1
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Ahmed MS, Hasan NH, Saeed MG. Chemical analysis of mineral trioxide agregate mixed with hyaluronic acids as an accelerant. Braz Dent J 2023; 34:50-66. [PMID: 38133092 PMCID: PMC10742354 DOI: 10.1590/0103-6440202305549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/21/2023] [Indexed: 12/23/2023] Open
Abstract
MATERIALS AND METHOD Mineral trioxide aggregate (MTA) has many clinical applications in dentistry; the main drawback is the long setting. The main objective is to investigate and compare the chemical effect of using two commercially available hyaluronic acid hydrogels (HA) instead of distilled water for mixing MTA as an accelerant of setting time. Test materials were divided into three groups; Group 1: (control) mixing MTA with distilled water supplied by the manufacturer; Group 2: mixing MTA with a hybrid cooperative complex of high and low molecular weight HA (Profhilo®); Group 3: mixing MTA with High molecular weight / non-cross-linked HA (Jalupro®). Mixing time, and setting time (initial and final) were determined, Fourier-transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy, Field emission Scanning Electron Microscopy, and X-ray diffraction were performed. RESULTS mixing time, initial, and final setting time for (MTA + HA) groups were significantly different and lower in comparison to the control group (p < 0.05). This study revealed higher expression of calcium silicate hydrate and calcium hydroxide expression with higher Ca release in the MTA + HA group than the control group. CONCLUSION commercially available HA demonstrated better chemical properties when used as a mixing medium for MTA. The Mixing and setting time for MTA + HA group were significantly shorter than those of the control group were. Thus, commercially available HA can be used as a mixing medium for MTA.
Collapse
Affiliation(s)
| | - Nadia H. Hasan
- Department of Conservative Dentistry, College of Dentistry,
University of Mosul, Mosul, Iraq
| | | |
Collapse
|
3
|
Nagy N, Kaber G, Sunkari VG, Marshall PL, Hargil A, Kuipers HF, Ishak HD, Bogdani M, Hull RL, Grandoch M, Fischer JW, McLaughlin TL, Wight TN, Bollyky PL. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. Matrix Biol 2023; 123:34-47. [PMID: 37783236 PMCID: PMC10841470 DOI: 10.1016/j.matbio.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Pancreatic β-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of β-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on β-cells such that caspase 3 activation did not result in β-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate β-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Vivekananda G Sunkari
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | - Heather D Ishak
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA
| | | | - Rebecca L Hull
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - Maria Grandoch
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Tracey L McLaughlin
- Department of Medicine, Medicine - Endocrinology, Endocrine Clinic, Stanford School of Medicine, Stanford, CA, USA
| | | | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 279 Campus Drive, Beckman Center B241A, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Camponeschi C, Righino B, Pirolli D, Semeraro A, Ria F, De Rosa MC. Prediction of CD44 Structure by Deep Learning-Based Protein Modeling. Biomolecules 2023; 13:1047. [PMID: 37509083 PMCID: PMC10376988 DOI: 10.3390/biom13071047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
CD44 is a cell surface glycoprotein transmembrane receptor that is involved in cell-cell and cell-matrix interactions. It crucially associates with several molecules composing the extracellular matrix, the main one of which is hyaluronic acid. It is ubiquitously expressed in various types of cells and is involved in the regulation of important signaling pathways, thus playing a key role in several physiological and pathological processes. Structural information about CD44 is, therefore, fundamental for understanding the mechanism of action of this receptor and developing effective treatments against its aberrant expression and dysregulation frequently associated with pathological conditions. To date, only the structure of the hyaluronan-binding domain (HABD) of CD44 has been experimentally determined. To elucidate the nature of CD44s, the most frequently expressed isoform, we employed the recently developed deep-learning-based tools D-I-TASSER, AlphaFold2, and RoseTTAFold for an initial structural prediction of the full-length receptor, accompanied by molecular dynamics simulations on the most promising model. All three approaches correctly predicted the HABD, with AlphaFold2 outperforming D-I-TASSER and RoseTTAFold in the structural comparison with the crystallographic HABD structure and confidence in predicting the transmembrane helix. Low confidence regions were also predicted, which largely corresponded to the disordered regions of CD44s. These regions allow the receptor to perform its unconventional activity.
Collapse
Affiliation(s)
- Chiara Camponeschi
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168 Rome, Italy
| | - Benedetta Righino
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168 Rome, Italy
| | - Davide Pirolli
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168 Rome, Italy
| | - Alessandro Semeraro
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Cristina De Rosa
- Institute of Chemical Sciences and Technologies ''Giulio Natta'' (SCITEC)-CNR, 00168 Rome, Italy
| |
Collapse
|
5
|
Nagy N, Kaber G, Sunkari VG, Marshall PL, Hargil A, Kuipers HF, Ishak HD, Bogdani M, Hull RL, Grandoch M, Fischer JW, McLaughlin TL, Wight TN, Bollyky PL. Inhibition of hyaluronan synthesis prevents β-cell loss in obesity-associated type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530522. [PMID: 36909502 PMCID: PMC10002695 DOI: 10.1101/2023.02.28.530522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Pancreatic β-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We have identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low levels of HA are present in healthy pancreatic islets. However, HA substantially accumulates in cadaveric islets of human T2D and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the major HA receptor CD44, preserve glycemic control and insulin levels in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserve glycemic control in other settings of β-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we find that 4-MU increases the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on β-cells such that caspase 3 activation does not result in β-cell apoptosis. These data indicate a role for HA accumulation in diabetes pathogenesis and suggest that it may be a viable target to ameliorate β-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.
Collapse
|
6
|
Chen J, Meng J, Li X, Li X, Liu Y, Jin C, Zhang L, Hao Z, Chen X, Zhang M, Liang C. HA/CD44 Regulates the T Helper 1 Cells Differentiation by Activating Annexin A1/Akt/mTOR Signaling to Drive the Pathogenesis of EAP. Front Immunol 2022; 13:875412. [PMID: 35693826 PMCID: PMC9178196 DOI: 10.3389/fimmu.2022.875412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
CD44 partcipates in multiple inflammatory reactions. Here, we aimed to investigate the role of CD44 and the ligand, hyaluronan (HA), on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) pathogenesis. We found that CD44 was universally expressed in CD4+ lymphocytes in the peripheral blood of CP/CPPS patients. After silencing CD44 expression or delivering 4-methylumbelliferone (4-MU), the pain severity and prostatic inflammation were significantly relieved. In vitro assay found that HA/CD44 was able to regulate T helper 1 (Th1) cells differentiation, the deficiency of which diminished experimental autoimmune prostatitis (EAP) susceptibility. Bioinformatic analysis suggested that after HA or 4-MU treatment, mTOR signaling was significantly altered, and these results were confirmed by subsequent Western blotting assay. Besides, mass spectrometry and co-immunoprecipitation assays found that CD44 was able to interact with Annexin A1 (ANX A1), and this kind of interaction stabilized ANX A1 protein and maintained the activation of Akt/mTOR pathway. Meanwhile, HA-treatment-enhanced prostatic inflammation, Th1 cell differentiation, and Akt/mTOR pathway activation were reversed after silencing the expression of ANX A1 using shANX A1-lentivirus. The present study systematically investigates the functional role of HA/CD44 in CP/CPPS and identifies novel mechanisms for HA/CD44 promoting Th1 cell differentiation. Targeting the HA/CD44/ANX A1/Akt/mTOR signaling represents novel potential therapeutic strategies for patients with CP/CPPS.
Collapse
Affiliation(s)
- Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiaoling Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xiao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Yi Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Xianguo Chen, ; Meng Zhang, ; Chaozhao Liang,
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Xianguo Chen, ; Meng Zhang, ; Chaozhao Liang,
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Xianguo Chen, ; Meng Zhang, ; Chaozhao Liang,
| |
Collapse
|
7
|
Weng X, Maxwell-Warburton S, Hasib A, Ma L, Kang L. The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab 2022; 33:318-332. [PMID: 35249813 DOI: 10.1016/j.tem.2022.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
CD44, a cell-surface glycoprotein, has long been studied as a cancer molecule due to its essential role in physiological activities in normal cells and pathological activities in cancer cells, such as cell proliferation, adhesion, and migration; angiogenesis; inflammation; and cytoskeleton rearrangement. Yet, recent evidence suggests a role of CD44 in metabolism, especially insulin resistance in obesity and diabetes. In line with the current concept of fibroinflammation in obesity and insulin resistance, CD44 as the main receptor of the extracellular matrix component, hyaluronan (HA), has been shown to regulate diet-induced insulin resistance in muscle and other insulin-sensitive tissues. In this review, we integrate current evidence for a role of CD44 in regulating glucose and lipid homeostasis and speculate about its involvement in the pathogenesis of chronic metabolic diseases, including obesity and diabetes. We summarize the current development of CD44-targeted therapies and discuss its potential for the use in treating metabolic diseases.
Collapse
Affiliation(s)
- Xiong Weng
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | | | - Annie Hasib
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Lifeng Ma
- School of Medicine, Xizang Minzhu University, Xianyang, Shaanxi, China
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
8
|
Kavasi RM, Neagu M, Constantin C, Munteanu A, Surcel M, Tsatsakis A, Tzanakakis GN, Nikitovic D. Matrix Effectors in the Pathogenesis of Keratinocyte-Derived Carcinomas. Front Med (Lausanne) 2022; 9:879500. [PMID: 35572966 PMCID: PMC9100789 DOI: 10.3389/fmed.2022.879500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), referred to as keratinocyte carcinomas, are skin cancer with the highest incidence. BCCs, rarely metastasize; whereas, though generally not characterized by high lethality, approximately 2–4% of primary cSCCs metastasize with patients exhibiting poor prognosis. The extracellular matrix (ECM) serves as a scaffold that provides structural and biological support to cells in all human tissues. The main components of the ECM, including fibrillar proteins, proteoglycans (PGs), glycosaminoglycans (GAGs), and adhesion proteins such as fibronectin, are secreted by the cells in a tissue-specific manner, critical for the proper function of each organ. The skin compartmentalization to the epidermis and dermis compartments is based on a basement membrane (BM), a highly specialized network of ECM proteins that separate and unify the two compartments. The stiffness and assembly of BM and tensile forces affect tumor progenitors' invasion at the stratified epithelium's stromal border. Likewise, the mechanical properties of the stroma, e.g., stiffness, are directly correlated to the pathogenesis of the keratinocyte carcinomas. Since the ECM is a pool for various growth factors, cytokines, and chemokines, its' intense remodeling in the aberrant cancer tissue milieu affects biological functions, such as angiogenesis, adhesion, proliferation, or cell motility by regulating specific signaling pathways. This review discusses the structural and functional modulations of the keratinocyte carcinoma microenvironment. Furthermore, we debate how ECM remodeling affects the pathogenesis of these skin cancers.
Collapse
Affiliation(s)
- Rafaela-Maria Kavasi
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Hospital, Bucharest, Romania
- Doctoral School, University of Bucharest, Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Colentina Hospital, Bucharest, Romania
- Doctoral School, University of Bucharest, Bucharest, Romania
| | - Adriana Munteanu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Doctoral School, University of Bucharest, Bucharest, Romania
| | - Mihaela Surcel
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Aristidis Tsatsakis
- Forensic Science Department, Medical School, University of Crete, Heraklion, Greece
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
- *Correspondence: Dragana Nikitovic
| |
Collapse
|
9
|
Xu J, Zhang MY, Jiao W, Hu CQ, Wu DB, Yu JH, Chen GX. Identification of Candidate Genes Related to Synovial Macrophages in Rheumatoid Arthritis by Bioinformatics Analysis. Int J Gen Med 2021; 14:7687-7697. [PMID: 34764682 PMCID: PMC8575484 DOI: 10.2147/ijgm.s333512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is one of the most prevalent inflammatory arthritis worldwide. However, the genes and pathways associated with macrophages from synovial fluids in RA patients still remain unclear. This study aims to screen and verify differentially expressed genes (DEGs) related to identifying candidate genes related to synovial macrophages in rheumatoid arthritis by bioinformatics analysis. Methods We searched the Gene Expression Omnibus (GEO) database, and GSE97779 and GSE10500 with synovial macrophages expression profiling from multiple RA microarray dataset were selected to conduct a systematic analysis. GSE97779 included nine macrophage samples from synovial fluids of RA patients and five macrophage samples from primary human blood of HC. GSE10500 included five macrophage samples from synovial fluids of RA patients and three macrophage samples from primary human blood of HC. Functional annotation of DEGs was performed, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Protein–protein interaction (PPI) network of DEGs was established using the STRING database. CytoHubba was used to identify hub genes. MCODE was used to determine gene clusters in the interactive network. Results There were 2638 DEGs (1425 upregulated genes and 1213 downregulated ones) and 889 DEGs (438 upregulated genes and 451 downregulated ones) selected from GSE97779 and GSE10500, respectively. Venn diagrams showed that 173 genes were upregulated and 106 downregulated in both two datasets. The top 10 hub genes, including FN1, VEGFA, HGF, SERPINA1, MMP9, PPBP, CD44, FPR2, IGF1, and ITGAM, were identified using the PPI network. Conclusion This study provides new insights for the potential biomarkers and the relevant molecular mechanisms in RA patients. Our findings suggest that the 10 candidate genes might be used in diagnosis, prognosis, and therapy of RA in the future. However, further studies are required to confirm the expression of these genes in synovial macrophages in RA and control specimen.
Collapse
Affiliation(s)
- Jia Xu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Ming-Ying Zhang
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Wei Jiao
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Cong-Qi Hu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Dan-Bin Wu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Jia-Hui Yu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China
| | - Guang-Xing Chen
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, People's Republic of China.,Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510470, Guangdong, People's Republic of China
| |
Collapse
|
10
|
Reinbach C, Stadler MS, Pröbstl N, Chrzanowski U, Schmitz C, Kipp M, Hochstrasser T. CD44 expression in the cuprizone model. Brain Res 2020; 1745:146950. [PMID: 32524994 DOI: 10.1016/j.brainres.2020.146950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/08/2020] [Accepted: 06/05/2020] [Indexed: 02/03/2023]
Abstract
Numerous studies report that changes in extracellular matrix components and receptors, such as CD44, contribute to immune cell recruitment and thus lesion formation in multiple sclerosis (MS). In the present study, we used the cuprizone model to elucidate the expression pattern of CD44 in a toxin-induced MS model. Therefore, tissues of cuprizone-intoxicated mice were analyzed by real-time qRT-PCR and immunohistochemical staining against CD44. Co-localization analyses of CD44-positive cells with glial cell markers were performed by immunofluorescence labeling and in-situ hybridization. To investigate the functional importance of CD44 expression for myelination and glial cell activation, Cd44-deficient mice were used. In this study we demonstrate that CD44 expression is induced in a time-dependent manner in an autoimmune-independent model of MS. Up-regulation of CD44 expression was primarily associated to the superficial and perivascular glia limitans and demyelinated white matter structures, particularly the corpus callosum. In the demyelinated corpus callosum, CD44 was localized on GFAP+ astrocytes and IBA1+ microglial cells. Despite a robust expression induction, Cd44-deficiency did not ameliorate cuprizone-induced pathology. Although further studies will be needed to examine the functional relevance of CD44 in the cuprizone model, the spatial and temporal expression pattern of CD44 will pave the way to evaluate its precise role in different (immune and non-immune) pathological conditions.
Collapse
Affiliation(s)
- Christin Reinbach
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Maria-Sophia Stadler
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Nicolas Pröbstl
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Uta Chrzanowski
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Christoph Schmitz
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Tanja Hochstrasser
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Pettenkoferstr. 11, 80336 Munich, Germany.
| |
Collapse
|
11
|
Studies on the Mechanisms of Anti-Inflammatory Activity of Heparin- and Hyaluronan-Containing Multilayer Coatings-Targeting NF-κB Signalling Pathway. Int J Mol Sci 2020; 21:ijms21103724. [PMID: 32466274 PMCID: PMC7279165 DOI: 10.3390/ijms21103724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
The use of implants can be hampered by chronic inflammatory reactions, which may result in failure of the implanted device. To prevent such an outcome, the present study examines the anti-inflammatory properties of surface coatings made of either hyaluronic acid (HA) or heparin (Hep) in combination with chitosan (Chi) prepared as multilayers through the layer-by-layer (LbL) technique. The properties of glycosaminoglycan (GAG)-modified surfaces were characterized in terms of surface topography, thickness and wettability. Results showed a higher thickness and hydrophilicity after multilayer formation compared to poly (ethylene imine) control samples. Moreover, multilayers containing either HA or Hep dampened the inflammatory response visible by reduced adhesion, formation of multinucleated giant cells (MNGCs) and IL-1β release, which was studied using THP-1 derived macrophages. Furthermore, investigations regarding the mechanism of anti-inflammatory activity of GAG were focused on nuclear transcription factor-кB (NF-κB)-related signal transduction. Immunofluorescence staining of the p65 subunit of NF-κB and immunoblotting were performed that showed a significant decrease in NF-κB level in macrophages on GAG-based multilayers. Additionally, the association of FITC-labelled GAG was evaluated by confocal laser scanning microscopy and flow cytometry showing that macrophages were able to associate with and take up HA and Hep. Overall, the Hep-based multilayers demonstrated the most suppressive effect making this system most promising to control macrophage activation after implantation of medical devices. The results provide an insight on the anti-inflammatory effects of GAG not only based on their physicochemical properties, but also related to their mechanism of action toward NF-κB signal transduction.
Collapse
|
12
|
Berneau SC, Ruane PT, Brison DR, Kimber SJ, Westwood M, Aplin JD. Investigating the role of CD44 and hyaluronate in embryo-epithelial interaction using an in vitro model. Mol Hum Reprod 2020; 25:265-273. [PMID: 30865276 DOI: 10.1093/molehr/gaz011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022] Open
Abstract
Implantation failure is an important impediment to increasing success rates in assisted reproductive technologies. Knowledge of the cascade of morphological and molecular events at implantation remains limited. Cell surface CD44 and hyaluronate (HA) have been reported in the uterus, but a role in intercellular interaction at implantation remains to be evaluated. Mouse embryos were co-cultured with human Ishikawa endometrial epithelial monolayers over 2 days. Attachment was tenuous during the first 24 h, after which it became stable, leading to breaching of the monolayer. The effects of enzymatically reducing the density of HA, or introducing a function-blocking antibody to CD44, were monitored during progression from weak to stable embryonic attachment. Hyaluronidase-mediated removal of surface HA from the epithelial cells enhanced the speed of attachment, while a similar treatment of embryos had no effect. The antibody to CD44 caused retardation of initial attachment. These results suggest that CD44-HA binding could be employed by embryos during initial docking, but the persistence of HA in epithelial cells might be detrimental to later stages of implantation by retarding attainment of stable attachment.
Collapse
Affiliation(s)
- S C Berneau
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK
| | - P T Ruane
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK
| | - D R Brison
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK.,Department of Reproductive Medicine, Old St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9WL, UK
| | - S J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - M Westwood
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK
| | - J D Aplin
- Maternal and Fetal Health Centre and Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester M13 9WL, UK
| |
Collapse
|
13
|
RHAMM induces progression of rheumatoid arthritis by enhancing the functions of fibroblast-like synoviocytes. BMC Musculoskelet Disord 2018; 19:455. [PMID: 30587175 PMCID: PMC6307322 DOI: 10.1186/s12891-018-2370-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic and refractory autoimmune joint disease. Fibroblast-like synoviocytes (FLS) produce inflammatory cytokines and are involved in the migration and invasion of panuus tissue, which leads to the destruction of joints in RA. Receptor for hyaluronan mediated motility (RHAMM), is known to be one of the important receptors for hyaluronic acid. It has the ability to regulate migration of fibrocytes and infiltration of inflammatory cells. Here,we explored the mechanisms of RHAMM in RAFs. Methods Quantitative PCR and western blot were performed to test the expression of RHAMM in synoviocytes of RA patients and osteoarthritis (OA) controls. Collagen antibody-induced arthritis (CAIA) was used to investigate the RHAMM expression in mouse synovial issues. RHAMM siRNA was used to detect the function of RHAMM in FLS. Results RA-FLS has a significantly higher expression of RHAMM than OA-FLS. Expression of RHAMM in joint synovial tissue was markedly increased in the CAIA mice compared with the controls. RHAMM silencing using SiRNA was not only decreased the production of IL-6 and IL-8, but also inhibited the migration and invasion of RA-FLS. Conclusions RHAMM has an important role in the FLS induced modulation of inflammation and destruction of joints in RA.
Collapse
|
14
|
Yang CH, Tian JJ, Ko WS, Shih CJ, Chiou YL. Oligo-fucoidan improved unbalance the Th1/Th2 and Treg/Th17 ratios in asthmatic patients: An ex vivo study. Exp Ther Med 2018; 17:3-10. [PMID: 30651758 PMCID: PMC6307516 DOI: 10.3892/etm.2018.6939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
An imbalance in the helper T cells (Th)1/Th2 and regulatory T cells (Tregs)/Th17 ratios is believed to play a key role in asthmatic inflammatory responses. Fucoidan reportedly reduces the production of inflammatory factors. Nutritional intervention is an important tool in decreasing the severity of asthmatic disease. This study aimed to investigate the beneficial roles of oligo-fucoidan in balancing the T cell subtype ratios and reducing airway inflammation ex vivo. Peripheral blood mononuclear cells (PBMCs) were collected from 30 asthmatic subjects and 15 healthy subjects. Harvested PBMCs were stimulated and treated with or without oligo-fucoidan (100 or 500 µg/ml) for 48 h. Cell surface and intracellular cytokine markers were examined by flow cytometry. The pro-inflammatory factors in plasma and culture supernatants were measured using ELISA kits. We found that oligo-fucoidan increases the proportion of Th1 and Treg cells, but did not affect the proportion of Th2 and Th17 cells. Oligo-fucoidan also increased the levels of interferon-γ and interleukin-10. Thus, we concluded that oligo-fucoidan might improve the imbalance in Th1/Th2 and Treg/Th17 ratios to reduce airway inflammation, which could be a potential adjuvant therapy for allergic asthma.
Collapse
Affiliation(s)
- Chao-Huei Yang
- Department of Internal Medicine, Kuang-Tien General Hospital, Taichung 43302, Taiwan R.O.C
| | - Jing-Jing Tian
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 43302, Taiwan R.O.C
| | - Wang-Sheng Ko
- Department of Internal Medicine, Kuang-Tien General Hospital, Taichung 43302, Taiwan R.O.C.,Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 43302, Taiwan R.O.C
| | - Chia-Ju Shih
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 43302, Taiwan R.O.C
| | - Ya-Ling Chiou
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 43302, Taiwan R.O.C
| |
Collapse
|
15
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
16
|
Oligo-fucoidan prevents renal tubulointerstitial fibrosis by inhibiting the CD44 signal pathway. Sci Rep 2017; 7:40183. [PMID: 28098144 PMCID: PMC5241801 DOI: 10.1038/srep40183] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
Tubulointerstitial fibrosis is recognized as a key determinant of progressive chronic kidney disease (CKD). Fucoidan, a sulphated polysaccharide extracted from brown seaweed, exerts beneficial effects in some nephropathy models. The present study evaluated the inhibitory effect of oligo-fucoidan (800 Da) on renal tubulointerstitial fibrosis. We established a mouse CKD model by right nephrectomy with transient ischemic injury to the left kidney. Six weeks after the surgery, we fed the CKD mice oligo-fucoidan at 10, 20, and 100 mg/kg/d for 6 weeks and found that the oligo-fucoidan doses less than 100 mg/kg/d improved renal function and reduced renal tubulointerstitial fibrosis in CKD mice. Oligo-fucoidan also inhibited pressure-induced fibrotic responses and the expression of CD44, β-catenin, and TGF-β in rat renal tubular cells (NRK-52E). CD44 knockdown downregulated the expression of β-catenin and TGF-β in pressure-treated cells. Additional ligands for CD44 reduced the anti-fibrotic effect of oligo-fucoidan in NRK-52E cells. These data suggest that oligo-fucoidan at the particular dose prevents renal tubulointerstitial fibrosis in a CKD model. The anti-fibrotic effect of oligo-fucoidan may result from interfering with the interaction between CD44 and its extracellular ligands.
Collapse
|
17
|
Esguerra KVN, Tolg C, Akentieva N, Price M, Cho CF, Lewis JD, McCarthy JB, Turley EA, Luyt LG. Identification, design and synthesis of tubulin-derived peptides as novel hyaluronan mimetic ligands for the receptor for hyaluronan-mediated motility (RHAMM/HMMR). Integr Biol (Camb) 2015; 7:1547-60. [PMID: 26456171 DOI: 10.1039/c5ib00222b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragments of the extracellular matrix component hyaluronan (HA) promote tissue inflammation, fibrosis and tumor progression. HA fragments act through HA receptors including CD44, LYVE1, TLR2, 4 and the receptor for hyaluronan mediated motility (RHAMM/HMMR). RHAMM is a multifunctional protein with both intracellular and extracellular roles in cell motility and proliferation. Extracellular RHAMM binds directly to HA fragments while intracellular RHAMM binds directly to ERK1 and tubulin. Both HA and regions of tubulin (s-tubulin) are anionic and bind to basic amino acid-rich regions in partner proteins, such as in HA and tubulin binding regions of RHAMM. We used this as a rationale for developing bioinformatics and SPR (surface plasmon resonance) based screening to identify high affinity anionic RHAMM peptide ligands. A library of 12-mer peptides was prepared based on the carboxyl terminal tail sequence of s-tubulin isoforms and assayed for their ability to bind to the HA/tubulin binding region of recombinant RHAMM using SPR. This approach resulted in the isolation of three 12-mer peptides with nanomolar affinity for RHAMM. These peptides bound selectively to RHAMM but not to CD44 or TLR2,4 and blocked RHAMM:HA interactions. Furthermore, fluorescein-peptide uptake by PC3MLN4 prostate cancer cells was blocked by RHAMM mAb but not by CD44 mAb. These peptides also reduced the ability of prostate cancer cells to degrade collagen type I. The selectivity of these novel HA peptide mimics for RHAMM suggest their potential for development as HA mimetic imaging and therapeutic agents for HA-promoted disease.
Collapse
|
18
|
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 2015; 6:201. [PMID: 25999946 PMCID: PMC4422082 DOI: 10.3389/fimmu.2015.00201] [Citation(s) in RCA: 541] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland , Ohio, OH , USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
19
|
Nagy N, Kuipers HF, Frymoyer AR, Ishak HD, Bollyky JB, Wight TN, Bollyky PL. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol 2015; 6:123. [PMID: 25852691 PMCID: PMC4369655 DOI: 10.3389/fimmu.2015.00123] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/06/2015] [Indexed: 12/27/2022] Open
Abstract
Hyaluronan (HA) is a prominent component of the extracellular matrix at many sites of chronic inflammation, including type 1 diabetes (T1D), multiple sclerosis, and numerous malignancies. Recent publications have demonstrated that when HA synthesis is inhibited using 4-methylumbelliferone (4-MU), beneficial effects are observed in several animal models of these diseases. Notably, 4-MU is an already approved drug in Europe and Asia called "hymecromone" where it is used to treat biliary spasm. However, there is uncertainty regarding how 4-MU treatment provides benefit in these animal models and the potential long-term consequences of HA inhibition. Here, we review what is known about how HA contributes to immune dysregulation and tumor progression. Then, we review what is known about 4-MU and hymecromone in terms of mechanism of action, pharmacokinetics, and safety. Finally, we review recent studies detailing the use of 4-MU to treat animal models of cancer and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Adam R Frymoyer
- Department of Pediatrics, Stanford University School of Medicine , Stanford, CA , USA
| | - Heather D Ishak
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Jennifer B Bollyky
- Department of Pediatrics and Systems Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute , Seattle, WA , USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
20
|
Djikić J, Nacka-Aleksić M, Pilipović I, Kosec D, Arsenović-Ranin N, Stojić-Vukanić Z, Dimitrijević M, Leposavić G. Age-related changes in spleen of Dark Agouti rats immunized for experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 278:123-35. [PMID: 25595261 DOI: 10.1016/j.jneuroim.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022]
Abstract
The study was undertaken considering age-related changes in susceptibility to experimental autoimmune encephalomyelitis (EAE) and a putative role of spleen in pathogenesis of this disease. The phenotypic and functional characteristics of T splenocytes were examined in young (3-month-old), middle-aged (8-month-old) and aged (26-month-old) Dark Agouti rats immunized for EAE with rat spinal cord in complete Freund's adjuvant. The rat susceptibility to EAE induction, as well as the number of activated CD4+CD134+ lymphocytes retrieved from their spinal cords progressively decreased with aging. To the contrary, in rats immunized for EAE the number of activated CD4+ splenocytes, i.e., CD4+CD134+, CD4+CD25+FoxP3- and CD4+CD40L+ cells, progressively increased with aging. This was associated with age-related increase in (i) CD4+ splenocyte surface expression of CD44, the molecule suggested to be involved in limiting emigration of encephalitogenic CD4+ cells from spleen into blood and (ii) frequency of regulatory T cells, including CD4+CD25+FoxP3+ cells, which are also shown to control encephalitogenic cell migration from spleen into the central nervous system. In favor of expansion of T-regulatory cell pool in aged rats was the greater concentration of IL-10 in unstimulated, Concanavalin A (ConA)- and myelin basic protein (MBP)-stimulated splenocyte cultures from aged rats compared with the corresponding cultures from young ones. Consistent with the age-related increase in the expression of CD44, which is shown to favor Th1 effector cell survival by interfering with CD95-mediated signaling, the frequency of apoptotic cells among CD4+ splenocytes, despite the greater frequency of CD95+ cells, was diminished in splenocyte cultures from aged compared with young rats. In addition, in control, as well as in ConA- and MBP-stimulated splenocyte cultures from aged rats, despite of impaired CD4+ cell proliferation, IFN-γ concentrations were greater than in corresponding cultures from young rats. This most likely reflected increased abundance of IFN-γ-producing cells in splenocyte cultures from aged compared with young rats. The diminished CD4+ cell proliferation in response to ConA and MBP in splenocyte cultures from aged compared with young rats could be, at least partly, associated with an enhanced splenic expression of iNOS mRNA in aged rats. Thus, the study suggests that age-associated changes leading to entrapping of activated CD4+ cells in the spleen could contribute to the restriction in development of EAE in aged rats.
Collapse
Affiliation(s)
- Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Dimitrijević
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
21
|
Chen CH, Cheng CY, Chen YC, Sue YM, Liu CT, Cheng TH, Hsu YH, Chen TH. MicroRNA-328 inhibits renal tubular cell epithelial-to-mesenchymal transition by targeting the CD44 in pressure-induced renal fibrosis. PLoS One 2014; 9:e99802. [PMID: 24919189 PMCID: PMC4068774 DOI: 10.1371/journal.pone.0099802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/19/2014] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) occurs in stressed tubular epithelial cells, contributing to renal fibrosis. Initial mechanisms promoting EMT are unknown. Pressure force is an important mechanism contributing to the induction and progression of renal fibrogenesis in ureteric obstruction. In our study of cultured rat renal tubular cells (NRK-52E) under 60 mmHg of pressure, we found that the epithelial marker E-cadherin decreased and mesenchymal markers, e.g., α-smooth muscle actin, fibronectin and Snail, increased. Pressure also induced the expression of connective tissue growth factor and transforming growth factor-β. MicroRNA array assays showed that pressure reduced miR-328 at the initial stage of pressurization. We identified a potential target sequence of miR-328 in rat CD44 3′-untranslated regions. In contrast with the miR-328 expression, CD44 expression was up-regulated at the initial pressurization stage. We also found that miR-328 expression decreased and CD44 increased in ureteric obstruction kidneys in the animal study. CD44 siRNA transfection significantly increased E-cadherin expression and inhibited pressure-induced EMT. Both hyaluronan binding peptide pep-1 and osteopontin neutralizing antibody inhibited pressure-induced EMT. Our results suggest that miR-328-mediated CD44 transient upregulation is an important trigger of the pressure-induced EMT in renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yen-Cheng Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuh-Mou Sue
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chung-Te Liu
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Tso-Hsiao Chen
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Popowics T, Boyd T, Hinderberger H. Eruptive and functional changes in periodontal ligament fibroblast orientation in CD44 wild-type vs. knockout mice. J Periodontal Res 2014; 49:355-62. [PMID: 23808836 PMCID: PMC4527325 DOI: 10.1111/jre.12113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament (PDL) fibroblasts establish principal fibers of the ligament during tooth eruption, and maintain these fibers during occlusion. PDL development and occlusal adaptation includes changes in the orientation of PDL fibroblasts; however, the mechanism for these changes in orientation is unclear. The objective of this study was to compare PDL fibroblast orientation in different stages corresponding with first molar eruption and occlusion in CD44 wild-type (WT) and knockout (KO) mice. MATERIAL AND METHODS CD44 WT and KO mice were raised to six postnatal stages corresponding with first molar (M1 ) eruption (postnatal day 8, 11, 14 and 18) and occlusion (postnatal day 26 and 41). Coronal sections of the first mandibular molar (M1 ) were prepared and the orientation of fibroblasts in the cervical root region was measured. Angle measurements were compared across developmental stages and between strains using Watson-Williams F-test (oriana software) and ANCOVA. RESULTS PDL fibroblast orientation increased significantly in CD44 WT (9-87°) and KO mice (14-93°; p ≤ 0.05) between intraosseous eruption (day 11), mucosal penetration (day 14) and preocclusal eruption (day 18); however, the PDL fibroblast orientation did not change significantly with the onset of occlusion (day 26) or continued function (day 41). Within each strain, the variance in fibroblast orientation during preocclusal eruption (day 18) was significantly higher than the variance of all other time points (p < 0.0005). CD44 WT and KO mice showed a similar pattern of PDL development and eruption with a significant difference in CD44 WT vs. KO fibroblast orientations only during early function (day 26, 92° vs 116°; p = 0.05). CONCLUSIONS The development of PDL fibroblast orientation is highly similar between CD44 WT and KO mice. Between early (day 11) and late (day 18) eruptive stages PDL fibroblast orientation increases, corresponding with the upward movement of M1 . The PDL fibroblast orientation established in preocclusal eruption (day 18) is maintained during early (day 26) and late (day 41) stages of occlusal function, suggesting that PDL cells adapt to mechanical loads in the oral cavity before M1 occlusion.
Collapse
|
23
|
Ruppert SM, Hawn TR, Arrigoni A, Wight TN, Bollyky PL. Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res 2014; 58:186-92. [PMID: 24614953 PMCID: PMC4106675 DOI: 10.1007/s12026-014-8495-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The extracellular matrix polysaccharide hyaluronan (HA) exerts size-dependent effects on leukocyte behavior. Low-molecular weight HA is abundant at sites of active tissue catabolism and promotes inflammation via effects on Toll-like receptor signaling. Conversely, high-molecular weight HA is prevalent in uninjured tissues and is anti-inflammatory. We propose that the ability of high-molecular weight but not low-molecular weight HA to cross-link CD44 functions as a novel form of pattern recognition that recognizes intact tissues and communicates "tissue integrity signals" that promote resolution of local immune responses.
Collapse
Affiliation(s)
- S. M. Ruppert
- Division of Infectious Diseases, Stanford University School of Medicine, 300 Pasteur Drive, Rm. L-133, Stanford, CA 94305-5107, USA
| | - T. R. Hawn
- Division of Allergy and Infectious Diseases, University of Washington Medical Center, 1959 NE Pacific Ave, Seattle, WA 98195, USA
| | - A. Arrigoni
- Division of Infectious Diseases, Stanford University School of Medicine, 300 Pasteur Drive, Rm. L-133, Stanford, CA 94305-5107, USA
| | - T. N. Wight
- Matrix Biology Division, Benaroya Research Institute, 1201 9th Ave, Seattle, WA 98101, USA
| | - P. L. Bollyky
- Division of Infectious Diseases, Stanford University School of Medicine, 300 Pasteur Drive, Rm. L-133, Stanford, CA 94305-5107, USA
| |
Collapse
|
24
|
Shigeishi H, Higashikawa K, Takechi M. Role of receptor for hyaluronan-mediated motility (RHAMM) in human head and neck cancers. J Cancer Res Clin Oncol 2014; 140:1629-40. [DOI: 10.1007/s00432-014-1653-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/15/2014] [Indexed: 11/30/2022]
|
25
|
Ghazi-Visser L, Laman JD, Nagel S, van Meurs M, van Riel D, Tzankov A, Frank S, Adams H, Wolk K, Terracciano L, Melief MJ, Sabat R, Günthert U. CD44 variant isoforms control experimental autoimmune encephalomyelitis by affecting the lifespan of the pathogenic T cells. FASEB J 2013; 27:3683-701. [PMID: 23752202 DOI: 10.1096/fj.13-228809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CD44 variant (CD44(v)) isoforms play important roles in the development of autoimmune disorders, including colitis and arthritis, but their role in multiple sclerosis (MS) has been explored only to a limited extent. We determined the functional relevance of CD44(v) isoforms in MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Genetic ablation of CD44(v7) and CD44(v10) isoforms significantly reduced the clinical EAE burden, as well as the number of inflammatory infiltrates. CD44(v7) and CD44(v10) expression on both memory T and antigen-presenting cells, participated in the development of adoptive transfer EAE. Significantly reduced mRNA expression of Th1 signature genes was detected in the brains of CD44(v10-/-) mice compared with those of CD44(WT) mice. Furthermore, forkhead transcription factor 3 (Foxp3), Bcl-2, and inducible nitric oxide synthase (iNOS) levels were reduced in CD44(v10-/-) brains, whereas active caspase-3 was elevated. Brain-infiltrating CD4(hi)CD44(v10+) T cells preceded EAE onset and paralleled disease severity in wild-type but not in CD44(v7-/-) and CD44(v10-/-) mice. CD44(v7) and CD44(v10) expression contributed to EAE by increasing the longevity of autoreactive CD4(hi)panCD44(hi) T cells. Accordingly, the absence of CD44(v7) and CD44(v10) led to increased apoptosis in the inflammatory infiltrates and reduced Th1 responses, resulting in marked disease reduction. Although absent in noninflamed human brains, we detected CD44(v3), CD44(v7), and CD44(v10) isoforms on glial cells and on perivascular infiltrating cells of MS lesions. We conclude that CD44(v7) and CD44(v10), expressed on autoreactive CD4(hi)panCD44(hi) T cells, are critically involved in the pathogenesis of classic EAE by increasing their life span. Targeting these short CD44(v) isoform regions may reduce inflammatory processes and clinical symptoms in MS.
Collapse
Affiliation(s)
- Lizette Ghazi-Visser
- Department of Immunology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yoshioka Y, Kozawa E, Urakawa H, Arai E, Futamura N, Zhuo L, Kimata K, Ishiguro N, Nishida Y. Suppression of hyaluronan synthesis alleviates inflammatory responses in murine arthritis and in human rheumatoid synovial fibroblasts. ARTHRITIS AND RHEUMATISM 2013; 65:1160-1170. [PMID: 23335273 DOI: 10.1002/art.37861] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 01/03/2013] [Indexed: 01/04/2025]
Abstract
OBJECTIVE To clarify the roles of hyaluronan (HA) in joint inflammation and the process of joint destruction, using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, in a mouse model of collagen-induced arthritis (CIA) and in a monolayer culture of fibroblast-like synoviocytes (FLS) derived from patients with rheumatoid arthritis. METHODS DAB/1J mice were immunized with type II collagen. The effects of 4-MU were evaluated by the physiologic arthritis score, paw swelling, the histologic arthritis score, and expression of matrix metalloproteinase 3 (MMP-3) and MMP-13 in chondrocytes and synovial tissue. In vitro, the effect of 4-MU on messenger RNA and protein expression of MMP-1 and MMP-3 was determined. The effects of 4-MU on HA deposition and on serum/medium concentrations of HA were analyzed using biotinylated HA binding protein staining and an HA binding assay, respectively. RESULTS Treatment with 4-MU in mice with CIA dramatically decreased the severity of arthritis (based on the arthritis score), paw thickness, and histopathologic changes. MMP-3 and MMP-13 expression in chondrocytes and synovial cells was significantly inhibited by 4-MU in vivo. Treatment with 4-MU also inhibited MMP-1 and MMP-3 expression in tumor necrosis factor α-stimulated FLS, in a dose-dependent manner. The 4-MU-induced decreases in the serum HA concentration in mice with CIA and in "medium" and "pericellular" HA concentrations in cultured FLS support the contention that the inhibitory mechanism of 4-MU is mediated by HA suppression. CONCLUSION Reduced disease activity induced by 4-MU in mice with CIA revealed HA to be a crucial regulator in the course of arthritis. Therefore, 4-MU is a potential therapeutic agent in arthritis, and its inhibitory mechanism is possibly mediated by suppression of HA synthesis.
Collapse
MESH Headings
- Adjuvants, Immunologic/antagonists & inhibitors
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/blood
- Administration, Oral
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Cells, Cultured
- Edema/chemically induced
- Edema/drug therapy
- Edema/pathology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Knockdown Techniques
- Hindlimb/drug effects
- Hindlimb/pathology
- Humans
- Hyaluronic Acid/antagonists & inhibitors
- Hyaluronic Acid/biosynthesis
- Hyaluronic Acid/blood
- Hymecromone/analogs & derivatives
- Hymecromone/pharmacology
- Mice
- Mice, Inbred DBA
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Stifle/drug effects
- Stifle/pathology
- Synovial Membrane/drug effects
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
Collapse
Affiliation(s)
- Yutaka Yoshioka
- Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ginis I, Weinreb M, Abramov N, Shinar D, Merchav S, Schwartz A, Shirvan M. Bone progenitors produced by direct osteogenic differentiation of the unprocessed bone marrow demonstrate high osteogenic potential in vitro and in vivo. Biores Open Access 2013; 1:69-78. [PMID: 23514783 PMCID: PMC3559218 DOI: 10.1089/biores.2012.9904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tissue-engineered bone grafts seeded with mesenchymal stem cells (MSCs) have been sought as a replacement for bone grafts currently used for bone repair. For production of osteogenic constructs, MSCs are isolated from bone marrow (BM) or other tissues, expanded in culture, then trypsinized, and seeded on a scaffold. Predifferentiation of seeded cells is often desired. We describe here bone progenitor cells (BPCs) obtained by direct osteogenic differentiation of unprocessed BM bypassing isolation of MSCs. Human BM aspirates were incubated for 2 weeks with a commonly used osteogenic medium (OM), except no fetal calf serum, serum substitutes, or growth factors were added, because responding stem and/or progenitor cells were present in the BM milieu. The adherent cells remaining after the culture medium and residual BM were washed out, expressed high levels of bone-specific alkaline phosphatase (ALP) on their surface, demonstrated high ALP activity, were capable of mineralization of the intercellular space, and expressed genes associated with osteogenesis. These parameters in BPCs were similar and even at higher levels compared to MSCs subjected to osteogenic differentiation for 2 weeks. The yield of BPCs per 1 mL BM was 0.71±0.39×10(6). In comparison, the yield of MSCs produced by adhesion of mononuclear cells derived from the same amount of BM and cultured in a commercial growth medium for 2 weeks was 0.3±0.17×10(6). When a scaffold was added to the BM-OM mixture, and the mixture was cultured in a simple rotational bioreactor; the resulting BPCs were obtained already seeded on the scaffold. BPCs seeded on scaffolds were capable of proliferation for at least 6 weeks, keeping high levels of ALP activity, expressing osteogenic genes, and mineralizing the scaffolds. Autologous rat BPCs seeded on various scaffolds were transplanted into critical-size calvarial defects. Six weeks after transplantation of polylactic acid/polyglycolic acid scaffolds, 76.1%±18.3% of the defects were filled with a new bone, compared to 37.9%±28.4% in the contralateral defects transplanted with the scaffolds without cells.
Collapse
Affiliation(s)
- Irene Ginis
- Teva Pharmaceutical Industries LTD , Petach Tikva, Israel
| | | | | | | | | | | | | |
Collapse
|
28
|
Nolan MJ, Koga T, Walker L, McCarty R, Grybauskas A, Giovingo MC, Skuran K, Kuprys PV, Knepper PA. sCD44 internalization in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2013; 54:592-601. [PMID: 23287794 DOI: 10.1167/iovs.12-10627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To determine whether soluble CD44 (sCD44), a likely biomarker of primary open-angle glaucoma (POAG), is internalized in cultured human trabecular meshwork (TM) cells and trafficked to mitochondria. METHODS In vitro, 32-kD sCD44 was isolated from human sera, biotinylated, and dephosphorylated. TM cells were incubated for 1 hour at 4°C with biotinylated albumin (b-albumin), biotin-labeled sCD44 (b-sCD44), or hypophosphorylated biotin-labeled sCD44 (-p b-sCD44) in the presence or absence of unlabeled sCD44, hyaluronic acid (HA), and a selected 10-mer HA binding peptide. The slides were warmed for 1 or 2 hours at 37°C, and 125 nM MitoTracker Red was added for the last 20 minutes of the incubation. The cells were washed, fixed, incubated with anti-biotin antibody and FITC-labeled goat anti-mouse antibody, and examined under a confocal microscope. RESULTS TM cell membranes were positive for b-sCD44 after 4°C incubation. When the temperature was raised to 37°C, b-sCD44 or -p b-sCD44 appeared in the cytoplasm. The internalization of b-sCD44 was blocked by excess unlabeled sCD44, HA, and a 10-mer HA-binding peptide. Double label experiments with b-sCD44 or -p b-sCD44 and MitoTracker Red indicated partial overlap. The percent co-localization of MitoTracker Red at 2 hours and FITC -p b-sCD44 was 17.4% (P < 0.001) and for FITC b-sCD44 was 11.7% (P < 0.001) compared with b-albumin. The influence of putative CD44 phosphorylation sites on mitochondrial trafficking was determined by TargetP 1.1. CONCLUSIONS sCD44 is internalized by TM cells and trafficked in part to mitochondria, which may be a factor in the toxicity of sCD44 in the POAG disease process.
Collapse
Affiliation(s)
- Michael J Nolan
- Department of Ophthalmology and Visual Sciences, University of Illinois-Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pineda MA, McGrath MA, Smith PC, Al-Riyami L, Rzepecka J, Gracie JA, Harnett W, Harnett MM. The parasitic helminth product ES-62 suppresses pathogenesis in collagen-induced arthritis by targeting the interleukin-17-producing cellular network at multiple sites. ACTA ACUST UNITED AC 2013; 64:3168-78. [PMID: 22729944 DOI: 10.1002/art.34581] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Among many survival strategies, parasitic worms secrete molecules that modulate host immune responses. One such product, ES-62, is protective against collagen-induced arthritis (CIA), a model of rheumatoid arthritis (RA). Since interleukin-17 (IL-17) has been reported to play a pathogenic role in the development of RA, this study was undertaken to investigate whether targeting of IL-17 may explain the protection against CIA afforded by ES-62. METHODS DBA/1 mice progressively display arthritis following immunization with type II collagen. The protective effects of ES-62 were assessed by determination of cytokine levels, flow cytometric analysis of relevant cell populations, and in situ analysis of joint inflammation in mice with CIA. RESULTS ES-62 was found to down-regulate IL-17 responses in mice with CIA. First, it acted to inhibit priming and polarization of IL-17 responses by targeting a complex IL-17-producing network, involving signaling between dendritic cells and γ/δ or CD4+ T cells. In addition, ES-62 directly targeted Th17 cells by down-regulating myeloid differentiation factor 88 expression to suppress responses mediated by IL-1 and Toll-like receptor ligands. Moreover, ES-62 modulated the migration of γ/δ T cells and this was reflected by direct suppression of CD44 up-regulation and, as evidenced by in situ analysis, dramatically reduced levels of IL-17-producing cells, including lymphocytes, infiltrating the joint. Finally, there was strong suppression of IL-17 production by cells resident in the joint, such as osteoclasts within the bone areas. CONCLUSION Our findings indicate that ES-62 treatment of mice with CIA leads to unique multisite manipulation of the initiation and effector phases of the IL-17 inflammatory network. ES-62 could be exploited in the development of novel therapeutics for RA.
Collapse
|
30
|
Girbl T, Hinterseer E, Grössinger EM, Asslaber D, Oberascher K, Weiss L, Hauser-Kronberger C, Neureiter D, Kerschbaum H, Naor D, Alon R, Greil R, Hartmann TN. CD40-Mediated Activation of Chronic Lymphocytic Leukemia Cells Promotes Their CD44-Dependent Adhesion to Hyaluronan and Restricts CCL21-Induced Motility. Cancer Res 2012; 73:561-70. [DOI: 10.1158/0008-5472.can-12-2749] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Immune responses to RHAMM in patients with acute myeloid leukemia after chemotherapy and allogeneic stem cell transplantation. Clin Dev Immunol 2012; 2012:146463. [PMID: 22719778 PMCID: PMC3375151 DOI: 10.1155/2012/146463] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/29/2022]
Abstract
Leukemic blasts overexpress immunogenic antigens, so-called leukemia-associated antigens like the receptor for hyaluronan acid-mediated motility (RHAMM). Persistent RHAMM expression and decreasing CD8+ T-cell responses to RHAMM in the framework of allogeneic stem cell transplantation or chemotherapy alone might indicate the immune escape of leukemia cells. In the present study, we analyzed the expression of RHAMM in 48 patients suffering from acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Furthermore, we correlated transcripts with the clinical course of the disease before and after treatment. Real-time quantitative reverse transcriptase polymerase chain reaction was performed from RNA of peripheral blood mononuclear cells. T cell responses against RHAMM were assessed by tetramer staining (flow cytometry) and enzyme-linked immunospot (ELISPOT) assays. Results were correlated with the clinical outcome of patients. The results of the present study showed that almost 60% of the patients were RHAMM positive; specific T-cells recognizing RHAMM could be detected, but they were nonfunctional in terms of interferon gamma or granzyme B release as demonstrated by ELISPOT assays. Immunotherapies like peptide vaccination or adoptive transfer of RHAMM-specific T cells might improve the immune response and the outcome of AML/MDS patients.
Collapse
|
32
|
Damjanovich L, Volkó J, Forgács A, Hohenberger W, Bene L. Crohn's disease alters MHC-rafts in CD4+ T-cells. Cytometry A 2011; 81:149-64. [PMID: 22128034 DOI: 10.1002/cyto.a.21173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 11/09/2022]
Abstract
Clusters of MHCI, ICAM-1, CD44, CD59, IL-2R, and IL-15R molecules have been studied on the surface of CD4(+) T-cells from peripheral blood and lymph nodes of patients in Crohn's disease and healthy individuals as controls by using a dual-laser flow cytometric fluorescence resonance energy transfer (FRET) technique and fluorescently stained Fabs. When cells from patients in Crohn's disease are compared to those of controls, the surface expression level for the MHCI reduced by ∼45%, for CD44 enhanced by ∼100%, and for IL-2Rα, IL-15Rα, and common γ(c) enhanced by ∼50%, ∼70%, and ∼130%, respectively. Efficiencies of FRET monitoring homoassociation for the MHCI and CD44 reduced, that for IL-2Rα enhanced. While efficiencies of FRET monitoring the association of γ(c) and ICAM-1 with the MHCI reduced, those monitoring association of IL-2/15Rα, CD44, and CD59 with MHCI enhanced. Efficiencies of FRET measured between the MHCI and IL-2Rα, IL-15Rα differently enhanced to the advantage of IL-15Rα, the one measured between γ(c) and IL-2Rα reduced, suggesting modulations in the strength of interaction of MHCI with IL-2R, IL-15R, and γ(c). The increases in density of surface bound cTx and in the associations of the receptors with the G(M1)-ganglioside lipid molecules suggest stronger lipid raft interactions of the receptors. The observed alterations of MHC-rafts in Crohn's disease--summarized in models of receptor patterns of diseased and control cells--may have functional consequences regarding signaling by the raft components.
Collapse
Affiliation(s)
- László Damjanovich
- Department of Surgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
33
|
Lee KA, Hammerle LP, Andrews PS, Stokes MP, Mustelin T, Silva JC, Black RA, Doedens JR. Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels. J Biol Chem 2011; 286:41530-41538. [PMID: 21987572 DOI: 10.1074/jbc.m111.248856] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein ubiquitination is a key regulatory process essential to life at a cellular level; significant efforts have been made to identify ubiquitinated proteins through proteomics studies, but the level of success has not reached that of heavily studied post-translational modifications, such as phosphorylation. HRD1, an E3 ubiquitin ligase, has been implicated in rheumatoid arthritis, but no disease-relevant substrates have been identified. To identify these substrates, we have taken both peptide and protein level approaches to enrich for ubiquitinated proteins in the presence and absence of HRD1. At the protein level, a two-step strategy was taken using cells expressing His(6)-tagged ubiquitin, enriching proteins first based on their ubiquitination and second based on the His tag with protein identification by LC-MS/MS. Application of this method resulted in identification and quantification of more than 400 ubiquitinated proteins, a fraction of which were found to be sensitive to HRD1 and were therefore deemed candidate substrates. In a second approach, ubiquitinated peptides were enriched after tryptic digestion by peptide immunoprecipitation using an antibody specific for the diglycine-labeled internal lysine residue indicative of protein ubiquitination, with peptides and ubiquitination sites identified by LC-MS/MS. Peptide immunoprecipitation resulted in identification of over 1800 ubiquitinated peptides on over 900 proteins in each study, with several proteins emerging as sensitive to HRD1 levels. Notably, significant overlap exists between the HRD1 substrates identified by the protein-based and the peptide-based strategies, with clear cross-validation apparent both qualitatively and quantitatively, demonstrating the effectiveness of both strategies and furthering our understanding of HRD1 biology.
Collapse
Affiliation(s)
- Kimberly A Lee
- Department of Molecular Sciences, Amgen, Seattle, Washington 98119
| | - Lisa P Hammerle
- Department of Inflammation, Amgen, Seattle, Washington 98119
| | - Paul S Andrews
- Department of Lead Discovery, Amgen, Cambridge, Massachusetts 02142
| | | | - Tomas Mustelin
- Department of Inflammation, Amgen, Seattle, Washington 98119
| | - Jeffrey C Silva
- Cell Signaling Technology Inc., Danvers, Massachusetts 01923
| | - Roy A Black
- Department of Inflammation, Amgen, Seattle, Washington 98119
| | - John R Doedens
- Department of Inflammation, Amgen, Seattle, Washington 98119.
| |
Collapse
|
34
|
Guan H, Nagarkatti PS, Nagarkatti M. CD44 Reciprocally regulates the differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2011; 186:6955-64. [PMID: 21551360 DOI: 10.4049/jimmunol.1004043] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD44 is expressed by a variety of cells, including glial and T cells. Furthermore, in the demyelinating lesions of multiple sclerosis, CD44 expression is chronically elevated. In this study, we demonstrate that targeted deletion of CD44 attenuated myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalitomyelitis (EAE) through novel regulatory mechanisms affecting Th differentiation. Specifically, by developing chimeras and using adoptive transfer experiments, we noted that CD44 deficiency on CD4(+) T cells, but not other cells, conferred protection against EAE induction. CD44 expression played a crucial role in Th differentiation, inasmuch as deletion of CD44 inhibited Th1/Th17 differentiation while simultaneously enhancing Th2/regulatory T cell differentiation. In contrast, expression of CD44 promoted Th1/Th17 differentiation. When osteopontin and hyaluronic acid, the two major ligands of CD44, were tested for their role in Th differentiation, osteopontin, but not hyaluronic acid, promoted Th1/Th17 differentiation. Furthermore, activation of CD44(+) encephalitogenic T cells with myelin oligodendrocyte glycoprotein peptide led to demethylation at the ifnγ/il17a promoter region while displaying hypermethylation at the il4/foxp3 gene promoter. Interestingly, similar activation of CD44-deficient encephalitogenic T cells led to increased hypermethylation of ifnγ/il17a gene and marked demethylation of il4/foxp3 gene promoter. Together, these data suggested that signaling through CD44, in encephalitogenic T cells, plays a crucial role in the differentiation of Th cells through epigenetic regulation, specifically DNA methylation of Th1/Th17 and Th2 cytokine genes. The current study also suggests that molecular targeting of CD44 receptor to promote a switch from Th1/Th17 to Th2/regulatory T cell differentiation may provide a novel treatment modality against EAE.
Collapse
Affiliation(s)
- Hongbing Guan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | | |
Collapse
|
35
|
Jamison FW, Foster TJ, Barker JA, Hills RD, Guvench O. Mechanism of Binding Site Conformational Switching in the CD44–Hyaluronan Protein–Carbohydrate Binding Interaction. J Mol Biol 2011; 406:631-47. [DOI: 10.1016/j.jmb.2010.12.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/22/2010] [Accepted: 12/27/2010] [Indexed: 11/30/2022]
|
36
|
Gibb DR, Saleem SJ, Chaimowitz NS, Mathews J, Conrad DH. The emergence of ADAM10 as a regulator of lymphocyte development and autoimmunity. Mol Immunol 2011; 48:1319-27. [PMID: 21236490 DOI: 10.1016/j.molimm.2010.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/17/2010] [Accepted: 12/08/2010] [Indexed: 12/22/2022]
Abstract
Proteolytic processing of transmembrane receptors and ligands can have a dramatic impact on cell signaling processes and subsequent cellular responses, including activation and differentiation. A member of the disintegrin and metalloproteinase family, ADAM10, has emerged as a prominent regulator of numerous receptors and ligands, including Notch and CD23. Here, we review studies resulting from the recent generation of ADAM10 conditional knockout mice which revealed a critical role for ADAM10 in Notch-dependent lymphocyte development. Additionally, we discuss results of numerous in vitro and ex vivo studies indicating that ADAM10 regulates the production of multiple secreted factors that contribute to autoimmune reactions.
Collapse
Affiliation(s)
- David R Gibb
- Department of Microbiology and Immunology, Virginia Commonwealth University, School of Medicine, P.O. Box 980678, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
37
|
Campo GM, Avenoso A, Micali A, Nastasi G, Squadrito F, Altavilla D, Bitto A, Polito F, Rinaldi MG, Calatroni A, D'Ascola A, Campo S. High-molecular weight hyaluronan reduced renal PKC activation in genetically diabetic mice. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:1118-30. [PMID: 20713153 DOI: 10.1016/j.bbadis.2010.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/04/2010] [Accepted: 08/10/2010] [Indexed: 02/07/2023]
Abstract
The cluster determinant (CD44) seems to play a key role in tissues injured by diabetes type 2. CD44 stimulation activates the protein kinase C (PKC) family which in turn activates the transcriptional nuclear factor kappa B (NF-κB) responsible for the expression of the inflammation mediators such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18), inducible nitric oxide synthase (iNOS), and matrix metalloproteinases (MMPs). Regulation of CD44 interaction with its ligands depends greatly upon PKC. We investigated the effect of the treatment with high-molecular weight hyaluronan (HA) on diabetic nephropathy in genetically diabetic mice. BKS.Cg-m+/+Lepr(db) mice had elevated plasma insulin from 15 days of age and high blood sugar levels at 4 weeks. The severe nephropathy that developed was characterized by a marked increased in CD44 receptors, protein kinase C betaI, betaII, and epsilon (PKC(βI), PKC(βII), and PKCε) mRNA expression and the related protein products in kidney tissue. High levels of mRNA and related protein levels were also detected in the damaged kidney for NF-κB, TNF-α, IL-6, IL-18, MMP-7, and iNOS. Chronic daily administration of high-molecular mass HA for 2 weeks significantly reduced CD44, PKC(βI), PKC(βII), and PKCα gene expression and the related protein production in kidney tissue and TNF-α, IL-6, IL-18, MMP-7, and iNOS expression and levels also decreased. Histological analysis confirmed the biochemical data. However, blood parameters of diabetes were unchanged. These results suggest that the CD44 and PKC play an important role in diabetes and interaction of high-molecular weight HA with these proteins may reduce inflammation and secondary pathologies due to this disease.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fine-mapping resolves Eae23 into two QTLs and implicates ZEB1 as a candidate gene regulating experimental neuroinflammation in rat. PLoS One 2010; 5:e12716. [PMID: 20856809 PMCID: PMC2939884 DOI: 10.1371/journal.pone.0012716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022] Open
Abstract
Background To elucidate mechanisms involved in multiple sclerosis (MS), we studied genetic regulation of experimental autoimmune encephalomyelitis (EAE) in rats, assuming a conservation of pathogenic pathways. In this study, we focused on Eae23, originally identified to regulate EAE in a (LEW.1AV1xPVG.1AV1)F2 cross. Our aim was to determine whether one or more genes within the 67 Mb region regulate EAE and to define candidate risk genes. Methodology/Principal Findings We used high resolution quantitative trait loci (QTL) analysis in the 10th generation (G10) of an advanced intercross line (AIL) to resolve Eae23 into two QTLs that independently regulate EAE, namely Eae23a and Eae23b. We established a congenic strain to validate the effect of this region on disease. PVG alleles in Eae23 resulted in significant protection from EAE and attenuated CNS inflammation/demyelination. Disease amelioration was accompanied with increased levels of Foxp3+ cells in the CNS of the congenic strain compared to DA. We then focused on candidate gene investigation in Eae23b, a 9 Mb region linked to all clinical phenotypes. Affymetrix exon arrays were used to study expression of the genes in Eae23b in the parental strains, where none showed differential expression. However, we found lower expression of exon 4 of ZEB1, which is specific for splice-variant Zfhep1. ZEB1 is an interleukin 2 (IL2) repressor involved in T cell development. The splice-specific variance prompted us to next analyze the expression of ZEB1 and its two splice variants, Zfhep1 and Zfhep2, in both lymph node and spleen. We demonstrated that ZEB1 splice-variants are differentially expressed; severity of EAE and higher IL2 levels were associated with down-regulation of Zfhep1 and up-regulation of Zfhep2. Conclusions/Significance We speculate that the balance between splice-variants of ZEB1 could influence the regulation of EAE. Further functional studies of ZEB1 and the splice-variants may unravel novel pathways contributing to MS pathogenesis and inflammation in general.
Collapse
|
39
|
Xu H, Huang Y, Hussain LR, Zhu Z, Bozulic LD, Ding C, Yan J, Ildstad ST. Sensitization to minor antigens is a significant barrier in bone marrow transplantation and is prevented by CD154:CD40 blockade. Am J Transplant 2010; 10:1569-79. [PMID: 20642683 PMCID: PMC3195648 DOI: 10.1111/j.1600-6143.2010.03148.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sensitization to major histocompatibility complex (MHC) alloantigens is critical in transplantation rejection. The mechanism of sensitization to minor histocompatibility antigens (Mi-HAg) has not been thoroughly explored. We used a mouse model of allosensitization to Mi-HAg to study the Mi-HAg sensitization barrier in bone marrow transplantation (BMT). AKR mice were sensitized with MHC congenic Mi-HAg disparate B10.BR skin grafts. Adaptive humoral (B-cells) and cellular (T cells) responses to Mi-HAg are elicited. In subsequent BMT, only 20% of sensitized mice engrafted, while 100% of unsensitized mice did. In vivo cytotoxicity assays showed that Mi-HAg sensitized AKR mice eliminated CFSE labeled donor splenocytes significantly more rapidly than naïve AKR mice but less rapidly than MHC-sensitized recipients. Sera from Mi-HAg sensitized mice also reacted with cells from other mouse strains, suggesting that Mi-HAg peptides were broadly shared between mouse strains. The production of anti-donor-Mi-HAg antibodies was totally prevented in mice treated with anti-CD154 during skin grafting, suggesting a critical role for the CD154:CD40 pathway in B-cell reactivity to Mi-HAg. Moreover, anti-CD154 treatment promoted BM engraftment to 100% in recipients previously sensitized to donor Mi-HAg. Taken together, Mi-HAg sensitization poses a significant barrier in BMT and can be overcome with CD154:CD40 costimulatory blockade.
Collapse
Affiliation(s)
- Hong Xu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202
| | - Yiming Huang
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202
| | - Lala R. Hussain
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202
| | - Ziqiang Zhu
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202
| | - Larry D. Bozulic
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202
| | - Chuanlin Ding
- James Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Jun Yan
- James Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Suzanne T. Ildstad
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202,Correspondence should be addressed to (STI): Suzanne T. Ildstad, M.D., Director Institute for Cellular Therapeutics Jewish Hospital Distinguished Professor of Transplantation Distinguished University Scholar Professor of Surgery University of Louisville 570 South Preston Street, Suite 404 Louisville, Kentucky 40202-1760, USA Telephone: 502-852-2080 Fax: 502-852-2079
| |
Collapse
|
40
|
Baaten BJG, Li CR, Deiro MF, Lin MM, Linton PJ, Bradley LM. CD44 regulates survival and memory development in Th1 cells. Immunity 2010; 32:104-15. [PMID: 20079666 DOI: 10.1016/j.immuni.2009.10.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/29/2009] [Accepted: 10/19/2009] [Indexed: 11/28/2022]
Abstract
Optimal immunity to microorganisms depends upon the regulated death of clonally expanded effector cells and the survival of a cohort of cells that become memory cells. After activation of naive T cells, CD44, a widely expressed receptor for extracellular matrix components, is upregulated. High expression of CD44 remains on memory cells and despite its wide usage as a "memory marker," its function is unknown. Here we report that CD44 was essential for the generation of memory T helper 1 (Th1) cells by promoting effector cell survival. This dependency was not found in Th2, Th17, or CD8(+) T cells despite similar expression of CD44 and the absence of splice variants in all subsets. CD44 limited Fas-mediated death in Th1 cells and its ligation engaged the phosphoinositide 3-kinase-Akt kinase signaling pathway that regulates cell survival. The difference in CD44-regulated apoptosis resistance in T cell subpopulations has important implications in a broad spectrum of diseases.
Collapse
Affiliation(s)
- Bas J G Baaten
- Infectious and Inflammatory Diseases Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
41
|
Schmidt S, Friedl P. Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 2010; 339:83-92. [PMID: 19921267 PMCID: PMC2784868 DOI: 10.1007/s00441-009-0892-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/28/2009] [Indexed: 12/27/2022]
Abstract
Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments.
Collapse
Affiliation(s)
- Samuel Schmidt
- Microscopical Imaging of the Cell, Department of Cell Biology (283), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter Friedl
- Microscopical Imaging of the Cell, Department of Cell Biology (283), Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
- Rudolf Virchow Zentrum and Department for Dermatology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| |
Collapse
|
42
|
Abstract
Hyaluronan is a prominent component of the micro-environment in most malignant tumors and can be prognostic for tumor progression. Extensive experimental evidence in animal models implicates hyaluronan interactions in tumor growth and metastasis, but it is also evident that a balance of synthesis and turnover by hyaluronidases is critical. CD44, a major hyaluronan receptor, is commonly but not uniformly associated with malignancy, and is frequently used as a marker for cancer stem cells in human carcinomas. Multivalent interactions of hyaluronan with CD44 collaborate in driving numerous tumor-promoting signaling pathways and transporter activities. It is widely accepted that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to therapy, but major challenges for future research in the field are the mechanism of activation of hyaluronan-CD44 signaling in cancer cells, the relative importance of variant forms of CD44 and other hyaluronan receptors, e.g., Rhamm, in different tumor contexts, and the role of stromal versus tumor cell production and turnover of hyaluronan. Despite these caveats, it is clear that hyaluronan-CD44 interactions are an important target for translation into the clinic. Among the approaches that show promise are antibodies and vaccines to specific variants of CD44 that are uniquely expressed at critical stages of progression of a particular cancer, hyaluronidase-mediated reduction of barriers to drug access, and small hyaluronan oligosaccharides that attenuate constitutive hyaluronan-receptor signaling and enhance chemosensitivity. In addition, hyaluronan is being used to tag drugs and delivery vehicles for targeting of anticancer agents to CD44-expressing tumor cells. (Clin Cancer Res 2009;15(24):7462-8).
Collapse
Affiliation(s)
- Bryan P Toole
- Author's Affiliation: Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
43
|
Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res 2009. [DOI: 10.1007/s00441-009-0892-9 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|
44
|
Campo GM, Avenoso A, Campo S, D'Ascola A, Traina P, Calatroni A. Differential effect of molecular size HA in mouse chondrocytes stimulated with PMA. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:1353-67. [PMID: 19607883 DOI: 10.1016/j.bbagen.2009.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/04/2009] [Accepted: 07/07/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hyaluronan (HA) fragments elicit the expression of inflammatory mediators through a mechanism involving the CD44 receptor. This study investigated the effects of HA at different molecular weights on PMA-induced inflammation in mouse chondrocytes. METHODS mRNA and related protein levels were measured for CD44, PKCdelta, PKCepsilon, TNF-alpha, IL-1beta, MMP-13, and iNOS in chondrocytes, untreated or PMA treated, with and without the addition of HA. The level of NF-kB activation was also assayed. RESULTS CD44, PKCdelta, and PKCepsilon mRNA expression resulted higher than controls in chondrocytes treated with PMA. PMA also induced NF-kB up-regulation and increased TNF-alpha, IL-1beta, MMP-13, and iNOS expression. HA treatment produced different effects: low MW HA up-regulated CD44 expression, increased PKCdelta and PKCepsilon levels, and enhanced inflammation in untreated chondrocytes; while in PMA-treated cells it increased CD44, PKCdelta, PKCepsilon, NF-kB, TNF-alpha, IL-1beta, MMP-13, and iNOS expression and enhanced the effects of PMA; medium MW HA did not exert action; high MW HA had no effect on untreated chondrocytes; however, it reduced PKCdelta, PKCepsilon, NF-kB activation and inflammation in PMA-stimulated cells. Specific CD44 blocking antibody was utilised to confirm CD44 as the target of HA modulation. GENERAL SIGNIFICANCE These data suggest that HA via CD44 may modulate inflammation via its different molecular mass.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5 degrees piano, Via C. Valeria, 98125, Messina, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Guan H, Nagarkatti PS, Nagarkatti M. Role of CD44 in the differentiation of Th1 and Th2 cells: CD44-deficiency enhances the development of Th2 effectors in response to sheep RBC and chicken ovalbumin. THE JOURNAL OF IMMUNOLOGY 2009; 183:172-80. [PMID: 19542428 DOI: 10.4049/jimmunol.0802325] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4 T cells can be primarily polarized to differentiate into Th1 or Th2 cells. CD44 is a marker of T cell activation and a property of long-lived memory cells and implicated in cell migration, activation, and differentiation. To date, whether CD44 has a role in regulating Th1-Th2 differentiation has not been determined. In this study, we compared Th1 and Th2 responses in wild-type and CD44-deficient mice in response to sheep RBC and chicken OVA, as well as examined Th1-Th2 differentiation in vivo and in vitro from CD44-sufficient and CD44-deficient naive CD4 T cells. We observed that deficiency of CD44 tended to inhibit Th1 while promoting Th2 differentiation. Furthermore, chimeric studies suggested that CD44 expression by CD4 T cells was essential for such Th2 bias. The regulation by CD44 occurred at the transcription level leading to up-regulated GATA3 and down-regulated T-bet expression in activated CD4 T cells. We also noted that CD44-deficiency could modify the state of dendritic cell subsets to induce a Th2-biased development. Results presented in this study demonstrate for the first time that CD44 participates in the regulation of Th1-Th2 differentiation.
Collapse
Affiliation(s)
- Hongbing Guan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, 29209, USA
| | | | | |
Collapse
|
46
|
Man M, Elias PM, Man W, Wu Y, Bourguignon LYW, Feingold KR, Man MQ. The role of CD44 in cutaneous inflammation. Exp Dermatol 2009; 18:962-8. [PMID: 19469887 DOI: 10.1111/j.1600-0625.2009.00882.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD44 is a transmembrane glycoprotein expressed in various tissues including the skin. Previous studies indicated that CD44 is required for epidermal permeability barrier homeostasis and keratinocyte differentiation. Yet, while some studies have demonstrated that CD44 is critical for the development of inflammation, others have shown that CD44 is not essential for the development of cutaneous inflammation. In this study, we evaluated the changes in epidermal CD44 expression in a variety of skin inflammatory models and determined whether CD44 is required for the development of cutaneous inflammation. Inflammatory responses were compared in CD44 KO versus wild-type mice in acute models of irritant and allergic contact dermatitis, as well as in a subacute allergic contact dermatitis induced by repeated hapten treatment. Inflammatory responses were assessed by measuring ear thickness and epidermal hyperplasia in haematoxylin & eosin-stained sections. Our results demonstrate that: (i) epidermal CD44 expression increases in both acute and subacute cutaneous inflammatory models; and (ii) acute disruption of the epidermal permeability barrier function increases epidermal CD44 expression. Whereas inflammatory responses did not differ between CD44 KO and wild-type mice in acute models of irritant and allergic contact dermatitis, both inflammatory responses and epidermal hyperplasia increased in CD44 KO mice following repeated hapten challenges. These results show first, that permeability barrier disruption and inflammation stimulate epidermal CD44 expression, and second, that CD44 modulates epidermal proliferation and inflammatory responses in a subacute murine allergic contact dermatitis model.
Collapse
Affiliation(s)
- Mona Man
- Department of Dermatology, University of California School of Medicine, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Maxwell CA, McCarthy J, Turley E. Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J Cell Sci 2008; 121:925-32. [PMID: 18354082 DOI: 10.1242/jcs.022038] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor cells use a wide variety of post-translational mechanisms to modify the functional repertoire of their transcriptome. One emerging but still understudied mechanism involves the export of cytoplasmic proteins that then partner with cell-surface receptors and modify both the surface-display kinetics and signaling properties of these receptors. Recent investigations demonstrate moonlighting roles for the proteins epimorphin, FGF1, FGF2, PLK1 and Ku80, to name a few, during oncogenesis and inflammation. Here, we review the molecular mechanisms of unconventional cytoplasmic-protein export by focusing on the mitotic-spindle/hyaluronan-binding protein RHAMM, which is hyper-expressed in many human tumors. Intracellular RHAMM associates with BRCA1 and BARD1; this association attenuates the mitotic-spindle-promoting activity of RHAMM that might contribute to tumor progression by promoting genomic instability. Extracellular RHAMM-CD44 partnering sustains CD44 surface display and enhances CD44-mediated signaling through ERK1 and ERK2 (ERK1/2); it might also contribute to tumor progression by enhancing and/or activating the latent tumor-promoting properties of CD44. The unconventional export of proteins such as RHAMM is a novel process that modifies the roles of tumor suppressors and promoters, such as BRCA1 and CD44, and might provide new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher Alan Maxwell
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain.
| | | | | |
Collapse
|
48
|
Jin P, Zhang J, Sumariwalla PF, Ni I, Jorgensen B, Crawford D, Phillips S, Feldmann M, Shepard HM, Paleolog EM. Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis. Arthritis Res Ther 2008; 10:R73. [PMID: 18593464 PMCID: PMC2575619 DOI: 10.1186/ar2447] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/25/2008] [Accepted: 07/01/2008] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF)--a key regulator of angiogenesis in rheumatoid arthritis. Bioinformatics analyses predict that the majority of human genes undergo alternative splicing, generating proteins--many of which may have regulatory functions. The objective of the present study was to identify alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert therapeutic activity in an in vivo model of arthritis. METHODS To identify novel splice variants, we performed RT-PCR using an mRNA pool representing major human tissue types and tumors. Novel ASV were identified by alignment of each cloned sequence to its respective genomic sequence in comparison with full-length transcripts. To test whether these ASV have biologic activity, we characterized a subset of them for ligand binding, and for efficacy in an animal model of arthritis. The in vivo study was accomplished using adenoviruses expressing secreted ASV. RESULTS We cloned 60 novel human ASV from 21 genes, encoding cell surface receptors--many of which are known to be important in the regulation of angiogenesis. The ASV were characterized by exon extension, intron retention and alternative exon utilization. Efficient expression and secretion of selected ASV--corresponding to VEGF receptor type 1, VEGF receptor type 2, VEGF receptor type 3, angiopoietin receptor Tie1, Met (receptor for hepatocyte growth factor), colony-stimulating factor 1 receptor, platelet-derived growth factor receptor beta, fibroblast growth factor receptor 1, Kit, and RAGE--was demonstrated, together with binding to their cognate ligands. Importantly, ASV derived from VEGF receptor type 1 and Tie1, and to a lesser extent from VEGF receptor type 2 and fibroblast growth factor receptor 1, reduced clinical signs of arthritis in vivo. The reduction was paralleled by decreased joint inflammation and destruction. CONCLUSION The present study shows that unique ASV derived from receptors that play key roles in angiogenesis--namely, VEGF receptor type 1 and, for the first time, Tie1--can markedly reduce arthritis severity. More broadly, our results demonstrate that ASV are a source of novel proteins with therapeutic potential in diseases in which angiogenesis and cellular hyperplasia play a central role, such as rheumatoid arthritis.
Collapse
MESH Headings
- Angiopoietin-1/metabolism
- Animals
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Cells, Cultured
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Mice
- Mice, Inbred DBA
- Neovascularization, Physiologic/physiology
- Protein Binding/physiology
- Protein Isoforms/metabolism
- Protein Isoforms/therapeutic use
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases/therapeutic use
- Receptor, TIE-1/metabolism
- Receptor, TIE-1/therapeutic use
- Severity of Illness Index
- Umbilical Veins/cytology
- Umbilical Veins/metabolism
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Vascular Endothelial Growth Factor Receptor-1/therapeutic use
Collapse
Affiliation(s)
- Pei Jin
- Receptor BioLogix, Inc., Palo Alto, CA 94303, USA
| | - Juan Zhang
- Receptor BioLogix, Inc., Palo Alto, CA 94303, USA
| | - Percy F Sumariwalla
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| | - Irene Ni
- Receptor BioLogix, Inc., Palo Alto, CA 94303, USA
| | | | - Damian Crawford
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| | | | - Marc Feldmann
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| | | | - Ewa M Paleolog
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| |
Collapse
|
49
|
Toole BP, Slomiany MG. Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resist Updat 2008; 11:110-21. [PMID: 18490190 DOI: 10.1016/j.drup.2008.04.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 01/06/2023]
Abstract
Hyaluronan not only is an important structural component of extracellular matrices but also interacts with cells during dynamic cell processes such as those occurring in cancer. Consequently, interactions of hyaluronan with tumor cells play important cooperative roles in various aspects of malignancy. Hyaluronan binds to several cell surface receptors, including CD44, thus leading to co-regulation of signaling pathways that are important in regulation of multidrug resistance to anticancer drugs, in particular anti-apoptotic pathways induced by activation of receptor tyrosine kinases. Emmprin, a cell surface glycoprotein of the Ig superfamily, stimulates hyaluronan production and downstream signaling consequences. Emmprin and CD44 also interact with various multidrug transporters of the ABC family and monocarboxylate transporters associated with resistance to cancer therapies. Moreover, hyaluronan-CD44 interactions are critical to these properties in the highly malignant, chemotherapy-resistant cancer stem-like cells. Perturbations of the hyaluronan-CD44 interaction at the plasma membrane by various antagonists result in attenuation of receptor tyrosine kinase and transporter activities and inhibition of tumor progression in vivo. These antagonists, especially small hyaluronan oligomers, may be useful in therapeutic strategies aimed at preventing tumor refractoriness or recurrence due to drug-resistant sub-populations within malignant cancers.
Collapse
Affiliation(s)
- Bryan P Toole
- Department of Cell Biology and Anatomy, Medical University of South Carolina, USA.
| | | |
Collapse
|