ME, Ferreira MDR, Vega Joubert MB, D'Alessandro ME. Salvia hispanica L. (chia) seed promotes body fat depletion and modulates adipocyte lipid handling in sucrose-rich diet-fed rats. Food Res Int 2021; 139:109842. [PMID: 33509466 DOI: 10.1016/j.foodres.2020.109842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/16/2022]
Abstract
The aim of this study was to analyze the effects of Salvia hispanica L. (chia) seed upon metabolic pathways that play a key role in adipose tissue lipid handling which could be involved in visceral adiposity reduction developed in rats fed a sucrose-rich diet (SRD). Male Wistar rats were fed with a reference diet (RD) -6 months- or SRD-3 months. Then, the last group was randomly divided into two subgroups. One subgroup continued receiving the SRD up to 6 months and the other was fed with a SRD where whole chia seed was incorporated as the source of dietary fat for the next 3 months (SRD + CHIA). Results showed that chia seed in the SRD-fed rat reduced the abdominal and thoracic circumferences, carcass fat content, adipose tissue weights, and visceral adiposity index. This was accompanied by an improvement in insulin sensitivity and plasma lipid profile. In epididymal adipose tissue, the decreased fat cell triglyceride content was associated with a reduction in both, FAT/CD 36 plasma membrane levels and the fat synthesis enzyme activities. There were not changes in oxidative CPT enzyme activities. PKCβ and the precursor and mature forms of SREBP-1 protein levels were decreased, while pAMPK was increased. Our findings suggest that chia seed supplementation can modulate essential pathways of lipid metabolism in adipose tissue, contributing to reduced visceral fat accumulation in SRD-fed rats.
Collapse
Affiliation(s)
- María Eugenia Oliva
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Del Rosario Ferreira
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Michelle Berenice Vega Joubert
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - María Eugenia D'Alessandro
- Laboratorio de Estudio de Enfermedades Metabólicas relacionadas con la Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
10
|
Lim K, Haider A, Adams C, Sleigh A, Savage DB. Lipodistrophy: a paradigm for understanding the consequences of "overloading" adipose tissue. Physiol Rev 2020; 101:907-993. [PMID: 33356916 DOI: 10.1152/physrev.00032.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lipodystrophies have been recognized since at least the nineteenth century and, despite their rarity, tended to attract considerable medical attention because of the severity and somewhat paradoxical nature of the associated metabolic disease that so closely mimics that of obesity. Within the last 20 yr most of the monogenic subtypes have been characterized, facilitating family genetic screening and earlier disease detection as well as providing important insights into adipocyte biology and the systemic consequences of impaired adipocyte function. Even more recently, compelling genetic studies have suggested that subtle partial lipodystrophy is likely to be a major factor in prevalent insulin-resistant type 2 diabetes mellitus (T2DM), justifying the longstanding interest in these disorders. This progress has also underpinned novel approaches to treatment that, in at least some patients, can be of considerable therapeutic benefit.
Collapse
Affiliation(s)
- Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Claire Adams
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Alison Sleigh
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Soto-Alarcón SA, Ortiz M, Orellana P, Echeverría F, Bustamante A, Espinosa A, Illesca P, Gonzalez-Mañán D, Valenzuela R, Videla LA. Docosahexaenoic acid and hydroxytyrosol co-administration fully prevents liver steatosis and related parameters in mice subjected to high-fat diet: A molecular approach. Biofactors 2019; 45:930-943. [PMID: 31454114 DOI: 10.1002/biof.1556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
Attenuation of high-fat diet (HFD)-induced liver steatosis is accomplished by different nutritional interventions. Considering that the n-3 PUFA docosahexaenoic acid (DHA) modulates lipid metabolism and the antioxidant hydroxytyrosol (HT) diminishes oxidative stress underlying fatty liver, it is hypothesized that HFD-induced steatosis is suppressed by DHA and HT co-administration. Male C57BL/6J mice were fed a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks, without and with supplementation of DHA (50 mg/kg/day), HT (5 mg/kg/day) or both. The combined DHA + HT protocol fully prevented liver steatosis and the concomitant pro-inflammatory state induced by HFD, with suppression of lipogenic and oxidative stress signaling, recovery of fatty acid oxidation capacity and enhancement in resolvin availability affording higher inflammation resolution capability. Abrogation of HFD-induced hepatic steatosis by DHA and HT co-administration represents a crucial therapeutic strategy eluding disease progression into stages lacking efficacious handling at present time.
Collapse
Affiliation(s)
| | - Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Curicó, Chile
| | - Paula Orellana
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Andrés Bustamante
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Illesca
- Biochemistry Department, Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | | | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
12
|
Echeverría F, Valenzuela R, Bustamante A, Álvarez D, Ortiz M, Espinosa A, Illesca P, Gonzalez-Mañan D, Videla LA. High-fat diet induces mouse liver steatosis with a concomitant decline in energy metabolism: attenuation by eicosapentaenoic acid (EPA) or hydroxytyrosol (HT) supplementation and the additive effects upon EPA and HT co-administration. Food Funct 2019; 10:6170-6183. [PMID: 31501836 DOI: 10.1039/c9fo01373c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-fat-diet (HFD) feeding is associated with liver oxidative stress (OS), n-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) depletion, hepatic steatosis and mitochondrial dysfunction. Our hypothesis is that the HFD-induced liver injury can be attenuated by the combined supplementation of n-3 LCPUFA eicosapentaenoic acid (EPA) and the antioxidant hydroxytyrosol (HT). The C57BL/6J mice were administered an HFD (60% fat, 20% protein, 20% carbohydrates) or control diet (CD; 10% fat, 20% protein, 70% carbohydrates), with or without EPA (50 mg kg-1 day-1), HT (5 mg kg-1 day-1), or EPA + HT (50 and 5 mg kg-1 day-1, respectively) for 12 weeks. We measured the body and liver weights and dietary and energy intakes along with liver histology, FA composition, steatosis score and associated transcription factors, mitochondrial functions and metabolic factors related to energy sensing through the AMP-activated protein kinase (AMPK) and PPAR-γ coactivator-1α (PGC-1α) cascade. It was found that the HFD significantly induced liver steatosis, with a 66% depletion of n-3 LCPUFAs and a 100% increase in n-6/n-3 LCPUFA ratio as compared to the case of CD (p < 0.05). These changes were concomitant with (i) a 95% higher lipogenic and 70% lower FA oxidation signaling, (ii) a 40% diminution in mitochondrial respiratory capacity and (iii) a 56% lower ATP content. HFD-induced liver steatosis was also associated with (iv) a depressed mRNA expression of AMPK-PGC-1α signaling components, nuclear respiratory factor-2 (NRF-2) and β-ATP synthase. These HFD effects were significantly attenuated by the combined EPA + HT supplementation in an additive manner. These results suggested that EPA and HT co-administration partly prevented HFD-induced liver steatosis, thus strengthening the importance of combined interventions in hepatoprotection in non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Francisca Echeverría
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Andrés Bustamante
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Daniela Álvarez
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Curicó, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Illesca
- Biochemistry Department, Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | | | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
13
|
Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:880-899. [PMID: 30367950 PMCID: PMC6439276 DOI: 10.1016/j.bbalip.2018.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Adipose triglyceride lipase (ATGL) has been discovered 14 years ago and revised our view on intracellular triglyceride (TG) mobilization – a process termed lipolysis. ATGL initiates the hydrolysis of TGs to release fatty acids (FAs) that are crucial energy substrates, precursors for the synthesis of membrane lipids, and ligands of nuclear receptors. Thus, ATGL is a key enzyme in whole-body energy homeostasis. In this review, we give an update on how ATGL is regulated on the transcriptional and post-transcriptional level and how this affects the enzymes' activity in the context of neutral lipid catabolism. In depth, we highlight and discuss the numerous physiological functions of ATGL in lipid and energy metabolism. Over more than a decade, different genetic mouse models lacking or overexpressing ATGL in a cell- or tissue-specific manner have been generated and characterized. Moreover, pharmacological studies became available due to the development of a specific murine ATGL inhibitor (Atglistatin®). The identification of patients with mutations in the human gene encoding ATGL and their disease spectrum has underpinned the importance of ATGL in humans. Together, mouse models and human data have advanced our understanding of the physiological role of ATGL in lipid and energy metabolism in adipose and non-adipose tissues, and of the pathophysiological consequences of ATGL dysfunction in mice and men. Summary of mouse models with genetic or pharmacological manipulation of ATGL. Summary of patients with mutations in the human gene encoding ATGL. In depth discussion of the role of ATGL in numerous physiological processes in mice and men.
Collapse
|
14
|
Barrera C, Valenzuela R, Rincón MÁ, Espinosa A, Echeverria F, Romero N, Gonzalez-Mañan D, Videla LA. Molecular mechanisms related to the hepatoprotective effects of antioxidant-rich extra virgin olive oil supplementation in rats subjected to short-term iron administration. Free Radic Biol Med 2018; 126:313-321. [PMID: 30153476 DOI: 10.1016/j.freeradbiomed.2018.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Enhanced iron levels in liver are associated with oxidative stress development and damage with increased fat accumulation. The aim of this work was to assess the hypothesis that antioxidant-rich extra virgin olive oil (AR-EVOO) counteracts iron-rich diet (IRD)-induced oxidative stress hindering hepatic steatosis. Male Wistar rats were fed and IRD (200 mg iron/kg diet) versus a control diet (CD; 50 mg iron/kg diet) with alternate AR-EVOO supplementation (100 mg/day) for 21 days. IRD induced liver steatosis and oxidative stress (higher levels of protein oxidation and lipid peroxidation with glutathione depletion), mitochondrial dysfunction (decreased citrate synthase and complex I and II activities) and loss of polyunsaturated fatty acids (PUFAs), with a drastic enhancement in the sterol regulatory element-binding protein-1c (SREBP-1c)/peroxisome proliferator-activated receptor-α (PPAR-α) ratio upregulating the expression of lipogenic enzymes (acetyl-CoA carboxylase, fatty acid (FA) synthase and stearoyl desaturase 2) and downregulating those involved in FA oxidation (carnitine palmitoyl transferase and acyl-CoA oxidase) over values in the CD group. IRD also upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and its target genes. AR-EVOO supplementation alone did not modify the studied parameters, however, IRD combined with AR-EVOO administration returned IRD-induced changes to baseline levels of the CD group. It is concluded that IRD-induced non-alcoholic fatty liver disease (NAFLD) is prevented by AR-EVOO supplementation, which might be related to the protective effects of its components such as hydroxytyrosol, oleic acid, tocopherols and/or PUFAs, thus representing a suitable anti-steatotic strategy to avoid progression into more severe stages of the disease, underlying NAFLD associated with iron overloading pathologies or obesity.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile; Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.
| | - Miguel Ángel Rincón
- Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | | | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile
| |
Collapse
|
15
|
Park JE, Jang J, Lee EJ, Kim SJ, Yoo HJ, Lee S, Kang MJ. Potential involvement of Drosophila flightless-1 in carbohydrate metabolism. BMB Rep 2018. [PMID: 30060781 PMCID: PMC6177503 DOI: 10.5483/bmbrep.2018.51.9.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A previous study of ours indicated that Drosophila flightless-1 controls lipid metabolism, and that there is an accumulation of triglycerides in flightless-1 (fliI)-mutant flies, where this mutation triggers metabolic stress and an obesity phenotype. Here, with the aim of characterizing the function of FliI in metabolism, we analyzed the levels of gene expression and metabolites in fliI-mutant flies. The levels of enzymes related to glycolysis, lipogenesis, and the pentose phosphate pathway increased in fliI mutants; this result is consistent with the levels of metabolites corresponding to a metabolic pathway. Moreover, high-throughput RNA sequencing revealed that Drosophila FliI regulates the expression of genes related to biological processes such as chromosome organization, carbohydrate metabolism, and immune reactions. These results showed that Drosophila FliI regulates the expression of metabolic genes, and that dysregulation of the transcription controlled by FliI gives rise to metabolic stress and problems in the development and physiology of Drosophila.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Jinho Jang
- Department of Biological Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Su Jung Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Semin Lee
- Department of Biological Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Min-Ji Kang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
16
|
Xu M, Chang HH, Jung X, Moro A, Chou CEN, King J, Hines OJ, Sinnett-Smith J, Rozengurt E, Eibl G. Deficiency in hormone-sensitive lipase accelerates the development of pancreatic cancer in conditional KrasG12D mice. BMC Cancer 2018; 18:797. [PMID: 30086728 PMCID: PMC6081906 DOI: 10.1186/s12885-018-4713-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hormone sensitive lipase (HSL) is a neutral lipase that preferentially catalyzes the hydrolysis of diacylglycerol contributing to triacylglycerol breakdown in the adipose tissue. HSL has been implicated to play a role in tumor cachexia, a debilitating syndrome characterized by progressive loss of adipose tissue. Consequently, pharmacological inhibitors of HSL have been proposed for the treatment of cancer-associated cachexia. In the present study we used the conditional KrasG12D (KC) mouse model of pancreatic ductal adenocarcinoma (PDAC) with a deficiency in HSL to determine the impact of HSL suppression on the development of PDAC. METHODS KC;Hsl+/+ and KC;Hsl-/- mice were fed standard rodent chow for 20 weeks. At sacrifice, the incidence of PDAC was determined and inflammation in the mesenteric adipose tissue and pancreas was assessed histologically and by immunofluorescence. To determine statistical significance, ANOVA and two-tailed Student's t-tests were performed. To compare PDAC incidence, a two-sided Fisher's exact test was used. RESULTS Compared to KC;Hsl+/+ mice, KC;Hsl-/- mice gained similar weight and displayed adipose tissue and pancreatic inflammation. In addition, KC;Hsl-/- mice had reduced levels of plasma insulin and leptin. Importantly, the increased adipose tissue and pancreatic inflammation was associated with a significant increase in PDAC incidence in KC;Hsl-/- mice. CONCLUSIONS HSL deficiency is associated with adipose tissue and pancreatic inflammation and accelerates PDAC development in the KC mouse model.
Collapse
Affiliation(s)
- Mu Xu
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - Hui-Hua Chang
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
- CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, USA
| | - Xiaoman Jung
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - Aune Moro
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - Caroline Ei Ne Chou
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - Jonathan King
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - O. Joe Hines
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
| | - James Sinnett-Smith
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
- CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, USA
| | - Enrique Rozengurt
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
- CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, USA
| | - Guido Eibl
- Departments of Surgery, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Ave, CHS 72-236, Los Angeles, CA 90095 USA
- CURE: Digestive Diseases Research Center, University of California at Los Angeles, Los Angeles, USA
| |
Collapse
|
17
|
Quiroga AD, Lehner R. Pharmacological intervention of liver triacylglycerol lipolysis: The good, the bad and the ugly. Biochem Pharmacol 2018; 155:233-241. [PMID: 30006193 DOI: 10.1016/j.bcp.2018.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
Excessive triacylglycerol (TG) accumulation is the distinctive feature of obesity. In the liver, sustained TG accretion leads to nonalcoholic fatty liver disease (NAFLD), eventually progressing to non-alcoholic steatohepatitis (NASH) and cirrhosis, which is associated with complications including hepatic failure, hepatocellular carcinoma and death. Pharmacological interventions are actively pursued to prevent lipid accumulation in hepatocytes and, therefore, to ameliorate the associated pathophysiological conditions. Here, we sought to provide an overview of the pharmacological approaches to up- or downregulate the expression and activities of the enzymes involved in hepatic TG hydrolysis. Fatty acids (FA) released by hydrolysis of hepatic TG can be used for β-oxidation, signaling, and for very low-density lipoprotein (VLDL)-TG synthesis. Originally, lipolysis was believed to be centered in the adipose and to be catalyzed by only two lipases, hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MAGL). However, genetic ablation of HSL expression in mice failed to erase TG hydrolysis in adipocytes leading to the identification of a third lipase termed adipose triglyceride lipase (ATGL). Although these three enzymes are considered to be the main players governing lipolysis in the adipocyte, other lipolytic enzymes have been described to contribute to hepatic TG metabolism. These include adiponutrin/patatin-like phospholipase domain containing 3 (PNPLA3), some members of the carboxylesterase family (CES/Ces), arylacetamide deacetylase (AADAC), lysosomal acid lipase (LAL) and hepatic lipase (HL). This review highlights the consequences of pharmacological interventions of liver lipases that degrade TG in cytosolic lipid droplets, in the endoplasmic reticulum, in the late endosomes/lysosomes and along the secretory route.
Collapse
Affiliation(s)
- Ariel D Quiroga
- Instituto de Fisiología Experimental (IFISE), Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Rosario, Argentina.
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, Department of Pediatrics, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
18
|
Valenzuela R, Rincón-Cervera MÁ, Echeverría F, Barrera C, Espinosa A, Hernández-Rodas MC, Ortiz M, Valenzuela A, Videla LA. Iron-induced pro-oxidant and pro-lipogenic responses in relation to impaired synthesis and accretion of long-chain polyunsaturated fatty acids in rat hepatic and extrahepatic tissues. Nutrition 2018; 45:49-58. [DOI: 10.1016/j.nut.2017.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
|
19
|
Abstract
AbstractConjugated linoleic acid (CLA) might regulate the lipid depots in liver and adipose tissue. As there is an association between maternal nutrition, fat depots and risk of offspring chronic disease, the aim was to investigate the effect of maternal CLA consumption on TAG regulation and some inflammatory parameters in adult male rat offspring receiving or not receiving CLA. Female Wistar rats were fed control (C) or CLA-supplemented (1 %, w/w) diets during 4 weeks before and throughout pregnancy and lactation. After weaning, male offspring of CLA rats were fed C or CLA diets (CLA/C and CLA/CLA groups, respectively), whereas C male rat offspring were fed a C diet (C/C group) for 9 weeks. Serum TAG levels were increased in the CLA/CLA and CLA/C groups, associated with a reduction of lipoprotein lipase activity and weights of adipose tissue. The liver TAG levels were decreased in the CLA/CLA group, related to a significant reduction of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and glucose-6-phosphate dehydrogenase enzyme activities, as well as to the mRNA levels of FAS, ACC, stearoyl-CoA desaturase-1 and sterol regulatory element-binding protein-1c. Even though normal TAG levels were found in the liver of CLA/C rats, a reduction of lipogenesis was also observed. Thus, these results demonstrated a programming effect of CLA on the lipid metabolic pathways leading to a preventive effect on the TAG accretion in adipose tissue and the liver of male rat offspring. This knowledge could be important to develop some dietary strategies leading to a reduced incidence of obesity and fatty acid liver disease in humans.
Collapse
|
20
|
Hernández-Rodas MC, Valenzuela R, Echeverría F, Rincón-Cervera MÁ, Espinosa A, Illesca P, Muñoz P, Corbari A, Romero N, Gonzalez-Mañan D, Videla LA. Supplementation with Docosahexaenoic Acid and Extra Virgin Olive Oil Prevents Liver Steatosis Induced by a High-Fat Diet in Mice through PPAR-α and Nrf2 Upregulation with Concomitant SREBP-1c and NF-kB Downregulation. Mol Nutr Food Res 2017; 61. [PMID: 28940752 DOI: 10.1002/mnfr.201700479] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/29/2017] [Indexed: 12/15/2022]
Abstract
SCOPE Nonalcoholic fatty liver disease is the most common cause of liver disease, for which there is no validated drug therapy at present time. In this respect, the PUFA docosahexaenoic acid (DHA; C22:6 n-3) modulate lipid metabolism in the liver, and extra virgin olive oil (EVOO) has hepatoprotective effects. METHODS AND RESULTS The effect of combined DHA (C22:6 n-3) and EVOO administration to mice on oxidative stress and metabolic disturbances induced by high-fat diet (HFD) is evaluated. Male C57BL/6J mice are fed with a control diet (10% fat, 20% protein, and 70% carbohydrates) or an HFD (60% fat, 20% protein, and 20% carbohydrates) for 12 weeks. Animals are supplemented with DHA (50 mg/kg/day), EVOO (50 mg/kg/day), or DHA + EVOO through oral route. DHA + EVOO cosupplementation results in greater protection (p < 0.05) over that elicited by DHA or EVOO supply alone, when compared to the damage induced by HFD. DHA + EVOO significantly reduces hepatic steatosis, oxidative stress, systemic inflammation, and insulin resistance. CONCLUSION Synergistic beneficial effects of DHA + EVOO supplementation are associated with the activation/inactivation of key transcription factors involved in the above-mentioned processes. Data presented indicate that dietary supplementation with DHA + EVOO drastically reduces the development of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Illesca
- Department of Biochemistry, School of Biochemistry, University of Litoral, Santa Fe, Argentina
| | - Patricio Muñoz
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alicia Corbari
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nalda Romero
- Faculty of Chemical Sciences and Pharmacy, Department of Food Science and Chemical Technology, University of Chile, Santiago, Chile
| | - Daniel Gonzalez-Mañan
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
21
|
Liu N, Yang G, Hu M, Han J, Cai Y, Hu Z, Jia C, Zhang M. Adipose Triglyceride Lipase Gene Polymorphisms is Not Associated with Free Fatty Acid Levels in Chinese Han Population. Metab Syndr Relat Disord 2017; 15:474-479. [PMID: 29072982 DOI: 10.1089/met.2017.0071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Elevated levels of free fatty acids (FFAs) play a role in the pathogenesis of insulin resistance and atherosclerosis. Adipose triglyceride lipase (also defined as patatin-like phospholipase domain containing 2 or PNPLA2) has been demonstrated to contribute to the release of FFA. The aim of this study was to investigate the association of PNPLA2 gene variations with FFA levels in healthy Chinese Han population. METHODS Single-nucleotide polymorphisms of PNPLA2 were genotyped using TaqMan method to perform association studies with serum level of FFA and other lipid parameters in 1765 subjects among healthy Chinese Han population. All the subjects were divided into two groups: normal FFAs group (FFAs ≤0.88 mmol/L) and high FFAs group (FFAs >0.88 mmol/L). RESULTS Neither rs7925131 nor rs7942159 was significantly associated with FFA level. We observed no difference in the genotype frequency of rs7925131 or rs7942159 between the normal FFA group and the high FFA group. CONCLUSIONS Our results do not support an association of rs7925131 or rs7942159 with the FFA levels among the Chinese Han population.
Collapse
Affiliation(s)
- Na Liu
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Guihua Yang
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Mei Hu
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Jing Han
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Yuyu Cai
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Zhiying Hu
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Chundi Jia
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University , Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
22
|
Valenzuela R, Illesca P, Echeverría F, Espinosa A, Rincón-Cervera MÁ, Ortiz M, Hernandez-Rodas MC, Valenzuela A, Videla LA. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct 2017; 8:1526-1537. [PMID: 28386616 DOI: 10.1039/c7fo00090a] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SCOPE Non-alcoholic fatty liver disease (NAFLD) is a condition characterized by an increment in the liver fat content, with a concomitant reduction in the content of n-3-long chain polyunsaturated fatty acids (n-3 LCPUFAs), downregulation of PPAR-α activity, and upregulation of NF-κB activity, effects that induce pro-lipogenic and pro-inflammatory responses. Hydroxytyrosol (HT), a polyphenol with cytoprotective effects present in extra virgin olive oil, improves the cellular antioxidant capacity for activation of transcription factor Nrf2. The objective of this work is to evaluate the molecular adaptations involved in the anti-lipogenic, anti-inflammatory, and anti-oxidant effects of HT supplementation in high-fat diet (HFD)-fed mice. METHODS AND RESULTS Male C57BL/6J mice received (i) control diet (10% fat); (ii) control diet + HT (daily doses of 5 mg per kg body weight), (iii) HFD (60% fat); or (iv) HFD + HT for 12 weeks. HFD-fed mice exhibited (i) liver steatosis; (ii) inflammation; (iii) oxidative stress; and (iv) depletion of n-3 LCPUFAs, together with down-regulation of PPAR-α and Nrf2, and up-regulation of NF-κB. HT supplementation attenuated the metabolic alterations produced by HFD, normalizing the activity of Nrf2, reducing the drop in activity of PPAR-α, and attenuating increment of NF-κB activation. CONCLUSION Supplementation with HT activating transcription factors PPAR-α and Nrf2, along with the deactivation of NF-κB, may reduce the liver alterations induced in HFD-fed mice.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lewis JE, Samms RJ, Cooper S, Luckett JC, Perkins AC, Adams AC, Tsintzas K, Ebling FJP. Reduced adiposity attenuates FGF21 mediated metabolic improvements in the Siberian hamster. Sci Rep 2017; 7:4238. [PMID: 28652585 PMCID: PMC5484705 DOI: 10.1038/s41598-017-03607-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/05/2017] [Indexed: 11/26/2022] Open
Abstract
FGF21 exerts profound metabolic effects in Siberian hamsters exposed to long day (LD) photoperiods that increase appetite and adiposity, however these effects are attenuated in short day (SD) animals that display hypophagia and reduced adiposity. The aim of this study was to investigate whether the beneficial effects of a novel mimetic of FGF21 in the LD state are a consequence of increased adiposity or of the central photoperiodic state. This was achieved by investigating effects of FGF21 in aged hamsters, which is associated with reduced adiposity. In LD hamsters with increased adiposity, FGF21 lowered body weight as a result of both reduced daily food intake and increased caloric expenditure, driven by an increase in whole-body fat oxidation. However, in LD animals with reduced adiposity, the effect of FGF21 on body weight, caloric intake and fat oxidation were significantly attenuated or absent when compared to those with increased adiposity. These attenuated/absent effects were underpinned by the inability of FGF21 to increase the expression of key thermogenic genes in interscapular and visceral WAT. Our study demonstrates the efficacy of a novel FGF21 mimetic in hamsters, but reveals attenuated effects in the animal model where adiposity is reduced naturally independent of photoperiod.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | | | - Scott Cooper
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Jeni C Luckett
- Radiological Sciences, School of Medicine, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Alan C Perkins
- Radiological Sciences, School of Medicine, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Andrew C Adams
- Lilly Research Laboratories, Indianapolis, IN, 46285, USA
| | - Kostas Tsintzas
- MRC/ARUK Centre for Musculoskeletal Ageing, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
24
|
Takanashi M, Taira Y, Okazaki S, Takase S, Kimura T, Li CC, Xu PF, Noda A, Sakata I, Kumagai H, Ikeda Y, Iizuka Y, Yahagi N, Shimano H, Osuga JI, Ishibashi S, Kadowaki T, Okazaki H. Role of Hormone-sensitive Lipase in Leptin-Promoted Fat Loss and Glucose Lowering. J Atheroscler Thromb 2017; 24:1105-1116. [PMID: 28413180 PMCID: PMC5684476 DOI: 10.5551/jat.39552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Myriad biological effects of leptin may lead to broad therapeutic applications for various metabolic diseases, including diabetes and its complications; however, in contrast to its anorexic effect, the molecular mechanisms underlying adipopenic and glucose-lowering effects of leptin have not been fully understood. Here we aim to clarify the role of hormone-sensitive lipase (HSL) in leptin's action. Methods: Wild-type (WT) and HSL-deficient (HSLKO) mice were made hyperleptinemic by two commonly-used methods: adenovirus-mediated overexpression of leptin and continuous subcutaneous infusion of leptin by osmotic pumps. The amount of food intake, body weights, organ weights, and parameters of glucose and lipid metabolism were measured. Results: Hyperleptinemia equally suppressed the food intake in WT and HSLKO mice. On the other hand, leptin-mediated fat loss and glucose-lowering were significantly blunted in the absence of HSL when leptin was overexpressed by recombinant adenovirus carrying leptin. By osmotic pumps, the fat-losing and glucose-lowering effects of leptin were milder due to lower levels of hyperleptinemia; although the difference between WT and HSLKO mice did not reach statistical significance, HSLKO mice had a tendency to retain more fat than WT mice in the face of hyperleptinemia. Conclusions: We clarify for the first time the role of HSL in leptin's effect using a genetic model: leptin-promoted fat loss and glucose-lowering are at least in part mediated via HSL-mediated lipolysis. Further studies to define the pathophysiological role of adipocyte lipases in leptin action may lead to a new therapeutic approach to circumvent leptin resistance.
Collapse
Affiliation(s)
- Mikio Takanashi
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Yoshino Taira
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Sachiko Okazaki
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Satoru Takase
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Takeshi Kimura
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Cheng Cheng Li
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Peng Fei Xu
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Akari Noda
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University
| | - Hidetoshi Kumagai
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yuichi Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Yoko Iizuka
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Naoya Yahagi
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Hitoshi Shimano
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Jun-Ichi Osuga
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Takashi Kadowaki
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Hiroaki Okazaki
- Departments of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
25
|
Fortino MA, Oliva ME, Rodriguez S, Lombardo YB, Chicco A. Could post-weaning dietary chia seed mitigate the development of dyslipidemia, liver steatosis and altered glucose homeostasis in offspring exposed to a sucrose-rich diet from utero to adulthood? Prostaglandins Leukot Essent Fatty Acids 2017; 116:19-26. [PMID: 28088290 DOI: 10.1016/j.plefa.2016.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022]
Abstract
The present work analyzes the effects of dietary chia seeds during postnatal life in offspring exposed to a sucrose-rich diet (SRD) from utero to adulthood. At weaning, chia seed (rich in α-linolenic acid) replaced corn oil (rich in linoleic acid) in the SRD. At 150 days of offspring life, anthropometrical parameters, blood pressure, plasma metabolites, hepatic lipid metabolism and glucose homeostasis were analyzed. Results showed that chia was able to prevent the development of hypertension, liver steatosis, hypertriglyceridemia and hypercholesterolemia. Normal triacylglycerol secretion and triacylglycerol clearance were accompanied by an improvement of de novo hepatic lipogenic and carnitine-palmitoyl transferase-1 enzymatic activities, associated with an accretion of n-3 polyunsaturated fatty acids in the total composition of liver homogenate. Glucose homeostasis and plasma free fatty acid levels were improved while visceral adiposity was slightly decreased. These results confirm that the incorporation of chia seed in the diet in postnatal life may provide a viable therapeutic option for preventing/mitigating adverse outcomes induced by an SRD from utero to adulthood.
Collapse
Affiliation(s)
- M A Fortino
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina
| | - M E Oliva
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina
| | - S Rodriguez
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina
| | - Y B Lombardo
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina
| | - A Chicco
- Departamento de Ciencias Biológicas, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, El Pozo, CC 242, 3000 Santa Fe, Argentina.
| |
Collapse
|
26
|
Chicco A, Creus A, Illesca P, Hein GJ, Rodriguez S, Fortino A. Effects of post-suckling n-3 polyunsaturated fatty acids: prevention of dyslipidemia and liver steatosis induced in rats by a sucrose-rich diet during pre- and post-natal life. Food Funct 2016; 7:445-54. [PMID: 26511757 DOI: 10.1039/c5fo00705d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The interaction between fetal programming and the post-natal environment suggests that the post-natal diet could amplify or attenuate programmed outcomes. We investigated whether dietary n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) at weaning resulted in an amelioration of dyslipidemia, adiposity and liver steatosis that was induced by a sucrose-rich diet (SRD; where the fat source is corn oil) from the onset of pregnancy up to adulthood. During pregnancy and lactation, dams were fed an SRD or the standard powdered rodent commercial diet (RD). At weaning and until 150 days of life, male offspring from SRD-dams were divided into two groups and fed an SRD or SRD-with-fish oil [where 6% of the corn oil was partially replaced by fish oil (FO) 5% and corn oil (CO) 1%], forming SRD-SRD or SRD-FO groups. Male offspring from RD-dams continued with RD up to the end of the experimental period, forming an RD-RD group. The presence of FO in the weaning diet showed the following: prevention of hypertriglyceridemia and liver steatosis, together with increased lipogenic enzyme activity caused by a maternal SRD; the complete normalization of CPT I activity and PPARα protein mass levels; a slight but not statistically significant accretion of visceral adiposity; and limited body fat content and reduced plasma free fatty acid levels. All of these results were observed even in the presence of a high-sucrose diet challenge after weaning. SRD-dams' breast milk showed a more saturated fatty acid composition. These results suggest the capacity of n-3 PUFAs to overcome some adverse outcomes induced by a maternal and post-weaning sucrose-rich diet.
Collapse
Affiliation(s)
- Adriana Chicco
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria Paraje El Pozo CC 242, (3000) Santa Fe, Argentina.
| | - Agustina Creus
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria Paraje El Pozo CC 242, (3000) Santa Fe, Argentina.
| | - Paola Illesca
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria Paraje El Pozo CC 242, (3000) Santa Fe, Argentina.
| | - Gustavo Juan Hein
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria Paraje El Pozo CC 242, (3000) Santa Fe, Argentina.
| | - Silvia Rodriguez
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria Paraje El Pozo CC 242, (3000) Santa Fe, Argentina.
| | - Alejandra Fortino
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria Paraje El Pozo CC 242, (3000) Santa Fe, Argentina.
| |
Collapse
|
27
|
Valenzuela R, Espinosa A, Llanos P, Hernandez-Rodas MC, Barrera C, Vergara D, Romero N, Pérez F, Ruz M, Videla LA. Anti-steatotic effects of an n-3 LCPUFA and extra virgin olive oil mixture in the liver of mice subjected to high-fat diet. Food Funct 2016; 7:140-50. [PMID: 26471014 DOI: 10.1039/c5fo01086a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by liver steatosis, oxidative stress, and drastic depletion of n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA), namely, eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA), which trigger lipolysis stimulation and lipogenesis inhibition. Extra virgin olive oil (EVOO) has important antioxidant effects. This study evaluated the anti-steatotic effects of n-3 LCPUFA plus EVOO in the liver of male C57BL/6J mice subjected to a control diet (CD) (10% fat, 20% protein, 70% carbohydrate) or high fat diet (HFD) (60% fat, 20% protein, 20% carbohydrate), without and with supplementation with n-3 LCPUFA (100 mg per kg per day) plus EVOO (100 mg per kg per day) for 12 weeks. HFD induced (i) liver steatosis (increased total fat, triacylglycerols, and free fatty acid total contents), (ii) higher fasting serum glucose and insulin levels and HOMA index, total cholesterol, triacylglycerols and TNF-α and IL-6, (iii) liver and plasma oxidative stress enhancement, (iv) depletion of the n-3 LCPUFA hepatic content, and (v) increment in lipogenic enzyme activity and reduction in lipolytic enzyme activity. These changes were either reduced (p < 0.05) or normalized to control the values in animals subjected to HFD supplemented with n-3 LCPUFA plus EVOO. In conclusion, n-3 LCPUFA plus EVOO intervention exerts anti-steatotic effects underlying antioxidant and anti-inflammatory responses, improved insulin sensitivity, and recovery of the lipolytic/lipogenic status of the liver altered by HFD, and supports the potential therapeutic use of n-3 LCPUFA plus EVOO supplementation in the treatment of human liver steatosis induced by nutritional factors or other etiologies.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | | | - Cynthia Barrera
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Daniela Vergara
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Nalda Romero
- Faculty of Chemical Sciences and Pharmacy, Department of Food Science and Chemical Technology, University of Chile, Santiago, Chile
| | - Francisco Pérez
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Manuel Ruz
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
28
|
Modica S, Straub LG, Balaz M, Sun W, Varga L, Stefanicka P, Profant M, Simon E, Neubauer H, Ukropcova B, Ukropec J, Wolfrum C. Bmp4 Promotes a Brown to White-like Adipocyte Shift. Cell Rep 2016; 16:2243-2258. [PMID: 27524617 DOI: 10.1016/j.celrep.2016.07.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/25/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022] Open
Abstract
While Bmp4 has a well-established role in the commitment of mesenchymal stem cells into the adipogenic lineage, its role in brown adipocyte formation and activity is not well defined. Here, we show that Bmp4 has a dual function in adipogenesis by inducing adipocyte commitment while inhibiting the acquisition of a brown phenotype during terminal differentiation. Selective brown adipose tissue overexpression of Bmp4 in mice induces a shift from a brown to a white-like adipocyte phenotype. This effect is mediated by Smad signaling and might be in part due to suppression of lipolysis, via regulation of hormone sensitive lipase expression linked to reduced Ppar activity. Given that we observed a strong correlation between BMP4 levels and adipocyte size, as well as insulin sensitivity in humans, we propose that Bmp4 is an important factor in the context of obesity and type 2 diabetes.
Collapse
MESH Headings
- Adipocytes, Brown/cytology
- Adipocytes, Brown/drug effects
- Adipocytes, Brown/metabolism
- Adipocytes, White/cytology
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Adipogenesis/drug effects
- Adipogenesis/genetics
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/cytology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Animals
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Bone Morphogenetic Protein 4/pharmacology
- Cell Differentiation
- Cell Line, Transformed
- Cyclic AMP/pharmacology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Regulation
- Humans
- Insulin Resistance
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred C57BL
- Peroxisome Proliferator-Activated Receptors/genetics
- Peroxisome Proliferator-Activated Receptors/metabolism
- Rosiglitazone
- Signal Transduction
- Smad Proteins/genetics
- Smad Proteins/metabolism
- Sterol Esterase/genetics
- Sterol Esterase/metabolism
- Thiazolidinediones/pharmacology
Collapse
Affiliation(s)
- Salvatore Modica
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Leon G Straub
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Miroslav Balaz
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Wenfei Sun
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland
| | - Lukas Varga
- Obesity section of Diabetes Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 811 02 Bratislava, Slovakia
| | - Patrik Stefanicka
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 811 02 Bratislava, Slovakia
| | - Milan Profant
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine and University Hospital, Comenius University, 811 02 Bratislava, Slovakia
| | - Eric Simon
- Target Discovery Research, Boehringer Ingelheim Pharma, 88400 Biberach/Riss, Germany
| | - Heike Neubauer
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, 88400 Biberach/Riss, Germany
| | - Barbara Ukropcova
- Obesity section of Diabetes Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 02 Bratislava, Slovakia
| | - Jozef Ukropec
- Obesity section of Diabetes Laboratory, Institute of Experimental Endocrinology, Biomedical Research Center at the Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, Department of Health Science, Institute of Food Nutrition and Health, Laboratory of Translational Nutrition Biology, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
29
|
Rincón-Cervera MÁ, Valenzuela R, Hernandez-Rodas MC, Barrera C, Espinosa A, Marambio M, Valenzuela A. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats. Prostaglandins Leukot Essent Fatty Acids 2016; 111:25-35. [PMID: 26995676 DOI: 10.1016/j.plefa.2016.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 11/29/2022]
Abstract
Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA.
Collapse
Affiliation(s)
| | - Rodrigo Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile; Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | - Cynthia Barrera
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Macarena Marambio
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alfonso Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile; Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| |
Collapse
|
30
|
Rincón-Cervera MA, Valenzuela R, Hernandez-Rodas MC, Marambio M, Espinosa A, Mayer S, Romero N, Barrera M Sc C, Valenzuela A, Videla LA. Supplementation with antioxidant-rich extra virgin olive oil prevents hepatic oxidative stress and reduction of desaturation capacity in mice fed a high-fat diet: Effects on fatty acid composition in liver and extrahepatic tissues. Nutrition 2016; 32:1254-67. [PMID: 27346714 DOI: 10.1016/j.nut.2016.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/30/2016] [Accepted: 04/22/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The aim of this study was to assess the effect of dietary supplementation with extra virgin olive oil (EVOO) in mice on the reduction of desaturase and antioxidant enzymatic activities in liver, concomitantly with long-chain polyunsaturated fatty acids (LCPUFA) profiles in liver and extrahepatic tissues induced by a high-fat diet (HFD). METHODS Male mice C57 BL/6 J were fed with a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or an HFD (60% fat, 20% protein, 20% carbohydrates) for 12 wk. Animals were supplemented with 100 mg/d EVOO with different antioxidant contents (EVOO I, II, and III). RESULTS After the intervention, blood and several tissues were analyzed. Dietary supplementation with EVOO with the highest antioxidant content and antioxidant capacity (EVOO III) significantly reduced fat accumulation in liver and the plasmatic metabolic alterations caused by HFD and produced a normalization of oxidative stress-related parameters, desaturase activities, and LCPUFA content in tissues. CONCLUSIONS Data suggest that dietary supplementation with EVOO III may prevent oxidative stress and reduction of biosynthesis and accretion of ω-3 LCPUFA in the liver of HFD-fed mice.
Collapse
Affiliation(s)
| | - Rodrigo Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile; Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | - Macarena Marambio
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Susana Mayer
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nalda Romero
- Faculty of Chemical Sciences and Pharmacy, Department of Food Science and Chemical Technology, University of Chile, Santiago, Chile
| | | | - Alfonso Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
31
|
Burgeiro A, Fuhrmann A, Cherian S, Espinoza D, Jarak I, Carvalho RA, Loureiro M, Patrício M, Antunes M, Carvalho E. Glucose uptake and lipid metabolism are impaired in epicardial adipose tissue from heart failure patients with or without diabetes. Am J Physiol Endocrinol Metab 2016; 310:E550-64. [PMID: 26814014 PMCID: PMC4824138 DOI: 10.1152/ajpendo.00384.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/20/2016] [Indexed: 01/25/2023]
Abstract
Type 2 diabetes mellitus is a complex metabolic disease, and cardiovascular disease is a leading complication of diabetes. Epicardial adipose tissue surrounding the heart displays biochemical, thermogenic, and cardioprotective properties. However, the metabolic cross-talk between epicardial fat and the myocardium is largely unknown. This study sought to understand epicardial adipose tissue metabolism from heart failure patients with or without diabetes. We aimed to unravel possible differences in glucose and lipid metabolism between human epicardial and subcutaneous adipocytes and elucidate the potential underlying mechanisms involved in heart failure. Insulin-stimulated [(14)C]glucose uptake and isoproterenol-stimulated lipolysis were measured in isolated epicardial and subcutaneous adipocytes. The expression of genes involved in glucose and lipid metabolism was analyzed by reverse transcription-polymerase chain reaction in adipocytes. In addition, epicardial and subcutaneous fatty acid composition was analyzed by high-resolution proton nuclear magnetic resonance spectroscopy. The difference between basal and insulin conditions in glucose uptake was significantly decreased (P= 0.006) in epicardial compared with subcutaneous adipocytes. Moreover, a significant (P< 0.001) decrease in the isoproterenol-stimulated lipolysis was also observed when the two fat depots were compared, and it was strongly correlated with lipolysis, lipid storage, and inflammation-related gene expression. Moreover, the fatty acid composition of these tissues was significantly altered by diabetes. These results emphasize potential metabolic differences between both fat depots in the presence of heart failure and highlight epicardial fat as a possible therapeutic target in situ in the cardiac microenvironment.
Collapse
Affiliation(s)
- Ana Burgeiro
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Amelia Fuhrmann
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sam Cherian
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Perak, Malaysia
| | - Daniel Espinoza
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ivana Jarak
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui A Carvalho
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal;
| | - Marisa Loureiro
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Patrício
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Manuel Antunes
- Cardiothroracic Surgery Unit at the University Hospital of Coimbra, Coimbra, Portugal
| | - Eugénia Carvalho
- Center of Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Portuguese Diabetes Association, Lisbon, Portugal; Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Arkansas Children's Hospital Research Institute, Little Rock, Arkansas
| |
Collapse
|
32
|
Gsα deficiency in adipose tissue improves glucose metabolism and insulin sensitivity without an effect on body weight. Proc Natl Acad Sci U S A 2015; 113:446-51. [PMID: 26712027 DOI: 10.1073/pnas.1517142113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gsα, the G protein that transduces receptor-stimulated cAMP generation, mediates sympathetic nervous system stimulation of brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT), which are both potential targets for treating obesity, as well as lipolysis. We generated a mouse line with Gsα deficiency in mature BAT and WAT adipocytes (Ad-GsKO). Ad-GsKO mice had impaired BAT function, absent browning of WAT, and reduced lipolysis, and were therefore cold-intolerant. Despite the presence of these abnormalities, Ad-GsKO mice maintained normal energy balance on both standard and high-fat diets, associated with decreases in both lipolysis and lipid synthesis. In addition, Ad-GsKO mice maintained at thermoneutrality on a standard diet also had normal energy balance. Ad-GsKO mice had improved insulin sensitivity and glucose metabolism, possibly secondary to the effects of reduced lipolysis and lower circulating fatty acid binding protein 4 levels. Gsα signaling in adipose tissues may therefore affect whole-body glucose metabolism in the absence of an effect on body weight.
Collapse
|
33
|
Diop SB, Bodmer R. Gaining Insights into Diabetic Cardiomyopathy from Drosophila. Trends Endocrinol Metab 2015; 26:618-627. [PMID: 26482877 PMCID: PMC4638170 DOI: 10.1016/j.tem.2015.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 12/21/2022]
Abstract
The high degree of genetic conservation between Drosophila melanogaster and mammals has helped to translate many important findings into new knowledge, and has led to better understanding of many biological processes in vertebrates. For over a century, the Drosophila model has been used in studies aimed at understanding the molecular mechanisms implicated in heredity, development, disease progression, and aging. The current epidemic of obesity and associated diabetic cardiomyopathy and heart failure has led to a shift in Drosophila research towards understanding the basic mechanisms leading to metabolic syndrome and associated cardiac risk factors. We discuss recent findings in Drosophila that highlight the importance of this organism as an excellent model for studying the effects of metabolic imbalance on cardiac function.
Collapse
Affiliation(s)
- Soda Balla Diop
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Dicovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Rolf Bodmer
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Dicovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity. Proc Natl Acad Sci U S A 2015; 112:13850-5. [PMID: 26508640 DOI: 10.1073/pnas.1516004112] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipose triglyceride lipase (ATGL) initiates intracellular triglyceride (TG) catabolism. In humans, ATGL deficiency causes neutral lipid storage disease with myopathy (NLSDM) characterized by a systemic TG accumulation. Mice with a genetic deletion of ATGL (AKO) also accumulate TG in many tissues. However, neither NLSDM patients nor AKO mice are exceedingly obese. This phenotype is unexpected considering the importance of the enzyme for TG catabolism in white adipose tissue (WAT). In this study, we identified the counteracting mechanisms that prevent excessive obesity in the absence of ATGL. We used "healthy" AKO mice expressing ATGL exclusively in cardiomyocytes (AKO/cTg) to circumvent the cardiomyopathy and premature lethality observed in AKO mice. AKO/cTg mice were protected from high-fat diet (HFD)-induced obesity despite complete ATGL deficiency in WAT and normal adipocyte differentiation. AKO/cTg mice were highly insulin sensitive under hyperinsulinemic-euglycemic clamp conditions, eliminating insulin insensitivity as a possible protective mechanism. Instead, reduced food intake and altered signaling by peroxisome proliferator-activated receptor-gamma (PPAR-γ) and sterol regulatory element binding protein-1c in WAT accounted for the phenotype. These adaptations led to reduced lipid synthesis and storage in WAT of HFD-fed AKO/cTg mice. Treatment with the PPAR-γ agonist rosiglitazone reversed the phenotype. These results argue for the existence of an adaptive interdependence between lipolysis and lipid synthesis. Pharmacological inhibition of ATGL may prove useful to prevent HFD-induced obesity and insulin resistance.
Collapse
|
35
|
Jocken JWE, Goossens GH, Popeijus H, Essers Y, Hoebers N, Blaak EE. Contribution of lipase deficiency to mitochondrial dysfunction and insulin resistance in hMADS adipocytes. Int J Obes (Lond) 2015; 40:507-13. [PMID: 26471343 DOI: 10.1038/ijo.2015.211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/02/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVES Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular lipid catabolism. We have previously shown decreased expression and activity of these lipases in adipose tissue of obese insulin resistant individuals. Here we hypothesized that lipase deficiency might impact on insulin sensitivity and metabolic homeostasis in adipocytes not just by enhancing lipid accumulation, but also by altering lipid and carbohydrate catabolism in a peroxisome proliferator-activated nuclear receptor (PPAR)-dependent manner. METHODS To address our hypothesis, we performed a series of in vitro experiments in a human white adipocyte model, the human multipotent adipose-derived stem (hMADS) cells, using genetic (siRNA) and pharmacological knockdown of ATGL and/or HSL. RESULTS We show that ATGL and HSL knockdown in hMADS adipocytes disrupted mitochondrial respiration, which was accompanied by a decreased oxidative phosphorylation (OxPhos) protein content. This lead to a reduced exogenous and endogenous palmitate oxidation following ATGL knockdown, but not in HSL deficient adipocytes. ATGL deficiency was followed by excessive triacylglycerol accumulation, and HSL deficiency further increased diacylglycerol accumulation. Both single and double lipase knockdown reduced insulin-stimulated glucose uptake, which was attributable to impaired insulin signaling. These effects were accompanied by impaired activation of the nuclear receptor PPARα, and restored on PPARα agonist treatment. CONCLUSIONS The present study indicates that lipase deficiency in human white adipocytes contributes to mitochondrial dysfunction and insulin resistance, in a PPARα-dependent manner. Therefore, modulation of adipose tissue lipases may provide a promising strategy to reverse insulin resistance in obese and type 2 diabetic patients.
Collapse
Affiliation(s)
- J W E Jocken
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Popeijus
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Y Essers
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - N Hoebers
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
36
|
Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling. Cell Mol Life Sci 2015; 72:3931-52. [PMID: 26153463 PMCID: PMC4575688 DOI: 10.1007/s00018-015-1982-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.
Collapse
Affiliation(s)
- Thomas Oliver Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| |
Collapse
|
37
|
Taschler U, Schreiber R, Chitraju C, Grabner GF, Romauch M, Wolinski H, Haemmerle G, Breinbauer R, Zechner R, Lass A, Zimmermann R. Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:937-45. [PMID: 25732851 PMCID: PMC4408194 DOI: 10.1016/j.bbalip.2015.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/05/2015] [Accepted: 02/22/2015] [Indexed: 01/04/2023]
Abstract
Hepatic stellate cells (HSCs) store triglycerides (TGs) and retinyl ester (RE) in cytosolic lipid droplets. RE stores are degraded following retinoid starvation or in response to pathogenic stimuli resulting in HSC activation. At present, the major enzymes catalyzing lipid degradation in HSCs are unknown. In this study, we investigated whether adipose triglyceride lipase (ATGL) is involved in RE catabolism of HSCs. Additionally, we compared the effects of ATGL deficiency and hormone-sensitive lipase (HSL) deficiency, a known RE hydrolase (REH), on RE stores in liver and adipose tissue. We show that ATGL degrades RE even in the presence of TGs, implicating that these substrates compete for ATGL binding. REH activity was stimulated and inhibited by comparative gene identification-58 and G0/G1 switch gene-2, respectively, the physiological regulators of ATGL activity. In cultured primary murine HSCs, pharmacological inhibition of ATGL, but not HSL, increased RE accumulation. In mice globally lacking ATGL or HSL, RE contents in white adipose tissue were decreased or increased, respectively, while plasma retinol and liver RE levels remained unchanged. In conclusion, our study shows that ATGL acts as REH in HSCs promoting the degradation of RE stores in addition to its established function as TG lipase. HSL is the predominant REH in adipocytes but does not affect lipid mobilization in HSCs. ATGL possesses retinyl ester and triacylglycerol hydrolase activity. The lack of ATGL activity causes increased triacylglycerol and retinyl ester storage in hepatic stellate cells. ATGL acts as retinyl ester and triacylglycerol lipase in hepatic stellate cells.
Collapse
Affiliation(s)
- Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | | | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Matthias Romauch
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.
| |
Collapse
|
38
|
Thyroid-stimulating hormone inhibits adipose triglyceride lipase in 3T3-L1 adipocytes through the PKA pathway. PLoS One 2015; 10:e0116439. [PMID: 25590597 PMCID: PMC4295851 DOI: 10.1371/journal.pone.0116439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
Thyroid-stimulating hormone (TSH) has been shown to play an important role in the regulation of triglyceride (TG) metabolism in adipose tissue. Adipose triglyceride lipase (ATGL) is a rate-limiting enzyme controlling the hydrolysis of TG. Thus far, it is unclear whether TSH has a direct effect on the expression of ATGL. Because TSH function is mediated through the TSH receptor (TSHR), TSHR knockout mice (Tshr-/- mice) (supplemented with thyroxine) were used in this study to determine the effects of TSHR deletion on ATGL expression. These effects were verified in 3T3-L1 adipocytes and potential underlying mechanisms were explored. In the Tshr-/- mice, ATGL expression in epididymal adipose tissue was significantly increased compared with that in Tshr+/+ mice. ATGL expression was observed to increase with the differentiation process of 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, TSH significantly suppressed ATGL expression at both the protein and mRNA levels in a dose-dependent manner. Forskolin, which is an activator of adenylate cyclase, suppressed the expression of ATGL in 3T3-L1 adipocytes. The inhibitory effects of TSH on ATGL expression were abolished by H89, which is a protein kinase A (PKA) inhibitor. These results indicate that TSH has an inhibitory effect on ATGL expression in mature adipocytes. The associated mechanism is related to PKA activation.
Collapse
|
39
|
D'Alessandro ME, Selenscig D, Illesca P, Chicco A, Lombardo YB. Time course of adipose tissue dysfunction associated with antioxidant defense, inflammatory cytokines and oxidative stress in dyslipemic insulin resistant rats. Food Funct 2015; 6:1299-309. [DOI: 10.1039/c4fo00903g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Time course of adipose tissue dysfunction in dyslipemic insulin resistant rats.
Collapse
Affiliation(s)
| | - Dante Selenscig
- Department of Biochemistry
- School of Biochemistry
- University of Litoral
- Santa Fe
- Argentina
| | - Paola Illesca
- Department of Biochemistry
- School of Biochemistry
- University of Litoral
- Santa Fe
- Argentina
| | - Adriana Chicco
- Department of Biochemistry
- School of Biochemistry
- University of Litoral
- Santa Fe
- Argentina
| | - Yolanda B. Lombardo
- Department of Biochemistry
- School of Biochemistry
- University of Litoral
- Santa Fe
- Argentina
| |
Collapse
|
40
|
Wu JW, Yang H, Wang SP, Soni KG, Brunel-Guitton C, Mitchell GA. Inborn errors of cytoplasmic triglyceride metabolism. J Inherit Metab Dis 2015; 38:85-98. [PMID: 25300978 DOI: 10.1007/s10545-014-9767-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
Abstract
Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and "Jordan's anomaly" of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan's anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.
Collapse
Affiliation(s)
- Jiang Wei Wu
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Fuchs CD, Claudel T, Trauner M. Role of metabolic lipases and lipolytic metabolites in the pathogenesis of NAFLD. Trends Endocrinol Metab 2014; 25:576-85. [PMID: 25183341 DOI: 10.1016/j.tem.2014.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent chronic liver disease in Western countries, ranging from simple steatosis to steatohepatitis, cirrhosis, and hepatocellular cancer. Although the mechanisms underlying disease progression are incompletely understood, lipotoxic events in the liver resulting in inflammation and fibrosis appear to be central. Free fatty acids and their metabolites are potentially lipotoxic mediators triggering liver injury, suggesting a central role for metabolic lipases. These enzymes are major players in lipid partitioning between tissues and within cells, and provide ligands for nuclear receptors (NRs). We discuss the potential role of intracellular lipases and their lipolytic products in NAFLD. Because tissue-specific modulation of lipases is currently impossible, targeting NRs with ligands may open novel therapeutic perspectives.
Collapse
Affiliation(s)
- Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
42
|
Abstract
The breakdown of cellular fat stores fuels energy production and multiple anabolic processes. Albert et al. (2014) demonstrate that the lack of hormone-sensitive lipase, a member of the enzyme trio that catabolizes fat, has pronounced effects on lipid metabolism, glucose homeostasis, and cell signaling in humans.
Collapse
Affiliation(s)
- Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria.
| | - Dominique Langin
- Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, 31062 Toulouse, France; Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, France
| |
Collapse
|
43
|
Mechanisms underlying the beneficial effect of soy protein in improving the metabolic abnormalities in the liver and skeletal muscle of dyslipemic insulin resistant rats. Eur J Nutr 2014; 54:407-19. [DOI: 10.1007/s00394-014-0721-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/13/2014] [Indexed: 01/18/2023]
|
44
|
Nielsen TS, Jessen N, Jørgensen JOL, Møller N, Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 2014; 52:R199-222. [PMID: 24577718 DOI: 10.1530/jme-13-0277] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipolysis is the process by which triglycerides (TGs) are hydrolyzed to free fatty acids (FFAs) and glycerol. In adipocytes, this is achieved by sequential action of adipose TG lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase. The activity in the lipolytic pathway is tightly regulated by hormonal and nutritional factors. Under conditions of negative energy balance such as fasting and exercise, stimulation of lipolysis results in a profound increase in FFA release from adipose tissue (AT). This response is crucial in order to provide the organism with a sufficient supply of substrate for oxidative metabolism. However, failure to efficiently suppress lipolysis when FFA demands are low can have serious metabolic consequences and is believed to be a key mechanism in the development of type 2 diabetes in obesity. As the discovery of ATGL in 2004, substantial progress has been made in the delineation of the remarkable complexity of the regulatory network controlling adipocyte lipolysis. Notably, regulatory mechanisms have been identified on multiple levels of the lipolytic pathway, including gene transcription and translation, post-translational modifications, intracellular localization, protein-protein interactions, and protein stability/degradation. Here, we provide an overview of the recent advances in the field of AT lipolysis with particular focus on the molecular regulation of the two main lipases, ATGL and HSL, and the intracellular and extracellular signals affecting their activity.
Collapse
Affiliation(s)
- Thomas Svava Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Jessen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Jens Otto L Jørgensen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Møller
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Sten Lund
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| |
Collapse
|
45
|
D'Alessandro ME, Oliva ME, Fortino MA, Chicco A. Maternal sucrose-rich diet and fetal programming: changes in hepatic lipogenic and oxidative enzymes and glucose homeostasis in adult offspring. Food Funct 2014; 5:446-53. [DOI: 10.1039/c3fo60436e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Abstract
All organisms use fatty acids (FAs) for energy substrates and as precursors for membrane and signaling lipids. The most efficient way to transport and store FAs is in the form of triglycerides (TGs); however, TGs are not capable of traversing biological membranes and therefore need to be cleaved by TG hydrolases ("lipases") before moving in or out of cells. This biochemical process is generally called "lipolysis." Intravascular lipolysis degrades lipoprotein-associated TGs to FAs for their subsequent uptake by parenchymal cells, whereas intracellular lipolysis generates FAs and glycerol for their release (in the case of white adipose tissue) or use by cells (in the case of other tissues). Although the importance of lipolysis has been recognized for decades, many of the key proteins involved in lipolysis have been uncovered only recently. Important new developments include the discovery of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), the molecule that moves lipoprotein lipase from the interstitial spaces to the capillary lumen, and the discovery of adipose triglyceride lipase (ATGL) and comparative gene identification-58 (CGI-58) as crucial molecules in the hydrolysis of TGs within cells. This review summarizes current views of lipolysis and highlights the relevance of this process to human disease.
Collapse
Affiliation(s)
- Stephen G. Young
- Department of Medicine
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
47
|
Ferreira MR, Camberos MDC, Selenscig D, Martucci LC, Chicco A, Lombardo YB, Cresto JC. Changes in hepatic lipogenic and oxidative enzymes and glucose homeostasis induced by an acetyl-l-carnitine and nicotinamide treatment in dyslipidaemic insulin-resistant rats. Clin Exp Pharmacol Physiol 2013; 40:205-11. [DOI: 10.1111/1440-1681.12050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Maria R Ferreira
- Department of Biochemistry; School of Biochemistry; Litoral University; Santa Fe; Argentina
| | - Maria del C Camberos
- Endocrinology Research Centre (CEDIE); Ricardo Gutierrez Hospital; Buenos Aires; Argentina
| | - Dante Selenscig
- Department of Biochemistry; School of Biochemistry; Litoral University; Santa Fe; Argentina
| | - Lucía C Martucci
- Endocrinology Research Centre (CEDIE); Ricardo Gutierrez Hospital; Buenos Aires; Argentina
| | - Adriana Chicco
- Department of Biochemistry; School of Biochemistry; Litoral University; Santa Fe; Argentina
| | - Yolanda B Lombardo
- Department of Biochemistry; School of Biochemistry; Litoral University; Santa Fe; Argentina
| | - Juan C Cresto
- Endocrinology Research Centre (CEDIE); Ricardo Gutierrez Hospital; Buenos Aires; Argentina
| |
Collapse
|
48
|
O'Neill HM, Holloway GP, Steinberg GR. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol 2013; 366:135-51. [PMID: 22750049 DOI: 10.1016/j.mce.2012.06.019] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 03/13/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
Abstract
Skeletal muscle plays an important role in regulating whole-body energy expenditure given it is a major site for glucose and lipid oxidation. Obesity and type 2 diabetes are causally linked through their association with skeletal muscle insulin resistance, while conversely exercise is known to improve whole body glucose homeostasis simultaneously with muscle insulin sensitivity. Exercise activates skeletal muscle AMP-activated protein kinase (AMPK). AMPK plays a role in regulating exercise capacity, skeletal muscle mitochondrial content and contraction-stimulated glucose uptake. Skeletal muscle AMPK is also thought to be important for regulating fatty acid metabolism; however, direct genetic evidence in this area is currently lacking. This review will discuss the current paradigms regarding the influence of AMPK in regulating skeletal muscle fatty acid metabolism and mitochondrial biogenesis at rest and during exercise, and highlight the potential implications in the development of insulin resistance.
Collapse
Affiliation(s)
- Hayley M O'Neill
- University of Melbourne, Department of Medicine, St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
49
|
Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol 2013; 11:e1001485. [PMID: 23431266 PMCID: PMC3576369 DOI: 10.1371/journal.pbio.1001485] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/08/2013] [Indexed: 02/08/2023] Open
Abstract
Partial inhibition of adipose tissue lipolysis does not increase fat mass but improves glucose metabolism and insulin sensitivity through modulation of fatty acid turnover and induction of fat cell de novo lipogenesis. When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet–fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. In periods of energy demand, mobilization of fat stores in mammals (i.e., adipose tissue lipolysis) is essential to provide energy in the form of fatty acids. In excess, however, fatty acids induce resistance to the action of insulin, which serves to regulate glucose metabolism in skeletal muscle and liver. Insulin resistance (or low insulin sensitivity) is believed to be a cornerstone of the complications of obesity such as type 2 diabetes and cardiovascular diseases. In this study, our clinical observation of natural variation in fat cell lipolysis in individuals reveals that a high lipolytic rate is associated with low insulin sensitivity. Furthermore, partial genetic and pharmacologic inhibition of hormone-sensitive lipase, one of the enzymes involved in the breakdown of white adipose tissue lipids, results in improvement of insulin sensitivity in mice without gain in body weight and fat mass. We undertake a series of mechanistic studies in mice and in human fat cells to show that blunted lipolytic capacity increases the synthesis of new fatty acids from glucose in fat cells, a pathway that has recently been shown by others to be a major determinant of whole body insulin sensitivity. In conclusion, partial inhibition of adipose tissue lipolysis is a plausible strategy in the treatment of obesity-related insulin resistance.
Collapse
|
50
|
Zhang X, Heckmann BL, Liu J. Studying lipolysis in adipocytes by combining siRNA knockdown and adenovirus-mediated overexpression approaches. Methods Cell Biol 2013; 116:83-105. [PMID: 24099289 DOI: 10.1016/b978-0-12-408051-5.00006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3T3-L1 adipocytes are widely used as a model system for studying hormone-stimulated lipolysis. However, these cells were limited in their utility for gain- and loss-of-function studies due to the low efficiency of their transfection with plasmid DNA or small interfering RNA (siRNA) oligos. In this chapter, we provide a review of two methods established for manipulation of protein expression in differentiated mature adipocytes. The use of electroporation allows a high-efficiency delivery of siRNA oligos and subsequent knockdown of specific gene expression. A centrifugation-assisted infection with recombinant adenovirus, on the other hand, enables robust overexpression of ectopic proteins. Most importantly, by combining siRNA electroporation with adenovirus infection, simultaneous manipulation of levels of two different proteins can be achieved in differentiated adipocytes. Through subsequent analyses of lipase activity in cell extracts and fatty acid or glycerol release from living cells, mutual interdependence between the two proteins in the context of basal and hormone-stimulated adipocyte lipolysis can be evaluated.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, Arizona, USA; Metabolic HEALth Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| | | | | |
Collapse
|