1
|
Numakawa T, Kajihara R. An Interaction between Brain-Derived Neurotrophic Factor and Stress-Related Glucocorticoids in the Pathophysiology of Alzheimer's Disease. Int J Mol Sci 2024; 25:1596. [PMID: 38338875 PMCID: PMC10855648 DOI: 10.3390/ijms25031596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Both the brain-derived neurotrophic factor (BDNF) and glucocorticoids (GCs) play multiple roles in various aspects of neurons, including cell survival and synaptic function. BDNF and its receptor TrkB are extensively expressed in neurons of the central nervous system (CNS), and the contribution of the BDNF/TrkB system to neuronal function is evident; thus, its downregulation has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). GCs, stress-related molecules, and glucocorticoid receptors (GRs) are also considered to be associated with AD in addition to mental disorders such as depression. Importantly, a growing body of evidence suggests a close relationship between BDNF/TrkB-mediated signaling and the GCs/GR system in the CNS. Here, we introduce the current studies on the interaction between the neurotrophic system and stress in CNS neurons and discuss their involvement in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
2
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Gulyaeva NV. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:565-589. [PMID: 37331704 DOI: 10.1134/s0006297923050012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
The review analyzes modern concepts about the control of various mechanisms of the hippocampal neuroplasticity in adult mammals and humans by glucocorticoids. Glucocorticoid hormones ensure the coordinated functioning of key components and mechanisms of hippocampal plasticity: neurogenesis, glutamatergic neurotransmission, microglia and astrocytes, systems of neurotrophic factors, neuroinflammation, proteases, metabolic hormones, neurosteroids. Regulatory mechanisms are diverse; along with the direct action of glucocorticoids through their receptors, there are conciliated glucocorticoid-dependent effects, as well as numerous interactions between various systems and components. Despite the fact that many connections in this complex regulatory scheme have not yet been established, the study of the factors and mechanisms considered in the work forms growth points in the field of glucocorticoid-regulated processes in the brain and primarily in the hippocampus. These studies are fundamentally important for the translation into the clinic and the potential treatment/prevention of common diseases of the emotional and cognitive spheres and respective comorbid conditions.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
4
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
5
|
Li M, Yao L, He M, Huang H, Zheng H, Ma S, Zhong Z, Yu S, Sun M, Wang H. "Adjust Zang and arouse spirit" electroacupuncture ameliorates cognitive impairment by reducing endoplasmic reticulum stress in db/db mice. Front Endocrinol (Lausanne) 2023; 14:1185022. [PMID: 37152933 PMCID: PMC10154981 DOI: 10.3389/fendo.2023.1185022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Diabetic cognitive impairment (DCI) is a chronic complication of the central nervous system (CNS) caused by diabetes that affects learning and memory capacities over time. Recently, acupuncture has been shown to improve cognitive impairment in streptozotocin-induced diabetic rats. However, the effects of electroacupuncture on DCI and its underlying mechanism have not yet been elucidated in detail. Methods In this study, we used db/db mice as DCI animal models which showed low cognitive, learning and memory functions. Electroacupuncture significantly ameliorated DCI, which is reflected by better spatial learning and memory function using behavioral tests. The db/db mice with cognitive impairment were randomly divided into a model group (Mod) and an electroacupuncture treatment group (Acup), while db/m mice were used as a normal control group (Con). First, the mice were subjected to behavioural tests using the Morris water maze (MWM), and body weight, blood glucose, insulin, triglycerides (TG) and total cholesterol (TC) were observed; HE, Nissl, and TUNEL staining were used to observe the morphological changes and neuronal apoptosis in the mice hippocampus; Finally, Western blot and rt-PCR were applied to detect the essential proteins and mRNA of ERS and insulin signalling pathway, as well as the expression levels of Tau and Aβ. Results Electroacupuncture significantly ameliorated DCI, which is reflected by better spatial learning and memory function using behavioral tests. Moreover, electroacupuncture attenuated diabetes-induced morphological structure change, neuronal apoptosis in the hippocampus of db/db mice. Our results revealed that electroacupuncture could regulate the expression levels of Tau and Aβ by improving hippocampal ERS levels in db/db mice, inhibiting JNK activation, attenuating IRS1 serine phosphorylation, and restoring normal transduction of the insulin signaling pathway. Discussion In summary, ERS and insulin signaling pathway paly causal roles in DCI development. Electroacupuncture can significantly alleviate the pathogenesis of DCI, improve mice's learning and memory ability, and improve cognitive dysfunction. This study adds to our understanding of the effect of acupuncture on DCI and opens the door to further research on DCI.
Collapse
Affiliation(s)
- Mengyuan Li
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Lin Yao
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Min He
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Haipeng Huang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haizhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Shuo Yu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun Jilin, China
| | - Mengmeng Sun
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun Jilin, China
- *Correspondence: Hongfeng Wang, ; Mengmeng Sun,
| | - Hongfeng Wang
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Hongfeng Wang, ; Mengmeng Sun,
| |
Collapse
|
6
|
Ding S, Yang L, Huang L, Kong L, Chen M, Su Y, Li X, Dong X, Han Y, Li W, Li W. Chronic glucocorticoid exposure accelerates Aβ generation and neurotoxicity by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons in APP/PS1 mice. Food Chem Toxicol 2022; 168:113407. [PMID: 36075474 DOI: 10.1016/j.fct.2022.113407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
Glucocorticoid (GC) exposure can lead to deterioration of the structure and function of hippocampal neurons and is closely involved in Alzheimer's disease (AD). Amyloid-β (Aβ) overproduction is an important aspect of AD pathogenesis. Our study mainly investigated the mechanism of chronic GC exposure in accelerating Aβ production in primary cultured hippocampal neurons from APP/PS1 mice. The results indicated that chronic dexamethasone (DEX, 1 μM) significantly accelerated neuronal damage and Aβ accumulation in hippocampal neurons from APP/PS1 mice. Meanwhile, DEX exposure markedly upregulated APP, NCSTN, BACE1 and p-Tau/Tau expression in hippocampal neurons from APP/PS1 mice. Our study also indicated that chronic DEX exposure significantly increased intracellular Ca2+ ([Ca2+]i) levels and the expressions of p-PLC, CN and NFAT1 in hippocampal neurons from APP/PS1 mice. We further found that stabilizing intracellular calcium homeostasis with 2-APB (50 μM) and SKF-96365 (10 μM) significantly alleviated neuronal damage and Aβ accumulation in chronic DEX-induced hippocampal neurons from APP/PS1 mice. Additionally, dual luciferase assays showed that NFAT1 upregulated NCSTN transactivation, which was further increased upon DEX treatment. This study suggests that chronic DEX exposure accelerates Aβ accumulation by activating calcium-mediated CN-NFAT1 signaling in hippocampal neurons from APP/PS1 mice, which may be closely related to the acceleration of AD.
Collapse
Affiliation(s)
- Shixin Ding
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Liu Yang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Lei Huang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangliang Kong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Ming Chen
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xuewang Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Ramsden CE, Keyes GS, Calzada E, Horowitz MS, Zamora D, Jahanipour J, Sedlock A, Indig FE, Moaddel R, Kapogiannis D, Maric D. Lipid Peroxidation Induced ApoE Receptor-Ligand Disruption as a Unifying Hypothesis Underlying Sporadic Alzheimer's Disease in Humans. J Alzheimers Dis 2022; 87:1251-1290. [PMID: 35466940 DOI: 10.3233/jad-220071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sporadic Alzheimer's disease (sAD) lacks a unifying hypothesis that can account for the lipid peroxidation observed early in the disease, enrichment of ApoE in the core of neuritic plaques, hallmark plaques and tangles, and selective vulnerability of entorhinal-hippocampal structures. OBJECTIVE We hypothesized that 1) high expression of ApoER2 (receptor for ApoE and Reelin) helps explain this anatomical vulnerability; 2) lipid peroxidation of ApoE and ApoER2 contributes to sAD pathogenesis, by disrupting neuronal ApoE delivery and Reelin-ApoER2-Dab1 signaling cascades. METHODS In vitro biochemical experiments; Single-marker and multiplex fluorescence-immunohistochemistry (IHC) in postmortem specimens from 26 individuals who died cognitively normal, with mild cognitive impairment or with sAD. RESULTS ApoE and ApoER2 peptides and proteins were susceptible to attack by reactive lipid aldehydes, generating lipid-protein adducts and crosslinked ApoE-ApoER2 complexes. Using in situ hybridization alongside IHC, we observed that: 1) ApoER2 is strongly expressed in terminal zones of the entorhinal-hippocampal 'perforant path' projections that underlie memory; 2) ApoE, lipid aldehyde-modified ApoE, Reelin, ApoER2, and the downstream Reelin-ApoER2 cascade components Dab1 and Thr19-phosphorylated PSD95 accumulated in the vicinity of neuritic plaques in perforant path terminal zones in sAD cases; 3) several ApoE/Reelin-ApoER2-Dab1 pathway markers were higher in sAD cases and positively correlated with histological progression and cognitive deficits. CONCLUSION Results demonstrate derangements in multiple ApoE/Reelin-ApoER2-Dab1 axis components in perforant path terminal zones in sAD and provide proof-of-concept that ApoE and ApoER2 are vulnerable to aldehyde-induced adduction and crosslinking. Findings provide the foundation for a unifying hypothesis implicating lipid peroxidation of ApoE and ApoE receptors in sAD.
Collapse
Affiliation(s)
- Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA.,Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Gregory S Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Elizabeth Calzada
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Mark S Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jahandar Jahanipour
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Fred E Indig
- Confocal Imaging Facility, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Human Neuroscience Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
Ba L, Huang L, He Z, Deng S, Xie Y, Zhang M, Jacob C, Antonecchia E, Liu Y, Xiao W, Xie Q, Huang Z, Yi C, D'Ascenzo N, Ding F. Does Chronic Sleep Fragmentation Lead to Alzheimer's Disease in Young Wild-Type Mice? Front Aging Neurosci 2022; 13:759983. [PMID: 34992526 PMCID: PMC8724697 DOI: 10.3389/fnagi.2021.759983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic sleep insufficiency is becoming a common issue in the young population nowadays, mostly due to life habits and work stress. Studies in animal models of neurological diseases reported that it would accelerate neurodegeneration progression and exacerbate interstitial metabolic waste accumulation in the brain. In this paper, we study whether chronic sleep insufficiency leads to neurodegenerative diseases in young wild-type animals without a genetic pre-disposition. To this aim, we modeled chronic sleep fragmentation (SF) in young wild-type mice. We detected pathological hyperphosphorylated-tau (Ser396/Tau5) and gliosis in the SF hippocampus. 18F-labeled fluorodeoxyglucose positron emission tomography scan (18F-FDG-PET) further revealed a significant increase in brain glucose metabolism, especially in the hypothalamus, hippocampus and amygdala. Hippocampal RNAseq indicated that immunological and inflammatory pathways were significantly altered in 1.5-month SF mice. More interestingly, differential expression gene lists from stress mouse models showed differential expression patterns between 1.5-month SF and control mice, while Alzheimer's disease, normal aging, and APOEε4 mutation mouse models did not exhibit any significant pattern. In summary, 1.5-month sleep fragmentation could generate AD-like pathological changes including tauopathy and gliosis, mainly linked to stress, as the incremented glucose metabolism observed with PET imaging suggested. Further investigation will show whether SF could eventually lead to chronic neurodegeneration if the stress condition is prolonged in time.
Collapse
Affiliation(s)
- Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lifang Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu He
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Saiyue Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cornelius Jacob
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Emanuele Antonecchia
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo Neuromed Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Pozzilli, Italy
| | - Yuqing Liu
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Xiao
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qingguo Xie
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo Neuromed Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Pozzilli, Italy.,Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Zhili Huang
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Nicola D'Ascenzo
- Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo Neuromed Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), Pozzilli, Italy
| | - Fengfei Ding
- Department of Pharmacology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Chevalier CM, Krampert L, Schreckenbach M, Schubert CF, Reich J, Novak B, Schmidt MV, Rutten BPF, Schmidt U. MMP9 mRNA is a potential diagnostic and treatment monitoring marker for PTSD: Evidence from mice and humans. Eur Neuropsychopharmacol 2021; 51:20-32. [PMID: 34022747 DOI: 10.1016/j.euroneuro.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Although matrix metalloproteinase 9 (MMP9) has been found associated with various psychiatric disorders and with threat memories in humans, its role in post-traumatic stress disorder (PTSD) and related animal models is understudied. Thus, we analyzed MMP9 mRNA expression kinetics during two different stress experiments, i.e., the Trier Social Stress Test and the dexamethasone suppression test (DST), in whole blood of two independent cohorts of PTSD patients vs. non-traumatized healthy controls (HC) and, moreover, in a mouse model of PTSD and in dexamethasone-treated mice. Besides MMP9, we quantified mRNA levels of four of its regulators, i.e., interleukin (IL)-1 receptor 1 and 2 (IL1R1, IL1R2), IL-6 receptor and tumor necrosis factor receptor 1 (TNFR1) in 10 patients exposed to the DST before vs. after successful PTSD psychotherapy vs. 13 HC and, except from Il6r, also in different brain regions of the PTSD mouse model. We are the first to show that blood MMP9 mRNA concentrations were elevated after acute dexamethasone in PTSD patients, improved upon partial remission of PTSD and were, furthermore, also elevated, together with its regulator Tnfr1, in the prefrontal cortex of PTSD-like mice. In contrast, blood TNFR1 and IL1R2 were markedly underexpressed in PTSD patients. In conclusion, we found translational evidence supporting that, I, TNFR1 and MMP9 mRNA expression might be involved in PTSD pathobiology, II, might constitute potential diagnostic blood biomarkers for PTSD and, importantly, III, post-dexamethasone blood MMP9 hyperexpression, which speculatively results from post-dexamethasone underexpression of IL1R2, might serve also as potential treatment monitoring biomarker for PTSD.
Collapse
Affiliation(s)
- Céleste M Chevalier
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany
| | - Luka Krampert
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Monika Schreckenbach
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Verein zur Förderung der Klinischen Verhaltenstherapie (VFKV) - Ausbildungsinstitut München gGmbH, Lindwurmstr. 117, 80337 München, Germany
| | - Christine F Schubert
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Verein zur Förderung der Klinischen Verhaltenstherapie (VFKV) - Ausbildungsinstitut München gGmbH, Lindwurmstr. 117, 80337 München, Germany; Catholic University of Eichstätt-Ingolstadt, Ostenstraße 25, 85072 Eichstätt, Germany
| | - Johanna Reich
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Schön Klinik München Schwabing, Parzivalpl. 4, 80804 München, Germany
| | - Bozidar Novak
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany
| | - Bart P F Rutten
- Maastricht University Medical Centre, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Universiteitssingel 50, 6229 ER, PO Box 616 6200 MD, Maastricht, The Netherlands
| | - Ulrike Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany; Maastricht University Medical Centre, School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Universiteitssingel 50, 6229 ER, PO Box 616 6200 MD, Maastricht, The Netherlands; RG Molecular and Clinical Psychotraumatology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany; RG Traumatic Stress & Neurodegeneration & PTSD Treatment Unit, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075 Göttingen, Germany.
| |
Collapse
|
10
|
Mohammadi S, Zandi M, Dousti Kataj P, Karimi Zandi L. Chronic stress and Alzheimer's disease. Biotechnol Appl Biochem 2021; 69:1451-1458. [PMID: 34152660 DOI: 10.1002/bab.2216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Stress is a key factor in the development and progress of diseases. In neurodegenerative conditions, stress management can play an important role in maintaining the quality of life and the capacity to improve. Neurodegenerative diseases, including Alzheimer's disease, cause the motor and cognitive malfunctions that are spontaneously stressful and also can disturb the neural circuits that promote stress responses. The interruption of those circuits leads to aggressive and inappropriate behavior. In addition, stress contributes to illness and may exacerbate symptoms. In this review, we present stress-activated neural pathways involved in Alzheimer's disease from a clinical and experimental point of view, as well as supportive drugs and therapies.
Collapse
Affiliation(s)
- Shima Mohammadi
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Dousti Kataj
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Karimi Zandi
- Neuroscience and Addiction Studies Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Pakdeepak K, Chokchaisiri R, Govitrapong P, Tocharus C, Suksamrarn A, Tocharus J. 5,6,7,4'-Tetramethoxyflavanone alleviates neurodegeneration in a dexamethasone-induced neurodegenerative mouse model through promotion of neurogenesis via the Raf/ERK1/2 pathway. Phytother Res 2021; 35:2536-2544. [PMID: 33319436 DOI: 10.1002/ptr.6983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022]
Abstract
Adult neurogenesis plays an important role in improving cognitive functions. Neurogenesis generates new neurons, a process mediated by neural stem cell proliferation, migration, and differentiation. Long-term exposure to high levels of glucocorticoid results in the suppression of neurogenesis pathways and leads to the onset of cognitive impairment. The induction of neurogenesis by a potent bioactive compound is considered the most promising treatment for neurodegenerative disorders. 5,6,7,4'-Tetramethoxyflavanone (TMF) is a flavonoid compound isolated from Chromolaena odorata (L.) R. M. King & H. Rob. Previous study showed that TMF improved cognitive impairment by attenuating Aβ production and pTau expression, thereby increased cell survival and promoted synaptic plasticity. The aim of this study was to investigate the effect of TMF on dexamethasone (DEX)-suppressed neurogenesis in mice. Mice received DEX for 28 days before being treated with TMF for additional 30 days. Mice were randomly divided into four groups: control, TMF, DEX, and DEX + TMF. TMF promoted neurogenesis by increasing BrdU-positive cells, Prox1, doublecortin, and Nestin expression. TMF also upregulated the expression of Raf and extracellular-signal-regulated kinase (ERK)1/2, which are pivotal for neurogenesis signaling. In conclusion, TMF promoted neurogenesis-related protein expression in the proliferation, differentiation, and maturation phases via Raf/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Kanet Pakdeepak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
12
|
Balog M, Blažetić S, Ivić V, Labak I, Krajnik B, Marin R, Canerina-Amaro A, de Pablo DP, Bardak A, Gaspar R, Szűcs KF, Vari SG, Heffer M. Disarranged neuroplastin environment upon aging and chronic stress recovery in female Sprague Dawley rats. Eur J Neurosci 2021; 55:2474-2490. [PMID: 33909305 PMCID: PMC9290558 DOI: 10.1111/ejn.15256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Chronic stress produces long-term metabolic changes throughout the superfamily of nuclear receptors, potentially causing various pathologies. Sex hormones modulate the stress response and generate a sex-specific age-dependent metabolic imprint, especially distinct in the reproductive senescence of females. We monitored chronic stress recovery in two age groups of female Sprague Dawley rats to determine whether stress and/or aging structurally changed the glycolipid microenvironment, a milieu playing an important role in cognitive functions. Old females experienced memory impairment even at basal conditions, which was additionally amplified by stress. On the other hand, the memory of young females was not disrupted. Stress recovery was followed by a microglial decrease and an increase in astrocyte count in the hippocampal immune system. Since dysfunction of the brain immune system could contribute to disturbed synaptogenesis, we analyzed neuroplastin expression and the lipid environment. Neuroplastin microenvironments were explored by analyzing immunofluorescent stainings using a newly developed Python script method. Stress reorganized glycolipid microenvironment in the Cornu Ammonis 1 (CA1) and dentate gyrus (DG) hippocampal regions of old females but in a very different fashion, thus affecting neuroplasticity. The postulation of four possible neuroplastin environments pointed to the GD1a ganglioside enrichment during reproductive senescence of stressed females, as well as its high dispersion in both regions and to GD1a and GM1 loss in the CA1 region. A specific lipid environment might influence neuroplastin functionality and underlie synaptic dysfunction triggered by a combination of aging and chronic stress.
Collapse
Affiliation(s)
- Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Irena Labak
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Bartosz Krajnik
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Daniel Pereda de Pablo
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Ana Bardak
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Kálmán Ferenc Szűcs
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Sandor G Vari
- Cedars-Sinai Medical Center, International Research and Innovation in Medicine Program, Los Angeles, CA, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
13
|
Antioxidant Compound, Oxyresveratrol, Inhibits APP Production through the AMPK/ULK1/mTOR-Mediated Autophagy Pathway in Mouse Cortical Astrocytes. Antioxidants (Basel) 2021; 10:antiox10030408. [PMID: 33800526 PMCID: PMC7998742 DOI: 10.3390/antiox10030408] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Oxyresveratrol (OxyR), a well-known polyphenolic phytoalexin, possesses a wide range of pharmacological and biological properties, comprising antioxidant, anti-inflammatory, free radical scavenging, anti-cancer, and neuroprotective activities. Autophagy is a cellular self-degradation system that removes aggregated or misfolded intracellular components via the autophagosome-lysosomal pathway. Astrocyte accumulation is one of the earliest neuropathological changes in Alzheimer’s disease (AD), and amyloid precursor protein (APP) is the hallmark of AD. OxyR could affect APP modulation via the autophagy pathway. Here, we have reported that OxyR promotes autophagy signaling and attenuates APP production in primary cortical astrocytes based on immunofluorescence and immunoblotting assay results. Co-treatment with the late-stage autophagy inhibitor chloroquine (CQ) and OxyR caused significantly higher microtubule-associated protein light chain 3 (LC3)-II protein levels and LC3 puncta counts, demonstrating that OxyR stimulated autophagic flux. We also found that OxyR significantly reduced the levels of the autophagy substrate p62/SQSTM1, and p62 levels were significantly augmented by co-treatment with OxyR and CQ, because of the impaired deficiency of p62 in autolysosome. Likewise, pretreatment with the autophagy inhibitor, 3-methyladenine (3-MA), resulted in significantly fewer OxyR-induced LC3 puncta and lower LC3-II expression, suggesting that OxyR-mediated autophagy was dependent on the class III PI3-kinase pathway. In contrast, OxyR caused significantly lower LC3-II protein expression when pretreated with compound C, an AMP-activated protein kinase (AMPK) inhibitor, indicating that AMPK signaling regulated the OxyR-induced autophagic pathway. Additionally, co-treatment with OxyR with rapamycin intended to inhibit the mammalian target of rapamycin (mTOR) caused significantly lower levels of phospho-S6 ribosomal protein (pS6) and higher LC3-II expression, implying that OxyR-mediated autophagy was dependent on the mTOR pathway. Conversely, OxyR treatment significantly upregulated unc-51-like autophagy activating kinase 1 (ULK1) expression, and ULK1 small interfering RNAs (siRNA) caused significantly lower OxyR-induced LC3 puncta counts and LC3-II expression, indicating that ULK1 was essential for initiating OxyR-induced autophagy. However, we found that OxyR treatment astrocytes significantly increased the expression of lysosome-associated membrane protein 1 (LAMP1). Finally, we established a stress-induced APP production model using corticosterone (CORT) in cortical astrocytes, which produced significantly more APP than the equivalent using dexamethasone (DEX). In our experiment we found that CORT-induced APP production was significantly attenuated by OxyR through the autophagy pathway. Therefore, our study reveals that OxyR regulates AMPK/ULK1/mTOR-dependent autophagy induction and APP reduction in mouse cortical astrocytes.
Collapse
|
14
|
Zhang SQ, Cao LL, Liang YY, Wang P. The Molecular Mechanism of Chronic High-Dose Corticosterone-Induced Aggravation of Cognitive Impairment in APP/PS1 Transgenic Mice. Front Mol Neurosci 2021; 13:613421. [PMID: 33519376 PMCID: PMC7844096 DOI: 10.3389/fnmol.2020.613421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/17/2020] [Indexed: 01/23/2023] Open
Abstract
Clinical studies have found that some Alzheimer’s disease (AD) patients suffer from Cushing’s syndrome (CS). CS is caused by the long-term release of excess glucocorticoids (GCs) from the adrenal gland, which in turn, impair brain function and induce dementia. Thus, we investigated the mechanism of the effect of corticosterone (CORT) on the development and progression of AD in a preclinical model. Specifically, the plasma CORT levels of 9-month-old APP/PS1 Tg mice were abnormally increased, suggesting an association between GCs and AD. Long-term administration of CORT accelerated cognitive dysfunction by increasing the production and deposition of β-amyloid (Aβ). The mechanism of action of CORT treatment involved stimulation of the expression of BACE-1 and presenilin (PS) 1 in in vitro and in vivo. This observation was confirmed in mice with adrenalectomy (ADX), which had lower levels of GCs. Moreover, the glucocorticoid receptor (GR) mediated the effects of CORT on the stimulation of the expression of BACE-1 and PS1 via the PKA and CREB pathways in neuroblastoma N2a cells. In addition to these mechanisms, CORT can induce a cognitive decline in APP/PS1 Tg mice by inducing apoptosis and decreasing the differentiation of neurons.
Collapse
Affiliation(s)
- Shen-Qing Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
15
|
Ávila-Villanueva M, Gómez-Ramírez J, Maestú F, Venero C, Ávila J, Fernández-Blázquez MA. The Role of Chronic Stress as a Trigger for the Alzheimer Disease Continuum. Front Aging Neurosci 2020; 12:561504. [PMID: 33192456 PMCID: PMC7642953 DOI: 10.3389/fnagi.2020.561504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/04/2020] [Indexed: 01/18/2023] Open
Affiliation(s)
- Marina Ávila-Villanueva
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| | - Jaime Gómez-Ramírez
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Campus de Montegancedo, Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Campus de Somosaguas, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Jesús Ávila
- Center of Molecular Biology Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel A Fernández-Blázquez
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
16
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
17
|
Chen L, Shi R, She X, Gu C, Chong L, Zhang L, Li R. Mineralocorticoid receptor antagonist‐mediated cognitive improvement in a mouse model of Alzheimer's type: possible involvement of BDNF‐H
2
S‐Nrf2 signaling. Fundam Clin Pharmacol 2020; 34:697-707. [PMID: 32484999 DOI: 10.1111/fcp.12576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Li Chen
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Rui Shi
- Department of Ophthalmology Shaanxi Provincial People's Hospital No. 256 Youyi West Road, Beilin District Xi'an City Shaanxi Province 710068 China
| | - Xia She
- Nuclear Magnetic Resonance Room Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Chaochao Gu
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Li Chong
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Lina Zhang
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| | - Rui Li
- Department of Neurology Shaanxi Provincial People’s Hospital 256 Friendship West Road, Beilin District Xi’an Shaanxi 710068 China
| |
Collapse
|
18
|
Pakdeepak K, Chokchaisiri R, Tocharus J, Jearjaroen P, Tocharus C, Suksamrarn A. 5,6,7,4'-Tetramethoxyflavanone protects against neuronal degeneration induced by dexamethasone by attenuating amyloidogenesis in mice. EXCLI JOURNAL 2020; 19:16-32. [PMID: 32038114 PMCID: PMC7003641 DOI: 10.17179/excli2019-1940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
Abstract
Long-term exposure to high glucocorticoid levels induces memory impairment and neurodegeneration in Alzheimer's disease (AD) by increasing the expression of amyloid β and tau hyperphosphorylation (pTau). Previous studies showed beneficial effects of flavonoids in neurodegenerative models. 5,6,7,4'-tetramethoxyflavanone (TMF) is one of the active ingredients in Chromolaena odorata (L.), which R. M. King and H. Rob discovered in Thailand. This study focused on the effects of TMF on dexamethasone (DEX)-induced neurodegeneration, amyloidogenesis, pTau expression, neuron synaptic function, and cognitive impairment and the potential mechanisms involved. Mice were intraperitoneally administered DEX for 28 days before being treated with TMF for 30 days. The mice were randomly divided into six groups (twelve mice per group): control; TMF administration (40 mg/kg); pioglitazone administration (20 mg/kg); DEX administration (60 mg/kg); DEX administration plus TMF; and DEX administration plus pioglitazone. Behavioral tests showed that TMF significantly attenuated the memory impairment triggered by DEX. Consistently, TMF reduced DEX-induced amyloid beta production by reducing the expression of beta-site APP cleaving enzyme 1 (BACE1) and presenilin 1 (PS1), whereas it increased the gene expression of a disintegrin and metalloprotease 10 (ADAM10). TMF treatment also decreased pTau expression, inhibited phosphonuclear factor-kappa B (pNF-kB) and inhibited glycogen synthase kinase 3 (GSK-3) activity by increasing GSK3 phosphorylation (pGSK3). In addition, TMF also improved synaptic function by increasing the expression of synaptophysin (Syn) and postsynaptic density protein 95 (PSD95) while decreasing acetylcholine esterase activity. Conclusively, TMF provided neuroprotection against DEX-induced neurodegeneration. These findings suggest that TMF might have potential as a therapeutic drug for AD.
Collapse
Affiliation(s)
- Kanet Pakdeepak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| |
Collapse
|
19
|
Wirth M, Lange C, Huijbers W. Plasma cortisol is associated with cerebral hypometabolism across the Alzheimer's disease spectrum. Neurobiol Aging 2019; 84:80-89. [DOI: 10.1016/j.neurobiolaging.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 01/19/2023]
|
20
|
Ham HJ, Han JH, Lee YS, Kim KC, Yun J, Kang SK, Park Y, Kim SH, Hong JT. Bee Venom Soluble Phospholipase A2 Exerts Neuroprotective Effects in a Lipopolysaccharide-Induced Mouse Model of Alzheimer's Disease via Inhibition of Nuclear Factor-Kappa B. Front Aging Neurosci 2019; 11:287. [PMID: 31736738 PMCID: PMC6839038 DOI: 10.3389/fnagi.2019.00287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/07/2019] [Indexed: 01/04/2023] Open
Abstract
Neuroinflammation is important in the pathogenesis and development of Alzheimer's disease (AD). In the AD brain, microglial activation and upregulation of pro-inflammatory mediators both induce amyloid beta (Aβ) accumulation. Regulatory T cells (Tregs) and nuclear factor-kappa B (NF-κB) signaling have been implicated in AD development through their effects on neuroinflammation and microglial activation. The bee venom soluble phospholipase A2 (bv-sPLA2) enzyme is known to exert anti-inflammatory and anti-immune effects. Here, we investigated the inhibitory effects of bv-sPLA2 on memory deficiency in a lipopolysaccharide (LPS)-induced mouse model of AD. We examined whether bv-sPLA2 (0.02, 0.2, and 2 mg/kg by i.p. injection three times for 1 week) could inhibit neuroinflammation and memory impairment in LPS-treated mice (250 μg/kg by i.p. injection daily for 1 week). We also assessed the effects of bv-sPLA2 administration (0.01, 0.1, and 1 μg/ml) on LPS (1 μg/ml)-treated microglial BV-2 cells. In the LPS-injected mouse brain, sPLA2 treatment rescued memory dysfunction and decreased Aβ levels, through the downregulation of amyloidogenic proteins, and decreased the expression of inflammatory proteins and pro-inflammatory cytokines. Moreover, the LPS-mediated increase in inflammatory protein expression was attenuated bv-sPLA2 treatment in BV-2 cells. Treatment with bv-sPLA2 also downregulated signaling by NF-κB, which is considered to be an important factor in the regulation of neuroinflammatory and amyloidogenic responses, both in vivo and in vitro. Additionally, co-treatment with NF-κB (5 μM) and bv-sPLA2 (0.1 μg/ml) exerted more marked anti-inflammatory effects, compared to bv-sPLA2 treatment alone. These results indicate that bv-sPLA2 inhibits LPS-induced neuroinflammation and amyloidogenesis via inhibition of NF-κB.
Collapse
Affiliation(s)
- Hyeon Joo Ham
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Ji Hye Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Ki Cheon Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Shin Kook Kang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - YangSu Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| | - Se Hyun Kim
- INISTst Company Limited, Gyeonggi-do, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Chungbuk, South Korea
| |
Collapse
|
21
|
Justice NJ. The relationship between stress and Alzheimer's disease. Neurobiol Stress 2018; 8:127-133. [PMID: 29888308 PMCID: PMC5991350 DOI: 10.1016/j.ynstr.2018.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/04/2022] Open
Abstract
Stress is critically involved in the development and progression of disease. From the stress of undergoing treatments to facing your own mortality, the physiological processes that stress drives have a serious detrimental effect on the ability to heal, cope and maintain a positive quality of life. This is becoming increasingly clear in the case of neurodegenerative diseases. Neurodegenerative diseases involve the devastating loss of cognitive and motor function which is stressful in itself, but can also disrupt neural circuits that mediate stress responses. Disrupting these circuits produces aberrant emotional and aggressive behavior that causes long-term care to be especially difficult. In addition, added stress drives progression of the disease and can exacerbate symptoms. In this review, I describe how neural and endocrine pathways activated by stress interact with ongoing neurodegenerative disease from both a clinical and experimental perspective.
Collapse
Affiliation(s)
- Nicholas J. Justice
- Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, 77030, USA
| |
Collapse
|
22
|
Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer's disease. Open Biol 2017; 7:170228. [PMID: 29237809 PMCID: PMC5746550 DOI: 10.1098/rsob.170228] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is marked by the presence of extracellular amyloid beta (Aβ) plaques, intracellular neurofibrillary tangles (NFTs) and gliosis, activated glial cells, in the brain. It is thought that Aβ plaques trigger NFT formation, neuronal cell death, neuroinflammation and gliosis and, ultimately, cognitive impairment. There are increased numbers of reactive astrocytes in AD, which surround amyloid plaques and secrete proinflammatory factors and can phagocytize and break down Aβ. It was thought that neuronal cells were the major source of Aβ. However, mounting evidence suggests that astrocytes may play an additional role in AD by secreting significant quantities of Aβ and contributing to overall amyloid burden in the brain. Astrocytes are the most numerous cell type in the brain, and therefore even minor quantities of amyloid secretion from individual astrocytes could prove to be substantial when taken across the whole brain. Reactive astrocytes have increased levels of the three necessary components for Aβ production: amyloid precursor protein, β-secretase (BACE1) and γ-secretase. The identification of environmental factors, such as neuroinflammation, that promote astrocytic Aβ production, could redefine how we think about developing therapeutics for AD.
Collapse
Affiliation(s)
- Georgia R Frost
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| |
Collapse
|
23
|
Early postnatal handling reduces hippocampal amyloid plaque formation and enhances cognitive performance in APPswe/PS1dE9 mice at middle age. Neurobiol Learn Mem 2017; 144:27-35. [PMID: 28579367 DOI: 10.1016/j.nlm.2017.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/03/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
In rodents, fragmented and low levels of maternal care have been implicated in age-related cognitive decline and the incidence and progression of Alzheimer's pathology. In contrast, enhancing early postnatal maternal care has been associated with improved cognitive function later in life. Here we examined whether early postnatal handling of mouse pups from postnatal days 2-9 enhanced maternal care and whether this affected cognition and Alzheimer pathology at 5 and 11months of age in the APPswe/PS1dE9 mouse model for Alzheimer's disease. Brief, 15min daily episodes of separating offspring from their dams from postnatal days 2-9 (early handling, EH) increased maternal care of the dam towards her pups upon reunion. At 11 (but not 5) months of age, EH APPswe/PS1dE1 mice displayed significantly reduced amyloid plaque pathology in the hippocampus. At this age, EH also prevented short-term working memory deficits while restoring impairments in contextual fear memory formation in APPswe/PS1dE9 mice. EH did not modulate amyloid pathology in the amygdala, nor did it affect auditory fear conditioning deficits in APPswe/PS1dE9 mice. We conclude that increased levels of maternal care during the early life period delays amyloid accumulation and cognitive decline in an Alzheimer's mouse model, involving the hippocampus, but not to the amygdala. These studies highlight the importance of the early postnatal period in modulating resilience to develop Alzheimer's pathology later in life.
Collapse
|
24
|
Pietrzak RH, Laws SM, Lim YY, Bender SJ, Porter T, Doecke J, Ames D, Fowler C, Masters CL, Milicic L, Rainey-Smith S, Villemagne VL, Rowe CC, Martins RN, Maruff P. Plasma Cortisol, Brain Amyloid-β, and Cognitive Decline in Preclinical Alzheimer's Disease: A 6-Year Prospective Cohort Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 2:45-52. [PMID: 29560886 DOI: 10.1016/j.bpsc.2016.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hypothalamic-pituitary-adrenal axis dysregulation, which is typically assessed by measuring cortisol levels, is associated with cognitive dysfunction, hippocampal atrophy, and increased risk for mild cognitive impairment and Alzheimer's disease (AD). However, little is known about the role of hypothalamic-pituitary-adrenal axis dysregulation in moderating the effect of high levels of amyloid-β (Aβ+) on cognitive decline in the preclinical phase of AD, which is often protracted, and thus offers opportunities for prevention and early intervention. METHODS Using data from a 6-year multicenter prospective cohort study, we evaluated the relation between Aβ level, plasma cortisol level, and cognitive decline in 416 cognitively normal older adults. RESULTS Results revealed that Aβ+ older adults experienced faster decline than Aβ- older adults in all cognitive domains (Cohen's d at 6-year assessment = 0.37-0.65). They further indicated a significant interaction between Aβ and cortisol levels for global cognition (d = 0.32), episodic memory (d = 0.50), and executive function (d = 0.59) scores, with Aβ+ older adults with high cortisol levels having significantly faster decline in these domains compared with Aβ+ older adults with low cortisol levels. These effects were independent of age, sex, APOE genotype, anxiety symptoms, and radiotracer type. CONCLUSIONS In cognitively healthy older adults, Aβ+ is associated with greater cognitive decline and high plasma cortisol levels may accelerate the effect of Aβ+ on decline in global cognition, episodic memory, and executive function. These results suggest that therapies targeted toward lowering plasma cortisol and Aβ levels may be helpful in mitigating cognitive decline in the preclinical phase of AD.
Collapse
Affiliation(s)
- Robert H Pietrzak
- U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Simon M Laws
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Western Australia; Co-operative Research Centre for Mental Health
| | - Yen Ying Lim
- The Florey Institute, The University of Melbourne, Parkville, Victoria
| | - Sophie J Bender
- School of Health Sciences, University of Notre Dame Australia, Fremantle, Western Australia
| | - Tenielle Porter
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Western Australia; Co-operative Research Centre for Mental Health
| | - James Doecke
- The Commonwealth Scientific and Industrial Research Organization, Canberra
| | - David Ames
- Academic Unit for Psychiatry of Old Age, St. Vincent's Health, Department of Psychiatry, The University of Melbourne, Kew; National Ageing Research Institute, Parkville, Victoria
| | | | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, Victoria
| | - Lidija Milicic
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Western Australia
| | - Stephanie Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Western Australia
| | - Victor L Villemagne
- The Florey Institute, The University of Melbourne, Parkville, Victoria; Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia; Department of Nuclear Medicine and Centre for PET, Austin Health
| | - Christopher C Rowe
- Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia; Department of Nuclear Medicine and Centre for PET, Austin Health
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Western Australia; Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Western Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, Victoria; Department of Medicine, Austin Health, The University of Melbourne, Heidelberg; Cogstate Ltd., Melbourne, Victoria, Australia
| | | |
Collapse
|
25
|
Xie F, Zhao Y, Ma J, Gong JB, Wang SD, Zhang L, Gao XJ, Qian LJ. The involvement of homocysteine in stress-induced Aβ precursor protein misprocessing and related cognitive decline in rats. Cell Stress Chaperones 2016; 21:915-26. [PMID: 27435080 PMCID: PMC5003809 DOI: 10.1007/s12192-016-0718-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 12/15/2022] Open
Abstract
Chronic stress is a risk factor in the development of cognitive decline and even Alzheimer's disease (AD), although its underlying mechanism is not fully understood. Our previous data demonstrated that the level of homocysteine (Hcy) was significantly elevated in the plasma of stressed animals, which suggests the possibility that Hcy is a link between stress and cognitive decline. To test this hypothesis, we compared the cognitive function, plasma concentrations of Hcy, and the brain beta-amyloid (Aβ) level between rats with or without chronic unexpected mild stress (CUMS). A lower performance by rats in behavioral tests indicated that a significant cognitive decline was induced by CUMS. Stress also disturbed the normal processing of Aβ precursor protein (APP) and resulted in the accumulation of Aβ in the brains of rats, which showed a positive correlation with the hyperhomocysteinemia (HHcy) that appeared in stressed rats. Hcy-targeting intervention experiments were used to verify further the involvement of Hcy in stress-induced APP misprocessing and related cognitive decline. The results showed that diet-induced HHcy could mimic the cognitive impairment and APP misprocessing in the same manner as CUMS, while Hcy reduction by means of vitamin B complex supplements and betaine could alleviate the cognitive deficits and dysregulation of Aβ metabolism in CUMS rats. Taken together, the novel evidence from our present study suggests that Hcy is likely to be involved in chronic stress-evoked APP misprocessing and related cognitive deficits. Our results also suggested the possibility of Hcy as a target for therapy and the potential value of vitamin B and betaine intake in the prevention of stress-induced cognitive decline.
Collapse
Affiliation(s)
- Fang Xie
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Yun Zhao
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Jing Ma
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Jing-Bo Gong
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Shi-Da Wang
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Liang Zhang
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China
| | - Xiu-Jie Gao
- Institute of Health and Environmental Medicine, Tianjin, 300050, People's Republic of China
| | - Ling-Jia Qian
- Department of Stress Medicine, Institute of Basic Medical Sciences, #27 Taiping Road, Haidian, Beijing, 100039, People's Republic of China.
| |
Collapse
|
26
|
New selective glucocorticoid receptor modulators reverse amyloid-β peptide–induced hippocampus toxicity. Neurobiol Aging 2016; 45:109-122. [DOI: 10.1016/j.neurobiolaging.2016.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
|
27
|
Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M. Associations between Sleep, Cortisol Regulation, and Diet: Possible Implications for the Risk of Alzheimer Disease. Adv Nutr 2016; 7:679-89. [PMID: 27422503 PMCID: PMC4942871 DOI: 10.3945/an.115.011775] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Accumulation of proteinaceous amyloid β plaques and tau oligomers may occur several years before the onset of Alzheimer disease (AD). Under normal circumstances, misfolded proteins get cleared by proteasome degradation, autophagy, and the recently discovered brain glymphatic system, an astroglial-mediated interstitial fluid bulk flow. It has been shown that the activity of the glymphatic system is higher during sleep and disengaged or low during wakefulness. As a consequence, poor sleep quality, which is associated with dementia, might negatively affect glymphatic system activity, thus contributing to amyloid accumulation. The diet is another important factor to consider in the regulation of this complex network. Diets characterized by high intakes of refined sugars, salt, animal-derived proteins and fats and by low intakes of fruit and vegetables are associated with a higher risk of AD and can perturb the circadian modulation of cortisol secretion, which is associated with poor sleep quality. For this reason, diets and nutritional interventions aimed at restoring cortisol concentrations may ease sleep disorders and may facilitate brain clearance, consequentially reducing the risk of cognitive impairment and dementia. Here, we describe the associations that exist between sleep, cortisol regulation, and diet and their possible implications for the risk of cognitive impairment and AD.
Collapse
Affiliation(s)
- Francesca Pistollato
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain
| | - Sandra Sumalla Cano
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain;,International Ibero-American University (UNINI), Campeche, Mexico;,Ibero-American University Foundation (FUNIBER), Barcelona, Spain
| | - Iñaki Elio
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain;,International Ibero-American University (UNINI), Campeche, Mexico;,Ibero-American University Foundation (FUNIBER), Barcelona, Spain
| | - Manuel Masias Vergara
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain;,International Ibero-American University (UNINI), Puerto Rico; and
| | - Francesca Giampieri
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain; Department of Specialized Clinical Sciences and Dentistry, Marche Polytechnic University, Ancona, Italy
| | - Maurizio Battino
- Center for Nutrition and Health, European University of the Atlantic (UEA), Santander, Spain; Department of Specialized Clinical Sciences and Dentistry, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
28
|
Herbert J, Lucassen PJ. Depression as a risk factor for Alzheimer's disease: Genes, steroids, cytokines and neurogenesis - What do we need to know? Front Neuroendocrinol 2016; 41:153-71. [PMID: 26746105 DOI: 10.1016/j.yfrne.2015.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/18/2023]
Abstract
Depression (MDD) is prodromal to, and a component of, Alzheimer's disease (AD): it may also be a trigger for incipient AD. MDD is not a unitary disorder, so there may be particular subtypes of early life MDD that pose independent high risks for later AD, though the identification of these subtypes is problematical. There may either be a common pathological event underlying both MDD and AD, or MDD may sensitize the brain to a second event ('hit') that precipitates AD. MDD may also accelerate brain ageing, including altered DNA methylation, increased cortisol but decreasing DHEA and thus the risk for AD. So far, genes predicting AD (e.g. APOEε4) are not risk factors for MDD, and those implicated in MDD (e.g. SLC6A4) are not risks for AD, so a common genetic predisposition looks unlikely. There is as yet no strong indication that an epigenetic event occurs during some forms of MDD that predisposes to later AD, though the evidence is limited. Glucocorticoids (GCs) are disturbed in some cases of MDD and in AD. GCs have marked degenerative actions on the hippocampus, a site of early β-amyloid deposition, and rare genetic variants of GC-regulating enzymes (e.g. 11β-HSD) predispose to AD. GCs also inhibit hippocampal neurogenesis and plasticity, and thus episodic memory, a core symptom of AD. Disordered GCs in MDD may inhibit neurogenesis, but the contribution of diminished neurogenesis to the onset or progression of AD is still debated. GCs and cytokines also reduce BDNF, implicated in both MDD and AD and hippocampal neurogenesis, reinforcing the notion that those cases of MDD with disordered GCs may be a risk for AD. Cytokines, including IL1β, IL6 and TNFα, are increased in the blood in some cases of MDD. They also reduce hippocampal neurogenesis, and increased cytokines are a known risk for later AD. Inflammatory changes occur in both MDD and AD (e.g. raised CRP, TNFα). Both cytokines and GCs can have pro-inflammatory actions in the brain. Inflammation (e.g. microglial activation) may be a common link, but this has not been systematically investigated. We lack substantial, rigorous and comprehensive follow-up studies to better identify possible subtypes of MDD that may represent a major predictor for later AD. This would enable specific interventions during critical episodes of these subtypes of MDD that should reduce this substantial risk.
Collapse
Affiliation(s)
- Joe Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK.
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
29
|
Kang SG, Kim C, Cortez LM, Carmen Garza M, Yang J, Wille H, Sim VL, Westaway D, McKenzie D, Aiken J. Toll-like receptor-mediated immune response inhibits prion propagation. Glia 2016; 64:937-51. [PMID: 26880394 DOI: 10.1002/glia.22973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 02/03/2023]
Abstract
Prion diseases are progressive neurodegenerative disorders affecting humans and various mammals. The prominent neuropathological change in prion diseases is neuroinflammation characterized by activation of neuroglia surrounding prion deposition. The cause and effect of this cellular response, however, is unclear. We investigated innate immune defenses against prion infection using primary mixed neuronal and glial cultures. Conditional prion propagation occurred in glial cultures depending on their immune status. Preconditioning of the cells with the toll-like receptor (TLR) ligand, lipopolysaccharide, resulted in a reduction in prion propagation, whereas suppression of the immune responses with the synthetic glucocorticoid, dexamethasone, increased prion propagation. In response to recombinant prion fibrils, glial cells up-regulated TLRs (TLR1 and TLR2) expression and secreted cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6, granulocyte-macrophage colony-stimulating factor, and interferon-β). Preconditioning of neuronal and glial cultures with recombinant prion fibrils inhibited prion replication and altered microglial and astrocytic populations. Our results provide evidence that, in early stages of prion infection, glial cells respond to prion infection through TLR-mediated innate immunity.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Chiye Kim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Leonardo M Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - María Carmen Garza
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Tamano H, Ide K, Adlard PA, Bush AI, Takeda A. Involvement of hippocampal excitability in amyloid β-induced behavioral and psychological symptoms of dementia. J Toxicol Sci 2016; 41:449-57. [DOI: 10.2131/jts.41.449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kazuki Ide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Paul Anthony Adlard
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, At Genetics Lane on Royal Parade, The University of Melbourne, Australia
| | - Ashley Ian Bush
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, At Genetics Lane on Royal Parade, The University of Melbourne, Australia
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
31
|
Protzek AOP, Rezende LF, Costa-Júnior JM, Ferreira SM, Cappelli APG, de Paula FMM, de Souza JC, Kurauti MA, Carneiro EM, Rafacho A, Boschero AC. Hyperinsulinemia caused by dexamethasone treatment is associated with reduced insulin clearance and lower hepatic activity of insulin-degrading enzyme. J Steroid Biochem Mol Biol 2016; 155:1-8. [PMID: 26386462 DOI: 10.1016/j.jsbmb.2015.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Glucocorticoid treatment induces insulin resistance (IR), which is counteracted by a compensatory hyperinsulinemia, due to increased pancreatic β-cell function. There is evidence for also reduced hepatic insulin clearance, but whether this correlates with altered activity of insulin-degrading enzyme (IDE) in the liver, is not fully understood. Here, we investigated whether hyperinsulinemia, in glucocorticoid-treated rodents, is associated with any alteration in the insulin clearance and activity of the IDE in the liver. MATERIALS/METHODS Adult male Swiss mice and Wistar rats were treated with the synthetic glucocorticoid dexamethasone intraperitoneally [1mg/kg body weight (b.w.)] for 5 consecutive days. RESULTS Glucocorticoid treatment induced IR and hyperinsulinemia in both species, but was more impactful in rats that also displayed glucose intolerance and hyperglycemia. Insulin clearance was reduced in glucocorticoid-treated rats and mice, as judged by the reduction of insulin decay rate and increased insulin area-under-the-curve (47% and 87%, respectively). These results were associated with reduced activity (35%) of hepatic IDE in rats and a tendency to reduction (p=0.068) in mice, without alteration in hepatic IDE mRNA content, in both species. CONCLUSION In conclusion, the reduced insulin clearance in glucocorticoid-treated rodents was due to the reduction of hepatic IDE activity, at least in rats, which may contributes to the compensatory hyperinsulinemia. These findings corroborate the idea that short-term and/or partial inhibition of IDE activity in the liver could be beneficial for the glycemic control.
Collapse
Affiliation(s)
- André Otávio Peres Protzek
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Luiz Fernando Rezende
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - José Maria Costa-Júnior
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Sandra Mara Ferreira
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Ana Paula Gameiro Cappelli
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Flávia Maria Moura de Paula
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Jane Cristina de Souza
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Mirian Ayumi Kurauti
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil
| | - Alex Rafacho
- Department of Physiological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil; Multicenter Graduate Program in Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.
| | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, Campinas State University (UNICAMP), Campinas, Brazil.
| |
Collapse
|
32
|
Rajasekar N, Nath C, Hanif K, Shukla R. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes. Mol Neurobiol 2015; 53:6730-6744. [PMID: 26660109 DOI: 10.1007/s12035-015-9576-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/29/2015] [Indexed: 12/21/2022]
Abstract
Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.
Collapse
Affiliation(s)
- N Rajasekar
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Chandishwar Nath
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Kashif Hanif
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Rakesh Shukla
- Divisions of Pharmacology and Toxicology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Chennai, India.
| |
Collapse
|
33
|
Sooy K, Noble J, McBride A, Binnie M, Yau JLW, Seckl JR, Walker BR, Webster SP. Cognitive and Disease-Modifying Effects of 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibition in Male Tg2576 Mice, a Model of Alzheimer's Disease. Endocrinology 2015; 156:4592-603. [PMID: 26305888 PMCID: PMC4655221 DOI: 10.1210/en.2015-1395] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic exposure to elevated levels of glucocorticoids has been linked to age-related cognitive decline and may play a role in Alzheimer's disease. In the brain, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies intracellular glucocorticoid levels. We show that short-term treatment of aged, cognitively impaired C57BL/6 mice with the potent and selective 11β-HSD1 inhibitor UE2316 improves memory, including after intracerebroventricular drug administration to the central nervous system alone. In the Tg2576 mouse model of Alzheimer's disease, UE2316 treatment of mice aged 14 months for 4 weeks also decreased the number of β-amyloid (Aβ) plaques in the cerebral cortex, associated with a selective increase in local insulin-degrading enzyme (involved in Aβ breakdown and known to be glucocorticoid regulated). Chronic treatment of young Tg2576 mice with UE2316 for up to 13 months prevented cognitive decline but did not prevent Aβ plaque formation. We conclude that reducing glucocorticoid regeneration in the brain improves cognition independently of reduced Aβ plaque pathology and that 11β-HSD1 inhibitors have potential as cognitive enhancers in age-associated memory impairment and Alzheimer's dementia.
Collapse
Affiliation(s)
- Karen Sooy
- University/BHF Centre for Cardiovascular Science (K.S., J.N., A.M., M.B., J.L.W.Y., J.R.S., B.R.W., S.P.W.), Queen's Medical Research Institute, and Centre for Cognitive Aging and Cognitive Epidemiology (J.L.W.Y., J.R.S.), University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - June Noble
- University/BHF Centre for Cardiovascular Science (K.S., J.N., A.M., M.B., J.L.W.Y., J.R.S., B.R.W., S.P.W.), Queen's Medical Research Institute, and Centre for Cognitive Aging and Cognitive Epidemiology (J.L.W.Y., J.R.S.), University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Andrew McBride
- University/BHF Centre for Cardiovascular Science (K.S., J.N., A.M., M.B., J.L.W.Y., J.R.S., B.R.W., S.P.W.), Queen's Medical Research Institute, and Centre for Cognitive Aging and Cognitive Epidemiology (J.L.W.Y., J.R.S.), University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Margaret Binnie
- University/BHF Centre for Cardiovascular Science (K.S., J.N., A.M., M.B., J.L.W.Y., J.R.S., B.R.W., S.P.W.), Queen's Medical Research Institute, and Centre for Cognitive Aging and Cognitive Epidemiology (J.L.W.Y., J.R.S.), University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Joyce L W Yau
- University/BHF Centre for Cardiovascular Science (K.S., J.N., A.M., M.B., J.L.W.Y., J.R.S., B.R.W., S.P.W.), Queen's Medical Research Institute, and Centre for Cognitive Aging and Cognitive Epidemiology (J.L.W.Y., J.R.S.), University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jonathan R Seckl
- University/BHF Centre for Cardiovascular Science (K.S., J.N., A.M., M.B., J.L.W.Y., J.R.S., B.R.W., S.P.W.), Queen's Medical Research Institute, and Centre for Cognitive Aging and Cognitive Epidemiology (J.L.W.Y., J.R.S.), University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Brian R Walker
- University/BHF Centre for Cardiovascular Science (K.S., J.N., A.M., M.B., J.L.W.Y., J.R.S., B.R.W., S.P.W.), Queen's Medical Research Institute, and Centre for Cognitive Aging and Cognitive Epidemiology (J.L.W.Y., J.R.S.), University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Scott P Webster
- University/BHF Centre for Cardiovascular Science (K.S., J.N., A.M., M.B., J.L.W.Y., J.R.S., B.R.W., S.P.W.), Queen's Medical Research Institute, and Centre for Cognitive Aging and Cognitive Epidemiology (J.L.W.Y., J.R.S.), University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
34
|
Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer's disease. Front Aging Neurosci 2015; 7:119. [PMID: 26150787 PMCID: PMC4473000 DOI: 10.3389/fnagi.2015.00119] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD), the most common neurodegenerative disorder associated with dementia, is typified by the pathological accumulation of amyloid Aβ peptides and neurofibrillary tangles (NFT) within the brain. Considerable evidence indicates that many events contribute to AD progression, including oxidative stress, inflammation, and altered cholesterol metabolism. The brain’s high lipid content makes it particularly vulnerable to oxidative species, with the consequent enhancement of lipid peroxidation and cholesterol oxidation, and the subsequent formation of end products, mainly 4-hydroxynonenal and oxysterols, respectively from the two processes. The chronic inflammatory events observed in the AD brain include activation of microglia and astrocytes, together with enhancement of inflammatory molecule and free radical release. Along with glial cells, neurons themselves have been found to contribute to neuroinflammation in the AD brain, by serving as sources of inflammatory mediators. Oxidative stress is intimately associated with neuroinflammation, and a vicious circle has been found to connect oxidative stress and inflammation in AD. Alongside oxidative stress and inflammation, altered cholesterol metabolism and hypercholesterolemia also significantly contribute to neuronal damage and to progression of AD. Increasing evidence is now consolidating the hypothesis that oxidized cholesterol is the driving force behind the development of AD, and that oxysterols are the link connecting the disease to altered cholesterol metabolism in the brain and hypercholesterolemia; this is because of the ability of oxysterols, unlike cholesterol, to cross the blood brain barrier (BBB). The key role of oxysterols in AD pathogenesis has been strongly supported by research pointing to their involvement in modulating neuroinflammation, Aβ accumulation, and cell death. This review highlights the key role played by cholesterol and oxysterols in the brain in AD pathogenesis.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin Orbassano, Torino, Italy
| |
Collapse
|
35
|
Joshi YB, Praticò D. The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer's disease phenotype. Front Cell Neurosci 2015; 8:436. [PMID: 25642165 PMCID: PMC4294160 DOI: 10.3389/fncel.2014.00436] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/02/2014] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common, and, arguably, one of the most-well studied, neurodegenerative conditions. Several decades of investigation have revealed that amyloid-β and tau proteins are critical pathological players in this condition. Genetic analyses have revealed specific mutations in the cellular machinery that produces amyloid-β, but these mutations are found in only a small fraction of patients with the early-onset variant of AD. In addition to development of amyloid-β and tau pathology, oxidative damage and inflammation are consistently found in the brains of these patients. The 5-lipoxygenase protein enzyme (5LO) and its downstream leukotriene metabolites have long been known to be important modulators of oxidation and inflammation in other disease states. Recent in vivo evidence using murine knock-out models has implicated the 5LO pathway, which also requires the 5LO activating protein (FLAP), in the molecular pathology of AD, including the metabolism of amyloid-β and tau. In this manuscript, we will provide an overview of 5LO and FLAP, discussing their involvement in biochemical pathways relevant to AD pathogenesis. We will also discuss how the 5LO pathway contributes to the molecular and behavioral insults seen in AD and provide an assessment of how targeting these proteins could lead to therapeutics relevant not only for AD, but also other related neurodegenerative conditions.
Collapse
Affiliation(s)
- Yash B. Joshi
- Department of Pharmacology and Center for Translational Medicine, Temple University School of MedicinePhiladelphia, PA, USA
| | - Domenico Praticò
- Department of Pharmacology and Center for Translational Medicine, Temple University School of MedicinePhiladelphia, PA, USA
| |
Collapse
|
36
|
Du X, Pang TY. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases? Front Psychiatry 2015; 6:32. [PMID: 25806005 PMCID: PMC4353372 DOI: 10.3389/fpsyt.2015.00032] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/16/2015] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer's, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies.
Collapse
Affiliation(s)
- Xin Du
- Mental Health Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| | - Terence Y Pang
- Behavioural Neurosciences Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
37
|
Popp J, Wolfsgruber S, Heuser I, Peters O, Hüll M, Schröder J, Möller HJ, Lewczuk P, Schneider A, Jahn H, Luckhaus C, Perneczky R, Frölich L, Wagner M, Maier W, Wiltfang J, Kornhuber J, Jessen F. Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer's type. Neurobiol Aging 2014; 36:601-7. [PMID: 25435336 DOI: 10.1016/j.neurobiolaging.2014.10.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 11/25/2022]
Abstract
Increased peripheral and central nervous system cortisol levels have been reported in Alzheimer's disease (AD) and may reflect dysfunction of cerebral components of the hypothalamic-pituitary-adrenal (HPA) axis. However, brain exposure to high cortisol concentrations may also accelerate disease progression and cognitive decline. The objectives of this study were to investigate whether HPA-axis dysregulation occurs at early clinical stages of AD and whether plasma and CSF cortisol levels are associated with clinical disease progression. Morning plasma and CSF cortisol concentrations were obtained from the subjects with AD dementia, mild cognitive impairment of AD type (MCI-AD), MCI of other type (MCI-O), and controls with normal cognition included in a multicenter study from the German Dementia Competence Network. A clinical and neuropsychological follow-up was performed in a subgroup of participants with MCI-AD, MCI-O, and AD dementia. CSF cortisol concentrations were increased in the subjects with AD dementia or MCI-AD compared with subjects with MCI-O or normal cognition. After controlling for possible confounders including CSF measures of amyloid beta1-42 and total tau, higher baseline CSF cortisol levels were associated with faster clinical worsening and cognitive decline in MCI-AD. The findings suggest that HPA-axis dysregulation occurs at the MCI stage of AD and may accelerate disease progression and cognitive decline.
Collapse
Affiliation(s)
- Julius Popp
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany; Department of Psychiatry, Leenaards Memory Center, University Hospital of Lausanne, Lausanne, Switzerland; Department of Clinical Neurosciences, Leenaards Memory Center, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Steffen Wolfsgruber
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Isabella Heuser
- Department of Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Hüll
- Center for Geriatric Medicine and Gerontology, University Hospital Freiburg, Freiburg, Germany
| | - Johannes Schröder
- Department of Psychiatry and Psychotherapy, University of Heidelberg, Heidelberg, Germany
| | - Hans-Jürgen Möller
- Department of Psychiatry, Ludwig-Maximilians, University München, München, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Schneider
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Holger Jahn
- Department of Psychiatry and Psychotherapy, University of Hamburg, Hamburg, Germany
| | - Christian Luckhaus
- Department of Psychiatry and Psychotherapy, University of Düsseldorf, Düsseldorf, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, Technische Universität München, München, Germany
| | - Lutz Frölich
- Central Institute of Mental Health, Mannheim, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
38
|
Abstract
AbstractAside from the well-known amyloid beta and tau pathologies found in Alzheimer’s disease (AD), neuroinflammation is a well-established aspect described in humans and animal models of the disease. Inflammatory perturbations are evident not only in neurons, but also in non-neuronal cells and cytokines in the AD brain. Although the amyloid hypothesis implicates amyloid beta (Aβ) as the prime initiator of the AD, brain inflammation in AD has a complex relationship between Aβ and tau. Using our work with the 5-lipoxygenase protein as an example, we suggest that at least in the case of AD, there is an interdependent and not necessarily hierarchical pathological relationship between Aβ, tau and inflammation.
Collapse
|
39
|
Toledo JB, Toledo E, Weiner MW, Jack CR, Jagust W, Lee VMY, Shaw LM, Trojanowski JQ. Cardiovascular risk factors, cortisol, and amyloid-β deposition in Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 2012; 8:483-9. [PMID: 23102118 PMCID: PMC3668456 DOI: 10.1016/j.jalz.2011.08.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/11/2011] [Accepted: 08/24/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND There is epidemiological evidence that cardiovascular risk factors (CVRF) also are risk factors for Alzheimer's disease, but there is limited information on this from neuropathological studies, and even less from in vivo studies. Therefore, we examined the relationship between CVRF and amyloid-β (Aβ) brain burden measured by Pittsburgh Compound B-positron emission tomography (PiB-PET) studies in the Alzheimer's Disease Neuroimaging Initiative. METHODS Ninety-nine subjects from the Alzheimer's Disease Neuroimaging Initiative cohort who had a PiB-PET study measure, apolipoprotein E genotyping data, and information available on CVRF (body mass index [BMI], systolic blood pressure, diastolic blood pressure [DBP], and cholesterol and fasting glucose test results) were included. Eighty-one subjects also had plasma cortisol, C-reactive protein, and superoxide dismutase 1 measurements. Stepwise regression models were used to assess the relation between the CVRF and the composite PiB-PET score. RESULTS The first model included the following as baseline variables: age, clinical diagnosis, number of apolipoprotein ɛ4 alleles, BMI (P = .023), and DBP (P = .012). BMI showed an inverse relation with PiB-PET score, and DBP had a positive relation with PiB-PET score. In the second adjusted model, cortisol plasma levels were also associated with PiB-PET score (P = .004). Systolic blood pressure, cholesterol, or impaired fasting glucose were not found to be associated with PiB-PET values. CONCLUSION In this cross-sectional study, we found an association between Aβ brain burden measured in vivo and DBP and cortisol, indicating a possible link between these CVRF and Aβ burden measured by PiB-PET. These findings highlight the utility of biomarkers to explore potential pathways linking diverse Alzheimer's disease risk factors.
Collapse
Affiliation(s)
- Jon B. Toledo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA,USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, Medical School, Universidad de Navarra, Pamplona, Spain
| | - Michael W. Weiner
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Virginia M.-Y. Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA,USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA,USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA,USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania, School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
40
|
Bellavance MA, Rivest S. The neuroendocrine control of the innate immune system in health and brain diseases. Immunol Rev 2012; 248:36-55. [PMID: 22725953 DOI: 10.1111/j.1600-065x.2012.01129.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate immune reaction takes place in the brain during immunogenic challenges, injury, and disease. Such a response is highly regulated by numerous anti-inflammatory mechanisms that may directly affect the ultimate consequences of such a reaction within the cerebral environment. The neuroendocrine control of this innate immune system by glucocorticoids is critical for the delicate balance between cell survival and damage in the presence of inflammatory mediators. Glucocorticoids play key roles in regulating the expression of inflammatory genes, and they also have the ability to modulate numerous functions that may ultimately lead to brain damage or repair after injury. Here we review these mechanisms and discuss data supporting both neuroprotective and detrimental roles of the neuroendocrine control of innate immunity.
Collapse
Affiliation(s)
- Marc-André Bellavance
- Laboratory of Endocrinology and Genomics, CHUQ Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, Canada
| | | |
Collapse
|
41
|
Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer's disease. Mol Neurodegener 2012; 7:52. [PMID: 23039869 PMCID: PMC3507664 DOI: 10.1186/1750-1326-7-52] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex age-related pathology, the etiology of which has not been firmly delineated. Among various histological stigmata, AD-affected brains display several cellular dysfunctions reflecting enhanced oxidative stress, inflammation process and calcium homeostasis disturbance. Most of these alterations are directly or indirectly linked to amyloid β-peptides (Aβ), the production, molecular nature and biophysical properties of which likely conditions the degenerative process. It is particularly noticeable that, in a reverse control process, the above-described cellular dysfunctions alter Aβ peptides levels. β-secretase βAPP-cleaving enzyme 1 (BACE1) is a key molecular contributor of this cross-talk. This enzyme is responsible for the primary cleavage generating the N-terminus of “full length” Aβ peptides and is also transcriptionally induced by several cellular stresses. This review summarizes data linking brain insults to AD-like pathology and documents the key role of BACE1 at the cross-road of a vicious cycle contributing to Aβ production.
Collapse
Affiliation(s)
- Linda Chami
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, 06560 Valbonne, France
| | | |
Collapse
|
42
|
The Components of Flemingia macrophylla Attenuate Amyloid β-Protein Accumulation by Regulating Amyloid β-Protein Metabolic Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:795843. [PMID: 22719789 PMCID: PMC3376484 DOI: 10.1155/2012/795843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/06/2012] [Accepted: 03/13/2012] [Indexed: 12/19/2022]
Abstract
Flemingia macrophylla (Leguminosae) is a popular traditional remedy used in Taiwan as anti-inflammatory, promoting blood circulation and antidiabetes agent. Recent study also suggested its neuroprotective activity against Alzheimer's disease. Therefore, the effects of F. macrophylla on Aβ production and degradation were studied. The effect of F. macrophylla on Aβ metabolism was detected using the cultured mouse neuroblastoma cells N2a transfected with human Swedish mutant APP (swAPP-N2a cells). The effects on Aβ degradation were evaluated on a cell-free system. An ELISA assay was applied to detect the level of Aβ1-40 and Aβ1-42. Western blots assay was employed to measure the levels of soluble amyloid precursor protein and insulin degrading enzyme (IDE). Three fractions of F. macrophylla modified Aβ accumulation by both inhibiting β-secretase and activating IDE. Three flavonoids modified Aβ accumulation by activating IDE. The activated IDE pool by the flavonoids was distinctly regulated by bacitracin (an IDE inhibitor). Furthermore, flavonoid 94-18-13 also modulates Aβ accumulation by enhancing IDE expression. In conclusion, the components of F. macrophylla possess the potential for developing new therapeutic drugs for Alzheimer's disease.
Collapse
|
43
|
Li WZ, Wu WY, Huang DK, Yin YY, Kan HW, Wang X, Yao YY, Li WP. Protective effects of astragalosides on dexamethasone and Aβ25-35 induced learning and memory impairments due to decrease amyloid precursor protein expression in 12-month male rats. Food Chem Toxicol 2012; 50:1883-90. [PMID: 22484447 DOI: 10.1016/j.fct.2012.03.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/18/2012] [Accepted: 03/21/2012] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder of the elderly characterized by learning and memory impairment. Stress level glucocorticoids (GCs) and β-amyloid (Aβ) peptide deposition are found to be correlated with dementia progression in patients with AD. The astragalosides (AST) was extracted from traditional Chinese herb Astragalus membranaceous. In this study, 12 months male rats were treated with Aβ(25-35) (10 μg/rat, hippocampal CA1 injection) and dexamethasone (DEX, 1.5mg/kg, ig) and AST (8, 16 and 32 mg/kg, ig) or ginsenoside Rg1 (Rg1, 5 mg/kg, ig) for 14 days. We investigated the protective effect of AST against DEX+Aβ(25-35) injury in rats and its mechanisms of action. Our results indicate that DEX+Aβ(25-35) can induce learning and memory impairments and increase APP and Aβ(1-40) expression. AST (16, 32 mg/kg) or Rg1 (5mg/kg) treatment significantly improve learning and memory, down-regulate the mRNA levels of APP and β-secretase, decrease expression of APP and Aβ(1-40) in hippocampus. The results indicated that DEX might increase hippocampal vulnerability to Aβ(25-35) and highlight the potential neuronal protection of AST.
Collapse
Affiliation(s)
- Wei-Zu Li
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Do elevated glucocorticoids contribute to reduced cerebral expression of insulin-degrading enzyme in schizophrenia? J Psychiatr Res 2011; 45:1655-6. [PMID: 21872264 DOI: 10.1016/j.jpsychires.2011.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 11/20/2022]
|
45
|
Li WZ, Li WP, Huang DK, Kan HW, Wang X, Wu WY, Yin YY, Yao YY. Dexamethasone and Aβ₂₅-₃₅ accelerate learning and memory impairments due to elevate amyloid precursor protein expression and neuronal apoptosis in 12-month male rats. Behav Brain Res 2011; 227:142-9. [PMID: 22061800 DOI: 10.1016/j.bbr.2011.10.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/18/2011] [Accepted: 10/23/2011] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is an irreversible, progressive brain disorder of the elderly characterized by learning and memory impairment. Stress level glucocorticoids (GCs) and β-amyloid (Aβ) peptides deposition are found to be correlated with dementia progression in patients with AD. However, little is known about the simultaneous effects of glucocorticoids and Aβ on learning and memory impairment and its mechanism. In this study, 12-month-old male rats were chronically treated with Aβ(25-35) (10 μg/rat, hippocampal CA1 injection) and dexamethasone (DEX, 1.5mg/kg) for 14 days to investigate the effects of DEX and Aβ(25-35) treatment on learning and memory impairments, pathological changes, neuronal ultrastructure, amyloid precursor protein (APP) processing and neuronal cell apoptosis. Our results showed that DEX or Aβ(25-35) treatment alone for 14 days had caused slight damage on learning and memory impairments and hippocampal neurons, but damages were significantly increased with DEX+Aβ(25-35) treatment. And the mRNA levels of the APP, β-secretase and caspase 3 were significantly increased after DEX+Aβ(25-35) treatment. The immunohistochemistry demonstrated that APP, Aβ(1-40), caspase 3 and cytochrome c in hippocampus CA1 were significantly increased. Furthermore, Hoechst 33258 staining and Aβ(1-40) ELISA results showed that DEX+Aβ(25-35) treatment induced hippocampus CA1 neuron apoptosis and increased the level of Aβ(1-40). The results suggest that the simultaneous effects of GCs and Aβ may have important roles in the etiopathogenesis of AD, and demonstrate that stressful life events and GC therapy may increase the toxicity of Aβ and have cumulative impacts on the course of AD development and progression.
Collapse
Affiliation(s)
- Wei-Zu Li
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Key Laboratory of Chinese Medicine Research and Development, State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei 230032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular Aβ metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:227-35. [PMID: 22036964 DOI: 10.1016/j.bbamcr.2011.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 12/22/2022]
Abstract
Cerebral amyloid β (Aβ) accumulation is pathogenically associated with sporadic Alzheimer's disease (SAD). BACE-1 is involved in Aβ generation while insulin-degrading enzyme (IDE) partakes in Aβ proteolytic clearance. Vulnerable regions in AD brains show increased BACE-1 protein levels and enzymatic activity while the opposite occurs with IDE. Another common feature in SAD brains is Notch1 overexpression. Here we demonstrate an increase in mRNA levels of Hey-1, a Notch target gene, and a decrease of IDE transcripts in the hippocampus of SAD brains as compared to controls. Transient transfection of Notch intracellular domain (NICD) in N2aSW cells, mouse neuroblastoma cells (N2a) stably expressing human amyloid precursor protein (APP) Swedish mutation, reduce IDE mRNA levels, promoting extracellular Aβ accumulation. Also, NICD, HES-1 and Hey-1 overexpression result in decreased IDE proximal promoter activity. This effect was mediated by 2 functional sites located at -379/-372 and -310-303 from the first translation start site in the -575/-19 (556 bp) fragment of IDE proximal promoter. By site-directed mutagenesis of the IDE promoter region we reverted the inhibitory effect mediated by NICD transfection suggesting that these sites are indeed responsible for the Notch-mediated inhibition of the IDE gene expression. Intracranial injection of the Notch ligand JAG-1 in Tg2576 mice, expressing the Swedish mutation in human APP, induced overexpression of HES-1 and Hey-1 and reduction of IDE mRNA levels, respectively. Our results support our theory that a Notch-dependent IDE transcriptional modulation may impact on Aβ metabolism providing a functional link between Notch signaling and the amyloidogenic pathway in SAD.
Collapse
|