1
|
Zhu L, Li J, Yang S, Deng X, Wang Z, Cao C. Fumonisin B 1 induces endoplasmic reticulum damage and inflammation by activating the NXR response and disrupting the normal CYP450 system, leading to liver damage in juvenile quail. J Food Sci 2024; 89:5967-5979. [PMID: 39086057 DOI: 10.1111/1750-3841.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 08/02/2024]
Abstract
Fumonisin B1 (FB1) is a mycotoxin affecting animal health through the food chain and has been closely associated with several diseases such as pulmonary edema in pigs and diarrhea in poultry. FB1 is mainly metabolized in the liver. Although a few studies have shown that FB1 causes liver damage, the molecular mechanism of liver damage is unclear. This study aimed to evaluate the role of liver damage, nuclear xenobiotic receptor (NXR) response and cytochrome P450 (CYP450)-mediated defense response during FB1 exposure. A total of 120 young quails were equally divided into two groups (control and FB1 groups). The quails in the control group were fed on a normal diet, while those in the FB1 group were fed on a quail diet containing 30 mg/kg for 42 days. Histopathological and ultrastructural changes in the liver, biochemical parameters, inflammatory factors, endoplasmic reticulum (ER) factors, NXR response and CYP450 cluster system and other related genes were examined at 14 days, 28 days and 42 days. The results showed that FB1 exposure impaired the metabolic function and caused liver injury. FB1 caused ER stress and decreased adenosine triphosphatease activity, induced the expression of inflammation-related genes such as interleukin 6 and nuclear factor kappa-B, and promoted inflammation. In addition, FB1 disrupted the expression of multiple CYP450 isoforms by activating nuclear xenobiotic receptors (NXRs). The present study confirms that FB1 exposure disturbs the homeostasis of cytochrome P450 systems (CYP450s) in quail liver by activating NXR responses and thereby causing liver damage. This study's findings provide insight into the molecular mechanisms of FB1-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lingxin Zhu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Jinhong Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Shuang Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Xiaoqi Deng
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Zhenchao Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, P. R. China
- Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, P. R. China
| |
Collapse
|
2
|
Steenackers N, Eksteen G, Wauters L, Augustijns P, Van der Schueren B, Vanuytsel T, Matthys C. Understanding the gastrointestinal tract in obesity: From gut motility patterns to enzyme secretion. Neurogastroenterol Motil 2024; 36:e14758. [PMID: 38342973 DOI: 10.1111/nmo.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND AND PURPOSE The pathophysiology of obesity has been the product of extensive research, revealing multiple interconnected mechanisms contributing to body weight regulation. The regulation of energy balance involves an intricate network, including the gut-neuroendocrine interplay. As a consequence, research on the gut-brain-microbiota axis in obesity has grown extensively. The physiology of the gastrointestinal tract, far from being underexplored, has significant implications for the development of specific complications in people living with obesity across the fields of gastroenterology, nutrition, and pharmacology. Clinical research indicates higher fasting bile acids serum levels, and blunted postprandial increases in bilious secretions in people living with obesity. Findings are less straightforward for the impact of obesity on gastric emptying with various studies reporting accelerated, normal, or delayed gastric emptying rates. Conversely, the effect of obesity on gastrointestinal pH, gastrointestinal transit, and gastric and pancreatic enzyme secretion is largely unknown. In this review, we explore the current evidence on the gastrointestinal physiology of obesity.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Gabriel Eksteen
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Lucas Wauters
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Geng T, Lu Q, Jiang L, Guo K, Yang K, Liao YF, He M, Liu G, Tang H, Pan A. Circulating concentrations of bile acids and prevalent chronic kidney disease among newly diagnosed type 2 diabetes: a cross-sectional study. Nutr J 2024; 23:28. [PMID: 38429722 PMCID: PMC10908139 DOI: 10.1186/s12937-024-00928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The relationship between circulating bile acids (BAs) and kidney function among patients with type 2 diabetes is unclear. We aimed to investigate the associations of circulating concentrations of BAs, particularly individual BA subtypes, with chronic kidney disease (CKD) in patients of newly diagnosed type 2 diabetes. METHODS In this cross-sectional study, we included 1234 newly diagnosed type 2 diabetes who participated in an ongoing prospective study, the Dongfeng-Tongji cohort. Circulating primary and secondary unconjugated BAs and their taurine- or glycine-conjugates were measured using ultraperformance liquid chromatography-tandem mass spectrometry. CKD was defined as eGFR < 60 ml/min per 1.73 m2. Logistic regression model was used to compute odds ratio (OR) and 95% confidence interval (CI). RESULTS After adjusting for multiple testing, higher levels of total primary BAs (OR per standard deviation [SD] increment: 0.78; 95% CI: 0.65-0.92), cholate (OR per SD: 0.78; 95% CI: 0.66-0.92), chenodeoxycholate (OR per SD: 0.81; 95% CI: 0.69-0.96), glycocholate (OR per SD: 0.81; 95% CI: 0.68-0.96), and glycochenodeoxycholate (OR per SD: 0.82; 95% CI: 0.69-0.97) were associated with a lower likelihood of having CKD in patients with newly diagnosed type 2 diabetes. No significant relationships between secondary BAs and odds of CKD were observed. CONCLUSIONS Our findings showed that higher concentrations of circulating unconjugated primary BAs and their glycine-conjugates, but not taurine-conjugates or secondary BAs, were associated with lower odds of having CKD in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Limiao Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kunquan Guo
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Kun Yang
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun-Fei Liao
- Department of Endocrinology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Laboratory of Metabonomics and Systems Biology, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Thaker VV, Kwee LC, Chen H, Bahson J, Ilkayeva O, Muehlbauer MJ, Wolfe B, Purnell JQ, Pi-Sunyer X, Newgard CB, Shah SH, Laferrère B. Metabolite signature of diabetes remission in individuals with obesity undergoing weight loss interventions. Obesity (Silver Spring) 2024; 32:304-314. [PMID: 37962326 PMCID: PMC11201087 DOI: 10.1002/oby.23943] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE This observational study investigated metabolomic changes in individuals with type 2 diabetes (T2D) after weight loss. We hypothesized that metabolite changes associated with T2D-relevant phenotypes are signatures of improved health. METHODS Fasting plasma samples from individuals undergoing bariatric surgery (n = 71 Roux-en-Y gastric bypass [RYGB], n = 22 gastric banding), lifestyle intervention (n = 66), or usual care (n = 14) were profiled for 139 metabolites before and 2 years after weight loss. Principal component analysis grouped correlated metabolites into factors. Association of preintervention metabolites was tested with preintervention clinical features and changes in T2D markers. Association between change in metabolites/metabolite factors and change in T2D remission markers, homeostasis model assessment of β-cell function, homeostasis model assessment of insulin resistance, and glycated hemoglobin (HbA1c) was assessed. RESULTS Branched-chain amino acids (BCAAs) were associated with preintervention adiposity. Changes in BCAAs (valine, leucine/isoleucine) and branched-chain ketoacids were positively associated with change in HbA1c (false discovery rate q value ≤ 0.001) that persisted after adjustment for percentage weight change and RYGB (p ≤ 0.02). In analyses stratified by RYGB or other weight loss method, some metabolites showed association with non-RYGB weight loss. CONCLUSIONS This study confirmed known metabolite associations with obesity/T2D and showed an association of BCAAs with HbA1c change after weight loss, independent of the method or magnitude of weight loss.
Collapse
Affiliation(s)
- Vidhu V. Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | | | - Haiying Chen
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Salem, NC
| | - Judy Bahson
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Salem, NC
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute
- Sarah W. Stedman Nutrition and Metabolism Center
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC
| | | | - Bruce Wolfe
- Departments of Surgery and Medicine, Oregon Health & Science University, Portland, OR
| | - Jonathan Q Purnell
- Departments of Surgery and Medicine, Oregon Health & Science University, Portland, OR
| | - Xavier Pi-Sunyer
- New York Obesity Research Center, Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute
- Sarah W. Stedman Nutrition and Metabolism Center
- Department of Pharmacology & Cancer Biology and Division of Endocrinology, Department of Medicine, Duke University, Durham, NC
| | - Svati H. Shah
- Duke Molecular Physiology Institute
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Blandine Laferrère
- New York Obesity Research Center, Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | | |
Collapse
|
5
|
Jing J, Zeng H, Shao Q, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Che L, Zhao H. Selenomethionine alleviates environmental heat stress induced hepatic lipid accumulation and glycogen infiltration of broilers via maintaining mitochondrial and endoplasmic reticulum homeostasis. Redox Biol 2023; 67:102912. [PMID: 37797371 PMCID: PMC10622879 DOI: 10.1016/j.redox.2023.102912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023] Open
Abstract
With the increasing of global mean surface air temperature, heat stress (HS) induced by extreme high temperature has become a key factor restricting the poultry industry. Liver is the main metabolic organ of broilers, HS induces liver damage and metabolic disorders, which impairs the health of broilers and affects food safety. As an essential trace element for animals, selenium (Se) involves in the formation of antioxidant system, and its biological functions are generally mediated by selenoproteins. However, the mechanism of Se against HS induced liver damage and metabolic disorders in broilers is inadequate. Therefore, we developed the chronic heat stress (CHS) broiler model and investigated the potential protection mechanism of organic Se (selenomethionine, SeMet) on CHS induced liver damage and metabolic disorders. In present study, CHS caused liver oxidative damage, and induced hepatic lipid accumulation and glycogen infiltration of broilers, which are accompanied by mitochondrial dysfunction, abnormal mitochondrial tricarboxylic acid (TCA) cycle and endoplasmic reticulum (ER) stress. Dietary SeMet supplementation increased the hepatic Se concentration and exhibited protective effects via promoting the expression of selenotranscriptome and several key selenoproteins (GPX4, TXNRD2, SELENOK, SELENOM, SELENOS, SELENOT, GPX1, DIO1, SELENOH, SELENOU and SELENOW). These key selenoproteins synergistically improved the antioxidant capacity, and mitigated the mitochondrial dysfunction, abnormal mitochondrial TCA cycle and ER stress, thus recovered the hepatic triglyceride and glycogen concentration. What's more, SeMet supplementation suppressed lipid and glycogen biosynthesis and promoted lipid and glycogen breakdown in liver of broilers exposed to CHS though regulating the AMPK signals. Overall, our present study reveals a potential mechanism that Se alleviates environment HS induced liver damage and glycogen and lipid metabolism disorders in broilers, which provides a preventive and/or treatment measure for environment HS-dependent hepatic metabolic disorders in poultry industry.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huijin Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Quanjun Shao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
6
|
Liu Y, Wang D, Liu YP. Metabolite profiles of diabetes mellitus and response to intervention in anti-hyperglycemic drugs. Front Endocrinol (Lausanne) 2023; 14:1237934. [PMID: 38027178 PMCID: PMC10644798 DOI: 10.3389/fendo.2023.1237934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a major health problem, threatening the quality of life of nearly 500 million patients worldwide. As a typical multifactorial metabolic disease, T2DM involves the changes and interactions of various metabolic pathways such as carbohydrates, amino acid, and lipids. It has been suggested that metabolites are not only the endpoints of upstream biochemical processes, but also play a critical role as regulators of disease progression. For example, excess free fatty acids can lead to reduced glucose utilization in skeletal muscle and induce insulin resistance; metabolism disorder of branched-chain amino acids contributes to the accumulation of toxic metabolic intermediates, and promotes the dysfunction of β-cell mitochondria, stress signal transduction, and apoptosis. In this paper, we discuss the role of metabolites in the pathogenesis of T2DM and their potential as biomarkers. Finally, we list the effects of anti-hyperglycemic drugs on serum/plasma metabolic profiles.
Collapse
Affiliation(s)
| | | | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
7
|
Lin D, Sun Q, Liu Z, Pan J, Zhu J, Wang S, Jia S, Zheng M, Li X, Gong F. Gut microbiota and bile acids partially mediate the improvement of fibroblast growth factor 21 on methionine-choline-deficient diet-induced non-alcoholic fatty liver disease mice. Free Radic Biol Med 2023; 195:199-218. [PMID: 36586452 DOI: 10.1016/j.freeradbiomed.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, inflammation, and fibrosis, as well as gut dysbiosis. Fibroblast growth factor 21 (FGF21), which regulates glucose and lipid metabolism, has been proven to have a good effect on NAFLD. However, the modulating process between FGF21 and gut microbiota remains unclear in treating NAFLD. Here, the fecal microbiota composition of 30 patients with NAFLD who had undergone liver biopsy and 29 matched healthy participants were studied, together with the fecal bile acid (BA) profile. Treatment with FGF21 was given in methionine-choline-deficient (MCD) diet-induced NAFLD model C57BL/6 mice. An antibiotic cocktail and fecal microbiota transplantation were used to further confirm the benefits of FGF21 that were partially attributable to the change in gut microbiota. Patients with NAFLD had higher serum FGF21 levels and dysregulated fecal microbiota compositions and fecal BA profiles. In NAFLD mice, FGF21 significantly reduced steatohepatitis and collagen deposition in vivo and restored intestinal structure. FGF21 treatment also changed gut microbiota composition and regulated dysbiosis in BA metabolism. After treatment with an antibiotic cocktail, FGF21 partially alleviated hepatic and intestinal damage in NAFLD mice. Furthermore, fecal microbiota transplantation from FGF21-treated mice showed benefits similar to FGF21 therapy. The improvement using FGF21 in MCD diet-induced NAFLD mice is partially mediated via gut microbiota and BA. Gut microbiota-regulated BA metabolism may be a potential target of FGF21 in improving NAFLD.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Qiyan Sun
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhaoyang Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiaxuan Pan
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jing Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shangwen Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sining Jia
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Minghua Zheng
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
8
|
Heianza Y, Wang X, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in circulating bile acid subtypes in response to weight-loss diets are associated with improvements in glycemic status and insulin resistance: The POUNDS Lost trial. Metabolism 2022; 136:155312. [PMID: 36122763 DOI: 10.1016/j.metabol.2022.155312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Various primary and secondary bile acids (BAs) may play pivotal roles in glucose/insulin metabolism. We investigated whether changes in specific BA subtypes were associated with long-term changes in glucose and insulin sensitivity. METHODS This study included 515 adults with overweight or obesity who participated in a 2-year intervention study of weight-loss diets with different macronutrient intakes. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 months after the interventions. We analyzed associations of changes in BA subtypes with two-year changes in fasting glucose, insulin, and insulin resistance (HOMA-IR). RESULTS Greater decreases in primary and secondary BA subtypes induced by the interventions were significantly associated with greater reductions of fasting insulin and HOMA-IR at 6 months, showing various effects across the BA subtypes. The reductions of specific BA subtypes (chenodeoxycholate [CDCA], taurocholate [TCA], taurochenodeoxycholate [TCDCA], and taurodeoxycholate [TDCA]) were significantly related to improved glucose levels at 6 months. The initial (6-month) decreases in primary and secondary BA subtypes (glycochenodeoxycholate [GCDCA], TCDCA, and glycoursodeoxycholate [GUDCA]) were also significantly associated with long-term improvements in glucose and insulin metabolism over 2 years. We found significant interactions between dietary fat intake and changes in the BA subtypes for changes in glucose metabolism (Pinteraction < 0.05). CONCLUSIONS Weight-loss diet-induced changes in distinct subtypes of circulating BAs were associated with improved glucose metabolism and insulin sensitivity in adults with overweight or obesity. Dietary fat intake may modify the associations of changes in BA metabolism with glucose metabolism.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America.
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America.
| |
Collapse
|
9
|
Substantial Fat Loss in Physique Competitors Is Characterized by Increased Levels of Bile Acids, Very-Long Chain Fatty Acids, and Oxylipins. Metabolites 2022; 12:metabo12100928. [PMID: 36295830 PMCID: PMC9609491 DOI: 10.3390/metabo12100928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Weight loss and increased physical activity may promote beneficial modulation of the metabolome, but limited evidence exists about how very low-level weight loss affects the metabolome in previously non-obese active individuals. Following a weight loss period (21.1 ± 3.1 weeks) leading to substantial fat mass loss of 52% (−7.9 ± 1.5 kg) and low body fat (12.7 ± 4.1%), the liquid chromatography-mass spectrometry-based metabolic signature of 24 previously young, healthy, and normal weight female physique athletes was investigated. We observed uniform increases (FDR < 0.05) in bile acids, very-long-chain free fatty acids (FFA), and oxylipins, together with reductions in unsaturated FFAs after weight loss. These widespread changes, especially in the bile acid profile, were most strongly explained (FDR < 0.05) by changes in android (visceral) fat mass. The reported changes did not persist, as all of them were reversed after the subsequent voluntary weight regain period (18.4 ± 2.9 weeks) and were unchanged in non-dieting controls (n = 16). Overall, we suggest that the reported changes in FFA, bile acid, and oxylipin profiles reflect metabolic adaptation to very low levels of fat mass after prolonged periods of intense exercise and low-energy availability. However, the effects of the aforementioned metabolome subclass alteration on metabolic homeostasis remain controversial, and more studies are warranted to unravel the complex physiology and potentially associated health implications. In the end, our study reinforced the view that transient weight loss seems to have little to no long-lasting molecular and physiological effects.
Collapse
|
10
|
Kasai Y, Kessoku T, Tanaka K, Yamamoto A, Takahashi K, Kobayashi T, Iwaki M, Ozaki A, Nogami A, Honda Y, Ogawa Y, Kato S, Imajo K, Higurashi T, Hosono K, Yoneda M, Usuda H, Wada K, Kawanaka M, Kawaguchi T, Torimura T, Kage M, Hyogo H, Takahashi H, Eguchi Y, Aishima S, Kobayashi N, Sumida Y, Honda A, Oyamada S, Shinoda S, Saito S, Nakajima A. Association of Serum and Fecal Bile Acid Patterns With Liver Fibrosis in Biopsy-Proven Nonalcoholic Fatty Liver Disease: An Observational Study. Clin Transl Gastroenterol 2022; 13:e00503. [PMID: 35616321 PMCID: PMC10476812 DOI: 10.14309/ctg.0000000000000503] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION No reports on both blood and fecal bile acids (BAs) in patients with nonalcoholic fatty liver disease (NAFLD) exist. We simultaneously assessed the serum and fecal BA patterns in healthy participants and those with NAFLD. METHODS We collected stool samples from 287 participants from 5 hospitals in Japan (healthy control [HC]: n = 88; mild fibrosis: n = 104; and advanced fibrosis group: n = 95). Blood samples were collected and analyzed for serum BAs and 7α-hydroxy-4-cholesten-3-one (C4)-a surrogate marker for BA synthesis ability-from 141 patients. Concentrations of BAs, including cholic acid (CA), deoxycholic acid (DCA), chenodeoxycholic acid, ursodeoxycholic acid, and lithocholic acid (LCA), were measured using liquid chromatography-mass spectrometry. RESULTS The total fecal BA concentration was significantly higher in the NAFLD group with worsening of fibrosis than in the HC group. Most of the fecal BAs were secondary and unconjugated. In the fecal BA fraction, CA, DCA, chenodeoxycholic acid, ursodeoxycholic acid, and LCA were significantly higher in the NAFLD than in the HC group. The total serum BA concentration was higher in the NAFLD group with worsening of fibrosis than in the HC group. In the serum BA fraction, CA, LCA, and C4 concentrations were significantly higher in the NAFLD than in the HC group. DISCUSSION Fecal and serum BA and C4 concentrations were high in patients with NAFLD with worsening of fibrosis, suggesting involvement of abnormal BA metabolism in NAFLD with fibrosis progression. Abnormalities in BA metabolism may be a therapeutic target in NAFLD with fibrosis.
Collapse
Affiliation(s)
- Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Atsushi Yamamoto
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Kota Takahashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Clinical Cancer Genomics, Yokohama City University Hospital, Yokohama, Japan;
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan;
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan;
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, Kawasaki Medical Center, Kawasaki Medical School, Okayama, Japan;
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan;
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan;
| | - Masayoshi Kage
- Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan;
| | - Hideyuki Hyogo
- Department of Gastroenterology, JA Hiroshima Kouseiren General Hospital, Hiroshima, Japan;
- Life Care Clinic Hiroshima, Hiroshima, Japan;
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan;
- Liver Center, Saga University Hospital, Saga, Japan;
| | | | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan;
| | | | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan;
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan;
| | - Shunsuke Oyamada
- Japanese Organization for Research and Treatment of Cancer (JORTC), JORTC Data Center, Tokyo, Japan
| | - Satoru Shinoda
- Department of Biostatistics, Yokohama City University School of Medicine
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| |
Collapse
|
11
|
Heianza Y, Zhou T, He H, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in bile acid subtypes and long-term successful weight-loss in response to weight-loss diets: The POUNDS lost trial. Liver Int 2022; 42:363-373. [PMID: 34748263 DOI: 10.1111/liv.15098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Primary bile acids (BAs) are synthesized in the liver and secondary BAs result from intestinal microbial activity. Different subtypes of BAs may be involved in regulating adiposity and energy homeostasis. We examined how changes in circulating BA subtypes induced by weight-loss diets were associated with improvements in adiposity, regional fat deposition and energy metabolism among overweight and obese adults. METHODS The study included 551 subjects who participated in a 2-year weight-loss diet intervention trial. Circulating 14 BA subtypes (primary and secondary unconjugated BAs and their taurine-/glycine-conjugates) were measured at baseline and 6 months. Associations of changes in BAs with changes in weight, waist circumference, resting energy expenditure (REE), body fat composition and fat distribution were evaluated. RESULTS Greater decreases in primary BAs (cholate and chenodeoxycholate) and secondary BAs (deoxycholate and lithocholate) and their conjugates (except for glycolithocholate) were associated with more decreases in weight and waist circumference at 6 months (P-after-false-discovery-rate-correction [PFDR ] < .05). We found that changes in glycocholate and glycoursodeoxycholate were consistently associated with reductions of general and central adiposity, REE, whole-body fat and visceral adipose tissue (PFDR < .05). Further, the initial (6-month) changes in BA subtypes were differently predictive of successful weight loss over 2 years. CONCLUSIONS The decreases in primary and secondary BA subtypes after eating low-calorie weight-loss diets were significantly associated with improving adiposity, fat accumulation and energy metabolism, suggesting that specific BA subtypes would be predictive of long-term successful weight loss and individuals' response to the treatment of weight-loss diets.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Hua He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Jao J, Balmert LC, Sun S, McComsey GA, Brown TT, Tien PC, Currier JS, Stein JH, Qiu Y, LeRoith D, Kurland IJ. Distinct Lipidomic Signatures in People Living With HIV: Combined Analysis of ACTG 5260s and MACS/WIHS. J Clin Endocrinol Metab 2022; 107:119-135. [PMID: 34498048 PMCID: PMC8684537 DOI: 10.1210/clinem/dgab663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Disentangling contributions of HIV from antiretroviral therapy (ART) and understanding the effects of different ART on metabolic complications in persons living with HIV (PLHIV) has been challenging. OBJECTIVE We assessed the effect of untreated HIV infection as well as different antiretroviral therapy (ART) on the metabolome/lipidome. METHODS Widely targeted plasma metabolomic and lipidomic profiling was performed on HIV-seronegative individuals and people living with HIV (PLHIV) before and after initiating ART (tenofovir/emtricitabine plus atazanavir/ritonavir [ATV/r] or darunavir/ritonavir [DRV/r] or raltegravir [RAL]). Orthogonal partial least squares discriminant analysis was used to assess metabolites/lipid subspecies that discriminated between groups. Graphical lasso estimated group-specific metabolite/lipid subspecies networks associated with the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). Correlations between inflammatory markers and metabolites/lipid subspecies were visualized using heat maps. RESULTS Of 435 participants, 218 were PLHIV. Compared to HIV-seronegative individuals, ART-naive PLHIV exhibited higher levels of saturated triacylglycerols/triglycerides (TAGs) and 3-hydroxy-kynurenine, lower levels of unsaturated TAGs and N-acetyl-tryptophan, and a sparser and less heterogeneous network of metabolites/lipid subspecies associated with HOMA-IR. PLHIV on RAL vs ATV/r or DRV/r had lower saturated and unsaturated TAGs. Positive correlations were found between medium-long chain acylcarnitines (C14-C6 ACs), palmitate, and HOMA-IR for RAL but not ATV/r or DRV/r. Stronger correlations were seen for TAGs with interleukin 6 and high-sensitivity C-reactive protein after RAL vs ATV/r or DRV/r initiation; these correlations were absent in ART-naive PLHIV. CONCLUSION Alterations in the metabolome/lipidome suggest increased lipogenesis for ART-naive PLHIV vs HIV-seronegative individuals, increased TAG turnover for RAL vs ATV/r or DRV/r, and increased inflammation associated with this altered metabolome/lipidome after initiating ART. Future studies are needed to understand cardiometabolic consequences of lipogenesis and inflammation in PLHIV.
Collapse
Affiliation(s)
- Jennifer Jao
- Northwestern University Feinberg School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Diseases, Department of Medicine, Division of Adult Infectious Diseases, Chicago, Illinois 60611, USA
| | - Lauren C Balmert
- Northwestern University Feinberg School of Medicine, Department of Preventive Medicine, Division of Biostatistics, Chicago, Illinois 60611, USA
| | - Shan Sun
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Division of Pediatric Infectious Diseases, Chicago, Illinois 60611, USA
| | - Grace A McComsey
- University Hospitals Cleveland Medical Center and Case Western Reserve University, Department of Pediatrics, Department of Medicine, Cleveland, Ohio 44106, USA
| | - Todd T Brown
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Phyllis C Tien
- University of California, San Francisco, Department of Medicine and Department of Veterans Affairs Medical Center, Division of Infectious Diseases, San Francisco, California 94121, USA
| | - Judith S Currier
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California 90095, USA
| | - James H Stein
- University of Wisconsin School of Medicine and Public Health, Department of Medicine, Cardiovascular Medicine Division, Madison, Wisconsin 53726, USA
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Derek LeRoith
- Icahn School of Medicine at Mount Sinai, Department of Medicine, Division of Endocrinology, New York, New York 10029, USA
| | - Irwin J Kurland
- Stable Isotope and Metabolomics Core Facility, Department of Medicine, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
13
|
Kang S, Lee E, Lee H, Hwang GS, Lee J, Kim JW, Oh B, Kim JY, Kwon O. Yellow Yeast Rice Prepared Using Aspergillus terreus DSMK01 Lowers Cholesterol Levels by Stimulating Bile Salt Export Pump in Subjects with Mild-to-Moderate Hypercholesterolemia: A Randomized Controlled Trial. Mol Nutr Food Res 2021; 66:e2100704. [PMID: 34783447 DOI: 10.1002/mnfr.202100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/01/2021] [Indexed: 01/17/2023]
Abstract
SCOPE Aspergillus terreus is an industrial microorganism used in the brewing and sauce industries. It produces monacolin K, a natural statin. The study conducted an 8-week randomized controlled trial with hypercholesterolemic subjects to examine the hypocholesterolemic effects and mechanisms of supplementation with yellow yeast rice (YYR) prepared by growing Aspergillus fungi on steamed rice. METHODS AND RESULTS YYR supplementation markedly reduced total cholesterol, LDL, and apolipoprotein B100 levels in plasma compared with the placebo. In addition, YYR induced a significantly increased ATP binding cassette subfamily B member 11 (ABCB11) gene expression compared with the placebo, indicating the role of YYR in lowering intrahepatic cholesterol availability by stimulating the bile salt export pump. Upregulation of LDL receptor (LDLR) and 3-methylglutaryl-CoA reductase (HMGCR) gene expressions provided additional evidence to support the role of YYR in reducing hepatic cholesterol availability. Plasma metabolomic profiling revealed the possibility of diminishing bile acid absorption. Finally, Spearman rank analysis showed correlations of plasma cholesterol profiles with HMGCR and LDLR gene expressions (negative) and plasma bile acids (positive). Plasma bile acids also correlated with ABCB11 (negative) and LDLR (positive) gene expressions. CONCLUSION These findings suggest that daily YYR supplementation exerted hypocholesterolemic effects in mild-to-moderate hypercholesterolemic subjects by reducing intrahepatic cholesterol availability through stimulating bile salt export pumps and inhibiting cholesterol biosynthesis.
Collapse
Affiliation(s)
- Seunghee Kang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eunok Lee
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Heeyeon Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, Republic of Korea
| | - Jaekyung Lee
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Ji Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Bumjo Oh
- Department of Family Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
14
|
Feng X, Zhai G, Yang J, Liu Y, Zhou Y, Guo Q. Myocardial Infarction and Coronary Artery Disease in Menopausal Women With Type 2 Diabetes Mellitus Negatively Correlate With Total Serum Bile Acids. Front Endocrinol (Lausanne) 2021; 12:754006. [PMID: 34675887 PMCID: PMC8524089 DOI: 10.3389/fendo.2021.754006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 01/14/2023] Open
Abstract
Background As metabolic molecules, bile acids (BAs) not only promote the absorption of fat-soluble nutrients, but they also regulate many metabolic processes, including the homeostasis of glucose and lipids. Although total serum BA (TBA) measurement is a readily available clinical test related to coronary artery disease (CAD), myocardial infarction (MI), and type 2 diabetes mellitus (T2DM), the relationship between TBA and these pathological conditions remain unclear, and research on this topic is inconclusive. Methods This study enrolled 20,255 menopausal women aged over 50 years, including 6,421 T2DM patients. The study population was divided into different groups according to the median TBA level in order to explore the clinical characteristics of menopausal women with different TBA levels. Spline analyses, generalized additive model (GAM) model and regression analyses based on TBA level were used to explore the relationship between TBA and different diseases independently, including CAD and MI, or in combination with T2DM. Results Both in the general population and in the T2DM subgroup, the TBA level was significantly lower in CAD patients than in non-CAD patients. Spline analyses indicated that within normal clinical range of TBA concentration (0-10 µmol/L), the presence of CAD and MI showed similar trends in total and T2DM population. Similarly, the GAM model indicated that within the 0-10 μmol/L clinical range, the predicted probability for CAD and MI alone and in combination with T2DM was negatively correlated with TBA concentration. Multivariate regression analysis suggested that low TBA level was positively associated with the occurrence of CAD combined with T2DM (OR: 1.451; 95%CI: 1.141-1.847). Conclusions In menopausal women, TBA may represent a valuable clinical serum marker with negative correlation for CAD and MI in patients with T2DM.
Collapse
Affiliation(s)
| | | | | | | | - Yujie Zhou
- *Correspondence: Yujie Zhou, ; Qianyun Guo,
| | | |
Collapse
|