1
|
Ding J, Nguyen AT, Lohman K, Hensley MT, Parker D, Hou L, Taylor J, Voora D, Sawyer JK, Boudyguina E, Bancks MP, Bertoni A, Pankow JS, Rotter JI, Goodarzi MO, Tracy RP, Murdoch DM, Duprez D, Rich SS, Psaty BM, Siscovick D, Newgard CB, Herrington D, Hoeschele I, Shea S, Stein JH, Patel M, Post W, Jacobs D, Parks JS, Liu Y. LXR signaling pathways link cholesterol metabolism with risk for prediabetes and diabetes. J Clin Invest 2024; 134:e173278. [PMID: 38747290 PMCID: PMC11093600 DOI: 10.1172/jci173278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUNDPreclinical studies suggest that cholesterol accumulation leads to insulin resistance. We previously reported that alterations in a monocyte cholesterol metabolism transcriptional network (CMTN) - suggestive of cellular cholesterol accumulation - were cross-sectionally associated with obesity and type 2 diabetes (T2D). Here, we sought to determine whether the CMTN alterations independently predict incident prediabetes/T2D risk, and correlate with cellular cholesterol accumulation.METHODSMonocyte mRNA expression of 11 CMTN genes was quantified among 934 Multi-Ethnic Study of Atherosclerosis (MESA) participants free of prediabetes/T2D; cellular cholesterol was measured in a subset of 24 monocyte samples.RESULTSDuring a median 6-year follow-up, lower expression of 3 highly correlated LXR target genes - ABCG1 and ABCA1 (cholesterol efflux) and MYLIP (cholesterol uptake suppression) - and not other CMTN genes, was significantly associated with higher risk of incident prediabetes/T2D. Lower expression of the LXR target genes correlated with higher cellular cholesterol levels (e.g., 47% of variance in cellular total cholesterol explained by ABCG1 expression). Further, adding the LXR target genes to overweight/obesity and other known predictors significantly improved prediction of incident prediabetes/T2D.CONCLUSIONThese data suggest that the aberrant LXR/ABCG1-ABCA1-MYLIP pathway (LAAMP) is a major T2D risk factor and support a potential role for aberrant LAAMP and cellular cholesterol accumulation in diabetogenesis.FUNDINGThe MESA Epigenomics and Transcriptomics Studies were funded by NIH grants 1R01HL101250, 1RF1AG054474, R01HL126477, R01DK101921, and R01HL135009. This work was supported by funding from NIDDK R01DK103531 and NHLBI R01HL119962.
Collapse
Affiliation(s)
- Jingzhong Ding
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Kurt Lohman
- Department of Medicine, Division of Cardiology, and
| | | | - Daniel Parker
- Department of Medicine, Division of Geriatrics, Duke University, Durham, North Carolina, USA
| | - Li Hou
- Department of Medicine, Division of Cardiology, and
| | - Jackson Taylor
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Deepak Voora
- Department of Medicine, Division of Cardiology, and
| | - Janet K. Sawyer
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Elena Boudyguina
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael P. Bancks
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alain Bertoni
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - David M. Murdoch
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Daniel Duprez
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, Washington, USA
| | | | - Christopher B. Newgard
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - David Herrington
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ina Hoeschele
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Steven Shea
- Department of Medicine, Columbia University, New York, New York, USA
| | - James H. Stein
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Manesh Patel
- Department of Medicine, Division of Cardiology, and
| | - Wendy Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - John S. Parks
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, and
| |
Collapse
|
2
|
Impact of Liver Inflammation on Bile Acid Side Chain Shortening and Amidation. Cells 2022; 11:cells11243983. [PMID: 36552746 PMCID: PMC9777420 DOI: 10.3390/cells11243983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4α (HNF4α) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7α-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4α levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile.
Collapse
|
3
|
Huang K, Jo H, Echesabal-Chen J, Stamatikos A. Combined LXR and RXR Agonist Therapy Increases ABCA1 Protein Expression and Enhances ApoAI-Mediated Cholesterol Efflux in Cultured Endothelial Cells. Metabolites 2021; 11:640. [PMID: 34564456 PMCID: PMC8466889 DOI: 10.3390/metabo11090640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial ABCA1 expression protects against atherosclerosis and this atheroprotective effect is partially attributed to enhancing apoAI-mediated cholesterol efflux. ABCA1 is a target gene for LXR and RXR; therefore, treating endothelial cells with LXR and/or RXR agonists may increase ABCA1 expression. We tested whether treating cultured immortalized mouse aortic endothelial cells (iMAEC) with the endogenous LXR agonist 22(R)-hydroxycholesterol, synthetic LXR agonist GW3965, endogenous RXR agonist 9-cis-retinoic acid, or synthetic RXR agonist SR11237 increases ABCA1 protein expression. We observed a significant increase in ABCA1 protein expression in iMAEC treated with either GW3965 or SR11237 alone, but no significant increase in ABCA1 protein was observed in iMAEC treated with either 22(R)-hydroxycholesterol or 9-cis-retionic acid alone. However, we observed significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux when iMAEC were treated with a combination of either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237. Furthermore, treating iMAEC with either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237 did not trigger an inflammatory response, based on VCAM-1, ICAM-1, CCL2, and IL-6 mRNA expression. Based on our findings, delivering LXR and RXR agonists precisely to endothelial cells may be a promising atheroprotective approach.
Collapse
Affiliation(s)
- Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| |
Collapse
|
4
|
Xu Y, Propson NE, Du S, Xiong W, Zheng H. Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc Natl Acad Sci U S A 2021; 118:e2023418118. [PMID: 34187889 PMCID: PMC8271658 DOI: 10.1073/pnas.2023418118] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The autophagy-lysosomal pathway plays a critical role in intracellular clearance and metabolic homeostasis. While neuronal autophagy is known to participate in the degradation of neurofibrillary tangles composed of hyperphosphorylated and misfolded tau protein in Alzheimer's disease and other tauopathies, how microglial-specific autophagy regulates microglial intrinsic properties and neuronal tau pathology is not well understood. We report here that Atg7, a key mediator of autophagosome biogenesis, plays an essential role in the regulation of microglial lipid metabolism and neuroinflammation. Microglia-specific deletion of Atg7 leads to the transition of microglia to a proinflammatory status in vivo and to inflammasome activation in vitro. Activation of ApoE and lipid efflux attenuates the lipid droplets accumulation and inhibits cytokine production in microglial cells with Atg7 deficiency. Functionally, we show that the absence of microglial Atg7 enhances intraneuronal tau pathology and its spreading. Our results reveal an essential role for microglial autophagy in regulating lipid homeostasis, neuroinflammation, and tau pathology.
Collapse
Affiliation(s)
- Yin Xu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030;
| | - Nicholas E Propson
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Shuqi Du
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Wen Xiong
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
5
|
Ladurner A, Linder T, Wang L, Hiebl V, Schuster D, Schnürch M, Mihovilovic MD, Atanasov AG, Dirsch VM. Characterization of a Structural Leoligin Analog as Farnesoid X Receptor Agonist and Modulator of Cholesterol Transport. PLANTA MEDICA 2020; 86:1097-1107. [PMID: 32485752 DOI: 10.1055/a-1171-8357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ligand-activated farnesoid X receptor is an emerging therapeutic target for the development of drugs against metabolic syndrome-related diseases. In this context, selective bile acid receptor modulators represent a novel concept for drug development. Selective bile acid receptor modulators act in a target gene- or tissue-specific way and are therefore considered less likely to elicit unwanted side effects. Based on leoligin, a lignan-type secondary plant metabolite from the alpine plant Leontopodium nivale ssp. alpinum, 168 synthesized structural analogs were screened in a farnesoid X receptor in silico pharmacophore-model. Fifty-six virtual hits were generated. These hits were tested in a cell-based farnesoid X receptor transactivation assay and yielded 7 farnesoid X receptor-activating compounds. The most active one being LT-141A, with an EC50 of 6 µM and an Emax of 4.1-fold. This analog did not activate the G protein-coupled bile acid receptor, TGR5, and the metabolic nuclear receptors retinoid X receptor α, liver X receptors α/β, and peroxisome proliferator-activated receptors β/γ. Investigation of different farnesoid X receptor target genes characterized LT-141A as selective bile acid receptor modulators. Functional studies revealed that LT-141A increased cholesterol efflux from THP-1-derived macrophages via enhanced ATP-binding cassette transporter 1 expression. Moreover, cholesterol uptake in differentiated Caco-2 cells was significantly decreased upon LT-141A treatment. In conclusion, the leoligin analog LT-141A selectively activates the nuclear receptor farnesoid X receptor and has an influence on cholesterol transport in 2 model systems.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thomas Linder
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Limei Wang
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Verena Hiebl
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Daniela Schuster
- Department of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | | | - Atanas G Atanasov
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Salonurmi T, Nabil H, Ronkainen J, Hyötyläinen T, Hautajärvi H, Savolainen MJ, Tolonen A, Orešič M, Känsäkoski P, Rysä J, Hakkola J, Hukkanen J. 4 β-Hydroxycholesterol Signals From the Liver to Regulate Peripheral Cholesterol Transporters. Front Pharmacol 2020; 11:361. [PMID: 32292343 PMCID: PMC7118195 DOI: 10.3389/fphar.2020.00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 03/10/2020] [Indexed: 01/27/2023] Open
Abstract
Activation of pregnane X receptor (PXR) elevates circulating 4β-hydroxycholesterol (4βHC), an agonist of liver X receptor (LXR). PXR may also regulate 25-hydroxycholesterol and 27-hydroxycholesterol. Our aim was to elucidate the roles of PXR and oxysterols in the regulation of cholesterol transporters. We measured oxysterols in serum of volunteers dosed with PXR agonist rifampicin 600 mg/day versus placebo for a week and analyzed the expression of cholesterol transporters in mononuclear cells. The effect of 4βHC on the transport of cholesterol and the expression of cholesterol transporters was studied in human primary monocyte-derived macrophages and foam cells in vitro. The expression of cholesterol transporters was measured also in rat tissues after dosing with a PXR agonist. The levels of 4βHC were elevated, while 25-hydroxycholesterol and 27-hydroxycholesterol remained unchanged in volunteers dosed with rifampicin. The expression of ATP binding cassette transporter A1 (ABCA1) was induced in human mononuclear cells in vivo. The influx of cholesterol was repressed by 4βHC, as was the expression of influx transporter lectin-like oxidized LDL receptor-1 in vitro. The cholesterol efflux and the expression of efflux transporters ABCA1 and ABCG1 were induced. The expression of inducible degrader of the LDL receptor was induced. In rats, PXR agonist increased circulating 4βHC and expression of LXR targets in peripheral tissues, especially ABCA1 and ABCG1 in heart. In conclusion, PXR activation-elevated 4βHC is a signaling molecule that represses cholesterol influx and induces efflux. The PXR-4βHC-LXR pathway could link the hepatic xenobiotic exposure and the regulation of cholesterol transport in peripheral tissues.
Collapse
Affiliation(s)
- Tuire Salonurmi
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland
| | - Heba Nabil
- Biocenter Oulu, Oulu, Finland.,Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Justiina Ronkainen
- Biocenter Oulu, Oulu, Finland.,Center for Life-Course Health Research, University of Oulu, Oulu, Finland
| | | | | | - Markku J Savolainen
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Päivi Känsäkoski
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jukka Hakkola
- Biocenter Oulu, Oulu, Finland.,Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Janne Hukkanen
- Research Unit of Internal Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Xu Y, Hernández-Ledezma JJ, Hutchison SM, Bogan RL. The liver X receptors and sterol regulatory element binding proteins alter progesterone secretion and are regulated by human chorionic gonadotropin in human luteinized granulosa cells. Mol Cell Endocrinol 2018; 473:124-135. [PMID: 29366778 PMCID: PMC6045446 DOI: 10.1016/j.mce.2018.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/13/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
There is increased expression of liver x receptor (LXR) target genes and reduced low density lipoprotein receptor (LDLR) during spontaneous luteolysis in primates. The LXRs are nuclear receptors that increase cholesterol efflux by inducing transcription of their target genes. Transcription of LDLR is regulated by sterol regulatory element binding proteins (SREBPs). Human chorionic gonadotropin (hCG) prevents luteolysis and stimulates progesterone synthesis via protein kinase A (PKA). Thus, our primary objectives are: 1) Determine the effects of LXR activation and SREBP inhibition on progesterone secretion and cholesterol metabolism, and 2) Determine whether hCG signaling via PKA regulates transcription of LXR and SREBP target genes in human luteinized granulosa cells. Basal and hCG-stimulated progesterone secretion was significantly decreased by the combined actions of the LXR agonist T0901317 and the SREBP inhibitor fatostatin, which was associated with reduced intracellular cholesterol storage. Expression of LXR target genes in the presence of T0901317 was significantly reduced by hCG, while hCG promoted transcriptional changes that favor LDL uptake. These effects of hCG were reversed by a specific PKA inhibitor. A third objective was to resolve a dilemma concerning LXR regulation of steroidogenic acute regulatory protein (STAR) expression in primate and non-primate steroidogenic cells. T0901317 induced STAR expression and progesterone synthesis in ovine, but not human cells, revealing a key difference between species in LXR regulation of luteal function. Collectively, these data support the hypothesis that LXR-induced cholesterol efflux and reduced LDL uptake via SREBP inhibition mediates luteolysis in primates, which is prevented by hCG.
Collapse
Affiliation(s)
- Yafei Xu
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - José J Hernández-Ledezma
- Reproductive Health Center, Tucson, AZ, USA; Fertilite ART Clinic Hospital, Angeles-Tijuana, BC, Mexico
| | - Scot M Hutchison
- Reproductive Health Center, Tucson, AZ, USA; Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Randy L Bogan
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Li YW, Wang CH, Chen CJ, Wang CCN, Lin CL, Cheng WK, Shen HY, Lim YP. Effects of antiepileptic drugs on lipogenic gene regulation and hyperlipidemia risk in Taiwan: a nationwide population-based cohort study and supporting in vitro studies. Arch Toxicol 2018; 92:2829-2844. [DOI: 10.1007/s00204-018-2263-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 04/25/2018] [Indexed: 11/30/2022]
|
9
|
Liang B, Wang X, Bian Y, Yang H, Liu M, Bai R, Yang Z, Xiao C. Angiotensin-(1-7) upregulates expression of adenosine triphosphate-binding cassette transporter A1 and adenosine triphosphate-binding cassette transporter G1 through the Mas receptor through the liver X receptor alpha signalling pathway in THP-1 macrophag. Clin Exp Pharmacol Physiol 2014; 41:1023-30. [PMID: 25225013 DOI: 10.1111/1440-1681.12312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Liang
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Xin Wang
- Department of Rheumatology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Yunfei Bian
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Huiyu Yang
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Ming Liu
- Teaching-Research section of Cell Biology and Genetics; Shanxi Medical University; Taiyuan China
| | - Rui Bai
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Zhiming Yang
- Department of Cardiology; The Second Hospital of Shanxi Medical University; Taiyuan China
| | - Chuanshi Xiao
- Department of Cardiology; The First Hospital of Shanxi Medical University; Taiyuan China
| |
Collapse
|
10
|
He F, Han C, Liu D, Wan H, Wang J, Liu H, Li L, Xu H, He H. Effect of a Synthetic Liver X Receptor Agonist TO901317 on Cholesterol Concentration in Goose Primary Hepatocytes. ITALIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4081/ijas.2014.2979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Hoang MH, Jia Y, Jun HJ, Lee JH, Hwang KY, Choi DW, Um SJ, Lee BY, You SG, Lee SJ. Taurine is a liver X receptor-α ligand and activates transcription of key genes in the reverse cholesterol transport without inducing hepatic lipogenesis. Mol Nutr Food Res 2012; 56:900-11. [PMID: 22707265 DOI: 10.1002/mnfr.201100611] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SCOPE Taurine, which is abundant in seafood, has antiatherogenic activities in both animals and humans; however, its molecular target has been elusive. We examined whether taurine could activate liver X receptor-α (LXR-α), a critical transcription factor in the regulation of reverse cholesterol transport in macrophages. METHODS AND RESULTS Taurine bound directly to LXR-α in a reporter gene assay, time-resolved fluorescence resonance energy transfer analysis, and limited protease digestion experiment. Macrophage cells incubated with taurine showed reduced cellular cholesterol and induced medium cholesterol in a dose-dependent manner with the induction of ATP-binding cassette transporter A1 and G gene and protein expression. In hepatocytes, taurine significantly induced Insig-2a levels and delayed nuclear translocation of the sterol regulatory element-binding protein 1 (SREBP-1) protein, resulting in a dose-dependent reduction in the cellular lipid levels without inducing the expression of fatty acid synthesis genes. CONCLUSION Taurine is a direct LXR-α ligand, represses cholesterol accumulation, and modulates the expression of genes involved in reverse cholesterol transport in macrophages, without inducing hepatic lipogenesis. The induction of Insig-2a suppressed the nuclear translocation of SREBP-1c.
Collapse
Affiliation(s)
- Minh-Hien Hoang
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Iristectorigenin B isolated from Belamcanda chinensis is a liver X receptor modulator that increases ABCA1 and ABCG1 expression in macrophage RAW 264.7 cells. Biotechnol Lett 2012; 34:2213-21. [DOI: 10.1007/s10529-012-1036-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/15/2012] [Indexed: 10/27/2022]
|
13
|
Vanmierlo T, Husche C, Schött HF, Pettersson H, Lütjohann D. Plant sterol oxidation products--analogs to cholesterol oxidation products from plant origin? Biochimie 2012; 95:464-72. [PMID: 23009926 DOI: 10.1016/j.biochi.2012.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/15/2012] [Indexed: 12/27/2022]
Abstract
Cholesterol and plant sterols are lipids which are abundantly present in a western type diet of animal and plant origin, respectively. The daily intake averages 300 mg/day each. Over the past decades, a steadily increasing consumption of plant sterol enriched dairy products (2-3 g/day) took place to lower circulating LDL cholesterol concentrations. Like all unsaturated components, plant sterols can be attacked by reactive oxygen species resulting in plant sterol oxidation products (POPs). The most widespread methods for POP determination are high-performance liquid chromatography and gas-liquid chromatography. Yet, based on the low plasma POP concentrations in normophytosterolemic subjects (POPs: ∼0.3-4.5 ng/mL), a reliable quantification yielding an appropriate limit of detection remains a challenge. While the more abundantly present cholesterol oxidation products (COPs) have elaborately been studied, research on the metabolism and biological effects of POPs is only emerging. In relation to atherogenity, biological effects including modulation of cholesterol homeostasis, membrane functioning, and inflammation are attributed to POPs. Although mostly supra-physiological concentrations are applied in in vitro assays, anti-tumor activity, cytotoxicity and estrogen-competition have been attributed to specific POPs. However, it is not obvious, if and how POPs may exert in vivo adverse or beneficial health effects similar to those attributed to COPs. In the field of nutritional science, standardized methods for the determination of POPs are required to perform relevant biological studies and to assess their presence in complex foods or biological tissues and fluids. The aim of this review is to provide an overview and evaluation of the published methods and an update on the biological effects attributed to POPs.
Collapse
Affiliation(s)
- T Vanmierlo
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany
| | | | | | | | | |
Collapse
|
14
|
Hoang MH, Jia Y, Jun HJ, Lee JH, Lee DH, Hwang BY, Kim WJ, Lee HJ, Lee SJ. Ethyl 2,4,6-trihydroxybenzoate is an agonistic ligand for liver X receptor that induces cholesterol efflux from macrophages without affecting lipid accumulation in HepG2 cells. Bioorg Med Chem Lett 2012; 22:4094-9. [PMID: 22579484 DOI: 10.1016/j.bmcl.2012.04.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 11/15/2022]
Abstract
The present study reports a novel liver X receptor (LXR) activator, ethyl 2,4,6-trihydroxybenzoate (ETB), isolated from Celtis biondii. Using a reporter gene assay, time-resolved fluorescence resonance energy transfer (TR-FRET), and surface plasmon resonance (SPR) analysis, we showed that ETB directly bound to and stimulated the transcriptional activity of LXR-α and LXR-β. In macrophages, hepatocytes, and intestinal cells, ETB suppressed cellular cholesterol accumulation in a dose-dependent manner and induced the transcriptional activation of LXR-α/-β-responsive genes. Notably, ETB did not induce lipogenic gene expression or cellular triglyceride accumulation in hepatocytes. These results suggest that ETB is a dual-LXR modulator that regulates the expression of key genes in cholesterol homeostasis in multiple cells without inducing lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Minh-Hien Hoang
- Department of Biotechnology, Graduate School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hessvik NP, Bakke SS, Smith R, Ravna AW, Sylte I, Rustan AC, Thoresen GH, Kase ET. The liver X receptor modulator 22(S)-hydroxycholesterol exerts cell-type specific effects on lipid and glucose metabolism. J Steroid Biochem Mol Biol 2012; 128:154-64. [PMID: 22051079 DOI: 10.1016/j.jsbmb.2011.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/23/2011] [Accepted: 10/18/2011] [Indexed: 11/25/2022]
Abstract
The aim of this study was to explore the effects of 22(S)-hydroxycholesterol (22(S)-HC) on lipid and glucose metabolism in human-derived cells from metabolic active tissues. Docking of T0901317 and 22(S)-HC showed that both substances fitted into the ligand binding domain of liver X receptors (LXR). Results show that while several lipogenic genes were induced by T0901317 in myotubes, HepG2 cells and SGBS cells, effect of 22(S)-HC varied more between cell types. In myotubes, most lipogenic genes were downregulated or unchanged by 22(S)-HC, whereas a more diverse pattern was found in HepG2 and SGBS cells. Treatment with 22(S)-HC induced sterol regulatory element binding transcription factor 1 in SGBS and HepG2 cells, but not in myotubes. Fatty acid synthase was downregulated by 22(S)-HC in myotubes, upregulated in SGBS and unchanged in HepG2 cells. De novo lipogenesis was increased by T0901317 in all cell models, whereas differently affected by 22(S)-HC depending on the cell type; decreased in myotubes and HepG2 cells, whereas increased in SGBS cells. Oxidation of linoleic acid was reduced by 22(S)-HC in all cell models while glucose uptake increased and tended to increase in myotubes and SGBS cells, respectively. Cholesterol efflux was unaffected by 22(S)-HC treatment. These results show that 22(S)-HC affects LXR-regulated processes differently in various cell types. Ability of 22(S)-HC to reduce lipogenesis and lipid accumulation in myotubes and hepatocytes indicate that 22(S)-HC might reduce lipid accumulation in non-adipose tissues, suggesting a potential role for 22(S)-HC or a similar LXR modulator in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Nina Pettersen Hessvik
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bowden KL, Bilbey NJ, Bilawchuk LM, Boadu E, Sidhu R, Ory DS, Du H, Chan T, Francis GA. Lysosomal acid lipase deficiency impairs regulation of ABCA1 gene and formation of high density lipoproteins in cholesteryl ester storage disease. J Biol Chem 2011; 286:30624-30635. [PMID: 21757691 PMCID: PMC3162423 DOI: 10.1074/jbc.m111.274381] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) mediates the rate-limiting step in high density lipoprotein (HDL) particle formation, and its expression is regulated primarily by oxysterol-dependent activation of liver X receptors. We previously reported that ABCA1 expression and HDL formation are impaired in the lysosomal cholesterol storage disorder Niemann-Pick disease type C1 and that plasma HDL-C is low in the majority of Niemann-Pick disease type C patients. Here, we show that ABCA1 regulation and activity are also impaired in cholesteryl ester storage disease (CESD), caused by mutations in the LIPA gene that result in less than 5% of normal lysosomal acid lipase (LAL) activity. Fibroblasts from patients with CESD showed impaired up-regulation of ABCA1 in response to low density lipoprotein (LDL) loading, reduced phospholipid and cholesterol efflux to apolipoprotein A-I, and reduced α-HDL particle formation. Treatment of normal fibroblasts with chloroquine to inhibit LAL activity reduced ABCA1 expression and activity, similar to that of CESD cells. Liver X receptor agonist treatment of CESD cells corrected ABCA1 expression but failed to correct LDL cholesteryl ester hydrolysis and cholesterol efflux to apoA-I. LDL-induced production of 27-hydroxycholesterol was reduced in CESD compared with normal fibroblasts. Treatment with conditioned medium containing LAL from normal fibroblasts or with recombinant human LAL rescued ABCA1 expression, apoA-I-mediated cholesterol efflux, HDL particle formation, and production of 27-hydroxycholesterol by CESD cells. These results provide further evidence that the rate of release of cholesterol from late endosomes/lysosomes is a critical regulator of ABCA1 expression and activity, and an explanation for the hypoalphalipoproteinemia seen in CESD patients.
Collapse
Affiliation(s)
- Kristin L Bowden
- Department of Medicine, Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Nicolas J Bilbey
- Department of Medicine, Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Leanne M Bilawchuk
- Department of Medicine, Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Emmanuel Boadu
- Department of Medicine, Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Hong Du
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Teddy Chan
- Department of Medicine, Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada
| | - Gordon A Francis
- Department of Medicine, Institute for Heart and Lung Health, St. Paul's Hospital, Vancouver, British Columbia V6Z 1Y6, Canada.
| |
Collapse
|
17
|
Dual use of amphiphilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero-inflammation. Biomaterials 2011; 32:8319-27. [PMID: 21816466 DOI: 10.1016/j.biomaterials.2011.07.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/13/2011] [Indexed: 11/23/2022]
Abstract
Activated vascular wall macrophages can rapidly internalize modified lipoproteins and escalate the growth of atherosclerotic plaques. This article proposes a biomaterials-based therapeutic intervention for depletion of non-regulated cholesterol accumulation and inhibition of inflammation of macrophages. Macromolecules with high scavenger receptor (SR)-binding activity were investigated for SR-mediated delivery of agonists to cholesterol-trafficking nuclear liver-X receptors. From a diverse feature space of a family of amphiphilic macromolecules of linear and aromatic mucic acid backbones modified with varied aliphatic chains and conjugated with differentially branched poly(ethylene glycol), a key molecule (carboxyl-terminated, C12-derivatized, linear mucic acid backbone) was selected for its ability to preferentially bind scavenger receptor A (SR-A) as the key target. At a basal level, this macromolecule suppressed the pro-inflammatory signaling of activated THP-1 macrophages while competitively lowering oxLDL uptake in vitro through scavenger receptor SRA-1 targeting. To further deplete intracellular cholesterol, the core macromolecule structure was exploited to solubilize a hydrophobic small molecule agonist for nuclear Liver-X Receptors, which regulate the efflux of intracellular cholesterol. The macromolecule-encapsulated agonist system was found to reduce oxLDL accumulation by 88% in vitro in comparison to controls. in vivo studies were designed to release the macromolecules (with or without encapsulated agonist) to injured carotid arteries within Sprague Dawley rats fed a high fat diet, conditions that yield enhanced cholesterol accumulation and macrophage recruitment. The macromolecules lowered intimal levels of accumulated cholesterol (50% for macromolecule alone; 70% for macromolecule-encapsulated agonist) and inhibited macrophage retention (92% for macromolecule; 96% for macromolecule-encapsulated agonist; 4 days) relative to non-treated controls. Thus, this study highlights the promise of designing bioactive macromolecule therapeutics based on scavenger receptor targeting, for potential management of vascular arterial disease.
Collapse
|
18
|
Vacca M, Degirolamo C, Mariani-Costantini R, Palasciano G, Moschetta A. Lipid-sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:562-87. [PMID: 21755605 DOI: 10.1002/wsbm.137] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MS) is a cluster of different diseases, namely central obesity, hypertension, hyperglycemia, and dyslipidemia, together with a pro-thrombotic and pro-inflammatory state. These metabolic abnormalities are often associated with an increased risk for cardiovascular disease (CVD) and cancer. Dietary and lifestyle modifications are currently believed more effective than pharmacological therapies in the management of MS patients. Nevertheless, the relatively low grade of compliance of patients to these recommendations, as well as the failure of current therapies, highlights the need for the discovery of new pharmacological and nutraceutic approaches. A deeper knowledge of the patho-physiological events that initiate and support the MS is mandatory. Lipid-sensing nuclear receptors (NRs) are the master transcriptional regulators of lipid and carbohydrate metabolism and inflammatory responses, thus standing as suitable targets. This review focuses on the physiological relevance of the NRs (peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptor) in the control of whole-body homeostasis, with a special emphasis on lipid and glucose metabolism, and on the relationships between metabolic unbalances, systemic inflammation, and the onset of CVD. Future perspectives and possible clinical applications are also presented.
Collapse
Affiliation(s)
- Michele Vacca
- Clinica Medica Augusto Murri, Aldo Moro University of Bari, and Department of Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro (CH), Italy
| | | | | | | | | |
Collapse
|
19
|
Sato K, Kamada T. Regulation of bile acid, cholesterol, and fatty acid synthesis in chicken primary hepatocytes by different concentrations of T0901317, an agonist of liver X receptors. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:201-6. [PMID: 21056113 DOI: 10.1016/j.cbpa.2010.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 11/24/2022]
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor family of transcription factors. They play a crucial role in lipid metabolism processes such as bile acid and fatty acid synthesis, as well as minor or limited roles in the regulation of cholesterol synthesis and uptake in mammals. In avian species, however, little is known about the role of LXRs except for the fact that they are involved in the stimulation of fatty acid synthesis. In this study, we characterize the expression profile of genes related to bile acid, cholesterol, and fatty acid synthesis and VLDL secretion in chicken primary hepatocytes treated with T0901317, a synthetic agonist of LXR. The activity of chicken cholesterol 7α hydroxylase (CYP7A1), a key enzyme in bile acid synthesis, mRNA expression, and bile acid excretion, was stimulated by supplementation of the culture medium with a low concentration (0.01 μM) of T0901317. In contrast, the levels of sterol regulatory element binding protein (SREBP)-1, fatty acid synthase mRNA, and VLDL-triacylglycerol in cells cultured in the presence of a high concentration (10 μM) of T0901317 were higher than those cultured in zero or low concentrations of T0901317. These results suggest that cellular responses to this LXR agonist were similar to those present in mammals. A novel finding of this study concerned changes to the regulation of cholesterol synthesis and uptake in chicken hepatocytes treated with T0901317. Levels of SREBP-2,3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and low-density lipoprotein receptor (LDLr) mRNA expression increased as a function of increasing T0901317 (up to 1.0 μM), but remained similar to those in cells cultured under control conditions when the concentration of T0901317 was increased to 10 μM. These results suggest that LXRs play an important role in cholesterol synthesis and uptake in chicken hepatocytes and, as such, differ to findings in mammals where the effect of LXR agonists on cholesterol synthesis plays only a minor role in the regulation of cellular sterol homeostasis.
Collapse
Affiliation(s)
- Kan Sato
- Animal Science, Department of Biological Production, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | | |
Collapse
|
20
|
Hu YW, Zheng L, Wang Q. Regulation of cholesterol homeostasis by liver X receptors. Clin Chim Acta 2010; 411:617-25. [PMID: 20060389 DOI: 10.1016/j.cca.2009.12.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 12/13/2022]
Abstract
Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. The sterol-responsive transcription factors liver X receptors (LXRalpha and LXRbeta) help maintain cholesterol homeostasis, not only through promotion of cholesterol efflux from peripheral tissues but also through suppression of de novo synthesis and exogenous cholesterol uptake. In this review, we summarize the important role of LXRs in regulating expression of key members that keep cholesterol levels in balance.
Collapse
Affiliation(s)
- Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | | | | |
Collapse
|
21
|
|
22
|
Wattis JAD, O'Malley B, Blackburn H, Pickersgill L, Panovska J, Byrne HM, Jackson KG. Mathematical model for low density lipoprotein (LDL) endocytosis by hepatocytes. Bull Math Biol 2008; 70:2303-33. [PMID: 18716843 PMCID: PMC2784520 DOI: 10.1007/s11538-008-9347-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/16/2008] [Indexed: 12/12/2022]
Abstract
Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL-LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.
Collapse
Affiliation(s)
- J A D Wattis
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kase ET, Thoresen GH, Westerlund S, Højlund K, Rustan AC, Gaster M. Liver X receptor antagonist reduces lipid formation and increases glucose metabolism in myotubes from lean, obese and type 2 diabetic individuals. Diabetologia 2007; 50:2171-80. [PMID: 17661008 DOI: 10.1007/s00125-007-0760-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Accepted: 05/24/2007] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Liver X receptors (LXRs) play important roles in lipid and carbohydrate metabolism. The purpose of the present study was to evaluate effects of the endogenous LXR agonist 22-R-hydroxycholesterol (22-R-HC) and its stereoisomer 22-S-hydroxycholesterol (22-S-HC), in comparison with the synthetic agonist T0901317 on lipid and glucose metabolism in human skeletal muscle cells (myotubes). METHODS Myotubes established from lean and obese control volunteers and from obese type 2 diabetic volunteers were treated with LXR ligands for 4 days. Lipid and glucose metabolisms were studied with labelled precursors, and gene expression was analysed using real-time PCR. RESULTS Treatment with T0901317 increased lipogenesis (de novo lipid synthesis) and lipid accumulation in myotubes, this increase being more pronounced in myotubes from type 2 diabetic volunteers than from lean volunteers. Furthermore, 22-S-HC efficiently counteracted the T0901317-induced enhancement of lipid formation. Moreover, synthesis of diacylglycerol, cholesteryl ester and free cholesterol from acetate was reduced below baseline by 22-S-HC, whereas glucose uptake and oxidation were increased. Both 22-S-HC and 22-R-HC, in contrast to T0901317, decreased the expression of genes involved in cholesterol synthesis, whereas only 22-R-HC, like T0901317, increased the expression of the gene encoding the reverse cholesterol transporter ATP-binding cassette subfamily A1 (ABCA1). CONCLUSIONS/INTERPRETATION T0901317-induced lipogenesis and lipid formation was more pronounced in myotubes from type 2 diabetic patients than from lean individuals. 22-S-HC counteracted these effects and reduced de novo lipogenesis below baseline, while glucose uptake and oxidation were increased.
Collapse
Affiliation(s)
- E T Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, Oslo, 0316, Norway
| | | | | | | | | | | |
Collapse
|
24
|
Sviridov D, Hoang A, Ooi E, Watts G, Barrett PHR, Nestel P. Indices of reverse cholesterol transport in subjects with metabolic syndrome after treatment with rosuvastatin. Atherosclerosis 2007; 197:732-9. [PMID: 17709109 DOI: 10.1016/j.atherosclerosis.2007.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 07/03/2007] [Accepted: 07/11/2007] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The effects of the statin, rosuvastatin on indices of reverse cholesterol transport were studied in a randomized, placebo-controlled, cross-over trial in 25 overweight subjects with defined metabolic syndrome. RESULT Four weeks' treatment with 40 mg/day rosuvastatin significantly reduced levels of plasma cholesterol (44%), LDL cholesterol (60%) and triglyceride (38%). HDL cholesterol (mean [S.D.]) rose (0.97[0.17] to 1.05[0.17]mmol/L; P<0.05) and the LpA-I component of HDL from 39[7] to 45[9]mg/dL (P<0.05). LCAT activity fell (0.55[0.13] to 0.35[0.07]nmol/mL/h; P<0.05); CETP activity and mass fell from 89[13] to 80[11]nmol//L/h and from 1.66[0.57] to 1.28[0.41]mug/mL respectively, (P<0.05). Cholesterol efflux in vitro (to plasmas from THP-1 activated cells) fell from 7.1[1.8]% (placebo) to 6.2[1.7]% (rosuvastatin); P<0.05, but when plasmas depleted of apoB lipoproteins were studied, the difference in efflux was no longer statistically significant. During placebo efflux was paradoxically inversely correlated with HDL-C (P=0.016) and LpA-I (P=0.035) concentrations but these correlations were absent after rosuvastatin. CONCLUSIONS The data suggest possible HDL dysfunctionality in subjects with metabolic syndrome. The reduced capacity of plasmas following statin treatment to stimulate cholesterol efflux in vitro occurred in association with reduction in apoB lipoproteins and reduced activities of CETP and LCAT, and despite increased levels of HDL cholesterol.
Collapse
|