1
|
Luo W, Xu Z, Li F, Ding L, Wang R, Lin Y, Mao X, Chen X, Li Y, Lu Z, Xie H, Wang H, Zhu Z, Lu Y, Guo L, Yu X, Xia L, He HH, Li G. m6Am Methyltransferase PCIF1 Promotes LPP3 Mediated Phosphatidic Acid Metabolism and Renal Cell Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404033. [PMID: 39422663 DOI: 10.1002/advs.202404033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/29/2024] [Indexed: 10/19/2024]
Abstract
N6-methyl-2'-O-methyladenosine (m6Am), occurring adjacent to the 7-methylguanosine (m7G) cap structure and catalyzed by the newly identified writer PCIF1 (phosphorylated CTD interacting factor 1), has been implicated in the pathogenesis of various diseases. However, its involvement in renal cell carcinoma (RCC) remains unexplored. Here, significant upregulation of PCIF1 and m6Am levels in RCC tissues are identified, unveiling their oncogenic roles both in vitro and in vivo. Mechanically, employing m6Am-Exo-Seq, LPP3 (phospholipid phosphatase 3) mRNA is identified as a key downstream target whose translation is enhanced by m6Am modification. Furthermore, LPP3 is revealed as a key regulator of phosphatidic acid metabolism, critical for preventing its accumulation in mitochondria and facilitating mitochondrial fission. Consequently, Inhibition of the PCIF1/LPP3 axis significantly altered mitochondrial morphology and reduced RCC tumor progression. In addition, depletion of PCIF1 sensitizes RCC to sunitinib treatment. This study highlights the intricate interplay between m6Am modification, phosphatidic acid metabolism, and mitochondrial dynamics, offering a promising therapeutic avenue for RCC.
Collapse
Affiliation(s)
- Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhehao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Fan Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yudong Lin
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xudong Mao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xianjiong Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yang Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Haiyun Xie
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziwei Zhu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Luying Guo
- Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiaojing Yu
- Department of Radiology, Sir Run Run Shaw hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
2
|
Schirizzi A, Donghia R, De Nunzio V, Renna N, Centonze M, De Leonardis G, Lorusso V, Fantasia A, Coletta S, Stabile D, Ferro A, Notarnicola M, Ricci AD, Lotesoriere C, Lahn M, D'Alessandro R, Giannelli G. High levels of autotaxin and lysophosphatidic acid predict poor outcome in treatment of resectable gastric carcinoma. Eur J Cancer 2024; 213:115066. [PMID: 39426076 DOI: 10.1016/j.ejca.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Although early-stage gastric cancer is a candidate for curative surgical resection, the absence of specific early symptoms results in a late diagnosis and consequently most patients present advanced or metastatic disease. Identifying noveland tumor-specific biomarkers is needed to increase early detection and match patients to the appropriate treatment. The present study focused on the possible prognostic role of Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2)/Autotaxin (ATX) and lysophosphatidic acid (LPA) in Gastro-Esophageal Adenocarcinoma (GEA). High levels of ATX/LPA are associated with several malignancies including gastrointestinal tumors. METHODS Using a bioinformatics analysis, the incidence of ENPP2 mutations together with its expression in the tumor tissues and the correlation between the presence of mutations and the survival rate were examined in databases of GEA patients. Furthermore, circulating levels of ATX and LPA were studied retrospectively and longitudinally both in patients receiving frontal surgery and in patients receiving preoperative chemotherapy. RESULTS Overall findings suggested that although ENPP2 mutations occur at low incidence, their presence was associated with a particular poor Overall Survival (OS). Furthermore, removal of the tumour by surgery resulted in a decrease in serum ATX and LPA levels within five days, regardless of any previous chemotherapy. Basal circulating ATX were associated with the aggressive diffuse GEA and could be considered of negative prognostic value, mainly in combination models with circulating Carcino-Embryonic Antigen (CEA). CONCLUSIONS Based on these observations, clinical trials with ATX-targeted drugs and standard chemotherapy regimens may benefit from selecting GEA patients based on their levels of ATX, LPA and CEA.
Collapse
Affiliation(s)
- Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Natasha Renna
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Matteo Centonze
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Vincenza Lorusso
- Clinical Trial Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Alessia Fantasia
- Clinical Trial Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Sergio Coletta
- Core Facility Biobank, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Dolores Stabile
- Core Facility Biobank, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Annalisa Ferro
- Clinical Pathology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Maria Notarnicola
- Clinical Pathology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Angela D Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Michael Lahn
- iOnctura Clinical Research, Avenue Secheron 15, 1202 Geneva, Switzerland.
| | - Rosalba D'Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| |
Collapse
|
3
|
Tsutsumi T, Taira S, Matsuda R, Kageyama C, Wada M, Kitayama T, Morioka N, Morita K, Tsuboi K, Yamazaki N, Kido J, Nagata T, Dohi T, Tokumura A. Lysophospholipase D activity on oral mucosa cells in whole mixed human saliva involves in production of bioactive lysophosphatidic acid from lysophosphatidylcholine. Prostaglandins Other Lipid Mediat 2024; 174:106881. [PMID: 39134206 DOI: 10.1016/j.prostaglandins.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
We reported that lysophosphatidic acid (LPA) is present at 0.8 μM in mixed human saliva (MS). In this study, we examined the distribution, origin, and enzymatic generation pathways of LPA in MS. LPA was distributed in the medium and cell pellet fraction; a true level of soluble LPA in MS was about 150 nM. The soluble LPA was assumed to be generated by ecto-type lysophospholipase D on exfoliated cells in MS from LPC that originated mainly from the major salivary gland saliva. Our results with the albumin-back extraction procedures suggest that a significant pool of LPA is kept in the outer layer of the plasma membranes of detached oral mucosal cells. Such pool of LPA may contribute to wound healing in upper digestive organs including oral cavity. We obtained evidence that the choline-producing activity in MS was mainly due to Ca2+-activated lysophospholipase D activity of glycerophosphodiesterase 7.
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka 882-8508, Japan
| | - Satoshi Taira
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Risa Matsuda
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Chieko Kageyama
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Mamiko Wada
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Tomoya Kitayama
- Department of Pharmacy and Pharmaceutical Sciences, Mucogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Katsuya Morita
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi, Hiroshima 734-8553, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Naoshi Yamazaki
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Junichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiro Dohi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan; Faculty of Nursing, Hiroshima Bunka Gakuen University, Kure 737-0004, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan; Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan.
| |
Collapse
|
4
|
Benesch MG, Wu R, Rog CJ, Brindley DN, Ishikawa T, Takabe K. Insights into autotaxin- and lysophosphatidate-mediated signaling in the pancreatic ductal adenocarcinoma tumor microenvironment: a survey of pathway gene expression. Am J Cancer Res 2024; 14:4004-4027. [PMID: 39267662 PMCID: PMC11387861 DOI: 10.62347/kqnw1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Lysophosphatidate (LPA)-mediated signaling is a vital component of physiological wound healing, but the pathway is subverted to mediate chronic inflammatory signaling in many pathologies, including cancers. LPA, as an extracellular signaling molecule, is produced by the enzyme autotaxin (ATX, gene name ENPP2) and signals through six LPA receptors (LPARs). Its signaling is terminated by turnover via the ecto-activity of three lipid phosphate phosphatases (LPPs, gene names PLPP1-3). Many pharmacological developments against the LPA-signaling axis are underway, primarily against ATX. An ATX inhibitor against pancreatic ductal adenocarcinoma (PDAC), a very aggressive disease with limited systemic therapeutic options, is currently in clinical trials, and represents the first in-class drug against LPA signaling in cancers. In the present study, we surveyed the expression of ATX, LPARs, and LPPs in human PDACs and their clinical outcomes in two large independent cohorts, the Cancer Genome Atlas (TCGA) and GSE21501. Correlation among gene expressions, biological function and the cell composition of the tumor microenvironment were analysed using gene set enrichment analysis and cell cyber-sorting with xCell. ENPP2, LPAR1, LPAR4, LPAR5, LPAR6, PLPP1, and PLPP2 were significantly elevated in PDACs compared to normal pancreatic tissue, whereas LPAR2, LPAR3, and PLPP3 where downregulated (all P≤0.003). Only ENPP2 demonstrated survival differences, with overall survival favoring ENPP2-high patients (hazard ration 0.5-0.9). ENPP2 was also the only gene with enriched gene patterns for inflammatory and tissue repair gene sets. Epithelial (cancer) cells had increased LPAR2, LPAR5 and PLPP2 expression, and decreased ENPP2, LPAR1, PLPP1, and PLPP3 gene expression (all P<0.02). Tumor fibroblasts had increased ENPP2, LPAR2, LPAR4, PLPP1, and PLPP3 expression and decreased LPAR2, LPAR5, and PLPP2 expression in both cohorts (all P≤0.01). Immune cell populations were not well correlated to gene expression in PDACs, but across both cohorts, cytolytic scores were increased in high-expressing ENPP2, LPAR1, LPAR6, PLPP1, and PLPP3 tumors (P<0.01). Overall, in PDACs, ENPP2 may switch from an anti-to-pro tumor promoting gene with disease progression. LPAR2 and PLPP2 inhibition are also predicted to have potential therapeutic utility. Future multi-omics investigations are necessarily to validate which LPA signaling components are high-value candidates for pharmacological manipulation in PDAC treatment.
Collapse
Affiliation(s)
- Matthew Gk Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan
| | - Colin J Rog
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
| | - David N Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta Edmonton, Alberta T6G 2S7, Canada
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York Buffalo, New York 14263, USA
| |
Collapse
|
5
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
6
|
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, De Leonardis G, D’Alessandro R, Lotesoriere C, Giannelli G. Autotaxin-Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications. Int J Mol Sci 2024; 25:7737. [PMID: 39062979 PMCID: PMC11277072 DOI: 10.3390/ijms25147737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
7
|
Jose A, Fernando JJ, Kienesberger PC. Lysophosphatidic acid metabolism and signaling in heart disease. Can J Physiol Pharmacol 2024. [PMID: 38968609 DOI: 10.1139/cjpp-2024-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid that is mainly produced by the secreted lysophospholipase D, autotaxin (ATX), and signals through at least six G protein-coupled receptors (LPA1-6). Extracellular LPA is degraded through lipid phosphate phosphatases (LPP1, LPP2, and LPP3) at the plasmamembrane, terminating LPA receptor signaling. The ATX-LPA-LPP3 pathway is critically involved in a wide range of physiological processes, including cell survival, migration, proliferation, angiogenesis, and organismal development. Similarly, dysregulation of this pathway has been linked to many pathological processes, including cardiovascular disease. This review summarizes and interprets current literature examining the regulation and role of the ATX-LPA-LPP3 axis in heart disease. Specifically, the contribution of altered LPA metabolism via ATX and LPP3 and resulting changes to LPA receptor signaling in obesity cardiomyopathy, cardiac mitochondrial dysfunction, myocardial infarction/ischemia-reperfusion injury, hypertrophic cardiomyopathy, and aortic valve stenosis is discussed.
Collapse
Affiliation(s)
- Anu Jose
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jeffy J Fernando
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Petra C Kienesberger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| |
Collapse
|
8
|
Fuster-Martínez I, Calatayud S. The current landscape of antifibrotic therapy across different organs: A systematic approach. Pharmacol Res 2024; 205:107245. [PMID: 38821150 DOI: 10.1016/j.phrs.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Fibrosis is a common pathological process that can affect virtually all the organs, but there are hardly any effective therapeutic options. This has led to an intense search for antifibrotic therapies over the last decades, with a great number of clinical assays currently underway. We have systematically reviewed all current and recently finished clinical trials involved in the development of new antifibrotic drugs, and the preclinical studies analyzing the relevance of each of these pharmacological strategies in fibrotic processes affecting tissues beyond those being clinically studied. We analyze and discuss this information with the aim of determining the most promising options and the feasibility of extending their therapeutic value as antifibrotic agents to other fibrotic conditions.
Collapse
Affiliation(s)
- Isabel Fuster-Martínez
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Valencia 46020, Spain.
| | - Sara Calatayud
- Departamento de Farmacología, Universitat de València, Valencia 46010, Spain; CIBERehd (Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas), Spain.
| |
Collapse
|
9
|
Vén K, Besztercei B, Janovicz A, Karsai N, Chun J, Tigyi G, Benyó Z, Ruisanchez É. LPA-Induced Thromboxane A2-Mediated Vasoconstriction Is Limited to Poly-Unsaturated Molecular Species in Mouse Aortas. Int J Mol Sci 2024; 25:6872. [PMID: 38999980 PMCID: PMC11241118 DOI: 10.3390/ijms25136872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
We have previously reported that, in aortic rings, 18:1 lysophosphatidic acid (LPA) can induce both vasodilation and vasoconstriction depending on the integrity of the endothelium. The predominant molecular species generated in blood serum are poly-unsaturated LPA species, yet the vascular effects of these species are largely unexplored. We aimed to compare the vasoactive effects of seven naturally occurring LPA species in order to elucidate their potential pathophysiological role in vasculopathies. Vascular tone was measured using myography, and thromboxane A2 (TXA2) release was detected by ELISA in C57Bl/6 mouse aortas. The Ca2+-responses to LPA-stimulated primary isolated endothelial cells were measured by Fluo-4 AM imaging. Our results indicate that saturated molecular species of LPA elicit no significant effect on the vascular tone of the aorta. In contrast, all 18 unsaturated carbon-containing (C18) LPAs (18:1, 18:2, 18:3) were effective, with 18:1 LPA being the most potent. However, following inhibition of cyclooxygenase (COX), these LPAs induced similar vasorelaxation, primarily indicating that the vasoconstrictor potency differed among these species. Indeed, C18 LPA evoked a similar Ca2+-signal in endothelial cells, whereas in endothelium-denuded aortas, the constrictor activity increased with the level of unsaturation, correlating with TXA2 release in intact aortas. COX inhibition abolished TXA2 release, and the C18 LPA induced vasoconstriction. In conclusion, polyunsaturated LPA have markedly increased TXA2-releasing and vasoconstrictor capacity, implying potential pathophysiological consequences in vasculopathies.
Collapse
Affiliation(s)
- Krisztina Vén
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (K.V.); (B.B.); (A.J.); (N.K.); (G.T.); (Z.B.)
- Department of Neurology, Semmelweis University, 1085 Budapest, Hungary
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (K.V.); (B.B.); (A.J.); (N.K.); (G.T.); (Z.B.)
| | - Anna Janovicz
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (K.V.); (B.B.); (A.J.); (N.K.); (G.T.); (Z.B.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Disorders Research Group, 1094 Budapest, Hungary
| | - Noémi Karsai
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (K.V.); (B.B.); (A.J.); (N.K.); (G.T.); (Z.B.)
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gábor Tigyi
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (K.V.); (B.B.); (A.J.); (N.K.); (G.T.); (Z.B.)
- Department of Physiology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (K.V.); (B.B.); (A.J.); (N.K.); (G.T.); (Z.B.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Disorders Research Group, 1094 Budapest, Hungary
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (K.V.); (B.B.); (A.J.); (N.K.); (G.T.); (Z.B.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Disorders Research Group, 1094 Budapest, Hungary
| |
Collapse
|
10
|
Tasdemiroglu Y, Council-Troche M, Chen M, Ledford B, Norris RA, Poelzing S, Gourdie RG, He JQ. Degradation of the α-Carboxyl Terminus 11 Peptide: In Vivo and Ex Vivo Impacts of Time, Temperature, Inhibitors, and Gender in Rat. ACS Pharmacol Transl Sci 2024; 7:1624-1636. [PMID: 38751644 PMCID: PMC11091968 DOI: 10.1021/acsptsci.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
In previous research, a synthetic α-carboxyl terminus 1 (αCT1) peptide derived from connexin 43 (Cx43) and its variant (αCT11) showed beneficial effects in an ex vivo ischemia-reperfusion (I/R) heart injury model in mouse. In an in vivo mouse model of cryo-induced ventricular injury, αCT1 released from adhesive cardiac patches reduced Cx43 remodeling and arrhythmias, as well as maintained cardiac conduction. Whether intravenous injection of αCT1 or αCT11 produces similar outcomes has not been investigated. Given the possibility of peptide degradation in plasma, this study utilized in vivo I/R cardiac injury and ex vivo blood plasma models to examine factors that may limit the therapeutic potential of peptide therapeutics in vivo. Following tail vein administration of αCT11 (100 μM) in blood, no effect on I/R infarct size was observed in adult rat hearts on day 1 (D1) and day 28 (D28) after injury (p > 0.05). There was also no difference in the echocardiographic ejection fraction (EF%) between the control and the αCT11 groups (p > 0.05). Surprisingly, αCT11 in blood plasma collected from these rats was undetectable within ∼10 min after tail vein injection. To investigate factors that may modulate αCT11 degradation in blood, αCT11 was directly added to blood plasma isolated from normal rats without I/R and peptide levels were measured under different experimental conditions. Consistent with in vivo observations, significant αCT11 degradation occurred in plasma within 10 min at 22 and 37 °C and was nearly undetectable by 30 min. These responses were reduced by the addition of protease/phosphatase (PTase/PPTase) inhibitors to the isolated plasma. Interestingly, no significant differences in αCT11 degradation in plasma were noted between male and female rats. We conclude that fast degradation of αCT11 is likely the reason that no beneficial effects were observed in the in vivo I/R model and inhibition or shielding from PTase/PPTase activity may be a strategy that will assist with the viability of peptide therapeutics.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - McAlister Council-Troche
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Miao Chen
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Benjamin Ledford
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| | - Russell A. Norris
- Department
of Medicine, Medical University of South
Carolina, Charleston, South Carolina 29425, United States
| | - Steven Poelzing
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Robert G. Gourdie
- Center
for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, 2 Riverside Circle, Roanoke, Virginia 24016, United States
| | - Jia-Qiang He
- Department
of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, 225 Duck Pond Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Benesch MG, Tang X, Brindley DN, Takabe K. Autotaxin and Lysophosphatidate Signaling: Prime Targets for Mitigating Therapy Resistance in Breast Cancer. World J Oncol 2024; 15:1-13. [PMID: 38274724 PMCID: PMC10807915 DOI: 10.14740/wjon1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Overcoming and preventing cancer therapy resistance is the most pressing challenge in modern breast cancer management. Consequently, most modern breast cancer research is aimed at understanding and blocking these therapy resistance mechanisms. One increasingly promising therapeutic target is the autotaxin (ATX)-lysophosphatidate (LPA)-lipid phosphate phosphatase (LPP) axis. Extracellular LPA, produced from albumin-bound lysophosphatidylcholine by ATX and degraded by the ecto-activity of the LPPs, is a potent cell-signaling mediator of tumor growth, invasion, angiogenesis, immune evasion, and resistance to cancer treatment modalities. LPA signaling in the post-natal organism has central roles in physiological wound healing, but these mechanisms are subverted to fuel pathogenesis in diseases that arise from chronic inflammatory processes, including cancer. Over the last 10 years, our understanding of the role of LPA signaling in the breast tumor microenvironment has begun to mature. Tumor-promoting inflammation in breast cancer leads to increased ATX production within the tumor microenvironment. This results in increased local concentrations of LPA that are maintained in part by decreased overall cancer cell LPP expression that would otherwise more rapidly break it down. LPA signaling through six G-protein-coupled LPA receptors expressed by cancer cells can then activate virtually every known tumorigenic pathway. Consequently, to target therapy resistance and tumor growth mediated by LPA signaling, multiple inhibitors against the LPA signaling axis are entering clinical trials. In this review, we summarize recent developments in LPA breast cancer biology, and illustrate how these novel therapeutics against the LPA signaling pathway may be excellent adjuncts to extend the efficacy of evolving breast cancer treatments.
Collapse
Affiliation(s)
- Matthew G.K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
12
|
Chen J, Stork T, Kang Y, Nardone KAM, Auer F, Farrell RJ, Jay TR, Heo D, Sheehan A, Paton C, Nagel KI, Schoppik D, Monk KR, Freeman MR. Astrocyte growth is driven by the Tre1/S1pr1 phospholipid-binding G protein-coupled receptor. Neuron 2024; 112:93-112.e10. [PMID: 38096817 PMCID: PMC11073822 DOI: 10.1016/j.neuron.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes play crucial roles in regulating neural circuit function by forming a dense network of synapse-associated membrane specializations, but signaling pathways regulating astrocyte morphogenesis remain poorly defined. Here, we show the Drosophila lipid-binding G protein-coupled receptor (GPCR) Tre1 is required for astrocytes to establish their intricate morphology in vivo. The lipid phosphate phosphatases Wunen/Wunen2 also regulate astrocyte morphology and, via Tre1, mediate astrocyte-astrocyte competition for growth-promoting lipids. Loss of s1pr1, the functional analog of Tre1 in zebrafish, disrupts astrocyte process elaboration, and live imaging and pharmacology demonstrate that S1pr1 balances proper astrocyte process extension/retraction dynamics during growth. Loss of Tre1 in flies or S1pr1 in zebrafish results in defects in simple assays of motor behavior. Tre1 and S1pr1 are thus potent evolutionarily conserved regulators of the elaboration of astrocyte morphological complexity and, ultimately, astrocyte control of behavior.
Collapse
Affiliation(s)
- Jiakun Chen
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Tobias Stork
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yunsik Kang
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Katherine A M Nardone
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Franziska Auer
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryan J Farrell
- Neuroscience Institute, NYU Medical Center, New York, NY 10016, USA
| | - Taylor R Jay
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dongeun Heo
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cameron Paton
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - David Schoppik
- Departments of Otolaryngology and Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly R Monk
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Marc R Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
13
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Fair T, Pavlovic BJ, Schaefer NK, Pollen AA. Mapping cis- and trans-regulatory target genes of human-specific deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573461. [PMID: 38234800 PMCID: PMC10793408 DOI: 10.1101/2023.12.27.573461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Deletion of functional sequence is predicted to represent a fundamental mechanism of molecular evolution1,2. Comparative genetic studies of primates2,3 have identified thousands of human-specific deletions (hDels), and the cis-regulatory potential of short (≤31 base pairs) hDels has been assessed using reporter assays4. However, how structural variant-sized (≥50 base pairs) hDels influence molecular and cellular processes in their native genomic contexts remains unexplored. Here, we design genome-scale libraries of single-guide RNAs targeting 7.2 megabases of sequence in 6,358 hDels and present a systematic CRISPR interference (CRISPRi) screening approach to identify hDels that modify cellular proliferation in chimpanzee pluripotent stem cells. By intersecting hDels with chromatin state features and performing single-cell CRISPRi (Perturb-seq) to identify their cis- and trans-regulatory target genes, we discovered 19 hDels controlling gene expression. We highlight two hDels, hDel_2247 and hDel_585, with tissue-specific activity in the liver and brain, respectively. Our findings reveal a molecular and cellular role for sequences lost in the human lineage and establish a framework for functionally interrogating human-specific genetic variants.
Collapse
Affiliation(s)
- Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan K Schaefer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Wang Y, Miao Z, Qin X, Yang Y, Wu S, Miao Q, Li B, Zhang M, Wu P, Han Y, Li B. Transcriptomic landscape based on annotated clinical features reveals PLPP2 involvement in lipid raft-mediated proliferation signature of early-stage lung adenocarcinoma. J Exp Clin Cancer Res 2023; 42:315. [PMID: 37996944 PMCID: PMC10666437 DOI: 10.1186/s13046-023-02877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Image-based screening improves the detection of early-stage lung adenocarcinoma (LUAD)but also highlights the issue of high false-positive diagnoses, which puts patients at a risk of unnecessary over-treatment. Therefore, more precise discrimination criteria are required to ensure that patients with early-stage LUAD receive appropriate treatments. METHODS We integrated 158 early-stage LUAD cases from 2 independent cohorts, including 30 matched resected specimens with complete radiological and pathological information, and 128 retrospective pathological pair-samples with partial follow-up data. This integration allowed us to conduct a correlation analysis between clinical phenotype and transcriptome landscape. Immunohistochemistry was performed using tissue microarrays to examine the expression of phospholipid phosphatase 2 (PLPP2) and lipid-raft markers. Lipidomics analysis was used to determine the changes of lipid components in PLPP2-overexpressed cells. To assess the effects of PLPP2 on the malignant phenotypes of LUAD cells, we conducted mice tumor-bearing experiments and in vitro cellular experiments by knocking down PLPP2 and inhibiting lipid raft synthesis with MβCD, respectively. RESULTS Bioinformatics analysis indicated that the co-occurrence of lipid raft formation and rapid cell proliferation might exhibit synergistic effects in driving oncogenesis from lung preneoplasia to adenocarcinoma. The enhanced activation of the cell cycle promoted the transition from non-invasive to invasive status in early-stage LUAD, which was related to an increase in lipid rafts within LUAD cells. PLPP2 participated in lipid raft formation by altering the component contents of lipid rafts, such as esters, sphingomyelin, and sphingosine. Furthermore, elevated PLPP2 levels were identified as an independent prognostic risk factor for LUAD patients. Further results from in vivo and in vitro experiments confirmed that PLPP2 could induce excessive cell proliferation by enhancing lipid raft formation in LUAD cells. CONCLUSIONS Our study has revealed the characteristics of gene expression profiles in early-stage LUAD patients with the different radiological and pathological subtypes, as well as deciphered transcriptomic evolution trajectory from preneoplasia to invasive LUAD. Furthermore, it suggests that PLPP2-mediated lipid raft synthesis may be a significant biological event in the initiation of early-stage LUAD, offering a potential target for more precise diagnosis and therapy in clinical settings.
Collapse
Affiliation(s)
- Yibei Wang
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, P. R. China
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P. R. China
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Ziwei Miao
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Xiaoxue Qin
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Yi Yang
- Department of Laboratory Animals, China Medical University, Shenyang, China
| | - Si Wu
- Department of Biobank, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Miao
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Beibei Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingyu Zhang
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, P. R. China
| | - Pengfei Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China.
| | - Yun Han
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, P. R. China.
| | - Bo Li
- Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, P. R. China.
| |
Collapse
|
16
|
Koike S, Keino-Masu K, Tanimoto Y, Takahashi S, Masu M. The autotaxin-LPA axis promotes membrane trafficking and secretion in yolk sac visceral endoderm cells. Biol Open 2023; 12:bio060081. [PMID: 37795611 PMCID: PMC10629499 DOI: 10.1242/bio.060081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Autotaxin, encoded by the Enpp2 gene, is an exoenzyme that produces lysophosphatidic acid, thereby regulating many biologic functions. We previously reported that Enpp2 mRNA was abundantly expressed in yolk sac visceral endoderm (VE) cells and that Enpp2-/- mice were lethal at embryonic day 9.5 owing to angiogenic defects in the yolk sac. Enpp2-/- mice showed lysosome fragmentation in VE cells and embryonic abnormalities including allantois malformation, neural tube defects, no axial turning, and head cavity formation. However, whether the defects in endocytic vesicle formation affect membrane trafficking in VE cells remained to be directly examined. In this study, we found that pinocytosis, transcytosis, and secretion of angiogenic factors such as vascular endothelial growth factor and transforming growth factor β1 were impaired in Enpp2-/- VE cells. Moreover, pharmacologic inhibition of membrane trafficking phenocopied the defects of Enpp2-/- mice. These findings demonstrate that Enpp2 promotes endocytosis and secretion of angiogenic factors in VE cells, thereby regulating angiogenesis/vasculogenesis and embryonic development.
Collapse
Affiliation(s)
- Seiichi Koike
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Neurobiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Laboratory of Organelle Synthetic Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama 930-855, Japan
| | - Kazuko Keino-Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Neurobiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center and Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masayuki Masu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Neurobiology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
17
|
Benesch MGK, Wu R, Tang X, Brindley DN, Ishikawa T, Takabe K. Autotaxin production in the human breast cancer tumor microenvironment mitigates tumor progression in early breast cancers. Am J Cancer Res 2023; 13:2790-2813. [PMID: 37559999 PMCID: PMC10408472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 08/11/2023] Open
Abstract
Autotaxin (ATX) is a secreted enzyme that produces extracellular lysophosphatidate in physiological wound healing. ATX is overexpressed in many cancers to promote growth, metastasis, and treatment resistance. However, ATX expression is very low in breast cancer cells, and is instead secreted by the tumor microenvironment (TME). Paracrine ATX expression, and its effects on tumor progression, has not been robustly studied in human breast tumors. In this study, ATX expression was analyzed in over 5000 non-metastatic breast cancers from databases TCGA, METABRIC and GSE96058, dichotomized by the median. Gene set enrichment analysis (GSEA) and the xCell algorithm investigated biological functions of ATX and correlation to TME cell populations. TME ATX production was verified by single cell RNA sequencing. The highest ATX expression occurred in endothelial cells and cancer-associated fibroblasts (P<0.0001). High tumor ATX expression correlated to increased adipocyte, fibroblast, and endothelial cell fractions (P<0.01), and GSEA demonstrated enriched immune system, tumor suppressor, pro-survival, stemness, and pro-inflammatory signaling in multiple gene sets. Tumor mutational burden was decreased, Ki67 scores were decreased, tumor infiltrating immune cell populations increased, and immune cytolytic activity scores increased (all P<0.01) for ATX-high tumors. Overall survival trends favored ATX-high tumors (hazard ratios 0.75-0.80). In summary, in human breast cancers, ATX is produced by the TME, and in non-metastatic tumors, high levels correlate with an anti-tumor phenotype. Because pre-clinical models use aggressive pro-metastatic cell lines where ATX-mediated signaling promotes tumorigenesis, further research is required to verify an anti-to-pro-tumor phenotype switch with breast cancer progression and/or treatment resistance.
Collapse
Affiliation(s)
- Matthew GK Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of AlbertaEdmonton, Alberta T6G 2H7, Canada
| | - David N Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of AlbertaEdmonton, Alberta T6G 2H7, Canada
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer CenterBuffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical UniversityTokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of MedicineYokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental SciencesNiigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of MedicineFukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New YorkBuffalo, New York 14263, USA
| |
Collapse
|
18
|
Mukherjee A, Schuppe M, Renault AD. The Lipid Phosphate Phosphatase Wunen Promotes Eggshell Formation and Is Essential for Fertility in Drosophila. BIOLOGY 2023; 12:1003. [PMID: 37508432 PMCID: PMC10376809 DOI: 10.3390/biology12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The eggshell that surrounds insect eggs acts as a barrier, protecting against biotic factors and desiccation. The eggshell is a multi-layered structure which is synthesised by the somatic follicle cells that surround the developing oocyte. Although the temporal order of expression of the protein eggshell components goes someway to explaining how the different layers are built up, but how the precise three-dimensional structure is achieved and how lipid components responsible for desiccation resistance are incorporated are poorly understood. In this paper, we demonstrate that wunen, which encodes a lipid phosphate phosphatase, is necessary for fertility in Drosophila females. Compared to sibling controls, females null for wunen lay fewer eggs which subsequently collapse such that no larvae emerge. We show that this is due to a requirement for wunen in the ovarian follicle cells which is needed to produce an ordered and functional eggshell. Knockdown of a septate junction component also results in collapsed eggs, supporting the idea that similar to its role in embryonic tracheal development, Wunen in follicle cells also promotes septate junction function.
Collapse
Affiliation(s)
- Amrita Mukherjee
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Michaela Schuppe
- Institute for Organic Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andrew D Renault
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham NG7 2UH, UK
| |
Collapse
|
19
|
Kimura T, Kimura AK, Epand RM. Systematic crosstalk in plasmalogen and diacyl lipid biosynthesis for their differential yet concerted molecular functions in the cell. Prog Lipid Res 2023; 91:101234. [PMID: 37169310 DOI: 10.1016/j.plipres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Plasmalogen is a major phospholipid of mammalian cell membranes. Recently it is becoming evident that the sn-1 vinyl-ether linkage in plasmalogen, contrasting to the ester linkage in the counterpart diacyl glycerophospholipid, yields differential molecular characteristics for these lipids especially related to hydrocarbon-chain order, so as to concertedly regulate biological membrane processes. A role played by NMR in gaining information in this respect, ranging from molecular to tissue levels, draws particular attention. We note here that a broad range of enzymes in de novo synthesis pathway of plasmalogen commonly constitute that of diacyl glycerophospholipid. This fact forms the basis for systematic crosstalk that not only controls a quantitative balance between these lipids, but also senses a defect causing loss of lipid in either pathway for compensation by increase of the counterpart lipid. However, this inherent counterbalancing mechanism paradoxically amplifies imbalance in differential effects of these lipids in a diseased state on membrane processes. While sharing of enzymes has been recognized, it is now possible to overview the crosstalk with growing information for specific enzymes involved. The overview provides a fundamental clue to consider cell and tissue type-dependent schemes in regulating membrane processes by plasmalogen and diacyl glycerophospholipid in health and disease.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Chemistry & Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
20
|
Hu R, Zhang L, Qin L, Ding H, Li R, Gu W, Chen R, Zhang Y, Rajagoplan S, Zhang K, Sun Q, Liu C. Airborne PM 2.5 pollution: A double-edged sword modulating hepatic lipid metabolism in middle-aged male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121347. [PMID: 36858098 DOI: 10.1016/j.envpol.2023.121347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Emerging evidence suggests that exposure to airborne fine particulate matter (PM2.5) is closely related to disturbances in hepatic lipid metabolism. However, no systematic study assessed the age vulnerability in effects of PM2.5 exposure on metabolism, and the potential mechanisms remain unknown. This study aimed to investigate the metabolic susceptibility of different life stages to PM2.5 exposure, and to evaluate the underlying molecular mechanisms. Male C57BL/6 mice at three life phases (young, adult, and middle-aged) were exposed simultaneously to concentrated ambient PM2.5 or filtered air (FA) for 8 weeks using a whole-body inhalational exposure system. The average daily PM2.5 concentrations to which mice were actually exposed were 90.71 ± 7.99 μg/m3. The body weight, total food utilization, body composition, glucose metabolic homeostasis of the mice were evaluated. At euthanasia, serum and liver samples were collected to measure lipid profiles and hepatic function. H&E and Oil Red O staining were used to assess the liver cellular structure and hepatic lipid deposition. Transcriptomics and lipidomics were performed to determine the differentially expressed genes and lipid metabolites in the liver. Quantitative RT-PCR and immunoblots were performed to verify the transcriptomics and explore the mechanism for metabolic susceptibility. PM2.5 exposure led to reductions in body weight gain, total food utilization, and fat mass in middle-aged mice but not in young or adults. Exposure to PM2.5 reduced hepatic lipid deposition by enhancing lipolysis and inhibiting the glycerol-3-phosphate (G3P) pathway of hepatic lipogenesis. Furthermore, PM2.5 exposure attenuated hepatic fatty acid metabolism and primary bile acid biosynthesis. Finally, PM2.5 exposure dysregulated hepatic phospholipid metabolism, as evidenced by increased glycerophospholipid synthesis and disturbed sphingolipid metabolism. Therefore, middle-aged male mice were more vulnerable to PM2.5 exposure with double-edged effects, improved metabolism and hepatic TG accumulation but inhibited hepatic fatty acid and bile acid metabolism and dysregulated phospholipid metabolism.
Collapse
Affiliation(s)
- Renjie Hu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Lu Zhang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Hao Ding
- Eco-Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Sanjay Rajagoplan
- Harrington Heart and Vascular Institute, University Hospital Cleveland Medical Center, Cleveland, OH, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Benesch MGK, Wu R, Tang X, Brindley DN, Ishikawa T, Takabe K. Decreased Lipid Phosphate Phosphatase 1/3 and Increased Lipid Phosphate Phosphatase 2 Expression in the Human Breast Cancer Tumor Microenvironment Promotes Tumor Progression and Immune System Evasion. Cancers (Basel) 2023; 15:2299. [PMID: 37190226 PMCID: PMC10136837 DOI: 10.3390/cancers15082299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The LPP family is comprised of three enzymes that dephosphorylate bioactive lipid phosphates both intracellularly and extracellularly. Pre-clinical breast cancer models have demonstrated that decreased LPP1/3 with increased LPP2 expression correlates to tumorigenesis. This though has not been well verified in human specimens. In this study, we correlate LPP expression data to clinical outcomes in over 5000 breast cancers from three independent cohorts (TCGA, METABRIC, and GSE96058), investigate biological function using gene set enrichment analysis (GSEA) and the xCell cell-type enrichment analysis, and confirm sources of LPP production in the tumor microenvironment (TME) using single-cell RNA-sequencing (scRNAseq) data. Decreased LPP1/3 and increased LPP2 expression correlated to increased tumor grade, proliferation, and tumor mutational burden (all p < 0.001), as well as worse overall survival (hazard ratios 1.3-1.5). Further, cytolytic activity was decreased, consistent with immune system invasion. GSEA data demonstrated multiple increased inflammatory signaling, survival, stemness, and cell signaling pathways with this phenotype across all three cohorts. scRNAseq and the xCell algorithm demonstrated that most tumor LPP1/3 was expressed by endothelial cells and tumor-associated fibroblasts and LPP2 by cancer cells (all p < 0.01). Restoring the balance in LPP expression levels, particularly through LPP2 inhibition, could represent novel adjuvant therapeutic options in breast cancer treatment.
Collapse
Affiliation(s)
- Matthew G. K. Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Rongrong Wu
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (R.W.); (T.I.)
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.T.); (D.N.B.)
| | - David N. Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.T.); (D.N.B.)
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (R.W.); (T.I.)
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan; (R.W.); (T.I.)
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14263, USA
| |
Collapse
|
22
|
Yaginuma S, Omi J, Kano K, Aoki J. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers. Pharmacol Ther 2023; 246:108415. [PMID: 37061204 DOI: 10.1016/j.pharmthera.2023.108415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Accumulating evidence suggests that lysophospholipids (LPL) serve as lipid mediators that exert their diverse pathophysiological functions via G protein-coupled receptors. These include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), lysophosphatidylserine (LysoPS) and lysophosphatidylinositol (LPI). Unlike S1P, which is produced intracellularly and secreted from various cell types, some LPLs, such as LPA, LysoPS and LPI, are produced in lesions, especially under pathological conditions, where they positively or negatively regulate disease progression through their autacoid-like actions. Although these LPLs are minor components of the cell membrane, recent developments in mass spectrometry techniques have made it possible to detect and quantify them in a variety of biological fluids, including plasma, serum, urine and cerebrospinal fluid. The synthetic enzymes of LPA and LysoPS are also present in these biological fluids, which also can be detected by antibody-based methods. Importantly, their levels have been found to dramatically increase during various pathological conditions. Thus, LPLs and their synthetic enzymes in these biological fluids are potential biomarkers. This review discusses the potential of these LPLs and LPL-related molecules as pathological biomarkers, including methods and problems in their measurement.
Collapse
Affiliation(s)
- Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
23
|
Vít O, Petrák J. Autotaxin and Lysophosphatidic Acid Signalling: the Pleiotropic Regulatory Network in Cancer. Folia Biol (Praha) 2023; 69:149-162. [PMID: 38583176 DOI: 10.14712/fb2023069050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Autotaxin, also known as ecto-nucleotide pyrophosphatase/phosphodiesterase family member 2, is a secreted glycoprotein that plays multiple roles in human physiology and cancer pathology. This protein, by converting lysophosphatidylcholine into lysophosphatidic acid, initiates a complex signalling cascade with significant biological implications. The article outlines the autotaxin gene and protein structure, expression regulation and physiological functions, but focuses mainly on the role of autotaxin in cancer development and progression. Autotaxin and lysophosphatidic acid signalling influence several aspects of cancer, including cell proliferation, migration, metastasis, therapy resistance, and interactions with the immune system. The potential of autotaxin as a diagnostic biomarker and promising drug target is also examined.
Collapse
Affiliation(s)
- Ondřej Vít
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| | - Jiří Petrák
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
24
|
Contreras O, Harvey RP. Single-cell transcriptome dynamics of the autotaxin-lysophosphatidic acid axis during muscle regeneration reveal proliferative effects in mesenchymal fibro-adipogenic progenitors. Front Cell Dev Biol 2023; 11:1017660. [PMID: 36910157 PMCID: PMC9996314 DOI: 10.3389/fcell.2023.1017660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Lysophosphatidic acid is a growth factor-like bioactive phospholipid recognising LPA receptors and mediating signalling pathways that regulate embryonic development, wound healing, carcinogenesis, and fibrosis, via effects on cell migration, proliferation and differentiation. Extracellular LPA is generated from lysophospholipids by the secreted hydrolase-ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2; also, AUTOTAXIN/ATX) and metabolised by different membrane-bound phospholipid phosphatases (PLPPs). Here, we use public bulk and single-cell RNA sequencing datasets to explore the expression of Lpar 1-6, Enpp2, and Plpp genes under skeletal muscle homeostasis and regeneration conditions. We show that the skeletal muscle system dynamically expresses the Enpp2-Lpar-Plpp gene axis, with Lpar1 being the highest expressed member among LPARs. Lpar1 was expressed by mesenchymal fibro-adipogenic progenitors and tenocytes, whereas FAPs mainly expressed Enpp2. Clustering of FAPs identified populations representing distinct cell states with robust Lpar1 and Enpp2 transcriptome signatures in homeostatic cells expressing higher levels of markers Dpp4 and Hsd11b1. However, tissue injury induced transient repression of Lpar genes and Enpp2. The role of LPA in modulating the fate and differentiation of tissue-resident FAPs has not yet been explored. Ex vivo, LPAR1/3 and ENPP2 inhibition significantly decreased the cell-cycle activity of FAPs and impaired fibro-adipogenic differentiation, implicating LPA signalling in the modulation of the proliferative and differentiative fate of FAPs. Together, our results demonstrate the importance of the ENPP2-LPAR-PLPP axis in different muscle cell types and FAP lineage populations in homeostasis and injury, paving the way for further research on the role of this signalling pathway in skeletal muscle homeostasis and regeneration, and that of other organs and tissues, in vivo.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| | - Richard P Harvey
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, UNSW Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Science, University of New South Wales, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Li C, Tao Y, Chen Y, Wu Y, He Y, Yin S, Xu S, Yu Y. Development of a metabolism-related signature for predicting prognosis, immune infiltration and immunotherapy response in breast cancer. Am J Cancer Res 2022; 12:5440-5461. [PMID: 36628282 PMCID: PMC9827085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
Breast cancer (BRCA) is the most commonly diagnosed cancer and among the top causes of cancer deaths globally. The abnormality of the metabolic process is an important characteristic that distinguishes cancer cells from normal cells. Currently, there are few metabolic molecular models to evaluate the prognosis and treatment response of BRCA patients. By analyzing RNA-seq data of BRCA samples from public databases via bioinformatic approaches, we developed a prognostic signature based on seven metabolic genes (PLA2G2D, GNPNAT1, QPRT, SHMT2, PAICS, NT5E and PLPP2). Low-risk patients showed better overall survival in all five cohorts (TCGA cohort, two external validation cohorts and two internal validation cohorts). There was a higher proportion of tumor-infiltrating CD8+ T cells, CD4+ memory resting T cells, gamma delta T cells and resting dendritic cells and a lower proportion of M0 and M2 macrophages in the low-risk group. Low-risk patients also showed higher ESTIMATE scores, higher immune function scores, higher Immunophenoscores (IPS) and checkpoint expression, lower stemness scores, lower TIDE (Tumor Immune Dysfunction and Exclusion) scores and IC50 values for several chemotherapeutic agents, suggesting that low-risk patients could respond more favorably to immunotherapy and chemotherapy. Two real-world patient cohorts receiving anti-PD-1 therapy were applied for validating the predictive results. Molecular subtypes identified based on these seven genes also showed different immune characteristics. Immunohistochemical data obtained from the human protein atlas database demonstrated the protein expression of signature genes. This research may contribute to the identification of metabolic targets for BRCA and the optimization of risk stratification and personalized treatment for BRCA patients.
Collapse
Affiliation(s)
- Chunzhen Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yijie Tao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yining Chen
- Faculty of Health Sciences and Engineering, University of Shanghai for Science and TechnologyShanghai 200433, China
| | - Yunyang Wu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yixian He
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Shulei Yin
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| | - Yizhi Yu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical UniversityShanghai 200433, China
| |
Collapse
|
26
|
Wang Z, Qi H, Zhang Y, Sun H, Dong J, Wang H. PLPP2: Potential therapeutic target of breast cancer in PLPP family. Immunobiology 2022; 227:152298. [DOI: 10.1016/j.imbio.2022.152298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
|
27
|
Yuan M, Hu X, Yao L, Liu P, Jiang Y, Li L. Comprehensive bioinformatics and machine learning analysis identify VCAN as a novel biomarker of hepatitis B virus-related liver fibrosis. Front Mol Biosci 2022; 9:1010160. [PMID: 36275632 PMCID: PMC9585216 DOI: 10.3389/fmolb.2022.1010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains the leading cause of liver fibrosis (LF) worldwide, especially in China. Identification of decisive diagnostic biomarkers for HBV-associated liver fibrosis (HBV-LF) is required to prevent chronic hepatitis B (CHB) from progressing to liver cancer and to more effectively select the best treatment strategy. We obtained 43 samples from CHB patients without LF and 81 samples from CHB patients with LF (GSE84044 dataset). Among these, 173 differentially expressed genes (DEGs) were identified. Functional analysis revealed that these DEGs predominantly participated in immune-, extracellular matrix-, and metabolism-related processes. Subsequently, we integrated four algorithms (LASSO regression, SVM-RFE, RF, and WGCNA) to determine diagnostic biomarkers for HBV-LF. These analyses and receive operating characteristic curves identified the genes for phosphatidic acid phosphatase type 2C (PPAP2C) and versican (VCAN) as potentially valuable diagnostic biomarkers for HBV-LF. Single-sample gene set enrichment analysis (ssGSEA) further confirmed the immune landscape of HBV-LF. The two diagnostic biomarkers also significantly correlated with infiltrating immune cells. The potential regulatory mechanisms of VCAN underlying the occurrence and development of HBV-LF were also analyzed. These collective findings implicate VCAN as a novel diagnostic biomarker for HBV-LF, and infiltration of immune cells may critically contribute to the occurrence and development of HBV-LF.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Lanjuan Li, ; Yingan Jiang,
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Lanjuan Li, ; Yingan Jiang,
| |
Collapse
|
28
|
Targeting Phospholipase D Pharmacologically Prevents Phagocytic Function Loss of Retinal Pigment Epithelium Cells Exposed to High Glucose Levels. Int J Mol Sci 2022; 23:ijms231911823. [PMID: 36233124 PMCID: PMC9570224 DOI: 10.3390/ijms231911823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
We previously described the participation of canonical phospholipase D isoforms (PLD1 and PLD2) in the inflammatory response of retinal pigment epithelium (RPE) cells exposed to high glucose concentrations (HG). Here, we studied the role of the PLD pathway in RPE phagocytic function. For this purpose, ARPE-19 cells were exposed to HG (33 mM) or to normal glucose concentration (NG, 5.5 mM) and phagocytosis was measured using pHrodo™ green bioparticles® or photoreceptor outer segments (POS). HG exposure for 48 and 72 h reduced phagocytic function of ARPE-19 cells, and this loss of function was prevented when cells were treated with 5 μM of PLD1 (VU0359595 or PLD1i) or PLD2 (VU0285655-1 or PLD2i) selective inhibitors. Furthermore, PLD1i and PLD2i did not affect RPE phagocytosis under physiological conditions and prevented oxidative stress induced by HG. In addition, we demonstrated PLD1 and PLD2 expression in ABC cells, a novel human RPE cell line. Under physiological conditions, PLD1i and PLD2i did not affect ABC cell viability, and partial silencing of both PLDs did not affect ABC cell POS phagocytosis. In conclusion, PLD1i and PLD2i prevent the loss of phagocytic function of RPE cells exposed to HG without affecting RPE function or viability under non-inflammatory conditions.
Collapse
|
29
|
Okundaye B, Biyani N, Moitra S, Zhang K. The Golgi-localized sphingosine-1-phosphate phosphatase is indispensable for Leishmania major. Sci Rep 2022; 12:16064. [PMID: 36163400 PMCID: PMC9513092 DOI: 10.1038/s41598-022-20249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Sphingosine-1-phosphate phosphatase (SPP) catalyzes the dephosphorylation of sphingosine-1-phosphate (S1P) into sphingosine, the reverse reaction of sphingosine kinase. In mammals, S1P acts as a potent bioactive molecule regulating cell proliferation, migration, and immunity. In Leishmania, S1P production is crucial for the synthesis of ethanolamine and choline phospholipids, and cell survival under stress conditions. To better understand the roles of S1P, we characterized a SPP ortholog in Leishmania major which displays activity towards S1P but not structurally related lipids such as ceramide-1-phosphate or lysophosphatidic acid. While this enzyme is found in the endoplasmic reticulum in mammalian cells, L. major SPP is localized at the Golgi apparatus. Importantly, chromosomal SPP alleles cannot be deleted from L. major even with the addition of a complementing episome, suggesting that endogenously expressed SPP is essential. Finally, SPP overexpression in L. major leads to a slower growth rate and heightened sensitivity to brefeldin A and sodium orthovanadate. Together, these results suggest that the equilibrium between S1P and sphingosine is vital for the function of Golgi apparatus in Leishmania.
Collapse
Affiliation(s)
- Brian Okundaye
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neha Biyani
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- Lantern Pharma Inc., 1920 McKinney Ave., Dallas, TX, 75201, USA
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
30
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
31
|
Takagi Y, Nishikado S, Omi J, Aoki J. The Many Roles of Lysophospholipid Mediators and Japanese Contributions to This Field. Biol Pharm Bull 2022; 45:1008-1021. [DOI: 10.1248/bpb.b22-00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yugo Takagi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Shun Nishikado
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
32
|
Endle H, Horta G, Stutz B, Muthuraman M, Tegeder I, Schreiber Y, Snodgrass IF, Gurke R, Liu ZW, Sestan-Pesa M, Radyushkin K, Streu N, Fan W, Baumgart J, Li Y, Kloss F, Groppa S, Opel N, Dannlowski U, Grabe HJ, Zipp F, Rácz B, Horvath TL, Nitsch R, Vogt J. AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids. Nat Metab 2022; 4:683-692. [PMID: 35760867 PMCID: PMC9940119 DOI: 10.1038/s42255-022-00589-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/17/2022] [Indexed: 01/13/2023]
Abstract
Phospholipid levels are influenced by peripheral metabolism. Within the central nervous system, synaptic phospholipids regulate glutamatergic transmission and cortical excitability. Whether changes in peripheral metabolism affect brain lipid levels and cortical excitability remains unknown. Here, we show that levels of lysophosphatidic acid (LPA) species in the blood and cerebrospinal fluid are elevated after overnight fasting and lead to higher cortical excitability. LPA-related cortical excitability increases fasting-induced hyperphagia, and is decreased following inhibition of LPA synthesis. Mice expressing a human mutation (Prg-1R346T) leading to higher synaptic lipid-mediated cortical excitability display increased fasting-induced hyperphagia. Accordingly, human subjects with this mutation have higher body mass index and prevalence of type 2 diabetes. We further show that the effects of LPA following fasting are under the control of hypothalamic agouti-related peptide (AgRP) neurons. Depletion of AgRP-expressing cells in adult mice decreases fasting-induced elevation of circulating LPAs, as well as cortical excitability, while blunting hyperphagia. These findings reveal a direct influence of circulating LPAs under the control of hypothalamic AgRP neurons on cortical excitability, unmasking an alternative non-neuronal route by which the hypothalamus can exert a robust impact on the cortex and thereby affect food intake.
Collapse
Affiliation(s)
- Heiko Endle
- Department of Molecular and Translational Neuroscience of Anatomy II, University of Cologne, Cologne, Germany
- Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Guilherme Horta
- Focus Program Translational Neuroscience, Johannes Gutenberg-University, Mainz, Germany
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University, Mainz, Germany
| | - Bernardo Stutz
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Muthuraman Muthuraman
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main, Germany
| | - Isabel Faria Snodgrass
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main, Germany
| | - Zhong-Wu Liu
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matija Sestan-Pesa
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Konstantin Radyushkin
- Focus Program Translational Neuroscience, Johannes Gutenberg-University, Mainz, Germany
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nora Streu
- Focus Program Translational Neuroscience, Johannes Gutenberg-University, Mainz, Germany
| | - Wei Fan
- Focus Program Translational Neuroscience, Johannes Gutenberg-University, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Yan Li
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Florian Kloss
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nils Opel
- Institute of Translational Psychiatry, Westfälische Wilhelms University, Münster, Germany
| | - Udo Dannlowski
- Institute of Translational Psychiatry, Westfälische Wilhelms University, Münster, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Tamas L Horvath
- Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary.
| | - Robert Nitsch
- Institute for Translational Neuroscience, Westfälische Wilhelms University, Münster, Germany.
| | - Johannes Vogt
- Department of Molecular and Translational Neuroscience of Anatomy II, University of Cologne, Cologne, Germany.
- Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany.
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
33
|
Hu Y, Dai K. Sphingosine 1-Phosphate Metabolism and Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:67-76. [PMID: 35503175 DOI: 10.1007/978-981-19-0394-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a well-defined bioactive lipid molecule derived from membrane sphingolipid metabolism. In the past decades, a series of key enzymes involved in generation of S1P have been identified and characterized in detail, as well as enzymes degrading S1P. S1P requires transporter to cross the plasma membrane and carrier to deliver to its cognate receptors and therefore transduces signaling in autocrine, paracrine, or endocrine fashions. The essential roles in regulation of development, metabolism, inflammation, and many other aspects of life are mainly executed when S1P binds to receptors provoking the downstream signaling cascades in distinct cells. This chapter will review the synthesis, degradation, transportation, and signaling of S1P and try to provide a comprehensive view of the biology of S1P, evoking new enthusiasms and ideas into the field of the fascinating S1P.
Collapse
Affiliation(s)
- Yan Hu
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Kezhi Dai
- Department of Psychiatry, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
34
|
Kawanabe-Matsuda H, Takeda K, Nakamura M, Makino S, Karasaki T, Kakimi K, Nishimukai M, Ohno T, Omi J, Kano K, Uwamizu A, Yagita H, Boneca IG, Eberl G, Aoki J, Smyth MJ, Okumura K. Dietary Lactobacillus-Derived Exopolysaccharide Enhances Immune-Checkpoint Blockade Therapy. Cancer Discov 2022; 12:1336-1355. [PMID: 35180303 PMCID: PMC9662940 DOI: 10.1158/2159-8290.cd-21-0929] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/20/2021] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
Abstract
Microbes and their byproducts have been reported to regulate host health and immune functions. Here we demonstrated that microbial exopolysaccharide produced by Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1 (EPS-R1) induced CCR6+ CD8+ T cells of mice and humans. In mice, ingestion of EPS-R1 augmented antitumor effects of anti-CTLA-4 or anti-PD-1 monoclonal antibody against CCL20-expressing tumors, in which infiltrating CCR6+ CD8+ T cells were increased and produced IFNγ accompanied by a substantial immune response gene expression signature maintaining T-cell functions. Of note, the antitumor adjuvant effect of EPS-R1 was also observed in germ-free mice. Furthermore, the induction of CCR6 expression was mediated through the phosphorylated structure in EPS-R1 and a lysophosphatidic acid receptor on CD8+ T cells. Overall, we find that dietary EPS-R1 consumption induces CCR6+ CD8+ T cells in Peyer's patches, favoring a tumor microenvironment that augments the therapeutic effect of immune-checkpoint blockade depending on CCL20 production by tumors. SIGNIFICANCE Gut microbiota- and probiotic-derived metabolites are attractive agents to augment the efficacy of immunotherapies. Here we demonstrated that dietary consumption of Lactobacillus-derived exopolysaccharide induced CCR6+ CD8+ T cells in Peyer's patches and improved the tumor microenvironment to augment the therapeutic effects of immune-checkpoint blockade against CCL20-producing tumors. See related commentary by Di Luccia and Colonna, p. 1189. This article is highlighted in the In This Issue feature, p. 1171.
Collapse
Affiliation(s)
- Hirotaka Kawanabe-Matsuda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Research Team, Co-Creation Center, Meiji Holdings Co., Ltd., Hachioji, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Corresponding Author: Kazuyoshi Takeda, Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan. Phone: 81-3-5802-1591; E-mail:
| | - Marie Nakamura
- Research Team, Co-Creation Center, Meiji Holdings Co., Ltd., Hachioji, Japan
| | - Seiya Makino
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Research Team, Co-Creation Center, Meiji Holdings Co., Ltd., Hachioji, Japan
| | - Takahiro Karasaki
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Megumi Nishimukai
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Tatsukuni Ohno
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.,Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Akiharu Uwamizu
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Hideo Yagita
- Department of Immunology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unit of Biology and Genetics of Bacterial Cell Wall, Paris, France. INSERM, Équipe Avenir, Paris, France
| | - Gérard Eberl
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.,Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Japan
| | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
35
|
Vishwakarma S, Joshi D, Pandey R, Das S, Mukhopadhyay S, Rai R, Singhal R, Kapoor N, Kumar A. Downregulation of Lipid Phosphate Phosphatase 3 Correlates With Tumor-Infiltrating Immune Cells in Oral Cancer. Cureus 2022; 14:e23553. [PMID: 35494957 PMCID: PMC9045791 DOI: 10.7759/cureus.23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 11/27/2022] Open
Abstract
Background Sphingosine-1-phosphate (S1P) is a potent oncogenic lipid. Intracellular levels of S1P are tightly regulated by eight S1P-metabolizing enzymes. S1P synthesis is catalyzed by two sphingosine kinases, i.e., sphingosine kinase 1 (SphK1) and sphingosine kinase 2 (SphK2). Five lipid phosphatases (two S1P phosphatases and lipid phosphate phosphatases (LPPs) 1, 2, and 3) reversibly convert S1P back to sphingosine. Previously, we have determined the mRNA expression profile of eight S1P-metabolizing enzymes in tumor tissues and adjacent normal tissues from oral squamous cell carcinoma (OSCC) patients. Except for SphK1, the role of S1P-metabolizing enzymes in OSCC has been poorly studied. Methods We have determined the protein expression of four S1P-metabolizing enzymes (SphK1, SphK2, sphingosine-1-phosphate phosphatase 1 (SGPP1), and lipid phosphate phosphatase 3 (LPP3)) by immunohistochemistry (IHC) in tumor tissues of 46 OSCC patients. Six subjects with non-dysplastic oral mucosa were also included in the study. The immunoreactivity score (IRS) was calculated for each protein in every subject. Further, we determined the associations of expression of S1P-metabolizing enzymes with clinicopathological features of OSCC patients. Results We demonstrate the low IRS for SphK2 and LPP3 in OSCC tumors. Importantly, expression of SphK2 and LPP3 was downregulated in malignant epithelial cells compared to non-malignant mucosa. Further, LPP3 expression negatively correlated with tumor‑node‑metastasis (TNM) staging of patients (r = −0.307, p = 0.043). Importantly, expression of LPP3 in tumors was found to be an independent predictor of perinodal extension (b = −0.440, p = 0.009), lymphovascular invasion (b = −0.614, p < 0.001), lymph node ratio (b = 0.336, p = 0.039), and TNM staging (b = −0.364, p = 0.030). Conclusion Taken together, our data show that expression of SphK2 and LPP3 is decreased compared to normal mucosa. Thus, the S1P signaling pathway could represent a potential therapeutic target.
Collapse
|
36
|
Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Canonical phospholipase D isoforms in visual function and ocular response to stress. Exp Eye Res 2022; 217:108976. [DOI: 10.1016/j.exer.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
|
37
|
Li Y, Zhang L, Xu T, Zhao X, Jiang X, Xiao F, Sun H, Wang L. Aberrant ENPP2 expression promotes tumor progression in multiple myeloma. Leuk Lymphoma 2021; 63:963-974. [PMID: 34847837 DOI: 10.1080/10428194.2021.2010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) has been recently linked to tumor development. However, its role in modulating multiple myeloma (MM) disease progression remains unclear. Here, we demonstrated that CD138+ cells isolated from MM patients presented with higher expression of ENPP2 compared with CD138- cells. Treatment of MM cells with IL-6 resulted in ENPP2 upregulation. ENPP2 overexpression promoted proliferation, inhibited apoptosis, increased lysophosphatidic acid (LPA) generation, and upregulated osteoclastogenesis mediator expression in MM cells. In contrast, ENPP2 inhibition induced apoptosis, suppressed proliferation and survival, decreased LPA generation and downregulated osteoclastogenesis mediator expression. In an MM xenograft mouse model, ENPP2 knockdown significantly reduced MM tumor burden by inhibiting cell proliferation and inducing apoptosis. Furthermore, ENPP2 knockdown decreased the levels of LPA, osteoclastogenesis mediators in sera of mice with MM. Our findings revealed the tumor-promoting role of ENPP2 in MM, thus providing new molecular evidence for targeting the ENPP2-LPA axis in MM therapy.
Collapse
Affiliation(s)
- Yuxiang Li
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China.,Department of Neuroimmune and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Tianxin Xu
- School of Nursing, Jilin University, Changchun, P. R. China
| | - Xia Zhao
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Xiaona Jiang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China
| | - Fengjun Xiao
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Huiyan Sun
- Central Laboratory, Hebei Yanda Medical Research Institute, Sanhe, P. R. China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliate Hospital of Qingdao University, Qingdao, P. R. China.,Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
38
|
Venkatraman G, Tang X, Du G, Parisentti AM, Hemmings DG, Brindley DN. Lysophosphatidate Promotes Sphingosine 1-Phosphate Metabolism and Signaling: Implications for Breast Cancer and Doxorubicin Resistance. Cell Biochem Biophys 2021; 79:531-545. [PMID: 34415509 DOI: 10.1007/s12013-021-01024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) promote vasculogenesis, angiogenesis, and wound healing by activating a plethora of overlapping signaling pathways that stimulate mitogenesis, cell survival, and migration. As such, maladaptive signaling by LPA and S1P have major effects in increasing tumor progression and producing poor patient outcomes after chemotherapy and radiotherapy. Many signaling actions of S1P and LPA are not redundant; each are vital in normal physiology and their metabolisms differ. In the present work, we studied how LPA signaling impacts S1P metabolism and signaling in MDA-MB-231 and MCF-7 breast cancer cells. LPA increased sphingosine kinase-1 (SphK1) synthesis and rapidly activated cytosolic SphK1 through association with membranes. Blocking phospholipase D activity attenuated the LPA-induced activation of SphK1 and the synthesis of ABCC1 and ABCG2 transporters that secrete S1P from cells. This effect was magnified in doxorubicin-resistant MCF-7 cells. LPA also facilitated S1P signaling by increasing mRNA expression for S1P1 receptors. Doxorubicin-resistant MCF-7 cells had increased S1P2 and S1P3 receptor expression and show increased LPA-induced SphK1 activation, increased expression of ABCC1, ABCG2 and greater S1P secretion. Thus, LPA itself and LPA-induced S1P signaling counteract doxorubicin-induced death of MCF-7 cells. We conclude from the present and previous studies that LPA promotes S1P metabolism and signaling to coordinately increase tumor growth and metastasis and decrease the effectiveness of chemotherapy and radiotherapy for breast cancer treatment.
Collapse
Affiliation(s)
- Ganesh Venkatraman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Guangwei Du
- Department of Integrative Biology & Pharmacology, University of Texas Health Science at Houston, Houston, TX, 77030, USA
| | - Amadeo M Parisentti
- Northern Ontario School of Medicine, Health Sciences North Research Institute, Sudbury, ON, P3E 2H2, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Medical Microbiology and Immunology, Obstetrics and Gynecology, Women and Children's Health Research Institute, Li Ka Shing Institute of Virology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
39
|
Ebenezer DL, Ramchandran R, Fu P, Mangio LA, Suryadevara V, Ha AW, Berdyshev E, Van Veldhoven PP, Kron SJ, Schumacher F, Kleuser B, Natarajan V. Nuclear Sphingosine-1-phosphate Lyase Generated ∆2-hexadecenal is A Regulator of HDAC Activity and Chromatin Remodeling in Lung Epithelial Cells. Cell Biochem Biophys 2021; 79:575-592. [PMID: 34085165 PMCID: PMC9128239 DOI: 10.1007/s12013-021-01005-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid mediator, is generated from sphingosine by sphingosine kinases (SPHKs) 1 and 2 and is metabolized to ∆2-hexadecenal (∆2-HDE) and ethanolamine phosphate by S1P lyase (S1PL) in mammalian cells. We have recently demonstrated the activation of nuclear SPHK2 and the generation of S1P in the nucleus of lung epithelial cells exposed to Pseudomonas aeruginosa. Here, we have investigated the nuclear localization of S1PL and the role of ∆2-HDE generated from S1P in the nucleus as a modulator of histone deacetylase (HDAC) activity and histone acetylation. Electron micrographs of the nuclear fractions isolated from MLE-12 cells showed nuclei free of ER contamination, and S1PL activity was detected in nuclear fractions isolated from primary lung bronchial epithelial cells and alveolar epithelial MLE-12 cells. Pseudomonas aeruginosa-mediated nuclear ∆2-HDE generation, and H3/H4 histone acetylation was attenuated by S1PL inhibitors in MLE-12 cells and human bronchial epithelial cells. In vitro, the addition of exogenous ∆2-HDE (100-10,000 nM) to lung epithelial cell nuclear preparations inhibited HDAC1/2 activity, and increased acetylation of Histone H3 and H4, whereas similar concentrations of S1P did not show a significant change. In addition, incubation of ∆2-HDE with rHDAC1 generated five different amino acid adducts as detected by LC-MS/MS; the predominant adduct being ∆2-HDE with lysine residues of HDAC1. Together, these data show an important role for the nuclear S1PL-derived ∆2-HDE in the modification of HDAC activity, histone acetylation, and chromatin remodeling in lung epithelial cells.
Collapse
Affiliation(s)
- David L Ebenezer
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramaswamy Ramchandran
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Panfeng Fu
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Lizar A Mangio
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vidyani Suryadevara
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alison W Ha
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Medical Center, Denver, CO, USA
| | - Paul P Van Veldhoven
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Fabian Schumacher
- Institute of Pharmacy, Department of Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Department of Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Viswanathan Natarajan
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
40
|
Litchfield M, Wuest M, Glubrecht D, Briard E, Auberson YP, McMullen TPW, Brindley DN, Wuest F. Positron Emission Tomography Imaging of Autotaxin in Thyroid and Breast Cancer Models Using [ 18F]PRIMATX. Mol Pharm 2021; 18:3352-3364. [PMID: 34319110 DOI: 10.1021/acs.molpharmaceut.1c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autotaxin (ATX) is a secreted enzyme responsible for producing lysophosphatidic acid (LPA). The ATX/LPA signaling axis is typically activated in wound healing and tissue repair processes. The ATX/LPA axis is highjacked and upregulated in the progression and persistence of several chronic inflammatory diseases, including cancer. As ATX inhibitors are now progressing to clinical testing, innovative diagnostic tools such as positron emission tomography (PET) are needed to measure ATX expression in vivo accurately. The radiotracer, [18F]PRIMATX, was recently developed and tested for PET imaging of ATX in vivo in a murine melanoma model. The goal of the present work was to further validate [18F]PRIMATX as a PET imaging agent by analyzing its in vivo metabolic stability and suitability for PET imaging of ATX in models of human 8305C thyroid tumor and murine 4T1 breast cancer. [18F]PRIMATX displayed favorable metabolic stability in vivo (65% of intact radiotracer after 60 min p.i.) and provided sufficient tumor uptake profiles in both tumor models. Radiotracer uptake could be blocked by 8-12% in 8305C thyroid tumors in the presence of ATX inhibitor AE-32-NZ70 as determined by PET and ex vivo biodistribution analyses. [18F]PRIMATX also showed high brain uptake, which was reduced by 50% through the administration of ATX inhibitor AE-32-NZ70. [18F]PRIMATX is a suitable radiotracer for PET imaging of ATX in the brain and peripheral tumor tissues.
Collapse
Affiliation(s)
- Marcus Litchfield
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton T6G 1Z2, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Alberta, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton T6G 1Z2, Alberta, Canada
| | - Daryl Glubrecht
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton T6G 1Z2, Alberta, Canada
| | - Emmanuelle Briard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabristrasse 2, Novartis Campus, Basel CH-4056, Switzerland
| | - Yves P Auberson
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Fabristrasse 2, Novartis Campus, Basel CH-4056, Switzerland
| | - Todd P W McMullen
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton T6G 1Z2, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Alberta, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton T6G 1Z2, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Alberta, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton T6G 1Z2, Alberta, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Alberta, Canada
| |
Collapse
|
41
|
Sattar RSA, Sumi MP, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Mahajan B, Saluja SS. S1P signaling, its interactions and cross-talks with other partners and therapeutic importance in colorectal cancer. Cell Signal 2021; 86:110080. [PMID: 34245863 DOI: 10.1016/j.cellsig.2021.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-Phosphate (S1P) plays an important role in normal physiology, inflammation, initiation and progression of cancer. Deregulation of S1P signaling causes aberrant proliferation, affects survival, leads to angiogenesis and metastasis. Sphingolipid rheostat is crucial for cellular homeostasis. Discrepancy in sphingolipid metabolism is linked to cancer and drug insensitivity. Owing to these diverse functions and being a potent mediator of tumor growth, S1P signaling might be a suitable candidate for anti-tumor therapy or combination therapy. In this review, with a focus on colorectal cancer we have summarized the interacting partners of S1P signaling pathway, its therapeutic approaches along with the contribution of S1P signaling to various cancer hallmarks.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
42
|
Aiello S, Casiraghi F. Lysophosphatidic Acid: Promoter of Cancer Progression and of Tumor Microenvironment Development. A Promising Target for Anticancer Therapies? Cells 2021; 10:cells10061390. [PMID: 34200030 PMCID: PMC8229068 DOI: 10.3390/cells10061390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Increased expression of the enzyme autotaxin (ATX) and the consequently increased levels of its product, lysophosphatidic acid (LPA), have been reported in several primary tumors. The role of LPA as a direct modulator of tumor cell functions—motility, invasion and migration capabilities as well as resistance to apoptotic death—has been recognized by numerous studies over the last two decades. Notably, evidence has recently been accumulating that shows that LPA also contributes to the development of the tumor microenvironment (TME). Indeed, LPA plays a crucial role in inducing angiogenesis and lymphangiogenesis, triggering cellular glycolytic shift and stimulating intratumoral fibrosis. In addition, LPA helps tumoral cells to escape immune surveillance. Treatments that counter the TME components, in order to deprive cancer cells of their crucial support, have been emerging among the promising new anticancer therapies. This review aims to summarize the latest knowledge on how LPA influences both tumor cell functions and the TME by regulating the activity of its different elements, highlighting why and how LPA is worth considering as a molecular target for new anticancer therapies.
Collapse
|
43
|
Lehmann M. Diverse roles of phosphatidate phosphatases in insect development and metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103469. [PMID: 32931938 PMCID: PMC7952469 DOI: 10.1016/j.ibmb.2020.103469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The conversion of the glycerophospholipid phosphatidic acid (PA) into diacylglycerol (DAG) is essential for the biosynthesis of membrane phospholipids and storage fats. Importantly, both PA and DAG can also serve signaling functions in the cell. The dephosphorylation of PA that yields DAG can be executed by two different classes of enzymes, Mg2+-dependent lipins and Mg2+-independent lipid phosphate phosphatases. Here, I will discuss the current status of research directed at understanding the roles of these enzymes in insect development and metabolism. Special emphasis will be given to studies in the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Michael Lehmann
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
44
|
Rhee JE, Choi JH, Park JH, Lee G, Pak B, Kwon SH, Jeon SH. CG11426 gene product negatively regulates glial population size in the Drosophila eye imaginal disc. Dev Neurobiol 2021; 81:805-816. [PMID: 34047015 DOI: 10.1002/dneu.22838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/16/2021] [Indexed: 11/09/2022]
Abstract
Glial cells play essential roles in the nervous system. Although glial populations are tightly regulated, the mechanisms regulating the population size remain poorly understood. Since Drosophila glial cells are similar to the human counterparts in their functions and shapes, rendering them an excellent model system to understand the human glia biology. Lipid phosphate phosphatases (LPPs) are important for regulating bioactive lipids. In Drosophila, there are three known LPP-encoding genes: wunen, wunen-2, and lazaro. The wunens are important for germ cell migration and survival and septate junction formation during tracheal development. Lazaro is involved in phototransduction. In the present study, we characterized a novel Drosophila LPP-encoding gene, CG11426. Suppression of CG11426 increased glial cell number in the eye imaginal disc during larval development, while ectopic CG11426 expression decreased it. Both types of mutation also caused defects in axon projection to the optic lobe in larval eye-brain complexes. Moreover, CG11426 promoted apoptosis via inhibiting ERK signaling in the eye imaginal disc. Taken together, these findings demonstrated that CG11426 gene product negatively regulates ERK signaling to promote apoptosis for proper maintenance of the glial population in the developing eye disc.
Collapse
Affiliation(s)
- Jong-Eun Rhee
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
| | - Jin-Hyeon Choi
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
| | - Jae H Park
- Department of Biochemistry & Cellular and Molecular Biology, and Neuronet Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Gyunghee Lee
- Department of Biochemistry & Cellular and Molecular Biology, and Neuronet Research Center, University of Tennessee, Knoxville, Tennessee, USA
| | - Banya Pak
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hae Kwon
- Korea Basic Science Institute, Seoul Center, Seoul, Korea
| | - Sang-Hak Jeon
- Department of Biology Education, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
45
|
O'Regan A, O'Brien CJ, Eivers SB. The lysophosphatidic acid axis in fibrosis: Implications for glaucoma. Wound Repair Regen 2021; 29:613-626. [PMID: 34009724 DOI: 10.1111/wrr.12929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022]
Abstract
Glaucoma is a common progressive optic neuropathy that results in visual field defects and can lead to irreversible blindness. The pathophysiology of glaucoma involves dysregulated extracellular matrix remodelling in both the trabecular meshwork in the anterior chamber and in the lamina cribrosa of the optic nerve head. Fibrosis in these regions leads to raised intraocular pressure and retinal ganglion cell degeneration, respectively. Lysophosphatidic acid (LPA) is a bioactive lipid mediator which acts via six G-protein coupled receptors on the cell surface to activate intracellular pathways that promote cell proliferation, transcription and survival. LPA signalling has been implicated in both normal wound healing and pathological fibrosis. LPA enhances fibroblast proliferation, migration and contraction, and induces expression of pro-fibrotic mediators such as connective tissue growth factor. The LPA axis plays a major role in diseases such as idiopathic pulmonary fibrosis, where it has been identified as an important pharmacological target. In glaucoma, LPA is present in high levels in the aqueous humour, and its signalling has been found to increase resistance to aqueous humour outflow through altered trabecular meshwork cellular contraction and extracellular matrix deposition. LPA signalling may, therefore, also represent an attractive target for treatment of glaucoma. In this review we wish to describe the role of LPA and its related proteins in tissue fibrosis and glaucoma.
Collapse
Affiliation(s)
- Amy O'Regan
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Colm J O'Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland.,Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sarah B Eivers
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
46
|
Zhang X, Li M, Yin N, Zhang J. The Expression Regulation and Biological Function of Autotaxin. Cells 2021; 10:cells10040939. [PMID: 33921676 PMCID: PMC8073485 DOI: 10.3390/cells10040939] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX) is a secreted glycoprotein and functions as a key enzyme to produce extracellular lysophosphatidic acid (LPA). LPA interacts with at least six G protein-coupled receptors, LPAR1-6, on the cell membrane to activate various signal transduction pathways through distinct G proteins, such as Gi/0, G12/13, Gq/11, and Gs. The ATX-LPA axis plays an important role in physiological and pathological processes, including embryogenesis, obesity, and inflammation. ATX is one of the top 40 most unregulated genes in metastatic cancer, and the ATX-LPA axis is involved in the development of different types of cancers, such as colorectal cancer, ovarian cancer, breast cancer, and glioblastoma. ATX expression is under multifaceted controls at the transcription, post-transcription, and secretion levels. ATX and LPA in the tumor microenvironment not only promote cell proliferation, migration, and survival, but also increase the expression of inflammation-related circuits, which results in poor outcomes for patients with cancer. Currently, ATX is regarded as a potential cancer therapeutic target, and an increasing number of ATX inhibitors have been developed. In this review, we focus on the mechanism of ATX expression regulation and the functions of ATX in cancer development.
Collapse
Affiliation(s)
| | | | | | - Junjie Zhang
- Correspondence: ; Tel.: +86-10-58802137; Fax: +86-10-58807720
| |
Collapse
|
47
|
Lysophospholipids in Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:373-391. [PMID: 33788203 DOI: 10.1007/978-3-030-63046-1_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lysophospholipids (LPLs) belong to a group of bioactive lipids that play pivotal roles in several physiological and pathological processes. LPLs are derivatives of phospholipids and consist of a single hydrophobic fatty acid chain, a hydrophilic head, and a phosphate group with or without a large molecule attached. Among the LPLs, lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are the simplest, and have been shown to be involved in lung inflammatory symptoms and diseases such as acute lung injury, asthma, and chronic obstructive pulmonary diseases. G protein-coupled receptors (GPCRs) mediate LPA and S1P signaling. In this chapter, we will discuss on the role of LPA, S1P, their metabolizing enzymes, inhibitors or agonists of their receptors, and their GPCR-mediated signaling in lung inflammatory symptoms and diseases, focusing specially on acute respiratory distress syndrome, asthma, and chronic obstructive pulmonary disease.
Collapse
|
48
|
Goto H, Miyamoto M, Kihara A. Direct uptake of sphingosine-1-phosphate independent of phospholipid phosphatases. J Biol Chem 2021; 296:100605. [PMID: 33785361 PMCID: PMC8093947 DOI: 10.1016/j.jbc.2021.100605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lipid mediator that is relatively abundant in plasma and plays an important role in the vascular and immune systems. To date, the only known mechanism for removing S1P from plasma has been dephosphorylation by phospholipid phosphatases (PLPPs) on the surface of cells in contact with the plasma. However, there remains a possibility that PLPP-independent dephosphorylation or direct S1P uptake into cells could occur. To examine these possibilities, here we generated triple KO (TKO) HAP1 cells that lacked all PLPPs (PLPP1–3) present in mammals. In the TKO cells, the intracellular metabolism of externally added deuterium-labeled S1P to ceramide was reduced to 17% compared with the WT cells, indicating that most extracellular S1P is dephosphorylated by PLPPs and then taken up into cells. However, this result also reveals the existence of a PLPP-independent S1P uptake pathway. Tracer experiments using [32P]S1P showed the existence of a direct S1P uptake pathway that functions without prior dephosphorylation. Overexpression of sphingolipid transporter 2 (SPNS2) or of major facilitator superfamily domain containing 2B (MFSD2B), both known S1P efflux transporters, in TKO cells increased the direct uptake of S1P, whereas KO of MFSD2B in TKO cells reduced this uptake. These results suggest that these are channel-type transporters and capable of not only exporting but also importing S1P. Furthermore, we observed that erythroid cells expressing MFSD2B, exhibited high S1P uptake activity. Our findings describing direct S1P uptake may contribute to the elucidation of the molecular mechanisms that regulate plasma S1P concentration.
Collapse
Affiliation(s)
- Hirotaka Goto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
49
|
Kano K, Matsumoto H, Kono N, Kurano M, Yatomi Y, Aoki J. Suppressing postcollection lysophosphatidic acid metabolism improves the precision of plasma LPA quantification. J Lipid Res 2021; 62:100029. [PMID: 33524376 PMCID: PMC7937979 DOI: 10.1016/j.jlr.2021.100029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potent signaling lipid, and state-dependent alterations in plasma LPA make it a promising diagnostic marker for various diseases. However, plasma LPA concentrations vary widely among reports, even under normal conditions. These variations can be attributed, at least in part, to the artificial metabolism of LPA after blood collection. Here, we aimed to develop an optimized plasma preparation method that reflects the concentration of LPA in the circulating blood. The main features of the devised method were suppression of both LPA production and degradation after blood collection by keeping whole blood samples at low temperature followed by the addition of an autotaxin inhibitor to plasma samples. Using this devised method, the LPA level did not change for 30 min after blood collection. Also, human and mouse LPA levels were found to be much lower than those previously reported, ranging from 40 to 50 nM with minimal variation across the individual. Finally, the increased accuracy made it possible to detect circadian rhythms in the levels of certain LPA species in mouse plasma. These results demonstrate the usefulness of the devised plasma preparation method to determine accurate plasma LPA concentrations.
Collapse
Affiliation(s)
- Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai, Japan; AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Hirotaka Matsumoto
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Kurano
- AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan; Department of Clinical Laboratory, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Yatomi
- AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan; Department of Clinical Laboratory, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai, Japan; AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan.
| |
Collapse
|
50
|
Yayeh T, Jeong HR, Park YS, Moon S, Sur B, Yoo HS, Oh S. Fumonisin B1-Induced Toxicity Was Not Exacerbated in Glutathione Peroxidase-1/Catalase Double Knock Out Mice. Biomol Ther (Seoul) 2021; 29:52-57. [PMID: 32632050 PMCID: PMC7771844 DOI: 10.4062/biomolther.2020.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/29/2022] Open
Abstract
Fumonisin B1 (FB1) structurally resembles sphingolipids and interferes with their metabolism leading to sphingolipid dysregulation. We questioned if FB1 could exacerbate liver or kidney toxicities in glutathione peroxidase 1 (Gpx1) and catalase (Cat) knockout mice. While higher serum levels of thiobarbituric acid reactive substances (TBARS) and sphinganine (Sa) were measured in Gpx1/Cat knockout mice (Gpx1/Cat KO) than wild type mice after 5 days of FB1 treatment, serum levels of alanine aminotransferase (ALT), sphingosine-1 phosphate (So-1-P), and sphinganine-1 phosphate (Sa-1-P) were found to be relatively low. Although Sa was highly elevated in Gpx1/Cat KO mice and wild mice, lower levels of So and Sa were found in both the kidney and liver tissues of Gpx/Cat KO mice than wild type mice after FB1 treatment. Paradoxically, FB1-induced cellular apoptosis and necrosis were hastened under oxidative stress in Gpx1/Cat KO mice.
Collapse
Affiliation(s)
- Taddesse Yayeh
- Department of Veterinary Science, College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar 5501, Ethiopia
| | - Ha Ram Jeong
- St. Louis College of Pharmacy, St. Louis, MO 63108, USA
| | - Yoon Soo Park
- St. Louis College of Pharmacy, St. Louis, MO 63108, USA
| | - Sohyeon Moon
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Bongjun Sur
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hwan-Soo Yoo
- College of Pharmacy, Chungbuk National University, Osong 28160, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|