1
|
Yamauchi Y, Abe-Dohmae S, Iwamoto N, Sato R, Yokoyama S. ABCA1 deficiency causes tissue-specific dysregulation of the SREBP2 pathway in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159546. [PMID: 39089642 DOI: 10.1016/j.bbalip.2024.159546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ABCA1 plays an essential role in the formation of high-density lipoprotein (HDL), and its mutations cause Tangier disease (TD), a familial HDL deficiency. In addition to the disappearance of HDL, TD patients exhibit cholesterol deposition in peripheral tissues through a mechanism poorly understood, which may contribute to the development of premature atherosclerosis. We and others previously showed that ABCA1 deficiency causes hyperactivation of the SREBP2 pathway in vitro. Here, we show using Abca1 knockout mice that ABCA1 deficiency leads to tissue-specific dysregulation of SREBP2 activity in a nutritional status-dependent manner, which may underlie the pathophysiology of TD.
Collapse
Affiliation(s)
- Yoshio Yamauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan; Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Sumiko Abe-Dohmae
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; Department of Food and Nutritional Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Noriyuki Iwamoto
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinji Yokoyama
- Department of Food and Nutritional Sciences, Chubu University, Kasugai 487-8501, Japan
| |
Collapse
|
2
|
Atherogenesis, Transcytosis, and the Transmural Cholesterol Flux: A Critical Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2253478. [PMID: 35464770 PMCID: PMC9023196 DOI: 10.1155/2022/2253478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
The recently described phenomenon of cholesterol-loaded low-density lipoproteins (LDL) entering the arterial wall from the lumen by transcytosis has been accepted as an alternative for the long-held concept that atherogenesis involves only passive LDL movement across an injured or dysfunctional endothelial barrier. This active transport of LDL can now adequately explain why plaques (atheromas) appear under an intact, uninjured endothelium. However, the LDL transcytosis hypothesis is still questionable, mainly because the process serves no clear physiological purpose. Moreover, central components of the putative LDL transcytosis apparatus are shared by the counter process of cholesterol efflux and reverse cholesterol transport (RCT) and therefore can essentially create an energy-wasting futile cycle and paradoxically be pro- and antiatherogenic simultaneously. Hence, by critically reviewing the literature, we wish to put forward an alternative interpretation that, in our opinion, better fits the experimental evidence. We assert that most of the accumulating cholesterol (mainly as LDL) reaches the intima not from the lumen by transcytosis, but from the artery's inner layers: the adventitia and media. We have named this directional cholesterol transport transmural cholesterol flux (TCF). We suggest that excess cholesterol, diffusing from the avascular (i.e., devoid of blood and lymph vessels) media's smooth muscle cells, is cleared by the endothelium through its apical membrane. A plaque is formed when this cholesterol clearance rate lags behind its rate of arrival by TCF.
Collapse
|
3
|
HDL and Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:49-61. [DOI: 10.1007/978-981-19-1592-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
5
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Sabino M, Cappelli K, Capomaccio S, Pascucci L, Biasato I, Verini-Supplizi A, Valiani A, Trabalza-Marinucci M. Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genomics 2018; 19:576. [PMID: 30068314 PMCID: PMC6090849 DOI: 10.1186/s12864-018-4962-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components. Olive oil polyphenols are known to induce beneficial effects in several pathological conditions, such as inflammatory bowel disease, and to contrast the proliferation of cancer cells or hypercholesterolemia. Polyphenols are also present in waste products derived from the olive industry: olive mill wastewaters (OMWW) are rich in polyphenols and there is an increasing interest in using OMWW in animal nutrition. OMWW are attributed with positive effects in promoting chicken performance and the quality of food-derived products. However, a tissue-specific transcriptome target analysis of chickens fed with OMWW has never been attempted. RESULTS We explored the effect of dietary OMWW on the intestinal function in broilers. A morphological analysis of the jejunum revealed that OMWW reduced crypt depth, whereas no significant modifications were observed for villus height and the villus height/crypt depth ratio. An RNA Sequencing analysis was performed on isolated, intestinal, epithelial cells and 280 differentially expressed genes were found using a count-based approach. An enrichment analysis revealed that the majority of up regulated genes in the OMWW group were over-represented by the regulation of viral genome replication-related GO-Terms, whereas down regulated genes were mainly involved in cholesterol and lipid metabolism. CONCLUSIONS Our study showed how an industrial waste product can be recycled as a feed additive with a positive relapse. OMWW dietary supplementation can be a nutritional strategy to improve chicken performance and health, prevent intestinal damage, enhance innate immunity and regulate cholesterol metabolism and fat deposition.
Collapse
Affiliation(s)
- Marcella Sabino
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Ilaria Biasato
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Andrea Verini-Supplizi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via Gaetano Salvemini 1, 06126 Perugia, Italy
| | | |
Collapse
|
7
|
de Boer JF, Kuipers F, Groen AK. Cholesterol Transport Revisited: A New Turbo Mechanism to Drive Cholesterol Excretion. Trends Endocrinol Metab 2018; 29:123-133. [PMID: 29276134 DOI: 10.1016/j.tem.2017.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Abstract
A fine-tuned balance between cholesterol uptake and excretion by the body is pivotal to maintain health and to remain free from the deleterious consequences of cholesterol accumulation such as cardiovascular disease. The pathways involved in intracellular and extracellular cholesterol transport are a subject of intense investigation and are being unraveled in increasing detail. In addition, insight into the complex interactions between cholesterol and bile acid metabolism has increased considerably in the last couple of years. This review provides an overview of the mechanisms involved in cholesterol uptake and excretion, with a particular emphasis on the most recent progress in this field. Special attention is given to the transintestinal cholesterol excretion (TICE) pathway, which was recently demonstrated to have a remarkably high transport capacity and to be sensitive to pharmacological modulation.
Collapse
Affiliation(s)
- Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Vascular Medicine, University of Amsterdam Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Engelking LJ, Cantoria MJ, Xu Y, Liang G. Developmental and extrahepatic physiological functions of SREBP pathway genes in mice. Semin Cell Dev Biol 2017; 81:98-109. [PMID: 28736205 DOI: 10.1016/j.semcdb.2017.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs), master transcriptional regulators of cholesterol and fatty acid synthesis, have been found to contribute to a diverse array of cellular processes. In this review, we focus on genetically engineered mice in which the activities of six components of the SREBP gene pathway, namely SREBP-1, SREBP-2, Scap, Insig-1, Insig-2, or Site-1 protease have been altered through gene knockout or transgenic approaches. In addition to the expected impacts on lipid metabolism, manipulation of these genes in mice is found to affect a wide array of developmental and physiologic processes ranging from interferon signaling in macrophages to synaptic transmission in the brain. The findings reviewed herein provide a blueprint to guide future studies defining the complex interactions between lipid biology and the physiologic processes of many distinct organ systems.
Collapse
Affiliation(s)
- Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mary Jo Cantoria
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanchao Xu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guosheng Liang
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Rong S, McDonald JG, Engelking LJ. Cholesterol auxotrophy and intolerance to ezetimibe in mice with SREBP-2 deficiency in the intestine. J Lipid Res 2017. [PMID: 28630260 DOI: 10.1194/jlr.m077610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SREBP-2 activates transcription of all genes needed for cholesterol biosynthesis. To study SREBP-2 function in the intestine, we generated a mouse model (Vil-BP2-/- ) in which Cre recombinase ablates SREBP-2 in intestinal epithelia. Intestines of Vil-BP2-/- mice had reduced expression of genes required for sterol synthesis, in vivo sterol synthesis rates, and epithelial cholesterol contents. On a cholesterol-free diet, the mice displayed chronic enteropathy with histological abnormalities of both villi and crypts, growth restriction, and reduced survival that was prevented by supplementation of cholesterol in the diet. Likewise, SREBP-2-deficient enteroids required exogenous cholesterol for growth. Blockade of luminal cholesterol uptake into enterocytes with ezetimibe precipitated acutely lethal intestinal damage in Vil-BP2-/- mice, highlighting the critical interplay in the small intestine of sterol absorption via NPC1L1 and sterol synthesis via SREBP-2 in sustaining the intestinal mucosa. These data show that the small intestine requires SREBP-2 to drive cholesterol synthesis that sustains the intestinal epithelia when uptake of cholesterol from the gut lumen is not available, and provide a unique example of cholesterol auxotrophy expressed in an intact, adult mammal.
Collapse
Affiliation(s)
- Shunxing Rong
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Jeffrey G McDonald
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046 .,Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| |
Collapse
|
10
|
Chakrabarti RS, Ingham SA, Kozlitina J, Gay A, Cohen JC, Radhakrishnan A, Hobbs HH. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife 2017; 6. [PMID: 28169829 PMCID: PMC5323040 DOI: 10.7554/elife.23355] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/28/2017] [Indexed: 01/07/2023] Open
Abstract
Cholesterol partitions into accessible and sequestered pools in cell membranes. Here, we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals, but varied >10 fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessibility. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans. DOI:http://dx.doi.org/10.7554/eLife.23355.001
Collapse
Affiliation(s)
- Rima S Chakrabarti
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sally A Ingham
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Julia Kozlitina
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Austin Gay
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan C Cohen
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arun Radhakrishnan
- Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Helen H Hobbs
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
11
|
Temel RE, Brown JM. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci 2015; 36:440-51. [PMID: 25930707 DOI: 10.1016/j.tips.2015.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.
Collapse
Affiliation(s)
- Ryan E Temel
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
12
|
McFarlane MR, Cantoria MJ, Linden AG, January BA, Liang G, Engelking LJ. Scap is required for sterol synthesis and crypt growth in intestinal mucosa. J Lipid Res 2015; 56:1560-71. [PMID: 25896350 DOI: 10.1194/jlr.m059709] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/20/2022] Open
Abstract
SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap(-)) in which tamoxifen-inducible Cre-ER(T2), a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap(-) mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap(-) mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts.
Collapse
Affiliation(s)
- Matthew R McFarlane
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Mary Jo Cantoria
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Albert G Linden
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Brandon A January
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Guosheng Liang
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Luke J Engelking
- Department of Molecular Genetics University of Texas Southwestern Medical Center, Dallas, TX 75390-9046 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| |
Collapse
|
13
|
Nagashima S, Yagyu H, Tozawa R, Tazoe F, Takahashi M, Kitamine T, Yamamuro D, Sakai K, Sekiya M, Okazaki H, Osuga JI, Honda A, Ishibashi S. Plasma cholesterol-lowering and transient liver dysfunction in mice lacking squalene synthase in the liver. J Lipid Res 2015; 56:998-1005. [PMID: 25755092 DOI: 10.1194/jlr.m057406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 01/23/2023] Open
Abstract
Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality.
Collapse
Affiliation(s)
- Shuichi Nagashima
- Division of Endocrinology and Metabolism, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Ryuichi Tozawa
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Fumiko Tazoe
- Division of Endocrinology and Metabolism, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Tetsuya Kitamine
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Kent Sakai
- Division of Endocrinology and Metabolism, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Motohiro Sekiya
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Hiroaki Okazaki
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Jun-ichi Osuga
- Division of Endocrinology and Metabolism, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395, Japan
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
14
|
Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proc Natl Acad Sci U S A 2014; 111:E4006-14. [PMID: 25201972 DOI: 10.1073/pnas.1413561111] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An unknown fraction of the genome participates in the metabolism of sterols and vitamin D, two classes of lipids with diverse physiological and pathophysiological roles. Here, we used mass spectrometry to measure the abundance of >60 sterol and vitamin D derivatives in 3,230 serum samples from a well-phenotyped patient population. Twenty-nine of these lipids were detected in a majority of samples at levels that varied over thousands of fold in different individuals. Pairwise correlations between sterol and vitamin D levels revealed evidence for shared metabolic pathways, additional substrates for known enzymes, and transcriptional regulatory networks. Serum levels of multiple sterols and vitamin D metabolites varied significantly by sex, ethnicity, and age. A genome-wide association study identified 16 loci that were associated with levels of 19 sterols and 25-hydroxylated derivatives of vitamin D (P < 10(-7)). Resequencing, expression analysis, and biochemical experiments focused on one such locus (CYP39A1), revealed multiple loss-of-function alleles with additive effects on serum levels of the oxysterol, 24S-hydroxycholesterol, a substrate of the encoded enzyme. Body mass index, serum lipid levels, and hematocrit were strong phenotypic correlates of interindividual variation in multiple sterols and vitamin D metabolites. We conclude that correlating population-based analytical measurements with genotype and phenotype provides productive insight into human intermediary metabolism.
Collapse
|
15
|
Degirolamo C, Sabbà C, Moschetta A. Intestinal nuclear receptors in HDL cholesterol metabolism. J Lipid Res 2014; 56:1262-70. [PMID: 25070952 DOI: 10.1194/jlr.r052704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 12/18/2022] Open
Abstract
The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy.
Collapse
Affiliation(s)
- Chiara Degirolamo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonio Moschetta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II", 70124 Bari, Italy Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
16
|
Mundy DI, Lopez AM, Posey KS, Chuang JC, Ramirez CM, Scherer PE, Turley SD. Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann-Pick type C1. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:995-1002. [PMID: 24747682 DOI: 10.1016/j.bbalip.2014.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 11/17/2022]
Abstract
Caveolin-1 (Cav-1) is a major structural protein in caveolae in the plasma membranes of many cell types, particularly endothelial cells and adipocytes. Loss of Cav-1 function has been implicated in multiple diseases affecting the cardiopulmonary and central nervous systems, as well as in specific aspects of sterol and lipid metabolism in the liver and intestine. Lungs contain an exceptionally high level of Cav-1. Parameters of cholesterol metabolism in the lung were measured, initially in Cav-1-deficient mice (Cav-1(-/-)), and subsequently in Cav-1(-/-) mice that also lacked the lysosomal cholesterol transporter Niemann-Pick C1 (Npc1) (Cav-1(-/-):Npc1(-/-)). In 50-day-old Cav-1(-/-) mice fed a low- or high-cholesterol chow diet, the total cholesterol concentration (mg/g) in the lungs was marginally lower than in the Cav-1(+/+) controls, but due to an expansion in their lung mass exceeding 30%, whole-lung cholesterol content (mg/organ) was moderately elevated. Lung mass (g) in the Cav-1(-/-):Npc1(-/-) mice (0.356±0.022) markedly exceeded that in their Cav-1(+/+):Npc1(+/+) controls (0.137±0.009), as well as in their Cav-1(-/-):Npc1(+/+) (0.191±0.013) and Cav-1(+/+):Npc1(-/-) (0.213±0.022) littermates. The corresponding lung total cholesterol contents (mg/organ) in mice of these genotypes were 6.74±0.17, 0.71±0.05, 0.96±0.05 and 3.12±0.43, respectively, with the extra cholesterol in the Cav-1(-/-):Npc1(-/-) and Cav-1(+/+):Npc1(-/-) mice being nearly all unesterified (UC). The exacerbation of the Npc1 lung phenotype and increase in the UC level in the Cav-1(-/-):Npc1(-/-) mice imply a regulatory role of Cav-1 in pulmonary cholesterol metabolism when lysosomal sterol transport is disrupted.
Collapse
Affiliation(s)
- Dorothy I Mundy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA.
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA.
| | - Kenneth S Posey
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA.
| | - Jen-Chieh Chuang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA.
| | - Charina M Ramirez
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA.
| | - Philipp E Scherer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA.
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA.
| |
Collapse
|
17
|
McFarlane MR, Liang G, Engelking LJ. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine. J Biol Chem 2013; 289:2148-56. [PMID: 24337570 DOI: 10.1074/jbc.m113.524041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.
Collapse
|
18
|
Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes. Biochimie 2013; 96:56-66. [PMID: 24012775 DOI: 10.1016/j.biochi.2013.08.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/28/2013] [Indexed: 01/26/2023]
Abstract
The structure and metabolism of HDL are linked to their major apolipoproteins (apo) A-I and A-II. HDL metabolism is very dynamic and depends on the constant remodeling by lipases, lipid transfer proteins and receptors. HDL exert several cardioprotective effects, through their antioxidant and antiinflammatory capacities and through the stimulation of reverse cholesterol transport from extrahepatic tissues to the liver for excretion into bile. HDL also serve as plasma reservoir for C and E apolipoproteins, as transport vehicles for a great variety of proteins, and may have more physiological functions than previously recognized. In this review we will develop several aspects of HDL metabolism with emphasis on the structure/function of apo A-I and apo A-II. An important contribution to our understanding of the respective roles of apo A-I and apo A-II comes from studies using transgenic animal models that highlighted the stabilizatory role of apo A-II on HDL through inhibition of their remodeling by lipases. Clinical studies coupled with proteomic analyses revealed the presence of dysfunctional HDL in patients with cardiovascular disease. Beyond HDL cholesterol, a new notion is the functionality of HDL particles. In spite of abundant literature on HDL metabolic properties, a major question remains unanswered: which HDL particle(s) confer(s) protection against cardiovascular risk?
Collapse
|
19
|
Parameter trajectory analysis to identify treatment effects of pharmacological interventions. PLoS Comput Biol 2013; 9:e1003166. [PMID: 23935478 PMCID: PMC3731221 DOI: 10.1371/journal.pcbi.1003166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 06/18/2013] [Indexed: 11/29/2022] Open
Abstract
The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological) treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT), to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR), a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1), a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1 in hepatic membranes. Next to the identification of potential unwanted side effects, we demonstrate how ADAPT can be used to design new target interventions to prevent these. A driving ambition of medical systems biology is to advance our understanding of molecular processes that drive the progression of complex diseases such as Type 2 Diabetes and cardiovascular disease. This insight is essential to enable the development of therapies to effectively treat diseases. A challenging task is to investigate the long-term effects of a treatment, in order to establish its applicability and to identify potential side effects. As such, there is a growing need for novel approaches to support this research. Here, we present a new computational approach to identify treatment effects. We make use of a computational model of the biological system. The model is used to describe the experimental data obtained during different stages of the treatment. To incorporate the long-term/progressive adaptations in the system, induced by changes in gene and protein expression, the model is iteratively updated. The approach was employed to identify metabolic adaptations induced by a potential anti-atherosclerotic and anti-diabetic drug target. Our approach identifies the molecular events that should be studied in more detail to establish the mechanistic basis of treatment outcome. New biological insight was obtained concerning the metabolism of cholesterol, which was in turn experimentally validated.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Several lines of evidence indicate that the enterocyte plays a pivotal role in cholesterol homeostasis. The development of the selective inhibitor of cholesterol absorption ezetimibe and bile acid sequestrants (BAS) interrupting the enterohepatic circulation of bile salts has expanded the options for preventing and treating cardiovascular disease. We discuss here a selection of recently published studies that evaluated the effects of ezetimibe and BAS on lipoprotein metabolism. RECENT FINDINGS Although significant progress has been made in recent years in elucidating the impacts of ezetimibe and BAS on lipoprotein metabolism, underlying mechanisms are not completely understood. Important new insights have been provided by using in-vivo kinetic studies of apolipoproteins labelled with a stable isotope. Other reports indicated that ezetimibe and BAS modulate the expression of several key genes involved in intestinal lipoprotein metabolism. Many of these effects have been related to the local effects of ezetimibe and BAS on intestinal cholesterol homeostasis. SUMMARY A substantial effort is being made by researchers to fully understand the mechanisms by which ezetimibe and BAS improve lipid profile. The efficacy of combination therapy of statins with ezetimibe or BAS for the prevention of cardiovascular disease remains to be confirmed in clinical endpoint studies.
Collapse
Affiliation(s)
- Patrick Couture
- Lipid Research Center, Laval University Medical Center, Laval University, Quebec City, Canada.
| | | |
Collapse
|
21
|
Holleboom AG, Jakulj L, Franssen R, Decaris J, Vergeer M, Koetsveld J, Luchoomun J, Glass A, Hellerstein MK, Kastelein JJP, Hovingh GK, Kuivenhoven JA, Groen AK, Turner SM, Stroes ESG. In vivo tissue cholesterol efflux is reduced in carriers of a mutation in APOA1. J Lipid Res 2013; 54:1964-71. [PMID: 23650622 DOI: 10.1194/jlr.p028449] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Atheroprotection by high density lipoprotein (HDL) is considered to be mediated through reverse cholesterol transport (RCT) from peripheral tissues. We investigated in vivo cholesterol fluxes through the RCT pathway in patients with low plasma high density lipoprotein cholesterol (HDL-c) due to mutations in APOA1. Seven carriers of the L202P mutation in APOA1 (mean HDL-c: 20 ± 19 mg/dl) and seven unaffected controls (mean HDL-c: 54 ± 11 mg/dl, P < 0.0001) received a 20 h infusion of (13)C2-cholesterol ((13)C-C). Enrichment of plasma and erythrocyte free cholesterol and plasma cholesterol esters was measured. With a three-compartment SAAM-II model, tissue cholesterol efflux (TCE) was calculated. TCE was reduced by 19% in carriers (4.6 ± 0.8 mg/kg/h versus 5.7 ± 0.7 mg/kg/h in controls, P = 0.02). Fecal (13)C recovery and sterol excretion 7 days postinfusion did not differ significantly between carriers and controls: 21.3 ± 20% versus 13.3 ± 6.3% (P = 0.33), and 2,015 ± 1,431 mg/day versus 1456 ± 404 mg/day (P = 0.43), respectively. TCE is reduced in carriers of mutations in APOA1, suggesting that HDL contributes to efflux of tissue cholesterol in humans. The residual TCE and unaffected fecal sterol excretion in our severely affected carriers suggest, however, that non-HDL pathways contribute to RCT significantly.
Collapse
Affiliation(s)
- Adriaan G Holleboom
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bura KS, Lord C, Marshall S, McDaniel A, Thomas G, Warrier M, Zhang J, Davis MA, Sawyer JK, Shah R, Wilson MD, Dikkers A, Tietge UJF, Collet X, Rudel LL, Temel RE, Brown JM. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice. J Lipid Res 2013; 54:1567-1577. [PMID: 23564696 DOI: 10.1194/jlr.m034454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.
Collapse
Affiliation(s)
- Kanwardeep S Bura
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Caleb Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Stephanie Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Allison McDaniel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Gwyn Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Manya Warrier
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jun Zhang
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Matthew A Davis
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Janet K Sawyer
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ramesh Shah
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Martha D Wilson
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Arne Dikkers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Xavier Collet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases of Rangueil Hospital, BP 84225, Toulouse, France
| | - Lawrence L Rudel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC.
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC.
| |
Collapse
|
23
|
van de Pas NCA, Woutersen RA, van Ommen B, Rietjens IMCM, de Graaf AA. A physiologically based in silico kinetic model predicting plasma cholesterol concentrations in humans. J Lipid Res 2012; 53:2734-46. [PMID: 23024287 DOI: 10.1194/jlr.m031930] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increased plasma cholesterol concentration is associated with increased risk of cardiovascular disease. This study describes the development, validation, and analysis of a physiologically based kinetic (PBK) model for the prediction of plasma cholesterol concentrations in humans. This model was directly adapted from a PBK model for mice by incorporation of the reaction catalyzed by cholesterol ester transfer protein and contained 21 biochemical reactions and eight different cholesterol pools. The model was calibrated using published data for humans and validated by comparing model predictions on plasma cholesterol levels of subjects with 10 different genetic mutations (including familial hypercholesterolemia and Smith-Lemli-Opitz syndrome) with experimental data. Average model predictions on total cholesterol were accurate within 36% of the experimental data, which was within the experimental margin. Sensitivity analysis of the model indicated that the HDL cholesterol (HDL-C) concentration was mainly dependent on hepatic transport of cholesterol to HDL, cholesterol ester transfer from HDL to non-HDL, and hepatic uptake of cholesterol from non-HDL-C. Thus, the presented PBK model is a valid tool to predict the effect of genetic mutations on cholesterol concentrations, opening the way for future studies on the effect of different drugs on cholesterol levels in various subpopulations in silico.
Collapse
Affiliation(s)
- Niek C A van de Pas
- The Netherlands Organization for Applied Scientific Research, 3700 AJ Zeist, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Engelking LJ, McFarlane MR, Li CK, Liang G. Blockade of cholesterol absorption by ezetimibe reveals a complex homeostatic network in enterocytes. J Lipid Res 2012; 53:1359-68. [PMID: 22523394 PMCID: PMC3371247 DOI: 10.1194/jlr.m027599] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Indexed: 12/29/2022] Open
Abstract
Enterocyte cholesterol homeostasis reflects aggregated rates of sterol synthesis, efflux, and uptake from plasma and gut lumen. Cholesterol synthesis and LDL uptake are coordinately regulated by sterol regulatory element-binding proteins (SREBP), whereas sterol efflux is regulated by liver X receptors (LXR). How these processes are coordinately regulated in enterocytes, the site of cholesterol absorption, is not well understood. Here, we treat mice with ezetimibe to investigate the effect of blocking cholesterol absorption on intestinal SREBPs, LXRs, and their effectors. Ezetimibe increased nuclear SREBP-2 8-fold. HMG-CoA reductase (HMGR) and LDL receptor (LDLR) mRNA levels increased less than 3-fold, whereas their protein levels increased 30- and 10-fold, respectively. Expression of inducible degrader of LDLR (IDOL), an LXR-regulated gene that degrades LDLRs, was reduced 50% by ezetimibe. Coadministration of ezetimibe with the LXR agonist T0901317 abolished the reduction in IDOL and prevented the increase in LDLR protein. Ezetimibe-stimulated LDLR expression was independent of proprotein convertase subtilisin/kexin type 9 (PSCK9), a protein that degrades LDLRs. To maintain cholesterol homeostasis in the face of ezetimibe, enterocytes boost LDL uptake by increasing LDLR number, and they boost sterol synthesis by increasing HMGR and other cholesterologenic genes. These studies reveal a hitherto undescribed homeostatic network in enterocytes triggered by blockade of cholesterol absorption.
Collapse
Affiliation(s)
- Luke J Engelking
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The process of reverse cholesterol transport (RCT) is critical for disposal of excess cholesterol from the body. Although it is generally accepted that RCT requires biliary secretion, recent studies show that RCT persists in genetic or surgical models of biliary insufficiency. Discovery of this nonbiliary pathway has opened new possibilities of targeting the intestine as an inducible cholesterol excretory organ. In this review we highlight the relative contribution and therapeutic potential for both biliary and nonbiliary components of RCT. RECENT FINDINGS Recently, the proximal small intestine has gained attention for its underappreciated ability to secrete cholesterol in a process called transintestinal cholesterol efflux (TICE). Although this intestinal pathway for RCT is quantitatively less important than the biliary route under normal physiological conditions, TICE is highly inducible, providing a novel therapeutic opportunity for treatment of atherosclerotic cardiovascular disease (ASCVD). In fact, recent studies show that intestine-specific activation of RCT protects against ASCVD in mice. SUMMARY It is well known that the small intestine plays a gatekeeper role in the maintenance of cholesterol balance. Through integrated regulation of cholesterol absorption and TICE, the small intestine is a key target for new therapies against ASCVD.
Collapse
Affiliation(s)
- Ryan E. Temel
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - J. Mark Brown
- Department of Pathology-Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| |
Collapse
|
26
|
Azzam KM, Fessler MB. Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol Metab 2012; 23:169-78. [PMID: 22406271 PMCID: PMC3338129 DOI: 10.1016/j.tem.2012.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 02/06/2023]
Abstract
Although lipid metabolism and host defense are widely considered to be very divergent disciplines, compelling evidence suggests that host cell handling of self- and microbe-derived (e.g. lipopolysaccharide, LPS) lipids may have common evolutionary roots, and that they indeed may be inseparable processes. The innate immune response and the homeostatic network controlling cellular sterol levels are now known to regulate each other reciprocally, with important implications for several common diseases, including atherosclerosis. In the present review we discuss recent discoveries that provide new insight into the bidirectional crosstalk between reverse cholesterol transport and innate immunity, and highlight the broader implications of these findings for the development of therapeutics.
Collapse
Affiliation(s)
- Kathleen M Azzam
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
27
|
Brufau G, Kuipers F, Lin Y, Trautwein EA, Groen AK. A reappraisal of the mechanism by which plant sterols promote neutral sterol loss in mice. PLoS One 2011; 6:e21576. [PMID: 21738715 PMCID: PMC3128081 DOI: 10.1371/journal.pone.0021576] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/03/2011] [Indexed: 11/23/2022] Open
Abstract
Dietary plant sterols (PS) reduce serum total and LDL-cholesterol in hyperlipidemic animal models and in humans. This hypocholesterolemic effect is generally ascribed to inhibition of cholesterol absorption. However, whether this effect fully explains the reported strong induction of neutral sterol excretion upon plant sterol feeding is not known. Recent data demonstrate that the intestine directly mediates plasma cholesterol excretion into feces, i.e., without involvement of the hepato-biliary route.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Brufau G, Groen AK, Kuipers F. Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion. Arterioscler Thromb Vasc Biol 2011; 31:1726-33. [PMID: 21571685 DOI: 10.1161/atvbaha.108.181206] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse cholesterol transport (RCT) is usually defined as high-density lipoprotein-mediated transport of excess cholesterol from peripheral tissues, including cholesterol-laden macrophages in vessel walls, to the liver. From the liver, cholesterol can then be removed from the body via secretion into the bile for eventual disposal via the feces. According to this paradigm, high plasma high-density lipoprotein levels accelerate RCT and hence are atheroprotective. New insights in individual steps of the RCT pathway, in part derived from innovative mouse models, indicate that the classical concept of RCT may require modification.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | |
Collapse
|
29
|
van de Pas NCA, Woutersen RA, van Ommen B, Rietjens IMCM, de Graaf AA. A physiologically-based kinetic model for the prediction of plasma cholesterol concentrations in the mouse. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1811:333-42. [PMID: 21320632 DOI: 10.1016/j.bbalip.2011.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/04/2011] [Indexed: 11/24/2022]
Abstract
The LDL cholesterol (LDL-C) and HDL cholesterol (HDL-C) concentrations are determined by the activity of a complex network of reactions in several organs. Physiologically-based kinetic (PBK) computational models can be used to describe these different reactions in an integrated, quantitative manner. A PBK model to predict plasma cholesterol levels in the mouse was developed, validated, and analyzed. Kinetic parameters required for defining the model were obtained using data from published experiments. To construct the model, a set of appropriate submodels was selected from a set of 65,536 submodels differing in the kinetic expressions of the reactions. A submodel was considered appropriate if it had the ability to correctly predict an increased or decreased plasma cholesterol level for a training set of 5 knockout mouse strains. The model thus defined consisted of 8 appropriate submodels and was validated using data from an independent set of 9 knockout mouse strains. The model prediction is the average prediction of 8 appropriate submodels. Remarkably, these submodels had in common that the rate of cholesterol transport from the liver to HDL was not dependent on hepatic cholesterol concentrations. The model appeared able to accurately predict in a quantitative way the plasma cholesterol concentrations of all 14 knockout strains considered, including the frequently used Ldlr-/- and Apoe-/- mouse strains. The model presented is a useful tool to predict the effect of knocking out genes that act in important steps in cholesterol metabolism on total plasma cholesterol, HDL-C and LDL-C in the mouse.
Collapse
Affiliation(s)
- Niek C A van de Pas
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, P.O. Box 360, 3700 AJ Zeist, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Temel RE, Brown JM. A new framework for reverse cholesterol transport: Non-biliary contributions to reverse cholesterol transport. World J Gastroenterol 2010; 16:5946-52. [PMID: 21157970 PMCID: PMC3007104 DOI: 10.3748/wjg.v16.i47.5946] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Major efforts are now focused on therapies that augment high-density lipoprotein (HDL)-mediated reverse cholesterol transport (RCT), and ultimately increase the fecal disposal of cholesterol. The process of RCT has long been thought to simply involve HDL-mediated delivery of peripheral cholesterol to the liver for biliary excretion out of the body. However, recent studies have revealed a novel pathway for RCT that does not rely on biliary secretion. This non-biliary pathway rather involves the direct excretion of cholesterol by the proximal small intestine. Compared to RCT therapies that augment biliary sterol loss, modulation of non-biliary fecal sterol loss through the intestine is a much more attractive therapeutic strategy, given that excessive biliary cholesterol secretion can promote gallstone formation. However, we are at an early stage in understanding the molecular mechanisms regulating the non-biliary pathway for RCT, and much additional work is required in order to effectively target this pathway for CHD prevention. The purpose of this review is to discuss our current understanding of biliary and non-biliary contributions to RCT with particular emphasis on the possibility of targeting the intestine as an inducible cholesterol secretory organ.
Collapse
|
31
|
Turley SD, Valasek MA, Repa JJ, Dietschy JM. Multiple mechanisms limit the accumulation of unesterified cholesterol in the small intestine of mice deficient in both ACAT2 and ABCA1. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1012-22. [PMID: 20724527 PMCID: PMC2993165 DOI: 10.1152/ajpgi.00190.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/16/2010] [Indexed: 01/31/2023]
Abstract
Cholesterol homeostasis in the enterocyte is regulated by the interplay of multiple genes that ultimately determines the net amount of cholesterol reaching the circulation from the small intestine. The effect of deleting these genes, particularly acyl CoA:cholesterol acyl transferase 2 (ACAT2), on cholesterol absorption and fecal sterol excretion is well documented. We also know that the intestinal mRNA level for adenosine triphosphate-binding cassette transporter A1 (ABCA1) increases in Acat2(-/-) mice. However, none of these studies has specifically addressed how ACAT2 deficiency impacts the relative proportions of esterified and unesterified cholesterol (UC) in the enterocyte and whether the concurrent loss of ABCA1 might result in a marked buildup of UC. Therefore, the present studies measured the expression of numerous genes and related metabolic parameters in the intestine and liver of ACAT2-deficient mice fed diets containing either added cholesterol or ezetimibe, a selective sterol absorption inhibitor. Cholesterol feeding raised the concentration of UC in the small intestine, and this was accompanied by a significant reduction in the relative mRNA level for Niemann-Pick C1-like 1 (NPC1L1) and an increase in the mRNA level for both ABCA1 and ABCG5/8. All these changes were reversed by ezetimibe. When mice deficient in both ACAT2 and ABCA1 were fed a high-cholesterol diet, the increase in intestinal UC levels was no greater than it was in mice lacking only ACAT2. This resulted from a combination of compensatory mechanisms including diminished NPC1L1-mediated cholesterol uptake, increased cholesterol efflux via ABCG5/8, and possibly rapid cell turnover.
Collapse
Affiliation(s)
- Stephen D Turley
- Dept. of Internal Medicine, Univ. of Texas Southwestern Medical School, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA.
| | | | | | | |
Collapse
|
32
|
Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, Marshall S, Wang N, Shah R, Rudel LL, Brown JM. Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 2010; 12:96-102. [PMID: 20620999 PMCID: PMC2913877 DOI: 10.1016/j.cmet.2010.05.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/07/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
Recent evidence suggests that the intestine may play a direct facilitative role in reverse cholesterol transport (RCT), independent of hepatobiliary secretion. In order to understand the nonbiliary pathway for RCT, we created both genetic and surgical models of biliary cholesterol insufficiency. To genetically inhibit biliary cholesterol secretion, we generated mice in which Niemann-Pick C1-Like 1 (NPC1L1) was overexpressed in the liver. Compared to controls, NPC1L1(Liver-Tg) mice exhibit a >90% decrease in biliary cholesterol secretion, yet mass fecal sterol loss and macrophage RCT are normal. To surgically inhibit biliary emptying into the intestine, we have established an acute biliary diversion model. Strikingly, macrophage RCT persists in mice surgically lacking the ability to secrete bile into the intestine. Collectively, these studies demonstrate that mass fecal sterol loss and macrophage RCT can proceed in the absence of biliary sterol secretion, challenging the obligate role of bile in RCT.
Collapse
Affiliation(s)
- Ryan E Temel
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol 2010; 22:422-9. [PMID: 20627678 DOI: 10.1016/j.ceb.2010.05.004] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/25/2010] [Accepted: 05/03/2010] [Indexed: 12/18/2022]
Abstract
Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, involving a serum protein called PCSK9, which profoundly affects lipoproteins and their receptors. Cells can export cholesterol by processes that require the activity of ABC transporters, but the molecular mechanisms for cholesterol transport remain unclear. Cholesterol levels in different organelles vary by 5-10-fold, and the mechanisms for maintaining these differences are now partially understood. Several proteins have been proposed to play a role in the inter-organelle movement of cholesterol, but many aspects of the mechanisms for regulating intracellular transport and distribution of cholesterol remain to be worked out. The endoplasmic reticulum is the main organelle responsible for regulation of cholesterol synthesis, and careful measurements have shown that the proteins responsible for sterol sensing respond over a very narrow range of cholesterol concentrations to provide very precise, switch-like control over cholesterol synthesis.
Collapse
Affiliation(s)
- Frederick R Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA.
| | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW HDL is a cardioprotective lipoprotein, at least in part, because of its ability to mediate reverse cholesterol transport (RCT). It is becoming increasingly clear that the antiatherogenic effects of HDL are not only dependent on its concentration in circulating blood but also on its biological 'quality'. This review summarizes our current understanding of how the biological activities of individual subclasses of HDL particles contribute to overall HDL performance in RCT. RECENT FINDINGS Recent work indicates that apolipoprotein A-I-containing nascent HDL particles are heterogeneous and that such particles exert different effects on the RCT pathway. RCT from macrophages has been examined in detail in mice and the roles of plasma factors (lecithin-cholesterol acyltransferase, cholesterol ester transfer protein, phospholipid transfer protein) and cell factors (ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, scavenger receptor class B type 1) have been evaluated. Manipulation of such factors has consistent effects on RCT and atherosclerosis, but the level of plasma HDL does not reliably predict the degree of RCT. Furthermore, HDL cholesterol or apolipoprotein A-I levels do not necessarily correlate with the magnitude of cholesterol efflux from macrophages; more understanding of the contributions of specific HDL subspecies is required. SUMMARY The antiatherogenic quality of HDL is defined by the functionality of HDL subspecies. In the case of RCT, the rate of cholesterol movement through the pathway is critical and the contributions of particular types of HDL particles to this process are becoming better defined.
Collapse
Affiliation(s)
- George H Rothblat
- Gastroenterology, Hepatology and Nutrition Division, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | |
Collapse
|
35
|
Thompson PA, Gauthier KC, Varley AW, Kitchens RL. ABCA1 promotes the efflux of bacterial LPS from macrophages and accelerates recovery from LPS-induced tolerance. J Lipid Res 2010; 51:2672-85. [PMID: 20472936 DOI: 10.1194/jlr.m007435] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrophages play important roles in both lipid metabolism and innate immunity. We show here that macrophage ATP-binding cassette transporter A1 (ABCA1), a transporter known for its ability to promote apolipoprotein-dependent cholesterol efflux, also participates in the removal of an immunostimulatory bacterial lipid, lipopolysaccharide (LPS). Whereas monocytes require an exogenous lipoprotein acceptor to remove cell-associated LPS, macrophages released LPS in the absence of an exogenous acceptor by a mechanism that was driven, in part, by endogenous apolipoprotein E (apoE). Agents that increased ABCA1 expression increased LPS efflux from wild-type but not ABCA1-deficient macrophages. Preexposure of peritoneal macrophages to LPS for 24 h increased the expression of ABCA1 and increased LPS efflux with a requirement for exogenous apolipoproteins due to suppression of endogenous apoE production. In contrast, LPS preconditioning of ABCA1-deficient macrophages significantly decreased LPS efflux and led to prolonged retention of cell-surface LPS. Although the initial response to LPS was similar in wild-type and ABCA1-deficient macrophages, LPS-induced tolerance was greater and more prolonged in macrophages that lacked ABCA1. Our results define a new role for macrophage ABCA1 in removing cell-associated LPS and restoring normal macrophage responsiveness.
Collapse
Affiliation(s)
- Patricia A Thompson
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | |
Collapse
|
36
|
Hossain MA, Tsujita M, Akita N, Kobayashi F, Yokoyama S. Cholesterol homeostasis in ABCA1/LCAT double-deficient mouse. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:1197-205. [DOI: 10.1016/j.bbalip.2009.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 08/07/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
|
37
|
Liu B, Ramirez CM, Miller AM, Repa JJ, Turley SD, Dietschy JM. Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. J Lipid Res 2009; 51:933-44. [PMID: 19965601 DOI: 10.1194/jlr.m000257] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A mutation in NPC1 leads to sequestration of unesterified cholesterol in the late endosomal/lysosomal compartment of every cell culminating in the development of pulmonary, hepatic, and neurodegenerative disease. Acute administration of 2-hydroxypropyl-beta-cyclodextrin (CYCLO) rapidly overcomes this transport defect in both the 7-day-old pup and 49-day-old mature npc1(-/-) mouse, even though this compound is cleared from the body and plasma six times faster in the mature mouse than in the neonatal animal. The liberated cholesterol flows into the cytosolic ester pool, suppresses sterol synthesis, down-regulates SREBP2 and its target genes, and reduces expression of macrophage-associated inflammatory genes. These effects are seen in the liver and brain, as well as in peripheral organs like the spleen and kidney. Only the lung appears to be resistant to these effects. Forty-eight h after CYCLO administration to the 49-day-old animals, fecal acidic, but not neutral, sterol output increases, whole-animal cholesterol burden is reduced, and the hepatic and neurological inflammation is ameliorated. However, lifespan is extended only when the CYCLO is administered to the 7-day-old animals. These studies demonstrate that CYCLO administration acutely reverses the cholesterol transport defect seen in the NPC1 mouse at any age, and this reversal allows the sequestered sterol to be excreted from the body as bile acid.
Collapse
Affiliation(s)
- Benny Liu
- Departments of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-9151, USA
| | | | | | | | | | | |
Collapse
|