1
|
Lin G, Tang J, Zeng Y, Zhang L, Ouyang W, Tang Y. Association of serum n-3 and n-6 docosapentaenoic acids with cognitive performance in elderly adults: National Health and Nutrition Examination Survey 2011-2014. J Nutr Biochem 2025; 135:109773. [PMID: 39332744 DOI: 10.1016/j.jnutbio.2024.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/18/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Limited information exists on the influence of docosapentaenoic acid (DPA) on cognitive function. We investigated the association between serum n-3 and n-6 DPAs and cognitive performance in an elderly population from the National Health and Nutrition Examination Survey, 2011-2014. Restricted cubic spline and logistic regression analyses were utilized. A total of 1,366 older participants were included. Elevated proportions of DPA(n3) in total serum fatty acids were slightly associated with higher DSST scores (OR 0.61, 95% CI (0.38-0.97)), and higher proportions of DPA(n6) in total serum fatty acids were significantly associated with lower scores on different cognitive tests (CERAD (1.64, 1.02-2.65), AFT (2.31, 1.43- 3.75), DSST (3.21, 1.98-5.22) and global cognition (2.85, 1.74-4.66)). After multivariable adjustment, DPA(n3) exhibited no association with cognitive performance, whereas DPA(n6) remained correlated with AFT (1.98, 1.13-3.48), DSST (2.63, 1.43-4.82) and global cognition (2.15, 1.19-3.90). In stratified analyses, higher levels of DPA(n3) were associated with better performance in CERAD among participants aged ≥70, in DSST among those without diabetes and in global cognition among people with lower incomes. Increased DPA(n6) levels were associated with worse performance in AFT and DSST among those aged 60-70 and in all cognitive tests among those with better incomes. In conclusions, elevated levels of serum DPA(n3) may be beneficial for cognitive performance among elderly adults, especially in those over 70 years, with lower incomes and without diabetes. Serum n-6 DPA might be negatively associated with cognitive function, and this association is more pronounced among those who aged 60-70 with higher incomes.
Collapse
Affiliation(s)
- Guoxin Lin
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Zhang
- Department of Anesthesiology, First People's Hospital of Kunshan, Jiangsu University, Kunshan, Jiansu, China
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhong Tang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Sinclair AJ. Update on Fatty Acids and the Brain. Nutrients 2024; 16:4416. [PMID: 39771036 PMCID: PMC11678669 DOI: 10.3390/nu16244416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The brain is a lipid-rich organ, mainly due to the very high lipid content of myelin, but in addition to this, all the neuronal cell membranes, of which there are over 80 billion in the human brain [...].
Collapse
Affiliation(s)
- Andrew J. Sinclair
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Notting Hill, VIC 3168, Australia;
- Faculty of Health, Deakin University, Burwood, VIC 3152, Australia
| |
Collapse
|
3
|
Tkachev A, Stekolshchikova E, Golubova A, Serkina A, Morozova A, Zorkina Y, Riabinina D, Golubeva E, Ochneva A, Savenkova V, Petrova D, Andreyuk D, Goncharova A, Alekseenko I, Kostyuk G, Khaitovich P. Screening for depression in the general population through lipid biomarkers. EBioMedicine 2024; 110:105455. [PMID: 39571307 PMCID: PMC11617895 DOI: 10.1016/j.ebiom.2024.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Anxiety and depression significantly contribute to the overall burden of mental disorders, with depression being one of the leading causes of disability. Despite this, no biochemical test has been implemented for the diagnosis of these mental disorders, while recent studies have highlighted lipids as potential biomarkers. METHODS Using a streamlined high-throughput lipidome analysis method, direct-infusion mass spectrometry, we evaluated blood plasma lipid levels in 604 individuals from a general urban population and analysed their association with self-reported anxiety and depression symptoms. We also assessed lipidome profiles in 32 patients with clinical depression, matched to 21 healthy controls. FINDINGS We found a significant correlation between lipid abundances and the severity of self-reported depression symptoms. Moreover, lipid alterations detected in high scoring volunteers mirrored the lipidome profiles identified in patients with clinical depression included in our study. Based on these findings, we developed a lipid-based predictive model distinguishing individuals reporting severe depressive symptoms from non-depressed subjects with high accuracy. INTERPRETATION This study demonstrates the possibility of generalizing lipid alterations from a clinical cohort to the general population and underscores the potential of lipid-based biomarkers in assessing depressive states. FUNDING This study was sponsored by the Moscow Center for Innovative Technologies in Healthcare, №2707-2, №2102-11.
Collapse
Affiliation(s)
- Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; LLC NeurOmix, Moscow, 119571, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anastasia Golubova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Serkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Morozova
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Yana Zorkina
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Daria Riabinina
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Elizaveta Golubeva
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Aleksandra Ochneva
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Valeria Savenkova
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Daria Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Denis Andreyuk
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Economy Faculty, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, Moscow, 123473, Russia
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow Region, 142290, Russia
| | - Georgiy Kostyuk
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia.
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; LLC NeurOmix, Moscow, 119571, Russia.
| |
Collapse
|
4
|
Bai D, Fan J, Li M, Dong C, Gao Y, Fu M, Liu Q, Liu H. Cognitive Function After Stopping Folic Acid and DHA Intervention: An Extended Follow-Up Results from the Randomized, Double Blind, Placebo-Controlled Trial in Older Adults with Mild Cognitive Impairment. J Alzheimers Dis Rep 2024; 8:1285-1295. [PMID: 39434820 PMCID: PMC11491953 DOI: 10.3233/adr-240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
Background Our previously randomized controlled trial (RCT) showed daily oral folic acid (FA), docosahexaenoic acid (DHA) and their combined treatment for 6 months could significantly improve cognitive function in mild cognitive impairment (MCI) individuals. Objective This study aimed to evaluate whether this benefit seen in the treatment group would sustain after stopping intervention when patients returned to a real-world. Methods RCT (ChiCTR-IOR-16008351) was conducted in Tianjin, China. 160 MCI elders aged ≥60 years were randomly divided into four groups: FA + DHA, FA, DHA, and control. 138 MCI elders who completed the 6-month interventional trial underwent another 6-month follow-up without receiving nutritional therapy. Cognitive performance was measured at 6 and 12 months. Blood amyloid-β peptide (Aβ) and homocysteine (Hcy) related biomarkers were measured at baseline and 6 months. Results In comparison to the end of nutritional therapy, all intervention groups had considerably lower full-scale IQ, arithmetic, and image completion scores during the follow-up period, while the combined intervention and DHA groups had significantly lower picture arrangement scores. Furthermore, after 6-month treatment with FA and FA + DHA, plasma Aβ40, Aβ42, and Hcy levels were significantly decreased. However, these biomarker levels at the start of follow-up were positively correlated with the degree of cognitive function change during follow-up period. Conclusions FA and DHA supplementation enhance cognitive performance in MCI elderly following a six-month intervention by reducing Hcy or Aβ levels. However, their effects on improving cognitive decline are likely to diminish when the intervention is discontinued.
Collapse
Affiliation(s)
- Dong Bai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Nutrition, Tianjin First Central Hospital, Tianjin, China
| | - Junting Fan
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Mengyue Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Yiming Gao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Hujiayuan Community Health Service Center of Binhai New Area, Tianjin, China
| | - Min Fu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Qianfeng Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition, and Public Health, Tianjin, China
| |
Collapse
|
5
|
Bakhtiari S, Asri N, Jahdkaran M, Rezaei-Tavirani M, Jahani-Sherafat S, Rostami-Nejad M. The connection between fatty acids and inflammation in celiac disease; a deep exploring. Tissue Barriers 2024:2342619. [PMID: 38618691 DOI: 10.1080/21688370.2024.2342619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The interplay between fatty acids (FAs) and celiac disease (CD) is a burgeoning field of research with significant implications for understanding the pathophysiology and potential therapeutic avenues for this autoimmune disorder. CD, triggered by gluten consumption in susceptible individuals, presents with a range of intestinal and extra-intestinal symptoms impacting various bodily functions. The disruption of intestinal tight junctions (TJs) by gluten proteins leads to increased gut permeability and subsequent inflammatory responses mediated by T-cells. FAs, crucial components of cell membranes, play diverse roles in inflammation and immune regulation. In fact, FAs have been shown to modulate inflammatory processes through various mechanisms. Studies have highlighted alterations in FA profiles in individuals with CD, indicating potential implications for disease pathogenesis and micronutrient deficiencies. Moreover, the exploration of FAs as biomarkers for CD diagnosis offers promising avenues for future research and therapeutic interventions. Understanding the intricate relationship between FAs and CD could lead to novel approaches in managing this complex autoimmune disorder. Therefore, this review article aims to provide an overview of the connection between FAs and inflammation in CD.
Collapse
Affiliation(s)
- Sajjad Bakhtiari
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Jahdkaran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
van der Heijden AR, Houben T. Lipids in major depressive disorder: new kids on the block or old friends revisited? Front Psychiatry 2023; 14:1213011. [PMID: 37663599 PMCID: PMC10469871 DOI: 10.3389/fpsyt.2023.1213011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Major depressive disorder (MDD) is a psychiatric mood disorder that results in substantial functional impairment and is characterized by symptoms such as depressed mood, diminished interest, impaired cognitive function, and vegetative symptoms such as disturbed sleep. Although the exact etiology of MDD is unclear, several underlying mechanisms (disturbances in immune response and/or stress response) have been associated with its development, with no single mechanism able to account for all aspects of the disorder. Currently, about 1 in 3 patients are resistant to current antidepressant therapies. Providing an alternative perspective on MDD could therefore pave the way for new, unexplored diagnostic and therapeutic solutions. The central nervous system harbors an enormous pool of lipids and lipid intermediates that have been linked to a plethora of its physiological functions. The aim of this review is therefore to provide an overview of the implications of lipids in MDD and highlight certain MDD-related underlying mechanisms that involve lipids and/or their intermediates. Furthermore, we will also focus on the bidirectional relationship between MDD and the lipid-related disorders obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | - Tom Houben
- Department of Genetics and Cell Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
8
|
da Silva Batista E, Nakandakari SCBR, Ramos da Silva AS, Pauli JR, Pereira de Moura L, Ropelle ER, Camargo EA, Cintra DE. Omega-3 pleiad: The multipoint anti-inflammatory strategy. Crit Rev Food Sci Nutr 2022; 64:4817-4832. [PMID: 36382659 DOI: 10.1080/10408398.2022.2146044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Omega 3 (ω3) fatty acids have been described since the 1980s as promising anti-inflammatory substances. Prostaglandin and leukotriene modulation were exhaustively explored as the main reason for ω3 beneficial outcomes. However, during the early 2000s, after the human genome decoding advent, the nutrigenomic approaches exhibited an impressive plethora of ω3 targets, now under the molecular point of view. Different G protein-coupled receptors (GPCRs) recognizing ω3 and its derivatives appear to be responsible for blocking inflammation and insulin-sensitizing effects. A new class of ω3-derived substances, such as maresins, resolvins, and protectins, increases ω3 actions. Inflammasome disruption, the presence of GPR120 on immune cell surfaces, and intracellular crosstalk signaling mediated by PPARγ compose the last discoveries regarding the multipoint anti-inflammatory targets for this nutrient. This review shows a detailed mechanistic proposal to understand ω3 fatty acid action over the inflammatory environment in the background of several chronic diseases.
Collapse
Affiliation(s)
- Ellencristina da Silva Batista
- Graduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrition Department, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Susana Castelo Branco Ramos Nakandakari
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | | | - José Rodrigo Pauli
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Enilton A Camargo
- Graduate Program of Health Sciences (PPGCS), Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, Brazil
| |
Collapse
|
9
|
Vallés AS, Barrantes FJ. The synaptic lipidome in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184033. [PMID: 35964712 DOI: 10.1016/j.bbamem.2022.184033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Sofia Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), 8000 Bahía Blanca, Argentina.
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina.
| |
Collapse
|
10
|
Li X, Qin H, Li T. Advances in the study of the relationship between Alzheimer's disease and the gastrointestinal microbiome. IBRAIN 2022; 8:465-475. [PMID: 37786585 PMCID: PMC10528962 DOI: 10.1002/ibra.12065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/04/2023]
Abstract
There are many trillions of bacteria in the gastrointestinal microbiome (GM). Their ecological dysregulation can contribute to the development of certain neurodegenerative diseases, including Alzheimer's disease (AD). AD is common dementia and its incidence is increasing year by year. However, the relationship between GM and AD is unclear. Therefore, this review discusses the relationship between GM and AD, elaborates on the possible factors that can affect this relationship through the inflammation of the brain induced by blood-brain damage and accumulation of amyloid deposit, and proposes feasible ways to treat AD through GM-related substances, such as probiotics, Mega-3, and gut hormones, including their shortcomings as well.
Collapse
Affiliation(s)
- Xin‐Yan Li
- Southwest Medical UniversityLuzhouSichuanChina
| | - Hao‐Yue Qin
- Southwest Medical UniversityLuzhouSichuanChina
| | - Ting‐Ting Li
- Department of Anesthesiology, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
- Department of Anestheiology, West China Tianfu HospitalSichuan UniversityChengduChina
| |
Collapse
|
11
|
Cussotto S, Delgado I, Oriolo G, Kemper J, Begarie D, Dexpert S, Sauvant J, Leboyer M, Aouizerate B, Martin-Santos R, Schaefer M, Capuron L. Low omega-3 polyunsaturated fatty acids predict reduced response to standard antidepressants in patients with major depressive disorder. Depress Anxiety 2022; 39:407-418. [PMID: 35357051 DOI: 10.1002/da.23257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by a high rate of treatment resistance. Omega (ω)-3 polyunsaturated fatty acids (PUFAs) were shown to correlate with depressive phenotype both in rodents and in humans. However, few studies to date have investigated the role of PUFAs in antidepressant response. The primary aim of this study was to assess the link between baseline PUFA composition and changes in depressive symptoms as well as antidepressant response in a multicenter study of depressed patients. METHODS Sixty depressed adults who met criteria for MDD according to DSM-IV-TR were recruited. Neuropsychiatric evaluations occurred at baseline and after 4 and 8 weeks of treatment with standard antidepressants, including escitalopram (N = 45), sertraline (N = 13) and venlafaxine (N = 2). At study endpoint, patients were stratified into responders (R) or non-responders (NR) based on their MADRS (Montgomery-Åsberg Depression Rating Scale) score. Baseline PUFA levels were assessed and their association with clinical response was determined. RESULTS Lower ω-3 PUFA levels were associated to worse baseline symptomatology. Baseline levels of PUFAs were significantly different between R and NR, with R exhibiting lower docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and ω-3 index; and higher ω-6/ω-3 ratio than NR before the start of antidepressant treatment. DHA levels as well as the ω-3 index and ω-6/ω-3 ratio significantly predicted response to antidepressants at study endpoint. CONCLUSIONS These results show that baseline levels of PUFAs predict later response to standard antidepressants in depressed subjects. They suggest that PUFA intake and/or metabolism represent a novel modifiable tool for the management of unresponsive depressed patients.
Collapse
Affiliation(s)
- Sofia Cussotto
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Inês Delgado
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Giovanni Oriolo
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM, Barcelona, Spain.,Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jonas Kemper
- Department of Psychiatry, Psychotherapy, Psychosomatics, and Addiction Medicine, Evang. Kliniken Essen-Mitte, Essen, Germany
| | - Diane Begarie
- Departement de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Sandra Dexpert
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Julie Sauvant
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Marion Leboyer
- INSERM, U955, Translational Neuro-Psychiatry lab, Institut Mondor de Recherche Biomédicale, Créteil, France.,AP-HP, Département Universitaire d'Addictologie et Psychiatrie des Hôpitaux Henri Mondor University Hospital, Université Paris Est Créteil, Créteil, France
| | - Bruno Aouizerate
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.,CH Charles Perrens, Pôle de Psychiatrie Générale et Universitaire, Centre de référence régional des pathologies anxieuses et dépressives, Bordeaux, France
| | - Rocío Martin-Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM, Barcelona, Spain.,Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics, and Addiction Medicine, Evang. Kliniken Essen-Mitte, Essen, Germany.,Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lucile Capuron
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
12
|
Kulkarni A, Zhao A, Yang B, Zhang Y, Linderborg KM. Tissue-Specific Content of Polyunsaturated Fatty Acids in (n-3) Deficiency State of Rats. Foods 2022; 11:208. [PMID: 35053940 PMCID: PMC8774705 DOI: 10.3390/foods11020208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/21/2023] Open
Abstract
The dietary intake of fatty acids (FAs) affects the composition and distribution of FAs in the body. Here, a first-generation (n-3)-deficiency study was conducted by keeping young (age 21 ± 2 days) Sprague-Dawley male rats on a peanut-oil-based diet for 33 days after weaning in order to compare the effect of mild (n-3)-deficiency on the lipid composition of different organs and feces. Soybean-oil-based diet was used as a control. The plasma FA levels corresponded to FAs levels in the organs. Lower docosahexaenoic acid (DHA) content was detected in the plasma, brain, testis, visceral fat, heart, and lungs of the (n-3)-deficient group, whereas the DHA content of the eye and feces did not differ between the experimental groups. The DHA content of the brains of the (n-3)-deficient group was 86% of the DHA content of the brains of the (n-3)-adequate group. The DHA level of the organs was affected in the order of visceral fat > liver triacylglycerols > lung > heart > liver phospholipids > testis > eye > brain, with brain being least affected. The low levels of (n-3) FAs in the liver, brain, eye, heart, and lung were offset by an increase in the (n-6) FAs, mainly arachidonic acid. These results indicate that, in rats, adequate maternal nutrition during pregnancy and weaning does not provide enough (n-3) FAs for 33 days of an (n-3)-deficient diet. Results of this study can be used also to evaluate the conditions needed to reach mild (n-3) deficiency in the first generation of rats and to evaluate the feasibility to collect data from a variety of organs or only selected ones.
Collapse
Affiliation(s)
- Amruta Kulkarni
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20520 Turku, Finland; (A.K.); (B.Y.)
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100083, China;
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20520 Turku, Finland; (A.K.); (B.Y.)
| | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Kaisa M. Linderborg
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, 20520 Turku, Finland; (A.K.); (B.Y.)
| |
Collapse
|
13
|
Yau SY, Yip YSL, Formolo DA, He S, Lee THY, Wen C, Hryciw DH. Chronic consumption of a high linoleic acid diet during pregnancy, lactation and post-weaning period increases depression-like behavior in male, but not female offspring. Behav Brain Res 2022; 416:113538. [PMID: 34418475 DOI: 10.1016/j.bbr.2021.113538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an essential role in brain development. Emerging data have suggested a possible link between an imbalance in PUFAs and cognitive behavioral deficits in offspring. A diet rich in high linoleic acid (HLA), typically from preconception to lactation, leads to an increase in the ratio of omega-6 (n-6) to omega-3 (n-3) fatty acids in the fetus. Arising research has suggested that a deficiency in omega-3 fatty acids is a potential risk factor for inducing autism spectrum disorder (ASD)-like behavioral deficits. However, the impact of a high n- diet during preconception, pregnancy, lactation, and post-weaning on the brain development of adolescent offspring are yet to be determined. This study examined whether consumption of an HLA diet during pregnancy, lactation, and post-weaning induced social and cognitive impairments in female and male offspring rats that resemble autistic phenotypes in humans. Female Wistar Kyoto rats were fed with either HLA or low linoleic acid (LLA) control diet for 10 weeks before mating, then continued with the same diet throughout the pregnancy and lactation period. Female and male offspring at 5 weeks old were subjected to behavioral tests to assess social interaction behavior and depression-/anxiety-like behavior. Our result showed that chronic consumption of an HLA diet did not affect sociability and social recognition memory, but induced depression-like behavior in male but not in female offspring.
Collapse
Affiliation(s)
- Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| | - Yvette Siu Ling Yip
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Douglas A Formolo
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Siyuen He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Thomas Ho Yin Lee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Deanne H Hryciw
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, Australia; School of Environment and Science, Griffith University, Nathan, QLD, Australia; Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Igarashi M, Iwasa K, Hayakawa T, Tsuduki T, Kimura I, Maruyama K, Yoshikawa K. Dietary oleic acid contributes to the regulation of food intake through the synthesis of intestinal oleoylethanolamide. Front Endocrinol (Lausanne) 2022; 13:1056116. [PMID: 36733808 PMCID: PMC9886573 DOI: 10.3389/fendo.2022.1056116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Among the fatty acid ethanolamides (FAEs), oleoylethanolamide (OEA), linoleoylethanolamide (LEA), and palmitoylethanolamide (PEA) are reported to be involved in feeding regulation. In particular, OEA is well characterized as a satiety signal. Following food consumption, OEA is synthesized from oleic acid (OA) via an N-acyl phosphatidylethanolamine-specific phospholipase D-dependent pathway in the gastroenterocytes, and OEA induces satiety by recruiting sensory fibers. Thus, we hypothesized that dietary OA is an important satiety-inducing molecule. However, there has been no direct demonstration of the effect of dietary OA on satiety induction without the influence of the endogenous biosynthesis of OA from stearic acid (SA) or other FAEs. METHODS In this study, we used two experimental diets to test our hypothesis: (i) an OA diet (OAD; 38.4 mg of OA/g and 7.2 mg of SA/g) and (ii) a low OA diet (LOAD; 3.1 mg of OA/g and 42.4 mg of SA/g). RESULTS Relative to mice fed the OAD, mice fed the LOAD for two weeks exhibited reduced levels of jejunal OEA but not jejunal LEA and PEA. The LOAD-fed mice showed an increase in food intake and body weight gain. Moreover, LOAD-induced increase in food intake was immediately observed after the switch from the OAD, whereas these effects were diminished by the switch back to the OAD. Furthermore, treatment with OA and OEA diminished the effects of LOAD on food intake. CONCLUSION Collectively, these results show that dietary OA is a key factor in the reduction of food intake and increase in satiety mediated by OEA signaling.
Collapse
Affiliation(s)
- Miki Igarashi
- Advanced Clinical Research Center, Institute of Neurological Disorders, Kawasaki, Japan
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- *Correspondence: Miki Igarashi,
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tetsuhiko Hayakawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsuyoshi Tsuduki
- Department of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
15
|
Stephenson K, Callaghan-Gillespie M, Maleta K, Nkhoma M, George M, Park HG, Lee R, Humphries-Cuff I, Lacombe RJS, Wegner DR, Canfield RL, Brenna JT, Manary MJ. Low linoleic acid foods with added DHA given to Malawian children with severe acute malnutrition improve cognition: a randomized, triple-blinded, controlled clinical trial. Am J Clin Nutr 2021; 115:1322-1333. [PMID: 34726694 PMCID: PMC9071416 DOI: 10.1093/ajcn/nqab363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There is concern that the PUFA composition of ready-to-use therapeutic food (RUTF) for the treatment of severe acute malnutrition (SAM) is suboptimal for neurocognitive recovery. OBJECTIVES We tested the hypothesis that RUTF made with reduced amounts of linoleic acid, achieved using high-oleic (HO) peanuts without added DHA (HO-RUTF) or with added DHA (DHA-HO-RUTF), improves cognition when compared with standard RUTF (S-RUTF). METHODS A triple-blind, randomized, controlled clinical feeding trial was conducted among children with uncomplicated SAM in Malawi with 3 types of RUTF: DHA-HO-RUTF, HO-RUTF, and S-RUTF. The primary outcomes, measured in a subset of subjects, were the Malawi Developmental Assessment Tool (MDAT) global z-score and a modified Willatts problem-solving assessment (PSA) intention score for 3 standardized problems, measured 6 mo and immediately after completing RUTF therapy, respectively. MDAT domain z-scores, plasma fatty acid content, anthropometry, and eye tracking were secondary outcomes. Comparisons were made between the novel PUFA RUTFs and S-RUTF. RESULTS Among the 2565 SAM children enrolled, mean global MDAT z-scores were -0.69 ± 1.19 and -0.88 ± 1.27 for children receiving DHA-HO-RUTF and S-RUTF, respectively (difference 0.19, 95% CI: 0.01, 0.38). Children receiving DHA-HO-RUTF had higher gross motor and social domain z-scores than those receiving S-RUTF. The PSA problem 3 scores did not differ by dietary group (OR: 0.92, 95% CI: 0.67, 1.26 for DHA-HO-RUTF). After 4 wk of treatment, plasma phospholipid EPA and α-linolenic acid were greater in children consuming DHA-HO-RUTF or HO-RUTF when compared with S-RUTF (for all 4 comparisons P values < 0.001), but only plasma DHA was greater in DHA-HO-RUTF than S-RUTF (P < 0.001). CONCLUSIONS Treatment of uncomplicated SAM with DHA-HO-RUTF resulted in an improved MDAT score, conferring a cognitive benefit 6 mo after completing diet therapy. This treatment should be explored in operational settings. This trial was registered at clinicaltrials.gov as NCT03094247.
Collapse
Affiliation(s)
- Kevin Stephenson
- Department of Medicine, Washington University, St.
Louis, MO, USA
| | | | - Kenneth Maleta
- Department of Public Health, School of Public Health & Family Medicine,
Kamuzu University of Health Sciences, Blantyre,
Malawi
| | - Minyanga Nkhoma
- Department of Public Health, School of Public Health & Family Medicine,
Kamuzu University of Health Sciences, Blantyre,
Malawi
| | - Matthews George
- Department of Public Health, School of Public Health & Family Medicine,
Kamuzu University of Health Sciences, Blantyre,
Malawi
| | - Hui Gyu Park
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA
| | - Reginald Lee
- Department of Pediatrics, Washington University,
St. Louis, MO, USA
| | | | - R J Scott Lacombe
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA
| | - Donna R Wegner
- Department of Pediatrics, Washington University,
St. Louis, MO, USA
| | - Richard L Canfield
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA
| | - J Thomas Brenna
- Department of Pediatrics, University of Texas at Austin,
Austin, TX, USA,Division of Nutritional Sciences, Cornell University,
Ithaca, NY, USA
| | | |
Collapse
|
16
|
Heath RJ, Wood TR. Why Have the Benefits of DHA Not Been Borne Out in the Treatment and Prevention of Alzheimer's Disease? A Narrative Review Focused on DHA Metabolism and Adipose Tissue. Int J Mol Sci 2021; 22:11826. [PMID: 34769257 PMCID: PMC8584218 DOI: 10.3390/ijms222111826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/04/2023] Open
Abstract
Docosahexaenoic acid (DHA), an omega-3 fatty acid rich in seafood, is linked to Alzheimer's Disease via strong epidemiological and pre-clinical evidence, yet fish oil or other DHA supplementation has not consistently shown benefit to the prevention or treatment of Alzheimer's Disease. Furthermore, autopsy studies of Alzheimer's Disease brain show variable DHA status, demonstrating that the relationship between DHA and neurodegeneration is complex and not fully understood. Recently, it has been suggested that the forms of DHA in the diet and plasma have specific metabolic fates that may affect brain uptake; however, the effect of DHA form on brain uptake is less pronounced in studies of longer duration. One major confounder of studies relating dietary DHA and Alzheimer's Disease may be that adipose tissue acts as a long-term depot of DHA for the brain, but this is poorly understood in the context of neurodegeneration. Future work is required to develop biomarkers of brain DHA and better understand DHA-based therapies in the setting of altered brain DHA uptake to help determine whether brain DHA should remain an important target in the prevention of Alzheimer's Disease.
Collapse
Affiliation(s)
- Rory J. Heath
- Emergency Medicine Department, Derriford Hospital, University Hospitals Plymouth, Plymouth PL6 8DH, UK;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
17
|
Nemeth M, Eisenschenk I, Engelmann A, Esser FM, Kokodynska M, Szewczak VF, Barnreiter E, Wallner B, Millesi E. Flaxseed oil as omega-3 polyunsaturated fatty acid source modulates cortisol concentrations and social dominance in male and female guinea pigs. Horm Behav 2021; 134:105025. [PMID: 34242874 DOI: 10.1016/j.yhbeh.2021.105025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
Flaxseed oil is an excellent source of the essential omega-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA). Omega-3 PUFAs are important neuronal components and can counteract aggressive, depressive, and anxiety-like behavior, reduce glucocorticoid (e.g. cortisol) concentrations under chronic stress but also increase acute glucocorticoid responses. As glucocorticoids per se and glucocorticoid responsiveness can modulate the establishment of dominance hierarchies, we investigated if flaxseed oil high in ALA can promote social dominance through effects on glucocorticoid concentrations. Two male and two female groups of domestic guinea pigs (n = 9 per group) were maintained on a control or a 5% (w/w) flaxseed oil diet for four weeks. Social behaviors, hierarchy indices, locomotion, and saliva cortisol concentrations were determined during basal group housing conditions and stressful social confrontations with unfamiliar individuals of the other groups. Flaxseed groups had increased basal cortisol concentrations and showed no cortisol increase during social confrontations. Cortisol concentrations in control groups significantly increased during social confrontations. Such higher cortisol responses positively affected individual hierarchy indices in control males. However, flaxseed males became dominant irrespective of cortisol concentrations. In females, the opposite was detected, namely a higher dominant status in control compared to flaxseed females. Open-field- and dark-light-tests for anxiety-like behavior revealed no pronounced differences, but flaxseed males showed the highest locomotor activity. Flaxseed oil as an ALA source sex-specifically promoted social dominance irrespective of cortisol concentrations and responses. The underlying neuronal mechanisms remain to be determined, but a sex-specific energetic advantage may have accounted for this effect.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Isabelle Eisenschenk
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Anna Engelmann
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Fey Maria Esser
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Michelle Kokodynska
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Veronika Francesca Szewczak
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elisabeth Barnreiter
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
18
|
Tkachev A, Stekolshchikova E, Bobrovskiy DM, Anikanov N, Ogurtsova P, Park DI, Horn AKE, Petrova D, Khrameeva E, Golub MS, Turck CW, Khaitovich P. Long-Term Fluoxetine Administration Causes Substantial Lipidome Alteration of the Juvenile Macaque Brain. Int J Mol Sci 2021; 22:ijms22158089. [PMID: 34360852 PMCID: PMC8348031 DOI: 10.3390/ijms22158089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Fluoxetine is an antidepressant commonly prescribed not only to adults but also to children for the treatment of depression, obsessive-compulsive disorder, and neurodevelopmental disorders. The adverse effects of the long-term treatment reported in some patients, especially in younger individuals, call for a detailed investigation of molecular alterations induced by fluoxetine treatment. Two-year fluoxetine administration to juvenile macaques revealed effects on impulsivity, sleep, social interaction, and peripheral metabolites. Here, we built upon this work by assessing residual effects of fluoxetine administration on the expression of genes and abundance of lipids and polar metabolites in the prelimbic cortex of 10 treated and 11 control macaques representing two monoamine oxidase A (MAOA) genotypes. Analysis of 8871 mRNA transcripts, 3608 lipids, and 1829 polar metabolites revealed substantial alterations of the brain lipid content, including significant abundance changes of 106 lipid features, accompanied by subtle changes in gene expression. Lipid alterations in the drug-treated animals were most evident for polyunsaturated fatty acids (PUFAs). A decrease in PUFAs levels was observed in all quantified lipid classes excluding sphingolipids, which do not usually contain PUFAs, suggesting systemic changes in fatty acid metabolism. Furthermore, the residual effect of the drug on lipid abundances was more pronounced in macaques carrying the MAOA-L genotype, mirroring reported behavioral effects of the treatment. We speculate that a decrease in PUFAs may be associated with adverse effects in depressive patients and could potentially account for the variation in individual response to fluoxetine in young people.
Collapse
Affiliation(s)
- Anna Tkachev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Elena Stekolshchikova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Daniil M. Bobrovskiy
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia;
| | - Nickolay Anikanov
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Polina Ogurtsova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Dong Ik Park
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany;
| | - Anja K. E. Horn
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians University, 80336 Munich, Germany;
| | - Daria Petrova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
| | - Ekaterina Khrameeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| | - Mari S. Golub
- California National Primate Research Center, University of California, Davis, CA 95616, USA
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, 80804 Munich, Germany;
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| | - Philipp Khaitovich
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (A.T.); (E.S.); (N.A.); (P.O.); (D.P.)
- Correspondence: (E.K.); (M.S.G.); (C.W.T.); (P.K.)
| |
Collapse
|
19
|
Abstract
Irritability, anger, and aggression, although not specific for pediatric bipolar disorder (BD), can be a common finding and an important source of distress and impairment in these patients. Over the past 2 decades the diagnostic significance of irritability in pediatric BD has been highly debated. Beyond the debate of its diagnostic significance, the clinical importance of irritability, anger, and aggression in youth with BD has been well established. In this review, the authors discuss evaluation and management strategies of irritability, anger, and aggression in youth with BD.
Collapse
|
20
|
LC R, EM B, DB H, H S, AR P. A pilot randomized controlled trial testing supplements of omega-3 fatty acids, probiotics, combination or placebo on symptoms of depression, anxiety and stress. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Chukaew P, Leow A, Saengsawang W, Rasenick MM. Potential depression and antidepressant-response biomarkers in human lymphoblast cell lines from treatment-responsive and treatment-resistant subjects: roles of SSRIs and omega-3 polyunsaturated fatty acids. Mol Psychiatry 2021; 26:2402-2414. [PMID: 32327735 PMCID: PMC7928235 DOI: 10.1038/s41380-020-0724-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
While several therapeutic strategies exist for depression, most antidepressant drugs require several weeks before reaching full biochemical efficacy and remission is not achieved in many patients. Therefore, biomarkers for depression and drug-response would help tailor treatment strategies. This study made use of banked human lymphoblast cell lines (LCLs) from normal and depressed subjects; the latter divided into remitters and non-remitters. Due to the fact that previous studies have shown effects on growth factors, cytokines, and elements of the cAMP-generating system as potential biomarkers for depression and antidepressant action, these were examined in LCLs. Initial gene and protein expression profiles for signaling cascades related to neuroendocrine and inflammatory functions differ among the three groups. Growth factor genes, including VEGFA and BDNF were significantly down-regulated in cells from depressed subjects. In addition, omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to act as both antidepressants and anti-inflammatories, but the mechanisms for these effects are not established. Here we showed that n-3 PUFAs and escitalopram (selective serotonin reuptake inhibitors, SSRIs) treatment increased adenylyl cyclase (AC) and BDNF gene expression in LCLs. These data are consistent with clinical observations showing that n-3 PUFA and SSRI have antidepressant affects, which may be additive. Contrary to observations made in neuronal and glial cells, n-3 PUFA treatment attenuated cAMP accumulation in LCLs. However, while lymphoblasts show paradoxical responses to neurons and glia, patient-derived lymphoblasts appear to carry potential depression biomarkers making them an important tool for studying precision medicine in depressive patients. Furthermore, these data validate usefulness of n-3 PUFAs in treatment for depression.
Collapse
Affiliation(s)
- Phatcharee Chukaew
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Alex Leow
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Witchuda Saengsawang
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mark M Rasenick
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, USA.
- Department of Psychiatry, University of Illinois College of Medicine, Chicago, IL, USA.
- Jesse Brown Westside VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
22
|
Dietary fatty acids modulate cortisol concentrations and social dominance during social confrontations in adolescent male guinea pigs. Psychoneuroendocrinology 2021; 123:105045. [PMID: 33242725 DOI: 10.1016/j.psyneuen.2020.105045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
The hypothalamic-pituitary-adrenal (HPA)-axis and related glucocorticoid concentrations regulate physiology and behavior, which can be modulated by nutritional conditions, particularly by the dietary fatty acid composition. Omega-3 polyunsaturated fatty acids (PUFAs) have been shown to promote hypothalamic-pituitary-adrenal (HPA)-axis functions, whereas saturated fatty acids (SFAs) in general produce adverse effects and even increase baseline glucocorticoid concentrations. Glucocorticoids (e.g. cortisol) were further documented to modulate the establishment of dominance relationships, while the involvement of dietary fatty acids remains understudied. This study focused on different effects of PUFAs and SFAs on cortisol concentrations and social dominance in male guinea pigs. Three groups of animals were maintained on diets high in PUFAs (10 % w/w walnut oil), SFAs (10 % w/w coconut fat), or on an untreated control diet starting already prenatally. During adolescence, at an age of 60, 90, and 120 days, each individual's saliva cortisol concentrations and hierarchy index (calculated by initiated and received agonistic behavior) were measured during basal group housing conditions and stressful social confrontations with unfamiliar individuals of the other groups. SFA males showed highest baseline cortisol concentrations, lowest cortisol responses to social confrontations, and became subdominant. PUFA and control males showed significant cortisol responses. However, while control males became dominant during social confrontations, the hierarchy index in PUFA males decreased with age. Individual hierarchy indices during consecutive social confrontations revealed a high consistency. The findings presented here indicate that dietary fatty acids differently affect HPA-axis functions and social dominance but the underlying mechanisms remain to be determined.
Collapse
|
23
|
Peng S, Peng Z, Qin M, Huang L, Zhao B, Wei L, Ning J, Tuo QH, Yuan TF, Shi Z, Liao DF. Targeting neuroinflammation: The therapeutic potential of ω-3 PUFAs in substance abuse. Nutrition 2020; 83:111058. [PMID: 33360033 DOI: 10.1016/j.nut.2020.111058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Substance abuse is a chronic relapsing disorder that results in serious health and socioeconomic issues worldwide. Addictive drugs induce long-lasting morphologic and functional changes in brain circuits and account for the formation of compulsive drug-seeking and drug-taking behaviors. Yet, there remains a lack of reliable therapy. In recent years, accumulating evidence indicated that neuroinflammation was implicated in the development of drug addiction. Findings from both our and other laboratories suggest that ω-3 polyunsaturated fatty acids (PUFAs) are effective in treating neuroinflammation-related mental diseases, and indicate that they could exert positive effects in treating drug addiction. Thus, in the present review, we summarized and evaluated recently published articles reporting the neuroinflammation mechanism in drug addiction and the immune regulatory ability of ω-3 PUFAs. We also sought to identify some of the challenges ahead in the translation of ω-3 PUFAs into addiction treatment.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jie Ning
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| |
Collapse
|
24
|
Bozzatello P, De Rosa ML, Rocca P, Bellino S. Effects of Omega 3 Fatty Acids on Main Dimensions of Psychopathology. Int J Mol Sci 2020; 21:ijms21176042. [PMID: 32839416 PMCID: PMC7504659 DOI: 10.3390/ijms21176042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
The usefulness of polyunsaturated fatty acids on inflammatory, cardiovascular, and the nervous system was studied in the last decades, but the mechanisms underlying their benefic properties are still partially unknown. These agents seem to express their action on the membrane phospholipid composition and permeability and modulation of second messenger cascades. In psychiatry, the efficacy and tolerability of omega-3 fatty acids were investigated in several psychiatric disorders, including major depression, bipolar disorder, personality disorders, high-risk conditions to develop psychosis, attention-deficit hyperactivity disorder, and autism spectrum disorders. Initial findings in this field are promising, and some relevant questions need to be addressed. In particular, the effects of these agents on the main symptom dimensions have to be investigated in a trans-diagnostic perspective. The present systematic review is aimed to examine the available data on the efficacy of omega-3 fatty acids on domains of psychotic symptoms, affective symptoms, impulsivity, and aggressiveness, and harmful behaviors, and suicide risk.
Collapse
Affiliation(s)
- Paola Bozzatello
- Department of Neuroscience, Faculty of Medicine, University of Turin, 10126 Turin, Italy; (P.B.); (M.L.D.R.); (P.R.)
- Center for Personality Disorders, Psychiatric Clinic, 10126 Turin, Italy
| | - Maria Laura De Rosa
- Department of Neuroscience, Faculty of Medicine, University of Turin, 10126 Turin, Italy; (P.B.); (M.L.D.R.); (P.R.)
- Center for Personality Disorders, Psychiatric Clinic, 10126 Turin, Italy
| | - Paola Rocca
- Department of Neuroscience, Faculty of Medicine, University of Turin, 10126 Turin, Italy; (P.B.); (M.L.D.R.); (P.R.)
| | - Silvio Bellino
- Department of Neuroscience, Faculty of Medicine, University of Turin, 10126 Turin, Italy; (P.B.); (M.L.D.R.); (P.R.)
- Center for Personality Disorders, Psychiatric Clinic, 10126 Turin, Italy
- Correspondence: ; Tel.: +39-011-6634848; Fax: +39-011-673473
| |
Collapse
|
25
|
Nemeth M, Wallner B, Schuster D, Siutz C, Quint R, Wagner KH, Millesi E. Effects of dietary fatty acids on the social life of male Guinea pigs from adolescence to adulthood. Horm Behav 2020; 124:104784. [PMID: 32504693 DOI: 10.1016/j.yhbeh.2020.104784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
Dietary intake of polyunsaturated fatty acids (PUFAs) or saturated fatty acids (SFAs) differently modulates neurophysiological and behavioral functions in response to altered hypothalamic-pituitary-adrenal (HPA)-axis activity and an individual's development. In this context, an individual's social environment, including social interactions and social hierarchies, is closely related to hormone concentrations and possibly interacts with dietary fatty acid effects. We investigated if dietary supplementation with walnut oil (high in PUFAs) and coconut fat (high in SFAs), compared to a control group, affects body mass gain, cortisol and testosterone concentrations, plasma fatty acids, and social behavior in male domestic guinea pigs from adolescence to adulthood. For analyses of cortisol and testosterone concentrations, social interactions were included as covariates in order to consider effects of social behavior on hormone concentrations. Our results revealed that SFAs increased escalated conflicts like fights and stimulated cortisol and testosterone concentrations, which limited body mass gain and first-year survival. PUFAs did not remarkably affect social behavior and hormone concentrations, but enabled the strongest body mass gain, which probably resulted from an energetic advantage. Neither sociopositive nor agonistic behaviors explained age-specific differences in hormone concentrations between groups. However, a high number of subdominant individuals and lower testosterone concentrations were related to increased cortisol concentrations in adult PUFA males. Our findings demonstrate the importance of dietary fatty acids regarding behavioral and endocrine developmental processes and adaptations to the social environment by modulating HPA-axis function and body homeostasis.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Daniela Schuster
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Carina Siutz
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Ruth Quint
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
26
|
Carabelli B, Delattre AM, Waltrick APF, Araújo G, Suchecki D, Machado RB, de Souza LER, Zanata SM, Zanoveli JM, Ferraz AC. Fish-oil supplementation decreases Indoleamine-2,3-Dioxygenase expression and increases hippocampal serotonin levels in the LPS depression model. Behav Brain Res 2020; 390:112675. [PMID: 32407816 DOI: 10.1016/j.bbr.2020.112675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
AIM To test the hypothesis that the antidepressant-like effect of omega-3 polyunsaturated fatty acids is related to the Indoleamine-2,3-Dioxygenase (IDO) inhibition. METHODS Animals were supplemented for 50 days with 3.0 g/kg of Fish Oil (FO) or received water (Control group - C), via gavage. At the end of this period, both groups were injected with LPS 24 h before the modified forced swim test (MFST) and the open field. To assess the possible involvement of IDO in the FO effects, we performed two independent experiments, using two IDO inhibitors: the direct inhibitor 1-methyl-DL-tryptophan (1-MT) and the anti-inflammatory drug minocycline (MINO), administered 23 h, 5 h and 1 h before the tests. After the tests, the animals' hippocampi were removed for quantification of serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) by HPLC, and for IDO expression by western blot. RESULTS LPS induced a depressive-like state in the animals, and this effect was blocked by 1-MT, MINO and FO. Regardless of IDO inhibition, FO supplemented animals displayed an antidepressant-like response by increasing swimming and decreasing immobility frequencies in the MFST when compared to the control group. The immune challenge induced an over-expression of IDO and reduced hippocampal 5-HT levels, both of which were reversed by MINO and FO. CONCLUSION FO induced a pronounced antidepressant-like effect and prevented LPS-induced depressive-like behavior, and this effect was related to decreased IDO expression and increased 5-HT levels in the hippocampus.
Collapse
Affiliation(s)
- Bruno Carabelli
- Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Ana Márcia Delattre
- Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Giulia Araújo
- Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Deborah Suchecki
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | - Silvio M Zanata
- Departamento de Patologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Anete Curte Ferraz
- Departamento de Fisiologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
27
|
Twelve-month Studies on Perilla Oil Intake in Japanese Adults-Possible Supplement for Mental Health. Foods 2020; 9:foods9040530. [PMID: 32331363 PMCID: PMC7230189 DOI: 10.3390/foods9040530] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/13/2023] Open
Abstract
Perilla oil (PO), rich in α-linolenic acid (LNA, C18:3, ω-3), is increasingly alleged to have numerous health benefits in humans. However, the current reports detailing the effects of PO on human mental health are not adequate. Therefore, in the current investigation we compared the effects of PO or placebo treatment on the mental condition of healthy adult Japanese volunteers. At baseline and after 12 months of treatment, mental health condition was assessed using the Zung Self-Rating Depression Scale (SDS) and Apathy Scale, and serum biochemical parameters were determined. From baseline to 12 months of intervention, both SDS depression and apathy scores improved significantly in the PO-administered group. Compared to those of control group, serum norepinephrine and serotonin levels after 12 months decreased in the PO-administered group. The enhanced mental state observed in PO-subjects was accompanied by LNA level increases in erythrocyte plasma membranes. Our data demonstrate that PO intake enhances blood LNA levels and may maintain healthy mental conditions in adult subjects.
Collapse
|
28
|
Talamonti E, Sasso V, To H, Haslam RP, Napier JA, Ulfhake B, Pernold K, Asadi A, Hessa T, Jacobsson A, Chiurchiù V, Viscomi MT. Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice. FASEB J 2020; 34:2024-2040. [PMID: 31909582 PMCID: PMC7384056 DOI: 10.1096/fj.201901890rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
Abstract
Docosahexaenoic acid (DHA) is a ω-3 fatty acid typically obtained from the diet or endogenously synthesized through the action of elongases (ELOVLs) and desaturases. DHA is a key central nervous system constituent and the precursor of several molecules that regulate the resolution of inflammation. In the present study, we questioned whether the impaired synthesis of DHA affected neural plasticity and inflammatory status in the adult brain. To address this question, we investigated neural and inflammatory markers from mice deficient for ELOVL2 (Elovl2-/- ), the key enzyme in DHA synthesis. From our findings, Elovl2-/- mice showed an altered expression of markers involved in synaptic plasticity, learning, and memory formation such as Egr-1, Arc1, and BDNF specifically in the cerebral cortex, impacting behavioral functions only marginally. In parallel, we also found that DHA-deficient mice were characterized by an increased expression of pro-inflammatory molecules, namely TNF, IL-1β, iNOS, caspase-1 as well as the activation and morphologic changes of microglia in the absence of any brain injury or disease. Reintroducing DHA in the diet of Elovl2-/- mice reversed such alterations in brain plasticity and inflammation. Hence, impairment of systemic DHA synthesis can modify the brain inflammatory and neural plasticity status, supporting the view that DHA is an essential fatty acid with an important role in keeping inflammation within its physiologic boundary and in shaping neuronal functions in the central nervous system.
Collapse
Affiliation(s)
- Emanuela Talamonti
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Valeria Sasso
- Laboratory of Experimental NeurorehabilitationIRCCS Santa Lucia FoundationRomeItaly
| | - Hoi To
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | | | | | - Brun Ulfhake
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Karin Pernold
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Abolfazl Asadi
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Tara Hessa
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Anders Jacobsson
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Valerio Chiurchiù
- Department of MedicineCampus Bio‐Medico University of RomeRomeItaly
- Laboratory of Resolution of NeuroinflammationIRCCS Santa Lucia FoundationRomeItaly
| | | |
Collapse
|
29
|
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 2019; 100:171-210. [PMID: 31487233 DOI: 10.1152/physrev.00041.2018] [Citation(s) in RCA: 528] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Atsuhiko Ichimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| |
Collapse
|
30
|
Tobore TO. Towards a comprehensive understanding of the contributions of mitochondrial dysfunction and oxidative stress in the pathogenesis and pathophysiology of Huntington's disease. J Neurosci Res 2019; 97:1455-1468. [DOI: 10.1002/jnr.24492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/06/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
31
|
Tabbai S, Moreno-Fernández RD, Zambrana-Infantes E, Nieto-Quero A, Chun J, García-Fernández M, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Oliveira TG, Pérez-Martín M, Pedraza C. Effects of the LPA 1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice. Front Mol Neurosci 2019; 12:146. [PMID: 31244601 PMCID: PMC6580287 DOI: 10.3389/fnmol.2019.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in response to stress and induces anxiety and several behavioral and neurobiological changes that are strongly correlated with mood disorders. In fact, our group proposes that maLPA1-null mice represent an animal model of anxious depression. However, despite the key role of the LPA-LPA1-pathway in emotion and stress coping behaviors, the available information describing the mechanisms by which the LPA-LPA1-pathway regulates emotion is currently insufficient. Because activation of LPA1 requires LPA, here, we used a Matrix-Assisted Laser Desorption/ Ionization mass spectrometry-based approach to evaluate the effects of an LPA1 receptor deficiency on the hippocampal levels of LPA species. Additionally, the impact of stress on the LPA profile was also examined in both wild-type (WT) and the Malaga variant of LPA1-null mice (maLPA1-null mice). Mice lacking LPA1 did not exhibit gross perturbations in the hippocampal LPA species, but the LPA profile was modified, showing an altered relative abundance of 18:0 LPA. Regardless of the genotype, restraint stress produced profound changes in all LPA species examined, revealing that hippocampal LPA species are a key target of stress. Finally, the relationship between the hippocampal levels of LPA species and performance in the elevated plus maze was established. To our knowledge, this study is the first to detect, identify and profile LPA species in the hippocampus of both LPA1-receptor null mice and WT mice at baseline and after acute stress, as well as to link these LPA species with anxiety-like behaviors. In conclusion, the hippocampal LPA species are a key target of stress and may be involved in psychopathological conditions.
Collapse
Affiliation(s)
- Sara Tabbai
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Román Dario Moreno-Fernández
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Maria García-Fernández
- Departamento de Fisiología y Medicina Deportiva, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Luis Javier Santín
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las CC, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
32
|
Abstract
IMPORTANCE Potential effects of breast feeding on children's behaviour remains an elusive debate given inherent methodological challenges. Propensity score matching affords benefits by ensuring greater equivalence on observable social and health determinants, helping to reduce bias between groups. OBJECTIVES We examined whether the duration of breast feeding had an impact on children's externalising and internalising behaviours. STUDY DESIGN A cohort study (Encuesta Longitudinal de la Primera Infancia cohort) that included 3037 Chilean families who were enrolled in 2010. Follow-up data was collected in 2012. SETTING General community. PARTICIPANTS Population-based sample. Eligibility criteria: children born full-term with complete data on matching variables. Matching variables included: healthcare system as a proxy of income, presence of a partner/spouse in the household, maternal age, educational level, IQ, working status, type of work, diagnosis of prenatal depression by a healthcare professional, smoking during pregnancy, delivery type, child sex, weight at birth, incubation following delivery, and child age. EXPOSURE Duration of breast feeding. MAIN OUTCOMES AND MEASURES Externalising and internalising problems assessed using the Child Behaviour Checklist. RESULTS Matched results revealed benefits of any breast feeding, up to 6 months, on emotional reactivity and somatic complaints (mean difference of -1.00, 95% CI, -1.84 to -0.16 and -1.02, 95% CI, -1.76 to -0.28, respectively). Children breast fed between 7 and 12 months also had reduced scores on emotional reactivity, in addition to attention problems (mean difference of -0.86, 95% CI, -1.66 to -0.06 and -0.50, 95% CI, -0.93 to -0.07, respectively). No benefits were observed for children breast fed 13 months or more. CONCLUSION Reduced internalising difficulties and inattention were found in children breast fed up to a year, suggesting that breast feeding may have beneficial impacts on these areas of development. The magnitude of effect was modest. Extended durations of breast feeding did not appear to offer any benefits.
Collapse
Affiliation(s)
- Lisa-Christine Girard
- School of Health in Social Science, Clinical Psychology, University of Edinburgh, Edinburgh, UK
| | - Chamarrita Farkas
- Psychology School, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
33
|
Feng Y, Chen B, Yu Q, Li L. Identification of Double Bond Position Isomers in Unsaturated Lipids by m-CPBA Epoxidation and Mass Spectrometry Fragmentation. Anal Chem 2019; 91:1791-1795. [PMID: 30608661 PMCID: PMC6408215 DOI: 10.1021/acs.analchem.8b04905] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipids are highly diverse biomolecules associated with several biological functions including structural constituent, energy storage, and signal transduction. It is essential to characterize lipid structural isomers and further understand their biological roles. Unsaturated lipids contain one or multiple carbon-carbon double bonds. Identifying double bond position presents a major challenge in unsaturated lipid characterization. Recently, several advancements have been made for double bond localization by mass spectrometry (MS) analysis. However, many of these studies require complex chemical reactions or advanced mass spectrometers with special fragmentation techniques, which limits the application in lipidomics study. Here, an innovative meta-chloroperoxybenzoic acid ( m-CPBA) epoxidation reaction coupling with collision-induced dissociation (CID)-MS/MS strategy provides a new tool for unsaturated lipidomics analysis. The rapid epoxidation reaction was carried out by m-CPBA with high specificity. Complete derivatization was achieved in minutes without overoxidized byproduct. Moreover, diagnostic ion pair with 16 Da mass difference indicated localization of carbon-carbon double bond in MS/MS spectra. Multiple lipid classes were evaluated with this strategy and generated abundant fragments for structural analysis. Unsaturated lipid analysis of yeast extract using this strategy took less than 30 min, demonstrating the potential for high-throughput lipidomics analysis by this approach. This study opens a door for high throughput unsaturated lipid analysis with minimal requirement for instrumentation, which could be widely applied in lipidomics analysis.
Collapse
Affiliation(s)
- Yu Feng
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Bingming Chen
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin–Madison, Madison, Wisconsin, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States
| |
Collapse
|
34
|
Tobore TO. On the Neurobiological Role of Oxidative Stress in Alcohol-Induced Impulsive, Aggressive and Suicidal Behavior. Subst Use Misuse 2019; 54:2290-2303. [PMID: 31369300 DOI: 10.1080/10826084.2019.1645179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives: Alcohol abuse is known to result in behavioral impairments (such as increased impulsivity, aggressive, and suicidal behavior), but the neurobiological basis for these behavioral impairments remains unknown. The objective of this review is to propose a neurobiological basis for alcohol-induced aggression, impulsivity, and suicidal behavior. Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(Alcohol OR Alcoholism* OR Alcohol Abuse) AND (Behavior* OR Behavioral Impairment or Disorder) AND (Oxidative Stress OR Reactive Oxygen Species)." The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and May 31, 2019. The search was limited to studies published in English and other languages involving both animal and human subjects. Articles selected included randomized clinical trials (RCTs), observational studies, meta-analyses, and both systemic and narrative reviews, providing both quantitative and qualitative information with a measure of alcohol abuse or alcoholism as an outcome. Exclusion criteria were unpublished data of any form, including conference proceedings and dissertation. New key terms were identified (new term included: "Antioxidants, Neurotransmitters, Dopamine, Serotonin, GABA, Glutamate. Aggression, Impulsivity, Suicidal Behavior, hippocampus, prefrontal cortex, limbic system, psychiatric disorders, PTSD, Anxiety, Depression. These new terms were searched with Alcohol or Alcoholism or Alcohol Abuse and Oxidative Stress separately resulting in the identification of over 3000 articles. 196 were included in this article. Results: Multiple lines of evidence indicate that oxidative stress (OS) plays a critical underlying role in alcohol toxicity and behavioral impairments. Conclusions/Importance: People diagnosed with PTSD, anxiety disorder, depression, and those with a personality high in psychoticism as measured by the P Scale of the Eysenck Personality Questionnaire, with comorbid alcohol abuse or alcohol use disorder (AUD), may display increased impulsivity, aggression, and suicidal behavior because of the potentiating effect of alcohol-induced OS on their elevated brain oxidative status. Antioxidant therapy should be an integral part of acute alcohol intoxication and AUD treatment. Further research is necessary to fully understand the relationship between OS and alcohol-induced behavioral impairments.
Collapse
|
35
|
Omega-3 Polyunsaturated Fatty Acid Deficiency and Progressive Neuropathology in Psychiatric Disorders: A Review of Translational Evidence and Candidate Mechanisms. Harv Rev Psychiatry 2019; 27:94-107. [PMID: 30633010 PMCID: PMC6411441 DOI: 10.1097/hrp.0000000000000199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Meta-analytic evidence indicates that mood and psychotic disorders are associated with both omega-3 polyunsaturated fatty acid (omega-3 PUFA) deficits and progressive regional gray and white matter pathology. Although the association between omega-3 PUFA insufficiency and progressive neuropathological processes remains speculative, evidence from translational research suggests that omega-3 PUFA insufficiency may represent a plausible and modifiable risk factor not only for enduring neurodevelopmental abnormalities in brain structure and function, but also for increased vulnerability to neurodegenerative processes. Recent evidence from human neuroimaging studies suggests that lower omega-3 PUFA intake/status is associated with accelerated gray matter atrophy in healthy middle-aged and elderly adults, particularly in brain regions consistently implicated in mood and psychotic disorders, including the amygdala, anterior cingulate, hippocampus, prefrontal cortex, and temporal cortex. Human neuroimaging evidence also suggests that both low omega-3 PUFA intake/status and psychiatric disorders are associated with reductions in white matter microstructural integrity and increased rates of white matter hyperintensities. Preliminary evidence suggests that increasing omega-3 PUFA status is protective against gray matter atrophy and deficits in white matter microstructural integrity in patients with mood and psychotic disorders. Plausible mechanisms mediating this relationship include elevated pro-inflammatory signaling, increased synaptic regression, and reductions in cerebral perfusion. Together these associations encourage additional neuroimaging research to directly investigate whether increasing omega-3 PUFA status can mitigate neuropathological processes in patients with, or at high risk for, psychiatric disorders.
Collapse
|
36
|
Raine A, Ang RP, Choy O, Hibbeln JR, Ho RMH, Lim CG, Lim-Ashworth NSJ, Ling S, Liu JCJ, Ooi YP, Tan YR, Fung DSS. Omega-3 (ω-3) and social skills interventions for reactive aggression and childhood externalizing behavior problems: a randomized, stratified, double-blind, placebo-controlled, factorial trial. Psychol Med 2019; 49:335-344. [PMID: 29743128 DOI: 10.1017/s0033291718000983] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND While studies suggest that nutritional supplementation may reduce aggressive behavior in children, few have examined their effects on specific forms of aggression. This study tests the primary hypothesis that omega-3 (ω-3), both alone and in conjunction with social skills training, will have particular post-treatment efficacy for reducing childhood reactive aggression relative to baseline. METHODS In this randomized, double-blind, stratified, placebo-controlled, factorial trial, a clinical sample of 282 children with externalizing behavior aged 7-16 years was randomized into ω-3 only, social skills only, ω-3 + social skills, and placebo control groups. Treatment duration was 6 months. The primary outcome measure was reactive aggression collected at 0, 3, 6, 9, and 12 months, with antisocial behavior as a secondary outcome. RESULTS Children in the ω-3-only group showed a short-term reduction (at 3 and 6 months) in self-report reactive aggression, and also a short-term reduction in overall antisocial behavior. Sensitivity analyses and a robustness check replicated significant interaction effects. Effect sizes (d) were small, ranging from 0.17 to 0.31. CONCLUSIONS Findings provide some initial support for the efficacy of ω-3 in reducing reactive aggression over and above standard care (medication and parent training), but yield only preliminary and limited support for the efficacy of ω-3 in reducing overall externalizing behavior in children. Future studies could test further whether ω-3 shows promise in reducing more reactive, impulsive forms of aggression.
Collapse
Affiliation(s)
- Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology,University of Pennsylvania,PA,USA
| | - Rebecca P Ang
- National Institute of Education,Nanyang Technological University,Singapore
| | - Olivia Choy
- Psychology Programme,School of Social Sciences,Nanyang Technological University,Singapore
| | - Joseph R Hibbeln
- Section on Nutritional Neuroscience,National Institute on Alcohol Abuse and Alcoholism,Rockville,MD,USA
| | - Ringo M-H Ho
- Psychology Programme,School of Social Sciences,Nanyang Technological University,Singapore
| | - Choon Guan Lim
- Department of Child and Adolescent Psychiatry,Institute of Mental Health,Singapore
| | | | - Shichun Ling
- Department of Criminology,University of Pennsylvania,Philadelphia,PA,USA
| | - Jean C J Liu
- Division of Social Sciences,Yale-NUS College,Singapore
| | - Yoon Phaik Ooi
- Department of Child and Adolescent Psychiatry,Institute of Mental Health,Singapore
| | - Yi Ren Tan
- Department of Child and Adolescent Psychiatry,Institute of Mental Health,Singapore
| | - Daniel S S Fung
- Department of Child and Adolescent Psychiatry,Institute of Mental Health,Singapore
| |
Collapse
|
37
|
Jackson C, Barrett DW, Shumake J, Gonzales E, Gonzalez-Lima F, Lane MA. Maternal omega-3 fatty acid intake during neurodevelopment does not affect pup behavior related to depression, novelty, or learning. BMC Res Notes 2018; 11:812. [PMID: 30442183 PMCID: PMC6238316 DOI: 10.1186/s13104-018-3915-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/09/2018] [Indexed: 11/23/2022] Open
Abstract
Objective Previously, we showed that consumption of a diet supplemented with omega-3 polyunsaturated fatty acids (n-3FAs) for two rounds of gestation and lactation increased the ability of rat dams to cope with stress when compared to dams that ingested a diet lacking n-3FAs. The objective of this study was to determine if the diets of these dams affected the behavior of their pups later in life. To isolate the neurodevelopmental effects of n-3FAs, pups from the second gestation were weaned to a diet adequate in n-3FAs. Pup testing began at 8 weeks of age and consisted of the forced swim, open field, and hole board tests to examine depression-related behavior, reaction to novelty, and learning and memory, respectively. Results Given the considerable difference in the n-3FA content of the maternal diet, we expected a large effect size, however with the exception of rearing duration, maternal diet did not affect behavior in any of the tests conducted. These results suggest that maternal n-3FA supplementation during neurodevelopment likely does not affect offspring behavior when a diet adequate in n-3FA is provided post-weaning. Rather, we hypothesize that brain n-3FAs at the time of testing confer altered behavior and corroborate the need for additional research. Electronic supplementary material The online version of this article (10.1186/s13104-018-3915-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corey Jackson
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA
| | - Douglas W Barrett
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712, USA
| | - Jason Shumake
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712, USA
| | - Elisa Gonzales
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA
| | - F Gonzalez-Lima
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712, USA
| | - Michelle A Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA.
| |
Collapse
|
38
|
Taha AY, Hennebelle M, Yang J, Zamora D, Rapoport SI, Hammock BD, Ramsden CE. Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins Leukot Essent Fatty Acids 2018; 138:71-80. [PMID: 27282298 PMCID: PMC5106341 DOI: 10.1016/j.plefa.2016.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022]
Abstract
Linoleic acid (LA, 18:2n-6) is the most abundant polyunsaturated fatty acid in the North American diet and is a precursor to circulating bioactive fatty acid metabolites implicated in brain disorders. This exploratory study tested the effects of increasing dietary LA on plasma and cerebral cortex metabolites derived from LA, its elongation-desaturation products dihomo-gamma linolenic (DGLA, 20:3n-6) acid and arachidonic acid (AA, 20:4n-6), as well as omega-3 alpha-linolenic (α-LNA, 18:3n-3), eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). Plasma and cortex were obtained from rats fed a 0.4%, 5.2% or 10.5% energy LA diet for 15 weeks and subjected to liquid chromatography tandem mass spectrometry analysis. Total oxylipin concentrations, representing the esterified and unesterified pool, and unesterified oxylipins derived from LA and AA were significantly increased and EPA metabolites decreased in plasma at 5.2% or 10.5% energy LA compared to 0.4% energy LA. Unesterified plasma DHA metabolites also decreased at 10.5% energy LA. In cortex, total and unesterified LA and AA metabolites increased and unesterified EPA metabolites decreased at 5.2% or 10.5% LA. DGLA and α-LNA metabolites did not significantly change in plasma or cortex. Dietary LA lowering represents a feasible approach for targeting plasma and brain LA, AA, EPA or DHA-derived metabolite concentrations.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA, USA
| | - Daisy Zamora
- Department of Psychiatry, University of North Carolina-Chapel Hill, NC, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA, USA
| | - Christopher E Ramsden
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; Department of Physical Medicine and Rehabilitation, University of North Carolina-Chapel Hill, NC, USA
| |
Collapse
|
39
|
Farioli Vecchioli S, Sacchetti S, Nicolis di Robilant V, Cutuli D. The Role of Physical Exercise and Omega-3 Fatty Acids in Depressive Illness in the Elderly. Curr Neuropharmacol 2018; 16:308-326. [PMID: 28901279 PMCID: PMC5843982 DOI: 10.2174/1570159x15666170912113852] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/20/2017] [Accepted: 07/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background: In adulthood, depression is the most common type of mental illness and will be the second leading cause of disease by 2020. Major depression dramatically affects the function of the central nervous system and degrades the quality of life, especially in old age. Several mechanisms underlie the pathophysiology of depressive illness, since it has a multifactorial etiology. Human and an-imal studies have demonstrated that depression is mainly associated with imbalances in neurotransmitters and neurotrophins, hypothalamic-pituitary-adrenal axis alterations, brain volume changes, neurogenesis dysfunction, and dysregulation of in-flammatory pathways. Also the gut microbiota may influence mental health outcomes. Although depression is not a consequence of normal aging, depressive disorders are common in later life, even if often undi-agnosed or mis-diagnosed in old age. When untreated, depression reduces life expectancy, worsens medical illnesses, en-hances health care costs and is the primary cause of suicide among older people. To date, the underpinnings of depression in the elderly are still to be understood, and the pharmacological treatment is the most commonly used therapy. Objective: Since a sedentary lifestyle and poor eating habits have recently emerged as crucial contributors to the genesis and course of depression, in the present review, we have focused on the effects of physical activity and omega-3 fatty acids on depressive illness in the elderly. Results: A growing literature indicates that both exercise and dietary interventions can promote mental health throughout one’s lifespan. Conclusion: There thus emerges the awareness that an active lifestyle and a balanced diet may constitute valid low-cost pre-vention strategies to counteract depressive illness in the elderly.
Collapse
Affiliation(s)
- Stefano Farioli Vecchioli
- Institute of Cell Biology and Neurobiology, CNR/Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Stefano Sacchetti
- Laboratory of Experimental and Behavioral Neurophysiology, Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Department of Psychology, University Sapienza of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - V Nicolis di Robilant
- Institute of Cell Biology and Neurobiology, CNR/Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy
| | - Debora Cutuli
- Laboratory of Experimental and Behavioral Neurophysiology, Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143, Rome, Italy.,Department of Psychology, University Sapienza of Rome, Via dei Marsi 78, 00185, Rome, Italy
| |
Collapse
|
40
|
McNamara RK, Asch RH, Lindquist DM, Krikorian R. Role of polyunsaturated fatty acids in human brain structure and function across the lifespan: An update on neuroimaging findings. Prostaglandins Leukot Essent Fatty Acids 2018; 136:23-34. [PMID: 28529008 PMCID: PMC5680156 DOI: 10.1016/j.plefa.2017.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023]
Abstract
There is a substantial body of evidence from animal studies implicating polyunsaturated fatty acids (PUFA) in neuroinflammatory, neurotrophic, and neuroprotective processes in brain. However, direct evidence for a role of PUFA in human brain structure and function has been lacking. Over the last decade there has been a notable increase in neuroimaging studies that have investigated the impact of PUFA intake and/or blood levels (i.e., biostatus) on brain structure, function, and pathology in human subjects. The majority of these studies specifically evaluated associations between omega-3 PUFA intake and/or biostatus and neuroimaging outcomes using a variety of experimental designs and imaging techniques. This review provides an updated overview of these studies in an effort to identify patterns to guide and inform future research. While the weight of evidence provides general support for a beneficial effect of a habitual diet consisting of higher omega-3 PUFA intake on cortical structure and function in healthy human subjects, additional research is needed to replicate and extend these findings as well as identify response mediators and clarify mechanistic pathways. Controlled intervention trials are also needed to determine whether increasing n-3 PUFA biostatus can prevent or attenuate neuropathological brain changes observed in patients with or at risk for psychiatric disorders and dementia.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, United States.
| | - Ruth H Asch
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, United States
| | - Diana M Lindquist
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, United States
| | - Robert Krikorian
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, United States
| |
Collapse
|
41
|
Larrieu T, Layé S. Food for Mood: Relevance of Nutritional Omega-3 Fatty Acids for Depression and Anxiety. Front Physiol 2018; 9:1047. [PMID: 30127751 PMCID: PMC6087749 DOI: 10.3389/fphys.2018.01047] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
The central nervous system (CNS) has the highest concentration of lipids in the organism after adipose tissue. Among these lipids, the brain is particularly enriched with polyunsaturated fatty acids (PUFAs) represented by the omega-6 (ω6) and omega-3 (ω3) series. These PUFAs include arachidonic acid (AA) and docosahexaenoic acid (DHA), respectively. PUFAs have received substantial attention as being relevant to many brain diseases, including anxiety and depression. This review addresses an important question in the area of nutritional neuroscience regarding the importance of ω3 PUFAs in the prevention and/or treatment of neuropsychiatric diseases, mainly depression and anxiety. In particular, it focuses on clinical and experimental data linking dietary intake of ω3 PUFAs and depression or anxiety. In particular, we will discuss recent experimental data highlighting how ω3 PUFAs can modulate neurobiological processes involved in the pathophysiology of anxiety and depression. Potential mechanisms involved in the neuroprotective and corrective activity of ω3 PUFAs in the brain are discussed, in particular the sensing activity of free fatty acid receptors and the activity of the PUFAs-derived endocannabinoid system and the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Thomas Larrieu
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
42
|
Hauser J, Stollberg E, Reissmann A, Kaunzinger I, Lange KW. Alterations of attention and impulsivity in the rat following a transgenerational decrease in dietary omega-3 fatty acids. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Hashimoto M, Hossain S, Katakura M, Mamun AA, Shido O. Docosahexaenoic Acid Helps to Lessen Extinction Memory in Rats. Molecules 2018; 23:molecules23020451. [PMID: 29463009 PMCID: PMC6017742 DOI: 10.3390/molecules23020451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 11/16/2022] Open
Abstract
Abstract: Memory extinction is referred to as a learning process in which a conditioned response (CR) progressively reduces over time as an animal learns to uncouple a response from a stimulus. Extinction occurs when the rat is placed into a context without shock after training. Docosahexaenoic acid (DHA, C22:6, n-3) is implicated in memory formation in mammalian brains. In a two-way active shuttle-avoidance apparatus, we examined whether DHA affects the extinction memory and the expression of brain cognition-related proteins, including gastrin-releasing peptide receptor (GRPR), brain-derived neurotrophic factor receptor (BDNFR) tyrosine kinase receptor B (TrKB), and N-methyl-d-aspartate receptor (NMDAR) subunits NR2A and NR2B. Also, the protein levels of GRP, BDNF, postsynaptic density protein-95 (PSD-95), and vesicular acetylcholine transporter (VAChT), and the antioxidative potentials, in terms of lipid peroxide (LPO) and reactive oxygen species (ROS), were examined in the hippocampus. During the acquisition phase, the rats received a conditioned stimulus (CS-tone) paired with an unconditioned stimulus (UCS foot shock) for three consecutive days (Sessions S1, S2, and S3, each consisting of 30-trials) after 12 weeks of oral administration of DHA. After a three-day interval, the rats were re-subjected to two extinction sessions (S4, S5), each comprising 30 trials of CS alone. During the acquisition training in S1, the shock-related avoidance frequency (acquisition memory) was significantly higher in the DHA-administered rats compared with the control rats. The avoidance frequency, however, decreased with successive acquisition trainings in sessions S2 and S3. When the rats were subjected to the extinction sessions after a break for consolidation, the conditioned response (CR) was also significantly higher in the DHA-administered rats. Interestingly, the freezing responses (frequency and time) also significantly decreased in the DHA-administered rats, thus suggesting that a higher coping capacity was present during fear stress in the DHA-administered rats. DHA treatments increased the mRNA levels of GRPR, BDNF receptor TrKB, and NMDAR subunit NR2B. DHA also increased the protein levels of GRP, BDNF, PSD-95, and VAChT, and the antioxidative potentials in the hippocampus. These results suggest the usefulness of DHA for treating stress disorders.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Shahdat Hossain
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
- Department of Biochemistry & Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| | - Masanori Katakura
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Abdullah Al Mamun
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Osamu Shido
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
44
|
Tang M, Zhang M, Wang L, Li H, Cai H, Dang R, Jiang P, Liu Y, Xue Y, Wu Y. Maternal dietary of n-3 polyunsaturated fatty acids affects the neurogenesis and neurochemical in female rat at weaning. Prostaglandins Leukot Essent Fatty Acids 2018; 128:11-20. [PMID: 29413357 DOI: 10.1016/j.plefa.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are rapidly accumulated in brain during pre- and neonatal life, which is important for the development and function of central nervous system. Deficiency of biologically important n-3 PUFA docosahexaenoic acid (C22:6n-3, DHA) is associated with impaired visual, attention and cognition, and would precipitate psychiatric symptoms. However, clinical studies of the potential mechanism on the effect of dietary DHA deficiency on neural development remain unclear. In addition, the effects of n-6 PUFAs and n-3 PUFAs ingestion on the dynamic process of the cell proliferation in neurogenesis of offspring were investigated using immunefluorescence. And GC-MS was used to determine the fatty acid content in the liver of offspring. To further investigate the neurochemical influence on maternal PUFAs levels, we assessed the functioning of various neurotransmitter systems including glutamatergic, dopaminergic, norepinephrinergic and serotoninergic systems in the brain of female rats at weaning by HPLC-MS/MS. Lastly, we analyzed the turnover rates and between-metabolite ratios (the ratios between metabolites of monoamine neurotransmitters) to seek potential links between the neurotransmitters and dietary fatty acids compositions. There were significant differences between the deficiency group and the control or supplementary group in liver fatty acids compositions, showing that n-3 PUFAs were largely replaced by n-6 PUFAs. The generation of n-3 PUFAs deficiency rats exhibited abnormal neurogenesis and neurochemical. Altered dopamine or norepinephrine transmission and between-metabolite ratios in brain areas may be a key neuronal mechanism that contributes to the potential detrimental effects of n-3 PUFAs deficiency for mental health.
Collapse
Affiliation(s)
- Mimi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Min Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Lu Wang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Hualin Cai
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ruili Dang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Pei Jiang
- Institute of Clinical Pharmacy, Jining First People's Hospital, Jining Medical University, Jining 272000, PR China.
| | - Yiping Liu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China.
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| | - Yanqin Wu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Pharmaceutical Sciences, Central South University, Changsha, PR China.
| |
Collapse
|
45
|
McNamara RK, Asch RH, Schurdak JD, Lindquist DM. Glutamate homeostasis in the adult rat prefrontal cortex is altered by cortical docosahexaenoic acid accrual during adolescence: An in vivo 1H MRS study. Psychiatry Res 2017; 270:39-45. [PMID: 29049903 PMCID: PMC5671887 DOI: 10.1016/j.pscychresns.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Major psychiatric disorders are associated with dysregulated glutamate homeostasis and deficits in the omega-3 fatty acid docosahexaenoic acid (DHA). This study determined the effects of dietary-induced alterations in brain DHA accrual on cortical glutamate homeostasis in the adult rat brain. Adolescent rats were fed a control diet (n = 20), a n-3 fatty acid-deficient diet (DEF, n = 20), or a fish oil-fortified diet containing preformed DHA (FO, n = 20). In adulthood 1H MRS scans were performed with voxels in the prefrontal cortex (PFC) and thalamus. Compared with controls, erythrocyte, PFC, and thalamus DHA levels were significantly lower in DEF rats and significantly higher in FO rats. In the PFC, but not the thalamus, glutamate was significantly elevated in DEF rats compared with controls and FO rats. Glutamine did not differ between groups and the glutamine/glutamate ratio was lower in DEF rats. No differences were observed for markers of excitotoxicity (NAA, GFAP), or astrocyte glutamate transporter (GLAST, GLT-1) or glutamine synthetase expression. Across diet groups, PFC DHA levels were inversely correlated with PFC glutamate levels and positively correlated with GLAST expression. Together these findings demonstrate that rat cortical DHA accrual during adolescence impacts glutamate homeostasis in the adult PFC.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Ruth H Asch
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jennifer D Schurdak
- Department of Psychiatry and Behavioral Neuroscience, Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Diana M Lindquist
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
46
|
Li M, Zhai S, Xie Q, Tian L, Li X, Zhang J, Ye H, Zhu Y, Yang L, Wang W. Effects of Dietary n-6:n-3 PUFA Ratios on Lipid Levels and Fatty Acid Profile of Cherry Valley Ducks at 15-42 Days of Age. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9995-10002. [PMID: 29084426 DOI: 10.1021/acs.jafc.7b02918] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this study was to investigate the effects of dietary n-6:n-3 PUFA ratio on growth performance, serum and tissue lipid levels, fatty acid profile, and hepatic expression of fatty acid synthesis genes in ducks. A total of 3168 15-day old ducks were fed different n-6:n-3 PUFA ratios: 13:1 (control), 10:1, 8:1, 6:1, 4:1, and 2:1. The feeding trial lasted 4 weeks. Our results revealed that dietary n-6:n-3 PUFA ratios had no effects on growth performance. The 2:1 group had the highest serum triglyceride levels. Serum total cholesterol and HDL levels were higher in the 13:1 and 8:1 groups than in the 6:1 and 2:1 groups. The concentration of C18:3n-3 in serum and tissues (liver and muscle) increased with decreasing dietary n-6:n-3 PUFA ratios. The hepatic expression of FADS2, ELOVL5, FADS1, and ELOVL2 increased on a quadratic function with decreasing dietary n-6:n-3 PUFA ratios. These results demonstrate that lower dietary n-6:n-3 PUFA ratios had strong effects on the fatty acid profile of edible parts and the deposition of n-3 PUFAs in adipose tissue of ducks.
Collapse
Affiliation(s)
- Mengmeng Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Shuangshuang Zhai
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Qiang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Lu Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Xiaocun Li
- Henan Huaying Agriculture Development Co., Ltd, Xinyang 464000, China
| | - Jiaming Zhang
- Henan Huaying Agriculture Development Co., Ltd, Xinyang 464000, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science and College of Marine Sciences, South China Agricultural University , Guangzhou 510642, China
| |
Collapse
|
47
|
Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1068-1078. [PMID: 28733268 DOI: 10.1016/j.bbalip.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 01/29/2023]
Abstract
Carriers of an epsilon 4 allele (E4) of apolipoprotein E (APOE) develop Alzheimer's disease (AD) earlier than carriers of other APOE alleles. The metabolism of plasma docosahexaenoic acid (DHA, 22:6n-3), an omega-3 fatty acid (n-3 FA), taken up by the brain and concentrated in neurons, is disrupted in E4 carriers, resulting in lower levels of brain DHA. Behavioural and cognitive impairments have been observed in animals with lower brain DHA levels, with emphasis on loss of spatial memory and increased anxiety. E4 mice provided a diet deficient in n-3 FA had a greater depletion of n-3 FA levels in organs and tissues than mice carrying other APOE alleles. However, providing n-3 FA can restore levels of brain DHA in E4 animals and in other models of n-3 FA deficiency. In E4 carriers, supplementation with DHA as early as possible might help to prevent the onset of AD and could halt the progression of, and reverse some of the neurological and behavioural consequences of their higher vulnerability to n-3 FA deficiency.
Collapse
Affiliation(s)
- Tanya Gwendolyn Nock
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Raphaël Chouinard-Watkins
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Mélanie Plourde
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada.
| |
Collapse
|
48
|
Lipids in psychiatric disorders and preventive medicine. Neurosci Biobehav Rev 2017; 76:336-362. [DOI: 10.1016/j.neubiorev.2016.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/06/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
|
49
|
Vulnerability to omega-3 deprivation in a mouse model of NMDA receptor hypofunction. NPJ SCHIZOPHRENIA 2017; 3:12. [PMID: 28560258 PMCID: PMC5441542 DOI: 10.1038/s41537-017-0014-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 01/24/2023]
Abstract
Several studies have found decreased levels of ω-3 polyunsaturated fatty acids in the brain and blood of schizophrenia patients. Furthermore, dietary ω-3 supplements may improve schizophrenia symptoms and delay the onset of first-episode psychosis. We used an animal model of NMDA receptor hypofunction, NR1KD mice, to understand whether changes in glutamate neurotransmission could lead to changes in brain and serum fatty acids. We further asked whether dietary manipulations of ω-3, either depletion or supplementation, would affect schizophrenia-relevant behaviors of NR1KD mice. We discovered that NR1KD mice have elevated brain levels of ω-6 fatty acids regardless of their diet. While ω-3 supplementation did not improve any of the NR1KD behavioral abnormalities, ω-3 depletion exacerbated their deficits in executive function. Omega-3 depletion also caused extreme mortality among male mutant mice, with 75% mortality rate by 12 weeks of age. Our studies show that alterations in NMDAR function alter serum and brain lipid composition and make the brain more vulnerable to dietary ω-3 deprivation. Depletion of omega-3 fatty acids in a mouse model of schizophrenia with altered glutamate transmission has a lethal effect in males. Previous studies have suggested that omega-3 supplements may improve the symptoms of schizophrenia. Amy Ramsey and colleagues at the University of Toronto, Canada, show in an established genetic mouse model of the disease that omega-3 dietary supplementation increased brain omega-3 levels, but did not have any beneficial effects on features that mirror symptoms of patients with schizophrenia such as increased locomotor activity or reduced social behavior. Interestingly, omega-3 dietary depletion worsened the cognitive performance and drastically increased the mortality rate of male mutant mice. The mechanisms responsible for these effects remain to be determined, but the findings highlight a potentially serious vulnerability of patients to dietary omega-3 deficits.
Collapse
|
50
|
Polyunsaturated fatty acids and recurrent mood disorders: Phenomenology, mechanisms, and clinical application. Prog Lipid Res 2017; 66:1-13. [PMID: 28069365 DOI: 10.1016/j.plipres.2017.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/20/2016] [Accepted: 01/05/2017] [Indexed: 01/25/2023]
Abstract
A body of evidence has implicated dietary deficiency in omega-3 polyunsaturated fatty acids (n-3 PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of recurrent mood disorders including major depressive disorder (MDD) and bipolar disorder. Cross-national and cross-sectional evidence suggests that greater habitual intake of n-3 PUFA is associated with reduced risk for developing mood symptoms. Meta-analyses provide strong evidence that patients with mood disorders exhibit low blood n-3 PUFA levels which are associated with increased risk for the initial development of mood symptoms in response to inflammation. While the etiology of this n-3 PUFA deficit may be multifactorial, n-3 PUFA supplementation is sufficient to correct this deficit and may also have antidepressant effects. Rodent studies suggest that n-3 PUFA deficiency during perinatal development can recapitulate key neuropathological, neurochemical, and behavioral features associated with mood disorders. Clinical neuroimaging studies suggest that low n-3 PUFA biostatus is associated with abnormalities in cortical structure and function also observed in mood disorders. Collectively, these findings implicate dietary n-3 PUFA insufficiency, particularly during development, in the pathophysiology of mood dysregulation, and support implementation of routine screening for and treatment of n-3 PUFA deficiency in patients with mood disorders.
Collapse
|