1
|
De Fano M, Bartolini D, Tortoioli C, Vermigli C, Malara M, Galli F, Murdolo G. Adipose Tissue Plasticity in Response to Pathophysiological Cues: A Connecting Link between Obesity and Its Associated Comorbidities. Int J Mol Sci 2022; 23:ijms23105511. [PMID: 35628322 PMCID: PMC9141504 DOI: 10.3390/ijms23105511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
Adipose tissue (AT) is a remarkably plastic and active organ with functional pleiotropism and high remodeling capacity. Although the expansion of fat mass, by definition, represents the hallmark of obesity, the dysregulation of the adipose organ emerges as the forefront of the link between adiposity and its associated metabolic and cardiovascular complications. The dysfunctional fat displays distinct biological signatures, which include enlarged fat cells, low-grade inflammation, impaired redox homeostasis, and cellular senescence. While these events are orchestrated in a cell-type, context-dependent and temporal manner, the failure of the adipose precursor cells to form new adipocytes appears to be the main instigator of the adipose dysregulation, which, ultimately, poses a deleterious milieu either by promoting ectopic lipid overspill in non-adipose targets (i.e., lipotoxicity) or by inducing an altered secretion of different adipose-derived hormones (i.e., adipokines and lipokines). This “adipocentric view” extends the previous “expandability hypothesis”, which implies a reduced plasticity of the adipose organ at the nexus between unhealthy fat expansion and the development of obesity-associated comorbidities. In this review, we will briefly summarize the potential mechanisms by which adaptive changes to variations of energy balance may impair adipose plasticity and promote fat organ dysfunction. We will also highlight the conundrum with the perturbation of the adipose microenvironment and the development of cardio-metabolic complications by focusing on adipose lipoxidation, inflammation and cellular senescence as a novel triad orchestrating the conspiracy to adipose dysfunction. Finally, we discuss the scientific rationale for proposing adipose organ plasticity as a target to curb/prevent adiposity-linked cardio-metabolic complications.
Collapse
Affiliation(s)
- Michelatonio De Fano
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Desirèe Bartolini
- Department of Pharmaceutical Sciences, Human Anatomy Laboratory, University of Perugia, 06132 Perugia, Italy; (D.B.); (F.G.)
| | - Cristina Tortoioli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Cristiana Vermigli
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Massimo Malara
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Human Anatomy Laboratory, University of Perugia, 06132 Perugia, Italy; (D.B.); (F.G.)
| | - Giuseppe Murdolo
- Department of Internal Medicine, Endocrinology and Metabolism, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, Piazzale Gambuli, 06081 Perugia, Italy; (M.D.F.); (C.T.); (C.V.); (M.M.)
- Correspondence: ; Tel.: +39-(0)75-578-3301; Fax: +39-75-573-0855
| |
Collapse
|
2
|
Torres ERS, Luo J, Boehnlein JK, Towns D, Kinzie JD, DeBarber AE, Raber J. Apolipoprotein E Isoform-specific changes related to stress and trauma exposure. Transl Psychiatry 2022; 12:125. [PMID: 35347119 PMCID: PMC8960860 DOI: 10.1038/s41398-022-01848-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a highly prevalent mental health disorder. Due to the high level of variability in susceptibility and severity, PTSD therapies are still insufficient. In addition to environmental exposures, genetic risks play a prominent role and one such factor is apolipoprotein E. The protein (apoE) is functionally involved in cholesterol transport and metabolism and exists as 3 major isoforms in humans: E2, E3, and E4. To model the role of apolipoprotein E isoform in stress-related changes in behavior and cognition, female and male mice (3-5 months of age) expressing E2, E3, or E4 were used. Mice were either placed into control groups or exposed to chronic variable stress (CVS), which has been shown to induce PTSD-like behavioral and neuroendocrine changes. E2 mice showed a unique response to CVS compared to E3 and E4 mice that included impaired spatial learning and memory, increased adrenal gland weight, and no increase in glucocorticoid receptor protein levels (normalized to apoE levels). In addition, the cholesterol metabolite 7-ketocholesterol was elevated in the cortex after CVS in E3 and E4, but not E2 female mice. E2 confers unique changes in behavioral, cognitive, and biomarker profiles after stress exposure and identify 7-ketocholesterol as a possible novel biomarker of the traumatic stress response. We further explored the relationship between E2 and PTSD in an understudied population by genotyping 102 patients of Cambodian and Vietnamese ethnicity. E2 carriers demonstrated a higher odds ratio of having a PTSD diagnosis compared to E3/E3 carriers, supporting that the E2 genotype is associated with PTSD diagnosis after trauma exposure in this population.
Collapse
Affiliation(s)
- Eileen Ruth S Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181SW Sam Jackson Park Road, L470, Portland, OR, 97239, USA
| | - Jenny Luo
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - James K Boehnlein
- Department of Psychiatry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHN-80, Portland, OR, 97201-3098, USA
- VA Northwest Mental Illness Research, Education and Clinical Center (MIRECC), Washington DC, USA
| | - Daniel Towns
- Department of Psychiatry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHN-80, Portland, OR, 97201-3098, USA
| | - J David Kinzie
- Department of Psychiatry, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, UHN-80, Portland, OR, 97201-3098, USA
| | - Andrea E DeBarber
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181SW Sam Jackson Park Road, L470, Portland, OR, 97239, USA.
- Departments of Neurology, Psychiatry, and Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Morris DJ, Brem AS, Odermatt A. Modulation of 11β-hydroxysteroid dehydrogenase functions by the cloud of endogenous metabolites in a local microenvironment: The glycyrrhetinic acid-like factor (GALF) hypothesis. J Steroid Biochem Mol Biol 2021; 214:105988. [PMID: 34464733 DOI: 10.1016/j.jsbmb.2021.105988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
11β-Hydroxysteroid dehydrogenase (11β-HSD)-dependent conversion of cortisol to cortisone and corticosterone to 11-dehydrocorticosterone are essential in regulating transcriptional activities of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Inhibition of 11β-HSD by glycyrrhetinic acid metabolites, bioactive components of licorice, causes sodium retention and potassium loss, with hypertension characterized by low renin and aldosterone. Essential hypertension is a major disease, mostly with unknown underlying mechanisms. Here, we discuss a putative mechanism for essential hypertension, the concept that endogenous steroidal compounds acting as glycyrrhetinic acid-like factors (GALFs) inhibit 11β-HSD dehydrogenase, and allow for glucocorticoid-induced MR and GR activation with resulting hypertension. Initially, several metabolites of adrenally produced glucocorticoids and mineralocorticoids were shown to be potent 11β-HSD inhibitors. Such GALFs include modifications in the A-ring and/or at positions 3, 7 and 21 of the steroid backbone. These metabolites may be formed in peripheral tissues or by gut microbiota. More recently, metabolites of 11β-hydroxy-Δ4androstene-3,17-dione and 7-oxygenated oxysterols have been identified as potent 11β-HSD inhibitors. In a living system, 11β-HSD isoforms are not exposed to a single substrate but to several substrates, cofactors, and various inhibitors simultaneously, all at different concentrations depending on physical state, tissue and cell type. We propose that this "cloud" of steroids and steroid-like substances in the microenvironment determines the 11β-HSD-dependent control of MR and GR activity. A dysregulated composition of this cloud of metabolites in the respective microenvironment needs to be taken into account when investigating disease mechanisms, for forms of low renin, low aldosterone hypertension.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
4
|
Reinmuth L, Hsiao CC, Hamann J, Rosenkilde M, Mackrill J. Multiple Targets for Oxysterols in Their Regulation of the Immune System. Cells 2021; 10:cells10082078. [PMID: 34440846 PMCID: PMC8391951 DOI: 10.3390/cells10082078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.
Collapse
Affiliation(s)
- Lisa Reinmuth
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (C.-C.H.); (J.H.)
- Neuroimmunology Research Group, The Netherlands Institute for Neuroscience, 1105BA Amsterdam, The Netherlands
| | - Mette Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark;
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| | - John Mackrill
- Department of Physiology, School of Medicine, BioSciences Institute, University College Cork, College Road, Cork T12 YT20, Ireland
- Correspondence: (M.R.); (J.M.); Tel.: +353-(0)21-490-1400 (J.M.)
| |
Collapse
|
5
|
Gomez-Sanchez EP, Gomez-Sanchez CE. 11β-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol Cell Endocrinol 2021; 526:111210. [PMID: 33607268 PMCID: PMC8108011 DOI: 10.1016/j.mce.2021.111210] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
This review briefly addresses the history of the discovery and elucidation of the three cloned 11β-hydroxysteroid dehydrogenase (11βHSD) enzymes in the human, 11βHSD1, 11βHSD2 and 11βHSD3, an NADP+-dependent dehydrogenase also called the 11βHSD1-like dehydrogenase (11βHSD1L), as well as evidence for yet identified 11βHSDs. Attention is devoted to more recently described aspects of this multi-functional family. The importance of 11βHSD substrates other than glucocorticoids including bile acids, 7-keto sterols, neurosteroids, and xenobiotics is discussed, along with examples of pathology when functions of these multi-tasking enzymes are disrupted. 11βHSDs modulate the intracellular concentration of glucocorticoids, thereby regulating the activation of the glucocorticoid and mineralocorticoid receptors, and 7β-27-hydroxycholesterol, an agonist of the retinoid-related orphan receptor gamma (RORγ). Key functions of this nuclear transcription factor include regulation of immune cell differentiation, cytokine production and inflammation at the cell level. 11βHSD1 expression and/or glucocorticoid reductase activity are inappropriately increased with age and in obesity and metabolic syndrome (MetS). Potential causes for disappointing results of the clinical trials of selective inhibitors of 11βHSD1 in the treatment of these disorders are discussed, as well as the potential for more targeted use of inhibitors of 11βHSD1 and 11βHSD2.
Collapse
Affiliation(s)
| | - Celso E Gomez-Sanchez
- Department of Pharmacology and Toxicology, Jackson, MS, USA; Medicine (Endocrinology), Jackson, MS, USA; University of Mississippi Medical Center and G.V. (Sonny) Montgomery VA Medical Center(3), Jackson, MS, USA
| |
Collapse
|
6
|
Vejux A, Abed-Vieillard D, Hajji K, Zarrouk A, Mackrill JJ, Ghosh S, Nury T, Yammine A, Zaibi M, Mihoubi W, Bouchab H, Nasser B, Grosjean Y, Lizard G. 7-Ketocholesterol and 7β-hydroxycholesterol: In vitro and animal models used to characterize their activities and to identify molecules preventing their toxicity. Biochem Pharmacol 2020; 173:113648. [DOI: 10.1016/j.bcp.2019.113648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
7
|
Anderson A, Campo A, Fulton E, Corwin A, Jerome WG, O'Connor MS. 7-Ketocholesterol in disease and aging. Redox Biol 2020; 29:101380. [PMID: 31926618 PMCID: PMC6926354 DOI: 10.1016/j.redox.2019.101380] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/08/2023] Open
Abstract
7-Ketocholesterol (7KC) is a toxic oxysterol that is associated with many diseases and disabilities of aging, as well as several orphan diseases. 7KC is the most common product of a reaction between cholesterol and oxygen radicals and is the most concentrated oxysterol found in the blood and arterial plaques of coronary artery disease patients as well as various other disease tissues and cell types. Unlike cholesterol, 7KC consistently shows cytotoxicity to cells and its physiological function in humans or other complex organisms is unknown. Oxysterols, particularly 7KC, have also been shown to diffuse through membranes where they affect receptor and enzymatic function. Here, we will explore the known and proposed mechanisms of pathologies that are associated with 7KC, as well speculate about the future of 7KC as a diagnostic and therapeutic target in medicine.
Collapse
|
8
|
Sghaier R, Nury T, Leoni V, Caccia C, Pais De Barros JP, Cherif A, Vejux A, Moreau T, Limem K, Samadi M, Mackrill JJ, Masmoudi AS, Lizard G, Zarrouk A. Dimethyl fumarate and monomethyl fumarate attenuate oxidative stress and mitochondrial alterations leading to oxiapoptophagy in 158N murine oligodendrocytes treated with 7β-hydroxycholesterol. J Steroid Biochem Mol Biol 2019; 194:105432. [PMID: 31344443 DOI: 10.1016/j.jsbmb.2019.105432] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023]
Abstract
Oxidative stress and mitochondrial dysfunction contribute to the pathogenesis of neurodegenerative diseases and favor lipid peroxidation, leading to increased levels of 7β-hydroxycholesterol (7β-OHC) which induces oxiapoptophagy (OXIdative stress, APOPTOsis, autoPHAGY). The cytoprotective effects of dimethylfumarate (DMF), used in the treatment of relapsing remitting multiple sclerosis and of monomethylfumarate (MMF), its main metabolite, were evaluated on murine oligodendrocytes 158 N exposed to 7β-OHC (50 μM, 24 h) with or without DMF or MMF (25 μM). The activity of 7β-OHC in the presence or absence DMF or MMF was evaluated on several parameters: cell adhesion; plasma membrane integrity measured with propidium iodide (PI), trypan blue and fluoresceine diacetate (FDA) assays; LDH activity; antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)); generation of lipid peroxidation products (malondialdehyde (MDA), conjugated dienes (CDs)) and protein oxidation products (carbonylated proteins (CPs)); reactive oxygen species (ROS) overproduction conducted with DHE and DHR123. The effect on mitochondria was determined with complementary criteria: measurement of succinate dehydrogenase activity, evaluation of mitochondrial potential (ΔΨm) and mitochondrial superoxide anions (O2●-) production using DiOC6(3) and MitoSOX, respectively; quantification of mitochondrial mass with Mitotracker Red, and of cardiolipins and organic acids. The effects on mitochondrial and peroxisomal ultrastructure were determined by transmission electron microscopy. Intracellular sterol and fatty acid profiles were determined. Apoptosis and autophagy were characterized by staining with Hoechst 33,342, Giemsa and acridine orange, and with antibodies raised against caspase-3 and LC3. DMF and MMF attenuate 7β-OHC-induced cytotoxicity: cell growth inhibition; decreased cell viability; mitochondrial dysfunction (decrease of succinate dehydrogenase activity, loss of ΔΨm, increase of mitochondrial O2●- production, alteration of the tricarboxilic acid (TCA) cycle, and cardiolipins content); oxidative stress induction (ROS overproduction, alteration of GPx, CAT, and SOD activities, increased levels of MDA, CDs, and CPs); changes in fatty acid and cholesterol metabolism; and cell death induction (caspase-3 cleavage, activation of LC3-I in LC3-II). Ultrastructural alterations of mitochondria and peroxisomes were prevented. These results demonstrate that DMF and MMF prevent major dysfunctions associated with neurodegenerative diseases: oxidative stress, mitochondrial dysfunction, apoptosis and autophagy.
Collapse
Affiliation(s)
- Randa Sghaier
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France; Univ. Sousse, Laboratory of Biochemistry, Faculty of Medicine, Tunisia; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir; Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources (LR11ES31), Higher Institute of Biotechnology, Sidi Thabet, Tunisia
| | - Thomas Nury
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, IRCCS Carlo Besta, Milano, Italy
| | | | - Ameur Cherif
- Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources (LR11ES31), Higher Institute of Biotechnology, Sidi Thabet, Tunisia
| | - Anne Vejux
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France
| | - Thibault Moreau
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France; Univ. Hospital, Department of Neurology, Dijon, France
| | - Khalifa Limem
- Univ. Sousse, Laboratory of Biochemistry, Faculty of Medicine, Tunisia
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Dept of Chemistry, Univ. Lorraine, Metz Technopôle, Metz, France
| | - John J Mackrill
- Department of Physiology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Ahmed Slaheddine Masmoudi
- Univ. Manouba, Laboratory of Biotechnology and Valorisation of Bio-Géo Ressources (LR11ES31), Higher Institute of Biotechnology, Sidi Thabet, Tunisia
| | - Gérard Lizard
- Univ. Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, Dijon, France.
| | - Amira Zarrouk
- Univ. Sousse, Laboratory of Biochemistry, Faculty of Medicine, Tunisia; Univ. Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir.
| |
Collapse
|
9
|
Chemistry, biochemistry, metabolic fate and mechanism of action of 6-oxo-cholestan-3β,5α-diol (OCDO), a tumor promoter and cholesterol metabolite. Biochimie 2018; 153:139-149. [PMID: 29654865 DOI: 10.1016/j.biochi.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Abstract
Oxygenation products of cholesterol, named oxysterols, were suspected since the 20th century to be involved in carcinogenesis. Among the family of oxysterol molecules, cholesterol-5,6-epoxides (5,6-EC) retained the attention of scientists because they contain a putative alkylating epoxide group. However, studies failed into demonstrating that 5,6-EC were direct carcinogens and revealed a surprising chemical stability and unreactivity towards nucleophiles in standard conditions. Analyses of 5,6-EC metabolism in normal cells showed that they were extensively transformed into cholestane-3β,5α,6β-triol (CT) by the cholesterol-5,6-epoxide hydrolase (ChEH). Studies performed in cancer cells showed that CT was additionally metabolized into an oxysterol identified as the 6-oxo-cholestan-3β,5α-diol (OCDO), by the 11β-hydroxysteroid dehydrogenase of type 2 (HSD2), the enzyme which inactivates cortisol into cortisone. Importantly, OCDO was shown to display tumor promoter properties in breast cancers, by binding to the glucocorticoid receptor, and independently of their estrogen receptor status, revealing the existence of a new tumorigenic pathway centered on 5,6-EC. In breast tumors from patients, OCDO production as well as the expression of the enzymes involved in the pathway producing OCDO, namely ChEH subunits and HSD2, were higher compared to normal tissues, and overexpression of these enzymes correlate with a higher risk of patient death, indicating that this onco-metabolism is of major importance to breast cancer pathology. Herein, we will review the actual knowledge and the future trends in OCDO chemistry, biochemistry, metabolism and mechanism of action and will discuss the impact of OCDO discovery on new anticancer therapeutic strategies.
Collapse
|
10
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
11
|
Cobice DF, Mackay CL, Goodwin RJA, McBride A, Langridge-Smith PR, Webster SP, Walker BR, Andrew R. Mass spectrometry imaging for dissecting steroid intracrinology within target tissues. Anal Chem 2013; 85:11576-84. [PMID: 24134553 PMCID: PMC4392804 DOI: 10.1021/ac402777k] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Steroid concentrations within tissues are modulated by intracellular enzymes. Such "steroid intracrinology" influences hormone-dependent cancers and obesity and provides targets for pharmacological inhibition. However, no high resolution methods exist to quantify steroids within target tissues. We developed mass spectrometry imaging (MSI), combining matrix assisted laser desorption ionization with on-tissue derivatization with Girard T and Fourier transform ion cyclotron resonance mass spectrometry, to quantify substrate and product (11-dehydrocorticosterone and corticosterone) of the glucocorticoid-amplifying enzyme 11β-HSD1. Regional steroid distribution was imaged at 150-200 μm resolution in rat adrenal gland and mouse brain sections and confirmed with collision induced dissociation/liquid extraction surface analysis. In brains of mice with 11β-HSD1 deficiency or inhibition, MSI quantified changes in subregional corticosterone/11-dehydrocorticosterone ratio, distribution of inhibitor, and accumulation of the alternative 11β-HSD1 substrate, 7-ketocholesterol. MSI data correlated well with LC-MS/MS in whole brain homogenates. MSI with derivatization is a powerful new tool to investigate steroid biology within tissues.
Collapse
Affiliation(s)
- Diego F. Cobice
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - C. Logan Mackay
- SIRCAMS, School of Chemistry, Joseph Black Building, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, U.K
| | | | - Andrew McBride
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Patrick R. Langridge-Smith
- SIRCAMS, School of Chemistry, Joseph Black Building, The King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, U.K
| | - Scott P. Webster
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Brian R. Walker
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
12
|
Methlie P, Dankel S, Myhra T, Christensen B, Gjerde J, Fadnes D, Våge V, Løvås K, Mellgren G. Changes in adipose glucocorticoid metabolism before and after bariatric surgery assessed by direct hormone measurements. Obesity (Silver Spring) 2013; 21:2495-503. [PMID: 23512832 DOI: 10.1002/oby.20449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/21/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Increased intra-adipose cortisol is thought to promote obesity, but few human studies have investigated intra-adipose glucocorticoid hormones and none have demonstrated prospective changes with fat loss. DESIGN AND METHODS Subcutaneous adipose tissue (SAT) was obtained from obese subjects before and 1-year after surgery-induced fat loss, and from nonobese controls. In a second similar cohort of obese subjects, adipocytes and stromal-vascular fraction were isolated. Intra-adipose cortisol and cortisone levels were analyzed by liquid chromatography mass spectrometry and HSD11B1/HSD11B2 mRNA by qPCR. RESULTS SAT cortisol/cortisone ratio before fat loss, median 4.8 (interquartile range, 4.1-5.7), was higher than after fat loss, 1.9 (1.0-2.7) (P = 0.001), and compared to nonobese controls, 3.2 (2.4-3.9) (P = 0.005). Cortisone before fat loss, 2.3 (1.2-2.9) nmol/kg, was lower than after fat loss, 5.8 (3.0-10.2) nmol/kg (P = 0.042), and compared to controls, 5.1 (3.8-6.7) nmol/kg (P = 0.013). HSD11B1 was predominantly expressed in mature adipocytes, whereas HSD11B2 was expressed at a higher level in stromal-vascular fraction. CONCLUSIONS The intra-adipose glucocorticoid metabolism was markedly altered in the extremely obese state with increased cortisol levels relative to cortisone, whereas fat loss restored this balance approximating nonobese subjects. Changes were more pronounced for cortisone than cortisol, suggesting an adaptive response to insufficient intra-adipose cortisol levels in obesity.
Collapse
Affiliation(s)
- Paal Methlie
- Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Murdolo G, Bartolini D, Tortoioli C, Piroddi M, Iuliano L, Galli F. Lipokines and oxysterols: novel adipose-derived lipid hormones linking adipose dysfunction and insulin resistance. Free Radic Biol Med 2013; 65:811-820. [PMID: 23954331 DOI: 10.1016/j.freeradbiomed.2013.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 02/07/2023]
Abstract
The expansion of adipose tissue (AT) is, by definition, a hallmark of obesity. However, not all increases in fat mass are associated with pathophysiological cues. Indeed, whereas a "healthy" fat mass accrual, mainly in the subcutaneous depots, preserves metabolic homeostasis, explaining the occurrence of the metabolically healthy obese phenotype, "unhealthy" AT expansion is importantly associated with insulin resistance/type 2 diabetes and the metabolic syndrome. The development of a dysfunctional adipose organ may find mechanistic explanation in a reduced ability to recruit new and functional (pre)adipocytes from undifferentiated precursor cells. Such a failure of the adipogenic process underlies the "AT expandability" paradigm. The inability of AT to expand further to store excess nutrients, rather than obesity per se, induces a diabetogenic milieu by promoting the overflow and the ectopic deposition of fatty acids in insulin-dependent organs (i.e., lipotoxicity), the secretion of various metabolically detrimental adipose-derived hormones (i.e., adipokines and lipokines), and the occurrence of local and systemic inflammation and oxidative stress. Hitherto, fatty acids (i.e., lipokines) and the oxidation by-products of cholesterol and polyunsaturated fatty acids, such as nonenzymatic oxysterols and reactive aldehyde species, respectively, emerge as key modulators of (pre)adipocyte signaling through Wnt/β-catenin and MAPK pathways and potential regulators of glucose homeostasis. These and other mechanistic insights linking adipose dysfunction, oxidative stress, and impairment of glucose homeostasis are discussed in this review article, which focuses on adipose peroxidation as a potential instigator of, and a putative therapeutic target for, obesity-associated metabolic dysfunctions.
Collapse
Affiliation(s)
- Giuseppe Murdolo
- Department of Internal Medicine, Assisi Hospital, I-06081 Assisi, Perugia, Italy; Section of Internal Medicine, Endocrine, and Metabolic Sciences, Italy.
| | - Desirée Bartolini
- Section of Applied Biochemistry and Nutritional Sciences, Department of Internal Medicine, Perugia University, Perugia, Italy
| | | | - Marta Piroddi
- Section of Applied Biochemistry and Nutritional Sciences, Department of Internal Medicine, Perugia University, Perugia, Italy
| | - Luigi Iuliano
- Unit of Vascular Medicine, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Francesco Galli
- Section of Applied Biochemistry and Nutritional Sciences, Department of Internal Medicine, Perugia University, Perugia, Italy
| |
Collapse
|
14
|
Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93:1139-206. [PMID: 23899562 DOI: 10.1152/physrev.00020.2012] [Citation(s) in RCA: 592] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid action on target tissues is determined by the density of "nuclear" receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental "programming." The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
Collapse
Affiliation(s)
- Karen Chapman
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
15
|
Mitić T, Shave S, Semjonous N, McNae I, Cobice DF, Lavery GG, Webster SP, Hadoke PWF, Walker BR, Andrew R. 11β-Hydroxysteroid dehydrogenase type 1 contributes to the balance between 7-keto- and 7-hydroxy-oxysterols in vivo. Biochem Pharmacol 2013; 86:146-53. [PMID: 23415904 PMCID: PMC3694296 DOI: 10.1016/j.bcp.2013.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 01/19/2023]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11βHSD1; EC 1.1.1.146) generates active glucocorticoids from inert 11-keto metabolites. However, it can also metabolize alternative substrates, including 7β-hydroxy- and 7-keto-cholesterol (7βOHC, 7KC). This has been demonstrated in vitro but its consequences in vivo are uncertain. We used genetically modified mice to investigate the contribution of 11βHSD1 to the balance of circulating levels of 7KC and 7βOHC in vivo, and dissected in vitro the kinetics of the interactions between oxysterols and glucocorticoids for metabolism by the mouse enzyme. Circulating levels of 7KC and 7βOHC in mice were 91.3 ± 22.3 and 22.6 ± 5.7 nM respectively, increasing to 1240 ± 220 and 406 ± 39 nM in ApoE−/− mice receiving atherogenic western diet. Disruption of 11βHSD1 in mice increased (p < 0.05) the 7KC/7βOHC ratio in plasma (by 20%) and also in isolated microsomes (2 fold). The 7KC/7βOHC ratio was similarly increased when NADPH generation was restricted by disruption of hexose-6-phosphate dehydrogenase. Reduction and oxidation of 7-oxysterols by murine 11βHSD1 proceeded more slowly and substrate affinity was lower than for glucocorticoids. in vitro 7βOHC was a competitive inhibitor of oxidation of corticosterone (Ki = 0.9 μM), whereas 7KC only weakly inhibited reduction of 11-dehydrocorticosterone. However, supplementation of 7-oxysterols in cultured cells, secondary to cholesterol loading, preferentially slowed reduction of glucocorticoids, rather than oxidation. Thus, in mouse, 11βHSD1 influenced the abundance and balance of circulating and tissue levels of 7βOHC and 7KC, promoting reduction of 7KC. In health, 7-oxysterols are unlikely to regulate glucocorticoid metabolism. However, in hyperlipidaemia, 7-oxysterols may inhibit glucocorticoid metabolism and modulate signaling through corticosteroid receptors.
Collapse
Affiliation(s)
- Tijana Mitić
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
García RA, Search DJ, Lupisella JA, Ostrowski J, Guan B, Chen J, Yang WP, Truong A, He A, Zhang R, Yan M, Hellings SE, Gargalovic PS, Ryan CS, Watson LM, Langish RA, Shipkova PA, Carson NL, Taylor JR, Yang R, Psaltis GC, Harrity TW, Robl JA, Gordon DA. 11β-hydroxysteroid dehydrogenase type 1 gene knockout attenuates atherosclerosis and in vivo foam cell formation in hyperlipidemic apoE⁻/⁻ mice. PLoS One 2013; 8:e53192. [PMID: 23383297 PMCID: PMC3562192 DOI: 10.1371/journal.pone.0053192] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/29/2012] [Indexed: 11/22/2022] Open
Abstract
Background Chronic glucocorticoid excess has been linked to increased atherosclerosis and general cardiovascular risk in humans. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) increases active glucocorticoid levels within tissues by catalyzing the conversion of cortisone to cortisol. Pharmacological inhibition of 11βHSD1 has been shown to reduce atherosclerosis in murine models. However, the cellular and molecular details for this effect have not been elucidated. Methodology/Principal Findings To examine the role of 11βHSD1 in atherogenesis, 11βHSD1 knockout mice were created on the pro-atherogenic apoE−/− background. Following 14 weeks of Western diet, aortic cholesterol levels were reduced 50% in 11βHSD1−/−/apoE−/− mice vs. 11βHSD1+/+/apoE−/− mice without changes in plasma cholesterol. Aortic 7-ketocholesterol content was reduced 40% in 11βHSD1−/−/apoE−/− mice vs. control. In the aortic root, plaque size, necrotic core area and macrophage content were reduced ∼30% in 11βHSD1−/−/apoE−/− mice. Bone marrow transplantation from 11βHSD1−/−/apoE−/− mice into apoE−/− recipients reduced plaque area 39–46% in the thoracic aorta. In vivo foam cell formation was evaluated in thioglycollate-elicited peritoneal macrophages from 11βHSD1+/+/apoE−/− and 11βHSD1−/−/apoE−/− mice fed a Western diet for ∼5 weeks. Foam cell cholesterol levels were reduced 48% in 11βHSD1−/−/apoE−/− mice vs. control. Microarray profiling of peritoneal macrophages revealed differential expression of genes involved in inflammation, stress response and energy metabolism. Several toll-like receptors (TLRs) were downregulated in 11βHSD1−/−/apoE−/− mice including TLR 1, 3 and 4. Cytokine release from 11βHSD1−/−/apoE−/−-derived peritoneal foam cells was attenuated following challenge with oxidized LDL. Conclusions These findings suggest that 11βHSD1 inhibition may have the potential to limit plaque development at the vessel wall and regulate foam cell formation independent of changes in plasma lipids. The diminished cytokine response to oxidized LDL stimulation is consistent with the reduction in TLR expression and suggests involvement of 11βHSD1 in modulating binding of pro-atherogenic TLR ligands.
Collapse
Affiliation(s)
- Ricardo A. García
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Debra J. Search
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - John A. Lupisella
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Jacek Ostrowski
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Bo Guan
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Jian Chen
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Wen-Pin Yang
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Amy Truong
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Aiqing He
- Applied Genomics, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Rongan Zhang
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Mujing Yan
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Samuel E. Hellings
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Peter S. Gargalovic
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Carol S. Ryan
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Linda M. Watson
- Pharmaceutical Compound Optimization: Discovery Toxicology, Bristol-Myers Squibb Company, Lawrenceville, New Jersey, United States of America
| | - Robert A. Langish
- Pharmaceutical Compound Optimization: Discovery Analytical Sciences, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Petia A. Shipkova
- Pharmaceutical Compound Optimization: Discovery Analytical Sciences, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Nancy L. Carson
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Joseph R. Taylor
- Metabolic Diseases, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Richard Yang
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - George C. Psaltis
- Veterinary Sciences, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Thomas W. Harrity
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - Jeffrey A. Robl
- Discovery Chemistry, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
| | - David A. Gordon
- Cardiovascular Drug Discovery, Bristol-Myers Squibb Company, Pennington, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
17
|
Soto-Rodríguez I, Alexander-Aguilera A, Zamudio-Pérez A, Camara-Contreras M, Hernandez-Diaz G, Garcia HS. Alteration of some inflammatory biomarkers by dietary oxysterols in rats. Inflammation 2013; 35:1302-7. [PMID: 22391743 DOI: 10.1007/s10753-012-9442-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oxysterols are structurally similar to cholesterol, but are characterized by one or more additional oxygen-containing functional groups. These compounds are implicated in inflammation given their ability to cause irreversible damage to vascular cells. The aim of this study was to study the alteration of some inflammatory biomarkers in Wistar rats in response to dietary oxysterols. Eighteen rats were randomly divided into three groups of six rats each. A standard diet supplemented with 1% (w/w) pure cholesterol (Chol group) or 1% (w/w) of an oxidized cholesterol mixture (COPs group) was fed for 8 weeks. Blood serum was separated; abdominal, pericardial, and epididymal adipose tissue was removed carefully. The COPs subjects exhibited significant increase in blood pressure and serum triacylgycerols as well as increased body fat index and pericardic, abdominal, and epididymal adipose tissue. These effects were accompanied by elevated circulating levels of plasma high-sensitivity C-reactive protein, tumor necrosis factor alpha, and resistin. We suggest that dietary oxysterols have an important pro-inflammatory effect.
Collapse
Affiliation(s)
- Ida Soto-Rodríguez
- Facultad de Bioanálisis, Universidad Veracruzana, Carmen Serdán s/n, Col. Flores Magón, Veracruz, Ver, 91700, Mexico
| | | | | | | | | | | |
Collapse
|
18
|
Murdolo G, Piroddi M, Luchetti F, Tortoioli C, Canonico B, Zerbinati C, Galli F, Iuliano L. Oxidative stress and lipid peroxidation by-products at the crossroad between adipose organ dysregulation and obesity-linked insulin resistance. Biochimie 2012; 95:585-94. [PMID: 23274128 DOI: 10.1016/j.biochi.2012.12.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/13/2012] [Indexed: 12/11/2022]
Abstract
Obesity has been proposed as an energy balance disorder in which the expansion of adipose tissue (AT) leads to unfavorable health outcomes. Even though adiposity represents the most powerful driving force for the development of insulin resistance (IR) and type 2 diabetes, mounting evidence points to "adipose dysregulation", rather than fat mass accrual per se, as a key pathophysiological trigger of the obesity-linked metabolic complications. The dysfunctional fat, besides hypertrophic adipose cells and inflammatory cues, displays a reduced ability to form new adipocytes from the undifferentiated precursor cells (ie, the preadipocytes). The failure of adipogenesis poses a "diabetogenic" milieu either by promoting the ectopic overflow/deposition of lipids in non-adipose targets (lipotoxicity) or by inducing a dysregulated secretion of different adipose-derived hormones (ie, adipokines and lipokines). This novel and provocative paradigm ("expandability hypothesis") further extends current "adipocentric view" implicating a reduced adipogenic capacity as a missing link between "unhealthy" fat expansion and impairment of metabolic homeostasis. Hitherto, reactive oxygen species have been implicated in multiple forms of IR. However, the effects of stress on adipogenesis remain controversial. Compelling circumstantial data indicate that lipid peroxidation by-products (ie, oxysterols and 4-hydrononenal) may detrimentally affect adipose homeostasis partly by impairing (pre)adipocyte differentiation. In this scenario, it is tempting to speculate that a fine tuning of the adipose redox status may provide new mechanistic insights at the interface between fat dysregulation and development of metabolic dysfunctions. Yet, in humans, the molecular "signatures" of oxidative stress in the dysregulated fat as well as the pathophysiological effects of adipose (per)oxidation on glucose homeostasis remain poorly investigated. In this review we will summarize the potential mechanisms by which increased oxidative stress in fat may impair (pre)adipocyte differentiation and promote the adipose dysfunction. We will also attempt to highlight the conundrum with the adipose redox changes and the regulation of glucose homeostasis. Finally, we will briefly discuss the scientific rationale for proposing the adipose redox state as a potential target for novel therapeutic strategies to curb/prevent adiposity-linked insulin resistance.
Collapse
Affiliation(s)
- Giuseppe Murdolo
- Department of Internal Medicine, Assisi Hospital, Via Valentin Muller 1, Assisi, Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pereira CD, Azevedo I, Monteiro R, Martins MJ. 11β-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab 2012; 14:869-81. [PMID: 22321826 DOI: 10.1111/j.1463-1326.2012.01582.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent evidence strongly argues for a pathogenic role of glucocorticoids and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in obesity and the metabolic syndrome, a cluster of risk factors for atherosclerotic cardiovascular disease and type 2 diabetes mellitus (T2DM) that includes insulin resistance (IR), dyslipidaemia, hypertension and visceral obesity. This has been partially prompted not only by the striking clinical resemblances between the metabolic syndrome and Cushing's syndrome (a state characterized by hypercortisolism that associates with metabolic syndrome components) but also from monogenic rodent models for the metabolic syndrome (e.g. the leptin-deficient ob/ob mouse or the leptin-resistant Zucker rat) that display overall increased secretion of glucocorticoids. However, systemic circulating glucocorticoids are not elevated in obese patients and/or patients with metabolic syndrome. The study of the role of 11β-HSD system shed light on this conundrum, showing that local glucocorticoids are finely regulated in a tissue-specific manner at the pre-receptor level. The system comprises two microsomal enzymes that either activate cortisone to cortisol (11β-HSD1) or inactivate cortisol to cortisone (11β-HSD2). Transgenic rodent models, knockout (KO) for HSD11B1 or with HSD11B1 or HSD11B2 overexpression, specifically targeted to the liver or adipose tissue, have been developed and helped unravel the currently undisputable role of the enzymes in metabolic syndrome pathophysiology, in each of its isolated components and in their prevention. In the transgenic HSD11B1 overexpressing models, different features of the metabolic syndrome and obesity are replicated. HSD11B1 gene deficiency or HSD11B2 gene overexpression associates with improvements in the metabolic profile. In face of these demonstrations, research efforts are now being turned both into the inhibition of 11β-HSD1 as a possible pharmacological target and into the role of dietary habits on the establishment or the prevention of the metabolic syndrome, obesity and T2DM through 11β-HSD1 modulation. We intend to review and discuss 11β-HSD1 and obesity, the metabolic syndrome and T2DM and to highlight the potential of its inhibition for therapeutic or prophylactic approaches in those metabolic diseases.
Collapse
Affiliation(s)
- C D Pereira
- Department of Biochemistry (U38/FCT), Faculty of Medicine, University of Porto, Portugal
| | | | | | | |
Collapse
|
20
|
Zhou Y, Robciuc MR, Wabitsch M, Juuti A, Leivonen M, Ehnholm C, Yki-Järvinen H, Olkkonen VM. OSBP-related proteins (ORPs) in human adipose depots and cultured adipocytes: evidence for impacts on the adipocyte phenotype. PLoS One 2012; 7:e45352. [PMID: 23028956 PMCID: PMC3448648 DOI: 10.1371/journal.pone.0045352] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/15/2012] [Indexed: 01/28/2023] Open
Abstract
Oxysterol-binding protein (OSBP) homologues, ORPs, are implicated in lipid homeostatic control, vesicle transport, and cell signaling. We analyzed here the quantity of ORP mRNAs in human subcutaneous (s.c.) and visceral adipose depots, as well as in the Simpson-Golabi-Behmel syndrome (SGBS) adipocyte cell model. All of the ORP mRNAs were present in the s.c and visceral adipose tissues, and the two depots shared an almost identical ORP mRNA expression pattern. SGBS adipocytes displayed a similar pattern, suggesting that the adipose tissue ORP expression pattern mainly derives from adipocytes. During SGBS cell adipogenic differentiation, ORP2, ORP3, ORP4, ORP7, and ORP8 mRNAs were down-regulated, while ORP11 was induced. To assess the impacts of ORPs on adipocyte differentiation, ORP3 and ORP8, proteins down-regulated during adipogenesis, were overexpressed in differentiating SGBS adipocytes, while ORP11, a protein induced during adipogenesis, was silenced. ORP8 overexpression resulted in reduced expression of the aP2 mRNA, while down-regulation of adiponectin and aP2 was observed in ORP11 silenced cells. Furthermore, ORP8 overexpression or silencing of ORP11 markedly decreased cellular triglyceride storage. These data identify the patterns of ORP expression in human adipose depots and SGBS adipocytes, and provide the first evidence for a functional impact of ORPs on the adipocyte phenotype.
Collapse
Affiliation(s)
- You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Marius R. Robciuc
- National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Anne Juuti
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Marja Leivonen
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Christian Ehnholm
- National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Medicine, University of Helsinki, Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
21
|
Mitić T, Andrew R, Walker BR, Hadoke PWF. 11β-Hydroxysteroid dehydrogenase type 1 contributes to the regulation of 7-oxysterol levels in the arterial wall through the inter-conversion of 7-ketocholesterol and 7β-hydroxycholesterol. Biochimie 2012; 95:548-55. [PMID: 22940536 PMCID: PMC3585959 DOI: 10.1016/j.biochi.2012.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/13/2012] [Indexed: 11/29/2022]
Abstract
The atherogenic 7-oxysterols, 7-ketocholesterol (7-KC) and 7β-hydroxycholesterol (7βOHC), can directly impair arterial function. Inter-conversion of 7-KC and 7βOHC has recently been shown as a novel role for the glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Since this enzyme is expressed in vascular smooth muscle cells, we addressed the hypothesis that inter-conversion of 7-KC and 7βOHC by 11β-HSD1 may contribute to regulation of arterial function. Incubation (4–24 h) of aortic rings with either 7-KC (25 μM) or 7βOHC (20 μM) had no effect on endothelium-dependent (acetylcholine) or -independent (sodium nitroprusside) relaxation. In contrast, exposure to 7-KC (but not to 7βOHC) attenuated noradrenaline-induced contraction (Emax) after 4 h (0.78 ± 0.28 vs 0.40 ± 0.08 mN/mm; p < 0.05) and 24 h (2.28 ± 0.34 vs 1.56 ± 0.48 mN/mm; p < 0.05). Both 7-oxysterols were detected by GCMS in the aortic wall of chow-fed C57Bl6/J mice, with concentrations of 7-KC (1.41 ± 0.81 ng/mg) higher (p = 0.05) than 7βOHC (0.16 ± 0.06 ng/mg). In isolated mouse aortic rings 11β-HSD1 was shown to act as an oxo-reductase, inter-converting 7-KC and 7βOHC. This activity was lost in aorta from 11β-HSD1−/− mice, which had low oxysterol levels. Renal homogenates from 11β-HSD1−/− mice were used to confirm that the type 2 isozyme of 11β-HSD does not inter-convert 7-KC and 7βOHC. These results demonstrate that 7-KC has greater effects than 7βOHC on vascular function, and that 11β-HSD1 can inter-convert 7-KC and 7βOHC in the arterial wall, contributing to the regulation of 7-oxysterol levels and potentially influencing vascular function. This mechanism may be important in the cardioprotective effects of 11β-HSD1 inhibitors.
Collapse
Affiliation(s)
- Tijana Mitić
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, College of Medicine and Veterinary Medicine, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, Scotland, UK
| | | | | | | |
Collapse
|
22
|
Zhou HY, Hu GX, Lian QQ, Morris D, Ge RS. The metabolism of steroids, toxins and drugs by 11β-hydroxysteroid dehydrogenase 1. Toxicology 2012; 292:1-12. [DOI: 10.1016/j.tox.2011.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
|
23
|
Wyrwoll CS, Holmes MC, Seckl JR. 11β-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol 2011; 32:265-86. [PMID: 21144857 PMCID: PMC3149101 DOI: 10.1016/j.yfrne.2010.12.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 12/11/2022]
Abstract
Glucocorticoids have profound effects on brain development and adult CNS function. Excess or insufficient glucocorticoids cause myriad abnormalities from development to ageing. The actions of glucocorticoids within cells are determined not only by blood steroid levels and target cell receptor density, but also by intracellular metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSD). 11β-HSD1 regenerates active glucocorticoids from their inactive 11-keto derivatives and is widely expressed throughout the adult CNS. Elevated hippocampal and neocortical 11β-HSD1 is observed with ageing and causes cognitive decline; its deficiency prevents the emergence of cognitive defects with age. Conversely, 11β-HSD2 is a dehydrogenase, inactivating glucocorticoids. The major central effects of 11β-HSD2 occur in development, as expression of 11β-HSD2 is high in fetal brain and placenta. Deficient feto-placental 11β-HSD2 results in a life-long phenotype of anxiety and cardiometabolic disorders, consistent with early life glucocorticoid programming.
Collapse
Affiliation(s)
- Caitlin S Wyrwoll
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | | | | |
Collapse
|
24
|
Mackrill JJ. Oxysterols and calcium signal transduction. Chem Phys Lipids 2011; 164:488-95. [PMID: 21513705 DOI: 10.1016/j.chemphyslip.2011.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Ionised calcium (Ca(2+)) is a key second messenger, regulating almost every cellular process from cell death to muscle contraction. Cytosolic levels of this ion can be increased via gating of channel proteins located in the plasma membrane, endoplasmic reticulum and other membrane-delimited organelles. Ca(2+) can be removed from cells by extrusion across the plasma membrane, uptake into organelles and buffering by anionic components. Ca(2+) channels and extrusion mechanisms work in concert to generate diverse spatiotemporal patterns of this second messenger, the distinct profiles of which determine different cellular outcomes. Increases in cytoplasmic Ca(2+) concentration are one of the most rapid cellular responses upon exposure to certain oxysterol congeners or to oxidised low-density lipoprotein, occurring within seconds of addition and preceding increases in levels of reactive oxygen species, or changes in gene expression. Furthermore, exposure of cells to oxysterols for periods of hours to days modulates Ca(2+) signal transduction, with these longer-term alterations in cellular Ca(2+) homeostasis potentially underlying pathological events within atherosclerotic lesions, such as hyporeactivity to vasoconstrictors observed in vascular smooth muscle, or ER stress-induced cell death in macrophages. Despite their candidate roles in physiology and disease, little is known about the molecular mechanisms that couple changes in oxysterol concentrations to alterations in Ca(2+) signalling. This review examines the ways in which oxysterols could influence Ca(2+) signal transduction and the potential roles of this in health and disease.
Collapse
Affiliation(s)
- John J Mackrill
- Department of Physiology, University College Cork, Cork, Ireland.
| |
Collapse
|
25
|
Semjonous NM, Sherlock M, Jeyasuria P, Parker KL, Walker EA, Stewart PM, Lavery GG. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1. Endocrinology 2011; 152:93-102. [PMID: 21106871 PMCID: PMC3219053 DOI: 10.1210/en.2010-0957] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.
Collapse
Affiliation(s)
- Nina M Semjonous
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham UK, B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Ishii-Yonemoto T, Masuzaki H, Yasue S, Okada S, Kozuka C, Tanaka T, Noguchi M, Tomita T, Fujikura J, Yamamoto Y, Ebihara K, Hosoda K, Nakao K. Glucocorticoid reamplification within cells intensifies NF-kappaB and MAPK signaling and reinforces inflammation in activated preadipocytes. Am J Physiol Endocrinol Metab 2010; 298:E930-40. [PMID: 19776225 DOI: 10.1152/ajpendo.00320.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased expression and activity of the intracellular glucocorticoid-reactivating enzyme 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) contribute to dysfunction of adipose tissue. Although the pathophysiological role of 11 beta-HSD1 in mature adipocytes has long been investigated, its potential role in preadipocytes still remains obscure. The present study demonstrates that the expression of 11 beta-HSD1 in preadipocyte-rich stromal vascular fraction (SVF) cells in fat depots from ob/ob and diet-induced obese mice was markedly elevated compared with lean control. In 3T3-L1 preadipocytes, the level of mRNA and reductase activity of 11 beta-HSD1 was augmented by TNF-alpha, IL-1 beta, and LPS, with a concomitant increase in inducible nitric oxide synthase (iNOS), monocyte chemoattractant protein-1 (MCP-1), or IL-6 secretion. Pharmacological inhibition of 11 beta-HSD1 and RNA interference against 11 beta-HSD1 reduced the mRNA and protein levels of iNOS, MCP-1, and IL-6. In contrast, overexpression of 11 beta-HSD1 further augmented TNF-alpha-induced iNOS, IL-6, and MCP-1 expression. Moreover, 11 beta-HSD1 inhibitors attenuated TNF-alpha-induced phosphorylation of NF-kappaB p65 and p38-, JNK-, and ERK1/2-MAPK. Collectively, the present study provides novel evidence that inflammatory stimuli-induced 11 beta-HSD1 in activated preadipocytes intensifies NF-kappaB and MAPK signaling pathways and results in further induction of proinflammatory molecules. Not limited to 3T3-L1 preadipocytes, we also demonstrated that the notion was reproducible in the primary SVF cells from obese mice. These findings highlight an unexpected, proinflammatory role of reamplified glucocorticoids within preadipocytes in obese adipose tissue.
Collapse
Affiliation(s)
- Takako Ishii-Yonemoto
- Division of Endocrinology and Metabolism, Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54, Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Baker ME. Evolution of 11β-hydroxysteroid dehydrogenase-type 1 and 11β-hydroxysteroid dehydrogenase-type 3. FEBS Lett 2010; 584:2279-84. [DOI: 10.1016/j.febslet.2010.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/18/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
|
28
|
Morton NM. Obesity and corticosteroids: 11beta-hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease. Mol Cell Endocrinol 2010; 316:154-64. [PMID: 19804814 DOI: 10.1016/j.mce.2009.09.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 09/16/2009] [Accepted: 09/28/2009] [Indexed: 12/11/2022]
Abstract
The metabolic abnormalities found associated with high blood glucocorticoid levels (e.g. rare Cushing's syndrome) include insulin-resistance, visceral obesity, hypertension, dyslipidaemia and an increased risk of cardiovascular diseases. The same constellation of abnormalities is found in the highly prevalent idiopathic obesity/insulin-resistance (metabolic)-syndrome. It is now apparent that tissue-specific changes in cortisol metabolism explain these parallels rather than altered blood cortisol levels. Primary among these changes is increased intracellular glucocorticoid reactivation, catalysed by the enzyme 11beta-hydroxysteroid dehydrogenase type (HSD)-1 in obese adipose tissue. Liver, skeletal muscle, endocrine pancreas, blood vessels and leukocytes express 11beta-HSD1 and their potential role in metabolic disease is discussed. The weight of evidence, much of it gained from animal models, suggests that therapeutic inhibition of 11beta-HSD1 will be beneficial in most cellular contexts, with clinical trials supportive of this concept.
Collapse
Affiliation(s)
- Nicholas Michael Morton
- Molecular Metabolism Group after University of Edinburgh, Centre for Cardiovascular Sciences, Edinburgh, United Kingdom.
| |
Collapse
|
29
|
Odermatt A, Nashev LG. The glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 has broad substrate specificity: Physiological and toxicological considerations. J Steroid Biochem Mol Biol 2010; 119:1-13. [PMID: 20100573 DOI: 10.1016/j.jsbmb.2010.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 01/12/2010] [Accepted: 01/15/2010] [Indexed: 12/21/2022]
Abstract
The primary function of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is to catalyze the conversion of inactive to active glucocorticoid hormones and to modulate local glucocorticoid-dependent gene expression. Thereby 11beta-HSD1 plays a key role in the regulation of metabolic functions and in the adaptation of the organism to energy requiring situations. Importantly, elevated 11beta-HSD1 activity has been associated with metabolic disorders, and recent investigations with rodent models of obesity and type 2 diabetes provided evidence for beneficial effects of 11beta-HSD1 inhibitors, making this enzyme a promising therapeutic target. Several earlier and recent studies, mainly performed in vitro, revealed a relatively broad substrate spectrum of 11beta-HSD1 and suggested that this enzyme has additional functions in the metabolism of some neurosteroids (7-oxy- and 11-oxyandrogens and -progestins) and 7-oxysterols, as well as in the detoxification of various xenobiotics that contain reactive carbonyl groups. While there are many studies on the effect of inhibitors on cortisone reduction and circulating glucocorticoid levels and on the transcriptional regulation of 11beta-HSD1 in obesity and diabetes, only few address the so-called alternative functions of this enzyme. We review recent progress on the biochemical characterization of 11beta-HSD1, with a focus on cofactor and substrate specificity and on possible alternative functions of this enzyme.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
30
|
Wang Y, Kumar N, Solt LA, Richardson TI, Helvering LM, Crumbley C, Garcia-Ordonez RD, Stayrook KR, Zhang X, Novick S, Chalmers MJ, Griffin PR, Burris TP. Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. J Biol Chem 2010; 285:5013-25. [PMID: 19965867 PMCID: PMC2836105 DOI: 10.1074/jbc.m109.080614] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/04/2009] [Indexed: 01/07/2023] Open
Abstract
The retinoic acid receptor-related orphan receptors alpha and gamma (RORalpha (NR1F1) and RORgamma (NR1F3)) are orphan nuclear receptors and perform critical roles in regulation of development, metabolism, and immune function. Cholesterol and cholesterol sulfate have been suggested to be RORalpha ligands, but the physiological significance is unclear. To date, no endogenous RORgamma ligands have been described. Here, we demonstrate that 7-oxygenated sterols function as high affinity ligands for both RORalpha and RORgamma by directly binding to their ligand-binding domains (K(i) approximately 20 nM), modulating coactivator binding, and suppressing the transcriptional activity of the receptors. One of the 7-oxygenated sterols, 7alpha-hydroxycholesterol (7alpha-OHC), serves as a key intermediate in bile acid metabolism, and we show that 7alpha-OHC modulates the expression of ROR target genes, including Glc-6-Pase and phosphoenolpyruvate carboxykinase, in an ROR-dependent manner. Furthermore, glucose output from hepatocytes is suppressed by 7alpha-OHC functioning as an RORalpha/gamma ligand. Thus, RORalpha and RORgamma are ligand-regulated members of the NR superfamily and may serve as sensors for 7-oxygenated sterols.
Collapse
Affiliation(s)
- Yongjun Wang
- From the Scripps Research Institute, Jupiter, Florida 33458 and
| | - Naresh Kumar
- From the Scripps Research Institute, Jupiter, Florida 33458 and
| | - Laura A. Solt
- From the Scripps Research Institute, Jupiter, Florida 33458 and
| | | | | | | | | | | | - Xi Zhang
- From the Scripps Research Institute, Jupiter, Florida 33458 and
| | - Scott Novick
- From the Scripps Research Institute, Jupiter, Florida 33458 and
| | | | | | | |
Collapse
|
31
|
Paraoxonase 1 Attenuates Human Plaque Atherogenicity: Relevance to the Enzyme Lactonase Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 660:99-111. [DOI: 10.1007/978-1-60761-350-3_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
32
|
Cooper MS, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation. J Clin Endocrinol Metab 2009; 94:4645-54. [PMID: 19837912 DOI: 10.1210/jc.2009-1412] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT 11Beta-hydroxysteroid dehydrogenase (11beta-HSD) enzymes are now appreciated to be important regulators of hormone action at a tissue level. 11Beta-HSD1 is widely expressed and increases glucocorticoid action through its unique ability to convert inactive glucocorticoids (cortisone in man, 11-dehydrocorticosterone in rodents) to their active forms (cortisol and corticosterone, respectively). The enzyme has roles in the normal hypothalamus-pituitary-adrenal (HPA) axis, has been implicated in metabolic syndrome, and may modulate various aspects of the immune response. EVIDENCE ACQUISITION A review of published, peer-reviewed medical literature (1990 to June 2009) on the physiology and pathophysiology of 11beta-HSD1 was performed with an emphasis on HPA axis consequences, the metabolic syndrome, and the inflammatory response. EVIDENCE SYNTHESIS Studies of patients with genetic defects in 11beta-HSD1 action show abnormal HPA axis responses with hyperandrogenism being a major consequence. The mechanisms underlying these abnormalities have been explored in mouse models with targeted deletion of components of the 11beta-HSD1 system. A range of experimental studies emphasize the role of 11beta-HSD1 in the metabolic syndrome and the potential for treatment with chemical inhibitors. An emerging area is the role of 11beta-HSD1 in the inflammatory response. CONCLUSIONS 11Beta-HSD1 activity is an important component of the HPA axis and contributes to the metabolic syndrome and the normal immune response. Ongoing clinical observations and the development of selective inhibitors will further clarify the role of 11beta-HSD1 in these areas.
Collapse
Affiliation(s)
- Mark S Cooper
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom B15 2TT
| | | |
Collapse
|
33
|
Robinzon B, Prough RA. A novel NADP(+)-dependent dehydrogenase activity for 7alpha/beta- and 11beta-hydroxysteroids in human liver nuclei: A third 11beta-hydroxysteroid dehydrogenase. Arch Biochem Biophys 2009; 486:170-6. [PMID: 19416720 DOI: 10.1016/j.abb.2009.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/13/2009] [Accepted: 04/29/2009] [Indexed: 11/28/2022]
Abstract
Human tissue from uninvolved liver of cancer patients was fractionated using differential centrifugation and characterized for 11betaHSD enzyme activity against corticosterone, dehydrocorticosterone, 7alpha- and 7beta-hydroxy-dehydroepiandrosterone, and 7-oxo-dehydroepiandrosterone. An enzyme activity was observed in nuclear protein fractions that utilized either NADP(+) or NAD(+), but not NADPH and NADH, as pyridine nucleotide cofactor with K(m) values of 12+/-2 and 390+/-2microM, compared to the K(m) for microsomal 11betaHSD1 of 43+/-8 and 264+/-24microM, respectively. The K(m) for corticosterone in the NADP(+)-dependent nuclear oxidation reaction was 102+/-16nM, compared to 4.3+/-0.8microM for 11betaHSD1. The K(cat) values for nuclear activity with NADP(+) was 1687nmol/min/mg/micromol, compared to 755nmol/min/mg/micromol for microsomal 11betaHSD1 activity. Inhibitors of 11betaHSD1 decreased both nuclear and microsomal enzyme activities, suggesting that the nuclear activity may be due to an enzyme similar to 11betaHSD Type 1 and 2.
Collapse
Affiliation(s)
- B Robinzon
- Department of Animal Science, The Hebrew University of Jerusalem, Rehovot, Israel.
| | | |
Collapse
|
34
|
Bazuine M, Stenkula KG, Cam M, Arroyo M, Cushman SW. Guardian of corpulence: a hypothesis on p53 signaling in the fat cell. ACTA ACUST UNITED AC 2009; 4:231-243. [PMID: 20126301 DOI: 10.2217/clp.09.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adipocytes provide an organism with fuel in times of caloric deficit, and are an important type of endocrine cell in the maintenance of metabolic homeostasis. In addition, as a lipid-sink, adipocytes serve an equally important role in the protection of organs from the damaging effects of ectopic lipid deposition. For the organism, it is of vital importance to maintain adipocyte viability, yet the fat depot is a demanding extracellular environment with high levels of interstitial free fatty acids and associated lipotoxic effects. These surroundings are less than beneficial for the overall health of any resident cell, adipocyte and preadipocyte alike. In this review, we discuss the process of adipogenesis and the potential involvement of the p53 tumor-suppressor protein in alleviating some of the cellular stress experienced by these cells. In particular, we discuss p53-mediated mechanisms that prevent damage caused by reactive oxygen species and the effects of lipotoxicity. We also suggest the potential for two p53 target genes, START domain-containing protein 4 (StARD4) and oxysterol-binding protein (OSBP), with the concomitant synthesis of the signaling molecule oxysterol, to participate in adipogenesis.
Collapse
Affiliation(s)
- Merlijn Bazuine
- Experimental Diabetes, Metabolism & Nutrition Section, Diabetes Branch, NIDDK, NIH, Building 10-CRC, Room 5W-5816, 10 Center Drive, Bethesda, MD 20892, USA, Tel.: +1 301 496 7354, ,
| | | | | | | | | |
Collapse
|
35
|
Balázs Z, Nashev LG, Chandsawangbhuwana C, Baker ME, Odermatt A. Hexose-6-phosphate dehydrogenase modulates the effect of inhibitors and alternative substrates of 11beta-hydroxysteroid dehydrogenase 1. Mol Cell Endocrinol 2009; 301:117-22. [PMID: 19010388 DOI: 10.1016/j.mce.2008.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/09/2008] [Accepted: 10/09/2008] [Indexed: 11/23/2022]
Abstract
Intracellular glucocorticoid reactivation is catalyzed by 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1), which functions predominantly as a reductase in cells expressing hexose-6-phosphate dehydrogenase (H6PDH). We recently showed that the ratios of cortisone to cortisol and 7-keto- to 7-hydroxy-neurosteroids are regulated by 11beta-HSD1 and very much depend on coexpression with H6PDH, providing cosubstrate NADPH. Here, we investigated the impact of H6PDH on the modulation of 11beta-HSD1-dependent interconversion of cortisone and cortisol by inhibitors and alternative substrates. Using HEK-293 cells expressing 11beta-HSD1 or coexpressing 11beta-HSD1 and H6PDH, we observed significant differences of 11beta-HSD1 inhibition by natural and pharmaceutical compounds as well as endogenous hormone metabolites. Furthermore, we show potent and dose-dependent inhibition of 11beta-HSD1 by 7-keto-DHEA in differentiated human THP-1 macrophages and in HEK-293 cells overexpressing 11beta-HSD1 with or without H6PDH. In contrast, 7-ketocholesterol (7-KC) did not inhibit 11beta-HSD1 in HEK-293 cells, even in the presence of H6PDH, but inhibited 11beta-HSD1 reductase activity in differentiated THP-1 macrophages (IC(50) 8.1+/-0.9microM). 7-Keto-DHEA but not 7-KC inhibited 11beta-HSD1 in HEK-293 cell lysates. In conclusion, cellular factors such as H6PDH can significantly modulate the effect of inhibitors and alternative 7-oxygenated substrates on intracellular glucocorticoid availability.
Collapse
Affiliation(s)
- Zoltán Balázs
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Tavori H, Aviram M, Khatib S, Musa R, Nitecki S, Hoffman A, Vaya J. Human carotid atherosclerotic plaque increases oxidative state of macrophages and low-density lipoproteins, whereas paraoxonase 1 (PON1) decreases such atherogenic effects. Free Radic Biol Med 2009; 46:607-15. [PMID: 19103284 DOI: 10.1016/j.freeradbiomed.2008.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/13/2008] [Accepted: 11/16/2008] [Indexed: 02/06/2023]
Abstract
Human atherosclerotic plaque contains a variety of oxidized lipids, which can facilitate further oxidation. Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated esterase (lipolactonase), exhibiting antiatherogenic properties. The aims of the present study were to examine the oxidizing potency of the human carotid plaque lipid extract (LE), and the antiatherogenic role of PON1 on LE oxidation competence. Human carotid plaques were extracted by organic solvent, and the extract was incubated with lipoprotein particles, with macrophages, or with probes sensitive to oxidative stress, with or without preincubation with PON1, followed by oxidative-stress assessment. Our findings imply that the LE oxidized LDL, macrophages, and exogenous probes and decreases HDL-mediated cholesterol efflux from macrophages, in a dose-dependent manner. Incubation of PON1 with LE significantly affects LE composition, reduces LE atherogenic properties, and decreases the extract's total peroxide concentration by 44%, macrophage oxidation by 25%, and probe oxidation by up to 52%. We conclude that these results expand our understanding of how the plaque itself accelerates atherogenesis and provides an important mechanism for attenuation of atherosclerosis development by the antioxidant action of PON1 on the atherosclerotic plaque.
Collapse
Affiliation(s)
- Hagai Tavori
- MIGAL - Galilee Technology Center, Kiryat Shmona, Tel Hai College, Israel
| | | | | | | | | | | | | |
Collapse
|
37
|
Yudt MR, Freedman LP. The skinny on fat: how oxysterols may regulate functional glucocorticoids in adipose tissue. Endocrinology 2008; 149:5907-8. [PMID: 19022897 DOI: 10.1210/en.2008-1340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Matthew R Yudt
- Division of Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania 19468, USA
| | | |
Collapse
|