1
|
Conforto R, Rizzo V, Russo R, Mazza E, Maurotti S, Pujia C, Succurro E, Arturi F, Ferro Y, Sciacqua A, Pujia A, Montalcini T. Advances in body composition and gender differences in susceptibility to frailty syndrome: Role of osteosarcopenic obesity. Metabolism 2024; 161:156052. [PMID: 39490438 DOI: 10.1016/j.metabol.2024.156052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
There is general consensus that an improper diet negatively impacts health and that nutrition is a primary tool for the prevention of non-communicable diseases. Unfortunately, the importance of studying body composition, which can reveal early predictors of gender-related diseases, is still not well understood in this context. Currently, individuals are still classified as obese based solely on their body mass index, without considering the amount of fat, its distribution, and the quantity of muscle and bone mass. In this regard, the body composition phenotype defined as "osteosarcopenic obesity" affects approximately 6-41 % of postmenopausal women, with prevalence increasing with age due to the hormonal and metabolic changes that occur during this period. This particular phenotype arises from the strong relationship between visceral fat, muscle, bone, and gut microbiota and predispose postmenopausal women to frailty. Frailty is a complex clinical phenomenon with significant care and economic implications for our society. Recent studies suggest that women have a higher prevalence of frailty syndrome and its individual components, such as osteoporosis, fractures and sarcopenia, compared to men. Here, we provide a comprehensive overview of recent advances regarding the impact of gender on body composition and frailty. Furthermore, we reflect on the crucial importance of personalized nutritional interventions, with a focus on reducing visceral fat, increasing protein intake and optimizing vitamin D levels. A review of the scientific literature on this topic highlights the importance of studying body composition for a personalized and gender-specific approach to nutrition and dietetics, in order to identify frailty syndrome early and establish personalized treatments. This new method of researching disease predictors could likely help clarify the controversial results of studies on vitamin D, calcium and proteins, translate into practical wellness promotion across diverse elderly populations.
Collapse
Affiliation(s)
- Rosy Conforto
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Valeria Rizzo
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaella Russo
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Elisa Mazza
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Carmelo Pujia
- O.U. Clinical Nutrition, Renato Dulbecco Hospital, 88100 Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases, University "Magna Græcia", 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Zhang F, Li W. Vitamin D and Sarcopenia in the Senior People: A Review of Mechanisms and Comprehensive Prevention and Treatment Strategies. Ther Clin Risk Manag 2024; 20:577-595. [PMID: 39253031 PMCID: PMC11382659 DOI: 10.2147/tcrm.s471191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
This article reviews the mechanisms and prevention strategies associated with vitamin D and sarcopenia in older adults. As a geriatric syndrome, sarcopenia is defined by a notable decline in skeletal muscle mass and strength, which increases the risk of adverse health outcomes such as falls and fractures. Vitamin D, an essential fat-soluble vitamin, is pivotal in skeletal muscle health. It affects muscle function through various mechanisms, including regulating calcium and phosphorus metabolism, promoting muscle protein synthesis, and modulation of muscle cell proliferation and differentiation. A deficiency in vitamin D has been identified as a significant risk factor for the development of sarcopenia in older adults. Many studies have demonstrated that low serum vitamin D levels are significantly associated with an increased risk of sarcopenia. While there is inconsistency in the findings, most studies support the importance of vitamin D in maintaining skeletal muscle health. Vitamin D influences the onset and progression of sarcopenia through various pathways, including the promotion of muscle protein synthesis, the regulation of mitochondrial function, and the modulation of immune and inflammatory responses. Regarding the prevention and treatment of sarcopenia, a combination of nutritional, exercise, and pharmacological interventions is recommended. Further research should be conducted to elucidate the molecular mechanism of vitamin D in sarcopenia, to study genes related to sarcopenia, to perform large-scale clinical trials, to investigate special populations, and to examine the combined application of vitamin D with other nutrients or drugs. A comprehensive investigation of the interconnection between vitamin D and sarcopenia will furnish a novel scientific foundation and productive strategies for preventing and treating sarcopenia. This, in turn, will enhance the senior people's quality of life and health.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Karava V, Kondou A, Dotis J, Christoforidis A, Taparkou A, Farmaki E, Printza N. Fibroblast growth-factor 23-Klotho axis is associated with systemic inflammation and myokine profile in children with chronic kidney disease. Hormones (Athens) 2024; 23:517-526. [PMID: 39112785 DOI: 10.1007/s42000-024-00586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Chronic kidney disease is linked to a disturbed fibroblast growth factor-23 (FGF23)-Klotho axis and an imbalance between myostatin and insulin-like growth factor-1 (IGF-1) expression. This cross-sectional study investigates the association of the FGF23-Klotho axis and myokine profile with serum interleukin-6 (IL-6) and their interactions in pediatric patients. METHODS Serum calcium, phosphorus, 25-hydroxyvitamin D, parathormone, c-terminal FGF23, a-Klotho, myostatin, follistatin, IGF-1, and IL-6 were measured in 53 patients with GFR < 60 ml/min/1,73m2. Myostatin to lean mass (LM) and to IGF-1 ratios were calculated. IL-6 level > 3rd quartile was considered as high. RESULTS Myostatin, IGF-1, and follistatin were correlated to LM (rs = 0.513, p < 0.001, rs = 0.652, p < 0.001, rs=-0.483, p < 0.001). Myostatin and follistatin were correlated to IGF-1 (rs = 0.340, p = 0.014, rs=-0.385, p = 0.005). Myostatin/LM but not myostatin or myostatin/IGF-1 ratio was significantly higher in CKD 5D patients (p = 0.001,p = 0.844, p = 0.111). Among mineral bone parameters, lnFGF23 was correlated to lnIL-6 (rs = 0.397, p = 0.004) and associated with high IL-6 (OR 1.905, 95% CI 1.023-3.548). Among myokines, myostatin/IGF-1 ratio was correlated to lnIL-6 (rs = 0.395, p = 0.004) and associated with high IL-6 (OR 1.113, 95% CI 1.028-1.205). All associations were adjusted to CKD stage. Myostatin was correlated to lnFGF23 (rs = 0.331, p = 0.025) and myostatin/IGF-1 ratio to lnKlotho (rs=-0.363, p = 0.013), after adjustment for CKD stage, lnIL-6 and other mineral bone parameters. CONCLUSIONS In pediatric CKD, FGF23 and myostatin/IGF-1 ratio are associated with IL-6, indicating a link between systemic inflammation, mineral bone, and myokine disorders. The correlations between myostatin and FGF23 and between myostatin/IGF-1 and Klotho suggest an interaction between mineral bone and muscle metabolism.
Collapse
Affiliation(s)
- Vasiliki Karava
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, Thessaloniki, 54642, Greece.
| | - Antonia Kondou
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, Thessaloniki, 54642, Greece
| | - John Dotis
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, Thessaloniki, 54642, Greece
| | - Athanasios Christoforidis
- Pediatric Endocrinology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Taparkou
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Farmaki
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoleta Printza
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, Thessaloniki, 54642, Greece
| |
Collapse
|
4
|
Russo C, Santangelo R, Malaguarnera L, Valle MS. The "Sunshine Vitamin" and Its Antioxidant Benefits for Enhancing Muscle Function. Nutrients 2024; 16:2195. [PMID: 39064638 PMCID: PMC11279438 DOI: 10.3390/nu16142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Pathological states marked by oxidative stress and systemic inflammation frequently compromise the functional capacity of muscular cells. This progressive decline in muscle mass and tone can significantly hamper the patient's motor abilities, impeding even the most basic physical tasks. Muscle dysfunction can lead to metabolic disorders and severe muscle wasting, which, in turn, can potentially progress to sarcopenia. The functionality of skeletal muscle is profoundly influenced by factors such as environmental, nutritional, physical, and genetic components. A well-balanced diet, rich in proteins and vitamins, alongside an active lifestyle, plays a crucial role in fortifying tissues and mitigating general weakness and pathological conditions. Vitamin D, exerting antioxidant effects, is essential for skeletal muscle. Epidemiological evidence underscores a global prevalence of vitamin D deficiency, which induces oxidative harm, mitochondrial dysfunction, reduced adenosine triphosphate production, and impaired muscle function. This review explores the intricate molecular mechanisms through which vitamin D modulates oxidative stress and its consequent effects on muscle function. The aim is to evaluate if vitamin D supplementation in conditions involving oxidative stress and inflammation could prevent decline and promote or maintain muscle function effectively.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Rosa Santangelo
- Department of Medicine and Health Sciences, University of Catania, Via Santa Sofia, 97, 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
5
|
Russo C, Valle MS, D’Angeli F, Surdo S, Malaguarnera L. Resveratrol and Vitamin D: Eclectic Molecules Promoting Mitochondrial Health in Sarcopenia. Int J Mol Sci 2024; 25:7503. [PMID: 39062745 PMCID: PMC11277153 DOI: 10.3390/ijms25147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcopenia refers to the progressive loss and atrophy of skeletal muscle function, often associated with aging or secondary to conditions involving systemic inflammation, oxidative stress, and mitochondrial dysfunction. Recent evidence indicates that skeletal muscle function is not only influenced by physical, environmental, and genetic factors but is also significantly impacted by nutritional deficiencies. Natural compounds with antioxidant properties, such as resveratrol and vitamin D, have shown promise in preventing mitochondrial dysfunction in skeletal muscle cells. These antioxidants can slow down muscle atrophy by regulating mitochondrial functions and neuromuscular junctions. This review provides an overview of the molecular mechanisms leading to skeletal muscle atrophy and summarizes recent advances in using resveratrol and vitamin D supplementation for its prevention and treatment. Understanding these molecular mechanisms and implementing combined interventions can optimize treatment outcomes, ensure muscle function recovery, and improve the quality of life for patients.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
6
|
Saeki C, Saito M, Tsubota A. Association of chronic liver disease with bone diseases and muscle weakness. J Bone Miner Metab 2024; 42:399-412. [PMID: 38302761 DOI: 10.1007/s00774-023-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 02/03/2024]
Abstract
The liver is a vital organ involved in nutrient metabolism, hormone regulation, immunity, cytokine production, and gut homeostasis. Impairment in liver function can result in malnutrition, chronic inflammation, decreased anabolic hormone levels, and dysbiosis. These conditions eventually cause an imbalance in osteoblast and osteoclast activities, resulting in bone loss. Osteoporosis is a frequent complication of chronic liver disease (CLD) that adversely affects quality of life and increases early mortality. Sarcopenia is another common complication of CLD characterized by progressive loss of skeletal muscle mass and function. Assessment criteria for sarcopenia specific to liver disease have been established, and sarcopenia has been reported to be associated with an increase in the risk of liver disease-related events and mortality in patients with CLD. Owing to their similar risk factors and underlying pathophysiological mechanisms, osteoporosis and sarcopenia often coexist (termed osteosarcopenia), progress in parallel, and further exacerbate the conditions mentioned above. Therefore, comprehensive management of these musculoskeletal disorders is imperative. This review summarizes the clinical implications and characteristics of osteoporosis, extending to sarcopenia and osteosarcopenia, in patients with CLD caused by different etiologies.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Akihito Tsubota
- Project Research Units, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
7
|
Long KZ, Beckmann J, Lang C, Seelig H, Nqweniso S, Probst-Hensch N, Pühse U, Steinmann P, Randt RD, Walter C, Utzinger J, Gerber M. Randomized Trial to Improve Body Composition and Micronutrient Status Among South African Children. Am J Prev Med 2024; 66:1078-1088. [PMID: 38309672 DOI: 10.1016/j.amepre.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Physical activity (PA) promotion combined with multimicronutrient supplementation (MMNS) among school-age children may reduce fat mass accrual and increase muscle mass through different mechanisms and so benefit child health. This study determined the efficacy of combined interventions on body composition among South African schoolchildren and determined if micronutrients mediate these effects. STUDY DESIGN Longitudinal cluster randomized controlled trial of children followed from 2019 to 2021. Statistical analyses carried from 2022 to 2023. SETTING/PARTICIPANTS A total of 1,304 children 6-12 years of age recruited from public schools in Gqeberha, South Africa. INTERVENTION Children were randomized by classes to either: (a) a physical activity group (PA); (b) a MMNS group; (c) a physical activity + multimicronutrient supplementation group (PA + MMNS); and (d) a placebo control group. MAIN OUTCOME MEASURES Trajectories of overall and truncal fat free mass (FFM) and fat mass (FM) estimates in modeled at 9 and 21 months using latent growth curve models (LGCM). Changes in micronutrient concentrations at 9 months from baseline. RESULTS An increased FFM trajectory was found among children in the MMNS arm at 9 months (Beta 0.16, 95% CI = 0.12, 0.31). The PA and MMNS arms both had positive indirect effects on this trajectory at 9 months (Beta 0.66, 95% CI = 0.44, 0.88 and Beta 0.32 95% CI = 0.1 0.5, respectively) and similarly at 21 months when mediated by zinc concentration changes. A reduced FM trajectory was found among children in the PA promotion arm at 9 months when using this collection point as the referent intercept. This arm was inversely associated with the FM trajectory at 9 months when mediated by zinc changes. CONCLUSIONS PA and MMNS promotion in school-based interventions directly contributed to reductions in FM and increased FFM among South African children and indirectly through changes in micronutrient status. TRIAL REGISTRATION ISRCTN, ISRCTN29534081. Registered on August 9, 2018 Institutional review board: Ethikkommission Nordwest- und Zentralschweiz" (EKNZ, project number: Req-2018-00608). Date of approval: 2018.
Collapse
Affiliation(s)
- Kurt Z Long
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| | - Johanna Beckmann
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Christin Lang
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Harald Seelig
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Siphesihle Nqweniso
- Department of Human Movement Science, Nelson Mandela University, Port Elizabeth, South Africa
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Uwe Pühse
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Peter Steinmann
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Rosa du Randt
- Department of Human Movement Science, Nelson Mandela University, Port Elizabeth, South Africa
| | - Cheryl Walter
- Department of Human Movement Science, Nelson Mandela University, Port Elizabeth, South Africa
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
9
|
Magalhães PM, da Cruz SP, Carneiro OA, Teixeira MT, Ramalho A. Vitamin D Inadequacy and Its Relation to Body Fat and Muscle Mass in Adult Women of Childbearing Age. Nutrients 2024; 16:1267. [PMID: 38732514 PMCID: PMC11085628 DOI: 10.3390/nu16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 05/13/2024] Open
Abstract
To assess the correlation between vitamin D status and body composition variables in adult women of childbearing age, a cross-sectional study was conducted involving women aged 20-49 years. The participants were categorized based on their vitamin D status and further divided according to body mass index (BMI). Anthropometric and biochemical data were collected to compute body composition indices, specifically body fat and muscle mass. The sample included 124 women, with 63.70% exhibiting vitamin D inadequacy. Women with inadequate vitamin D status demonstrated a higher waist-to-height ratio (WHtR) and body adiposity index (BAI), along with a lower BMI-adjusted muscle mass index (SMI BMI), compared to those with adequate levels of vitamin D (p = 0.021; p = 0.019; and p = 0.039, respectively). A positive correlation was observed between circulating concentrations of 25(OH)D and SMI BMI, while a negative correlation existed between circulating concentrations of 25(OH)D and waist circumference (WC), WHtR, conicity index (CI), fat mass index (FMI), body fat percentage (% BF), and fat-to-muscle ratio (FMR). These findings suggest that inadequate vitamin D status may impact muscle tissue and contribute to higher body adiposity, including visceral adiposity. It is recommended that these variables be incorporated into clinical practice, with a particular emphasis on WHtR and SMI BMI, to mitigate potential metabolic consequences associated with vitamin D inadequacy.
Collapse
Affiliation(s)
- Paula Moreira Magalhães
- Postgraduate Program of Clinical Medicine, Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21044-020, Brazil
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.P.d.C.); (O.A.C.); (A.R.)
| | - Sabrina Pereira da Cruz
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.P.d.C.); (O.A.C.); (A.R.)
| | - Orion Araújo Carneiro
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.P.d.C.); (O.A.C.); (A.R.)
| | - Michelle Teixeira Teixeira
- Department of Public Health Nutrition, Nutrition School, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-250, Brazil;
| | - Andréa Ramalho
- Center for Research on Micronutrients (NPqM), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (S.P.d.C.); (O.A.C.); (A.R.)
- Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
10
|
Ohkawara B, Tomita H, Inoue T, Zhang S, Kanbara S, Koshimizu H, Miyasaka Y, Takeda JI, Nishiwaki H, Nakashima H, Ito M, Masuda A, Ishiguro N, Ogi T, Ohno T, Imagama S, Ohno K. Calcitriol ameliorates motor deficits and prolongs survival of Chrne-deficient mouse, a model for congenital myasthenic syndrome, by inducing Rspo2. Neurotherapeutics 2024; 21:e00318. [PMID: 38233267 DOI: 10.1016/j.neurot.2024.e00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including congenital myasthenic syndromes (CMS). Germline mutations in CHRNE encoding the acetylcholine receptor (AChR) ε subunit are the most common cause of CMS. An active form of vitamin D, calcitriol, binds to vitamin D receptor (VDR) and regulates gene expressions. We found that calcitriol enhanced MuSK phosphorylation, AChR clustering, and myotube twitching in co-cultured C2C12 myotubes and NSC34 motor neurons. RNA-seq analysis of co-cultured cells showed that calcitriol increased the expressions of Rspo2, Rapsn, and Dusp6. ChIP-seq of VDR revealed that VDR binds to a region approximately 15 kbp upstream to Rspo2. Biallelic deletion of the VDR-binding site of Rspo2 by CRISPR/Cas9 in C2C12 myoblasts/myotubes nullified the calcitriol-mediated induction of Rspo2 expression and MuSK phosphorylation. We generated Chrne knockout (Chrne KO) mouse by CRISPR/Cas9. Intraperitoneal administration of calcitriol markedly increased the number of AChR clusters, as well as the area, the intensity, and the number of synaptophysin-positive synaptic vesicles, in Chrne KO mice. In addition, calcitriol ameliorated motor deficits and prolonged survival of Chrne KO mice. In the skeletal muscle, calcitriol increased the gene expressions of Rspo2, Rapsn, and Dusp6. We propose that calcitriol is a potential therapeutic agent for CMS and other diseases with defective neuromuscular signal transmission.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroyuki Tomita
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taro Inoue
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shunsuke Kanbara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Koshimizu
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Miyasaka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan
| | - Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
11
|
Alliband KH, Parr T, Jethwa PH, Brameld JM. Active vitamin D increases myogenic differentiation in C2C12 cells via a vitamin D response element on the myogenin promoter. Front Physiol 2024; 14:1322677. [PMID: 38264331 PMCID: PMC10804454 DOI: 10.3389/fphys.2023.1322677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Skeletal muscle development during embryogenesis depends on proliferation of myoblasts followed by differentiation into myotubes/multinucleated myofibers. Vitamin D (VD) has been shown to affect these processes, but there is conflicting evidence within the current literature on the exact nature of these effects due to a lack of time course data. With 20%-40% of pregnant women worldwide being VD deficient, it is crucial that a clearer understanding of the impact of VD on myogenesis is gained. Methods: A detailed 8-day differentiation time course was used where C2C12 cells were differentiated in control media (2% horse serum) or with different concentrations of active VD, 1,25 (OH)2D3 (10-13 M, 10-11 M, 10-9 M or 10-7 M), and measurements were taken at 6 time points. DNA, creatine kinase and protein assays were carried out as well as quantitative PCR to determine expression of Myf5, MyoD, myogenin, MHC I, and MHC neonatal, MHC embryonic, MHC IIa, MHC IIx, and MHC IIb mRNAs. Transfections were carried out using one vector containing the myogenin promoter and another containing the same promoter with a 3 base mutation within a putative vitamin D response element (VDRE) to determine effects of 1,25 (OH)2D3 on myogenin transcription. Finally, a ChIP assay was performed to determine whether the VD receptor (VDR) binds to the putative VDRE. Results: 1,25(OH)2D3 caused an inhibition of proliferation and an increase in differentiation in C2C12 cells. Myf5, myogenin, MHC I, and MHC neonatal, MHC embryonic, MHC IIa, MHC IIx, and MHC IIb expression were all increased by 1,25(OH)2D3. Myotube size was also increased by VD. When the putative VDRE on the myogenin promoter was mutated, the increase in expression by VD was lost. ChIP analysis revealed that the VDR does bind to the putative VDRE on the myogenin promoter. Conclusion: Active VD directly increases myogenin transcription via a functional VDRE on the myogenin promoter, resulting in increased myogenic differentiation, increased expression of both the early and late MHC isoforms, and also increased myotube size. These results highlight the importance of VD status during pregnancy for normal myogenesis to occur, but further in vivo work is needed.
Collapse
Affiliation(s)
| | | | | | - John M. Brameld
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
12
|
Neelam PB, Sharma A, Sharma V. Sarcopenia and frailty in inflammatory bowel disease: Emerging concepts and evidence. JGH Open 2024; 8:e13033. [PMID: 38283070 PMCID: PMC10821747 DOI: 10.1002/jgh3.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Sarcopenia is a condition marked by progressive loss of skeletal muscle mass and function while frailty is a multidimensional concept characterized by diminished physiological reserve and increased vulnerability to stressors. Both of these were previously considered as related to aging and shown to impact the quality of life and carry prognostic significance. Emerging data show that both sarcopenia and frailty carry similar relevance in chronic illness. Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract and malnourishment, both of which contribute to the development of sarcopenia by increasing protein breakdown and reducing protein synthesis. The coexistence of frailty further compounds the clinical complexity of IBD patients. Published evidence suggests a bidirectional association with IBD contributing to muscle wasting, while the resultant sarcopenia and frailty could further exacerbate the disease course. Sarcopenia and frailty are independently associated with adverse outcomes, including hospitalizations, increased surgical interventions, and surgical complications. As therapeutic strategies for IBD evolve, understanding the nuanced relationship between inflammatory bowel disease, sarcopenia, and frailty is crucial for devising holistic management. Comprehensive care should encompass not only disease-modifying therapies but also interventions targeting frailty and sarcopenia, as they have been shown to have a significant impact not only on the disease course but also on the quality of life. Future research could focus on further elucidating underlying mechanisms, simple screening strategies, and developing targeted interventions to improve the overall quality of life for individuals grappling with the complex interplay of IBD, sarcopenia, and frailty.
Collapse
Affiliation(s)
- Pardhu B Neelam
- Department of GastroenterologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| | - Alka Sharma
- Department of MedicineDr. BR Ambedkar Institute of Medical SciencesMohaliIndia
| | - Vishal Sharma
- Department of GastroenterologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
| |
Collapse
|
13
|
Wang Y, Ma W, Pu J, Chen F. Interrelationships between sarcopenia, bone turnover markers and low bone mineral density in patients on hemodialysis. Ren Fail 2023; 45:2200846. [PMID: 37122165 PMCID: PMC10134952 DOI: 10.1080/0886022x.2023.2200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Hemodialysis (HD) patients are at risk for sarcopenia (SP) and bone loss, which may impact falls and bone fragility and lead to poor prognosis. Patients with HD and those with osteoporosis (OP) are still underdiagnosed and untreated. The aims of the present study were to evaluate the factors that affect bone mineral density (BMD) loss in HD patients, and explore traditional and novel approaches to manage chronic kidney disease-mineral-bone disorder (CKD-MBD). METHODS Patients who underwent regular HD at the First Affiliated Hospital of Soochow University were retrospectively evaluated. According to the WHO osteoporosis criteria, patients were categorized into three groups: normal BMD, osteopenia, and osteoporosis. Demographic and clinical data, skeletal muscle mass, and bone turnover markers(BTM) were compared between the three groups. The correlation between bone density and muscle mass was calculated, and related risk factors were analyzed. RESULTS This study enrolled 130 HD patients, 36 patients were diagnosed with sarcopenia (27.7%), 44 patients were diagnosed with osteopenia (33.8%), 19 patients were diagnosed with osteoporosis (14.6%), and 23 patients were diagnosed with osteosarcopenia (17.7%). The SMI was positively correlated with the BMD of the lumbar spine (r = 0.23, p < 0.01) and femoral neck (r = 0.22, p < 0.05). In ordinal logistic regression analysis, the odds ratio (OR) for low BMD was high for patients with sarcopenia (OR = 5.894, 95% CI 1.592-21.830, p < 0.01), older age (OR = 1.095, 95% CI 1.041-1.153, p < 0.001), higher TRACP-5b levels (OR = 1.597, 95% CI 1.230-2.072, p < 0.01), and lower 25-OH vitamin D levels (OR = 0.631, 95% CI 0.544-0.733, p < 0.001). CONCLUSION The preservation of skeletal muscle mass could be important to prevent a BMD decrease in HD patients. Adequate intake of vitamin D and control of TRACP-5b levels will help reduce the occurrence and progression of osteopenia/sarcopenia in HD patients.
Collapse
Affiliation(s)
- Yilin Wang
- The Blood Purification Center, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Wenxia Ma
- Quality Management Dept, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Jianhong Pu
- The Center of Health Management, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Fengling Chen
- The Blood Purification Center, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| |
Collapse
|
14
|
Albright JA, Chang K, Byrne RA, Quinn MS, Meghani O, Daniels AH, Owens BD. A Diagnosis of Vitamin D Deficiency Is Associated With Increased Rates of Anterior Cruciate Ligament Tears and Reconstruction Failure. Arthroscopy 2023; 39:2477-2486. [PMID: 37127241 DOI: 10.1016/j.arthro.2023.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE To characterize the association between a diagnosis of hypovitaminosis D and primary anterior cruciate ligament (ACL) tear, primary anterior cruciate ligament reconstruction (ACLR), and revision ACLR in different sex and age cohorts. METHODS In this retrospective cohort study of the PearlDiver claims database, records were queried between January 1, 2011, and October 31, 2018 for all patients aged 10 to 59 years who received a diagnosis of hypovitaminosis D. Rates of primary ACL tears, primary reconstruction, and revision reconstruction were calculated for sex- and age-specific cohorts and compared with a control of patients without a diagnosis of hypovitaminosis D. Incidence rates for primary ACL injuries were calculated, and multivariable logistic regression was used to compare rates of ACL injury, primary reconstruction, and revision reconstruction while controlling for age, sex, Charlson Comorbidity Index, and several other comorbidities. RESULTS Among the 328,011 patients (mean age 41.9 ± 12.6 years, 65.8% female) included in both the hypovitaminosis D and control cohorts, the incidence of ACL tears was 115.2 per 100,000 person-years (95% confidence interval [CI] 107.2-123.7) compared with 61.0 (95% CI 55.2-67.2) in the demographic- and comorbidity-matched control cohort. The study cohort was significantly more likely to suffer an ACL tear over a 1- (aOR 1.67, 95% CI 1.41-1.99, P < .001) and 2-year (aOR 1.81, 95% CI 1.59-2.06, P < .001) period. This trend remained for both male patients at the 1- (aOR 1.66, 95% CI 1.29-2.14, P < .001) and 2-year (aOR 1.68, 95% CI 1.37-2.06, P < .001) mark and female patients at the 1- (aOR 1.69, 95% CI 1.33-2.14, P < .001) and 2-year (aOR 1.80, 95% CI 1.51-2.14, P < .001) mark. Finally, patients with vitamin D deficiency had a significantly increased likelihood of undergoing a revision ACLR within 2 years of a primary reconstruction (aOR 1.28, 95% CI 1.05-1.55, P = .012). CONCLUSIONS This study reports an association between patients previously diagnosed with hypovitaminosis D and significantly increased rates of both index ACL tears (81% increase within 2 years of diagnosis) and revision ACLR (28% within 2 years). These results identify a population with increased odds of injury and provide valuable knowledge as we expand our understanding of the relationship between vitamin D and musculoskeletal health. LEVEL OF EVIDENCE Level III, retrospective database study.
Collapse
Affiliation(s)
- J Alex Albright
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, U.S.A.
| | - Kenny Chang
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, U.S.A
| | - Rory A Byrne
- Department of Orthopaedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, U.S.A
| | - Matthew S Quinn
- Department of Orthopaedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, U.S.A
| | - Ozair Meghani
- Department of Orthopaedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, U.S.A
| | - Alan H Daniels
- Department of Orthopaedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, U.S.A
| | - Brett D Owens
- Department of Orthopaedics, Brown University Warren Alpert Medical School, Providence, Rhode Island, U.S.A
| |
Collapse
|
15
|
Özliseli E, Şanlıdağ S, Süren B, Mahran A, Parikainen M, Sahlgren C, Rosenholm JM. Directing cellular responses in a nanocomposite 3D matrix for tissue regeneration with nanoparticle-mediated drug delivery. Mater Today Bio 2023; 23:100865. [PMID: 38054034 PMCID: PMC10694759 DOI: 10.1016/j.mtbio.2023.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/28/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023] Open
Abstract
Hydrogels play an important role in tissue engineering due to their native extracellular matrix-like characteristics, but they are insufficient in providing the necessary stimuli to support tissue formation. Efforts to integrate bioactive cues directly into hydrogels are hindered by incompatibility with hydrophobic drugs, issues of burst/uncontrolled release, and rapid degradation of the bioactive molecules. Skeletal muscle tissue repair requires internal stimuli and communication between cells for regeneration, and nanocomposite systems offer to improve the therapeutic effects in tissue regeneration. Here, the versatility of mesoporous silica nanoparticles (MSN) was leveraged to formulate a nanoparticle-hydrogel composite and to combine the benefits of controlled delivery of bioactive cues and cellular support. The tunable surface characteristics of MSNs were exploited to optimize homogeneity and intracellular drug delivery in a 3D matrix. Nanocomposite hydrogels formulated with acetylated or succinylated MSNs achieved high homogeneity in 3D distribution, with succinylated MSNs being rapidly internalized and acetylated MSNs exhibiting slower cellular uptake. MSN-hydrogel nanocomposites simultaneously allowed efficient local intracellular delivery of a hydrophobic model drug. To further study the efficiency of directing cell response, a Notch signaling inhibitor (DAPT) was incorporated into succinylated MSNs and incorporated into the hydrogel. MSN-hydrogel nanocomposites effectively downregulated the Notch signaling target genes, and accelerated and maintained the expression of myogenic markers. The current findings demonstrate a proof-of-concept in effective surface engineering strategies for MSN-based nanocomposites, suited for hydrophobic drug delivery in tissue regeneration with guided cues.
Collapse
Affiliation(s)
- Ezgi Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Sami Şanlıdağ
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Behice Süren
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Alaa Mahran
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Marjaana Parikainen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
16
|
Talib NF, Zhu Z, Kim KS. Vitamin D3 Exerts Beneficial Effects on C2C12 Myotubes through Activation of the Vitamin D Receptor (VDR)/Sirtuins (SIRT)1/3 Axis. Nutrients 2023; 15:4714. [PMID: 38004107 PMCID: PMC10674540 DOI: 10.3390/nu15224714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The onset of sarcopenia is associated with a decline in vitamin D receptor (VDR) expression, wherein reduced VDR levels contribute to muscle atrophy, while heightened expression promotes muscle hypertrophy. Like VDR, the age-related decline in protein deacetylase sirtuin (SIRT) expression is linked to the development of sarcopenia and age-related muscle dysfunction. This study aimed to investigate whether the VDR agonist 1,25-dihydroxyvitamin D3 (1,25VD3) exerts beneficial effects on muscles through interactions with sirtuins and, if so, the underlying molecular mechanisms. Treatment of 1,25VD3 in differentiating C2C12 myotubes substantially elevated VDR, SIRT1, and SIRT3 expression, enhancing their differentiation. Furthermore, 1,25VD3 significantly enhanced the expression of key myogenic markers, including myosin heavy chain (MyHC) proteins, MyoD, and MyoG, and increased the phosphorylation of AMPK and AKT. Conversely, VDR knockdown resulted in myotube atrophy and reduced SIRT1 and SIRT3 levels. In a muscle-wasting model triggered by IFN-γ/TNF-α in C2C12 myotubes, diminished VDR, SIRT1, and SIRT3 levels led to skeletal muscle atrophy and apoptosis. 1,25VD3 downregulated the increased expression of muscle atrophy-associated proteins, including FoxO3a, MAFbx, and MuRF1 in an IFN-γ/TNF-α induced atrophy model. Importantly, IFN-γ/TNF-α significantly reduced the mtDNA copy number in the C2C12 myotube, whereas the presence of 1,25VD3 effectively prevented this decrease. These results support that 1,25VD3 could serve as a potential preventive or therapeutic agent against age-related muscle atrophy by enhancing the VDR/SIRT1/SIRT3 axis.
Collapse
Affiliation(s)
- Nurul Fatihah Talib
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (N.F.T.); (Z.Z.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Zunshu Zhu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (N.F.T.); (Z.Z.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Kyoung-Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (N.F.T.); (Z.Z.)
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| |
Collapse
|
17
|
Agoncillo M, Yu J, Gunton JE. The Role of Vitamin D in Skeletal Muscle Repair and Regeneration in Animal Models and Humans: A Systematic Review. Nutrients 2023; 15:4377. [PMID: 37892452 PMCID: PMC10609905 DOI: 10.3390/nu15204377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Vitamin D deficiency, prevalent worldwide, is linked to muscle weakness, sarcopenia, and falls. Muscle regeneration is a vital process that allows for skeletal muscle tissue maintenance and repair after injury. PubMed and Web of Science were used to search for studies published prior to May 2023. We assessed eligible studies that discussed the relationship between vitamin D, muscle regeneration in this review. Overall, the literature reports strong associations between vitamin D and skeletal myocyte size, and muscle regeneration. In vitro studies in skeletal muscle cells derived from mice and humans showed vitamin D played a role in regulating myoblast growth, size, and gene expression. Animal studies, primarily in mice, demonstrate vitamin D's positive effects on skeletal muscle function, such as improved grip strength and endurance. These studies encompass vitamin D diet research, genetically modified models, and disease-related mouse models. Relatively few studies looked at muscle function after injury, but these also support a role for vitamin D in muscle recovery. The human studies have also reported that vitamin D deficiency decreases muscle grip strength and gait speed, especially in the elderly population. Finally, human studies reported the benefits of vitamin D supplementation and achieving optimal serum vitamin D levels in muscle recovery after eccentric exercise and surgery. However, there were no benefits in rotator cuff injury studies, suggesting that repair mechanisms for muscle/ligament tears may be less reliant on vitamin D. In summary, vitamin D plays a crucial role in skeletal muscle function, structural integrity, and regeneration, potentially offering therapeutic benefits to patients with musculoskeletal diseases and in post-operative recovery.
Collapse
Affiliation(s)
- Miguel Agoncillo
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia
| | - Josephine Yu
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2145, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney 2145, Australia
| |
Collapse
|
18
|
Jürimäe J, Remmel L, Tamm AL, Purge P, Maasalu K, Tillmann V. Follistatin Is Associated with Bone Mineral Density in Lean Adolescent Girls with Increased Physical Activity. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1226. [PMID: 37508723 PMCID: PMC10378065 DOI: 10.3390/children10071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Follistatin is a member of the activin-follistatin-inhibin hormonal system and is proposed to affect bone metabolism. However, data regarding the effect of follistatin on bone are relatively scarce and contradictory in humans. The purpose of the current study was to investigate possible associations of serum follistatin concentration with bone mineral characteristics in lean and physically active adolescent girls. Bone mineral density, body composition, resting energy expenditure and different energy homeostasis hormones in serum including follistatin, leptin and insulin were investigated. Significant relationships (p < 0.05) between serum follistatin (1275.1 ± 263.1 pg/mL) and whole-body (WB) bone mineral content (r = 0.33), WB areal bone mineral density (aBMD) (r = 0.23) and lumbar spine (LS) aBMD (r = 0.29) values were observed. Serum follistatin remained associated with LS aBMD independent of body fat and lean masses (r = 0.21; p < 0.05). However, the follistatin concentration explained only 3% (R2 × 100; p = 0.049) of the total variance in LS aBMD values. In conclusion, serum follistatin concentrations were associated with bone mineral values in lean adolescent girls with increased physical activity. Follistatin was an independent predictor of lumbar spine areal bone mineral density, which predominantly consists of trabecular bone.
Collapse
Affiliation(s)
- Jaak Jürimäe
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia
| | - Liina Remmel
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia
| | - Anna-Liisa Tamm
- Department of Physiotherapy and Environmental Health, Tartu Health Care College, 50411 Tartu, Estonia
| | - Priit Purge
- Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, 51008 Tartu, Estonia
| | - Katre Maasalu
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Vallo Tillmann
- Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, 50406 Tartu, Estonia
| |
Collapse
|
19
|
Mei Z, Zhu B, Sun X, Zhou Y, Qiu Y, Ye X, Zhang H, Lu C, Chen J, Zhu H. Development and validation of a nomogram to predict protein-energy wasting in patients with peritoneal dialysis: a multicenter cohort study. PeerJ 2023; 11:e15507. [PMID: 37304869 PMCID: PMC10249631 DOI: 10.7717/peerj.15507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background Protein-energy wasting (PEW) is a common complication in patients with peritoneal dialysis (PD). Few investigations involved risk factors identification and predictive model construction related to PEW. We aimed to develop a nomogram to predict PEW risk in patients with peritoneal dialysis. Methods We collected data from end-stage renal disease (ESRD) patients who regularly underwent peritoneal dialysis between January 2011 and November 2022 at two hospitals retrospectively. The outcome of the nomogram was PEW. Multivariate logistic regression screened predictors and established a nomogram. We measured the predictive performance based on discrimination ability, calibration, and clinical utility. Evaluation indicators were receiver operating characteristic (ROC), calibrate curve, and decision curve analysis (DCA). The performance calculation of the internal validation cohort validated the nomogram. Results In this study, 369 enrolled patients were divided into development (n = 210) and validation (n = 159) cohorts according to the proportion of 6:4. The incidence of PEW was 49.86%. Predictors were age, dialysis duration, glucose, C-reactive protein (CRP), creatinine clearance rate (Ccr), serum creatinine (Scr), serum calcium, and triglyceride (TG). These variables showed a good discriminate performance in development and validation cohorts (ROC = 0.769, 95% CI [0.705-0.832], ROC = 0.669, 95% CI [0.585-0.753]). This nomogram was adequately calibrated. The predicted probability was consistent with the observed outcome. Conclusion This nomogram can predict the risk of PEW in patients with PD and provide valuable evidence for PEW prevention and decision-making.
Collapse
Affiliation(s)
- Ziwei Mei
- Lishui Municipal Central Hospital, Lishui, China
| | - Bin Zhu
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiaoli Sun
- Lishui Municipal Central Hospital, Lishui, China
| | - Yajie Zhou
- Lishui Municipal Central Hospital, Lishui, China
| | | | - Xiaolan Ye
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | | | - Chunlan Lu
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Jun Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Zhu
- Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
20
|
Jung HN, Jung CH, Hwang YC. Sarcopenia in youth. Metabolism 2023; 144:155557. [PMID: 37080353 DOI: 10.1016/j.metabol.2023.155557] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
Recent research has revealed causes other than aging that may induce sarcopenia in young people, contrary to the long-studied age-dependent reduction in muscular mass and function. The risk of sarcopenia begins in early adulthood, resulting in exaggerated muscle dysfunction in later life. Despite its clinical significance, research on youth-onset sarcopenia is still in its infancy. Due to a paucity of epidemiologic data and standardized criteria for sarcopenia in youth, determining the prevalence of sarcopenia in the young population remains challenging. Based on the evidence, >1 in every 10 young adults of most ethnicities is estimated to have sarcopenia. This review summarizes the possible etiologies of sarcopenia in young populations, including metabolic syndrome, physical inactivity, inadequate nutrition, inherent and perinatal factors, vitamin D deficiency, endocrinopathy, an imbalance of gut microbiota, neuromuscular diseases, organ failure, malignancy, and other inflammatory disorders. This is the first review of the current knowledge on the importance, prevalence, diagnosis, and causes of sarcopenia in youth.
Collapse
Affiliation(s)
- Han Na Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea; Asan Diabetes Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - You-Cheol Hwang
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, 892, Dongnam-ro, Gangdong-gu, Seoul 05278, Republic of Korea.
| |
Collapse
|
21
|
Wang K, Liu Q, Tang M, Qi G, Qiu C, Huang Y, Yu W, Wang W, Sun H, Ni X, Shen Y, Fang X. Chronic kidney disease-induced muscle atrophy: Molecular mechanisms and promising therapies. Biochem Pharmacol 2023; 208:115407. [PMID: 36596414 DOI: 10.1016/j.bcp.2022.115407] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Chronic kidney disease (CKD) is a high-risk chronic catabolic disease due to its high morbidity and mortality. CKD is accompanied by many complications, leading to a poor quality of life, and serious complications may even threaten the life of CKD patients. Muscle atrophy is a common complication of CKD. Muscle atrophy and sarcopenia in CKD patients have complex pathways that are related to multiple mechanisms and related factors. This review not only discusses the mechanisms by which inflammation, oxidative stress, mitochondrial dysfunction promote CKD-induced muscle atrophy but also explores other CKD-related complications, such as metabolic acidosis, vitamin D deficiency, anorexia, and excess angiotensin II, as well as other related factors that play a role in CKD muscle atrophy, such as insulin resistance, hormones, hemodialysis, uremic toxins, intestinal flora imbalance, and miRNA. We highlight potential treatments and drugs that can effectively treat CKD-induced muscle atrophy in terms of complication treatment, nutritional supplementation, physical exercise, and drug intervention, thereby helping to improve the prognosis and quality of life of CKD patients.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Qingyuan Liu
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province 224500, PR China
| | - Mingyu Tang
- Xinglin College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Guangdong Qi
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province 224500, PR China
| | - Chong Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China; Department of Pathology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xuejun Ni
- Department of Ultrasound Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xingxing Fang
- Department of Nephrology, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
22
|
Joo SK, Kim W. Interaction between sarcopenia and nonalcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S68-S78. [PMID: 36472051 PMCID: PMC10029947 DOI: 10.3350/cmh.2022.0358] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia and nonalcoholic fatty liver disease (NAFLD) are common health problems related to aging. Despite the differences in their diagnostic methods, several cross-sectional and longitudinal studies have revealed the close link between sarcopenia and NAFLD. Sarcopenia and NAFLD are linked by several shared pathogenetic mechanisms, including insulin resistance, hormonal imbalance, systemic inflammation, myostatin and adiponectin dysregulation, nutritional deficiencies, and physical inactivity, thus implicating a bidirectional relationship between sarcopenia and NAFLD. However, there is not sufficient data to support a direct causal relationship between sarcopenia and NAFLD. Moreover, it is currently difficult to conclude whether sarcopenia is a risk factor for nonalcoholic steatohepatitis (NASH) or is a consequence of NASH. Therefore, this review intends to touch on the shared common mechanisms and the bidirectional relationship between sarcopenia and NAFLD.
Collapse
Affiliation(s)
- Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Lee JH, Peng DQ, Jin XC, Smith SB, Lee HG. Vitamin D3 decreases myoblast fusion during the growth and increases myogenic gene expression during the differentiation phase in muscle satellite cells from Korean native beef cattle. J Anim Sci 2023; 101:skad192. [PMID: 37313716 PMCID: PMC10424720 DOI: 10.1093/jas/skad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023] Open
Abstract
The process of myogenesis, which involves the growth and differentiation of muscle cells, is a crucial determinant of meat yield and quality in beef cattle. Essential nutrients, such as vitamins D and A, play vital roles in the development and maintenance of various tissues, including muscle. However, limited knowledge exists regarding the specific effects of vitamins A and D in bovine muscle. Therefore, the aim of this study was to investigate the impact of vitamins A and D treatment on myogenic fusion and differentiation in bovine satellite cells (BSC). BSC were isolated from Korean native beef cattle, specifically from four female cows approximately 30 mo old. These individual cows were used as biological replicates (n = 3 or 4), and we examined the effects of varying concentrations of vitamins A (All-trans retinoic acid; 100 nM) and D (1,25-dihydroxy-vitamin D3; 1 nM, 10 nM, and 100 nM), both individually and in combination, on myoblast fusion and myogenic differentiation during the growth phase (48 h) or differentiation phase (6 d). The results were statistically analyzed using GLM procedure of SAS with Tukey's test and t-tests or one-way ANOVA where appropriate. The findings revealed that vitamin A enhanced the myoblast fusion index, while vitamin D treatment decreased the myoblast fusion index during the growth phase. Furthermore, vitamin A treatment during the differentiation phase promoted terminal differentiation by regulating the expression of myogenic regulatory factors (Myf5, MyoD, MyoG, and Myf6) and inducing myotube hypertrophy compared to the control satellite cells (P < 0.01). In contrast, vitamin D treatment during the differentiation phase enhanced myogenic differentiation by increasing the mRNA expression of MyoG and Myf6 (P < 0.01). Moreover, the combined treatment of vitamins A and D during the growth phase increased myoblast fusion and further promoted myogenic differentiation and hypertrophy of myotubes during the differentiation phase (P < 0.01). These results suggest that vitamin A and D supplementation may have differential effects on muscle development in Korean native beef cattle during the feeding process.
Collapse
Affiliation(s)
- Jun Hee Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dong Qiao Peng
- College of Animal Sciences, Jilin University, Jilin Provincial key laboratory of livestock and poultry feed and feeding in northeastern frigid area, Changchun, China
| | - Xue Cheng Jin
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Stephen B Smith
- Department of Animal Science, A&M University, College Station, TX, USA
| | - Hong Gu Lee
- †Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
24
|
Acevedo LM, Vidal Á, Aguilera-Tejero E, Rivero JLL. Muscle plasticity is influenced by renal function and caloric intake through the FGF23-vitamin D axis. Am J Physiol Cell Physiol 2023; 324:C14-C28. [PMID: 36409180 DOI: 10.1152/ajpcell.00306.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Skeletal muscle, the main metabolic engine in the body of vertebrates, is endowed with great plasticity. The association between skeletal muscle plasticity and two highly prevalent health problems: renal dysfunction and obesity, which share etiologic links as well as many comorbidities, is a subject of great relevance. It is important to know how these alterations impact on the structure and function of skeletal muscle because the changes in muscle phenotype have a major influence on the quality of life of the patients. This literature review aims to discuss the influence of a nontraditional axis involving kidney, bone, and muscle on skeletal muscle plasticity. In this axis, the kidneys play a role as the main site for vitamin D activation. Renal disease leads to a direct decrease in 1,25(OH)2-vitamin D, secondary to reduction in renal functional mass, and has an indirect effect, through phosphate retention, that contributes to stimulate fibroblast growth factor 23 (FGF23) secretion by bone cells. FGF23 downregulates the renal synthesis of 1,25(OH)2-vitamin D and upregulates its metabolism. Skeletal production of FGF23 is also regulated by caloric intake: it is increased in obesity and decreased by caloric restriction, and these changes impact on 1,25(OH)2-vitamin D concentrations, which are decreased in obesity and increased after caloric restriction. Thus, both phosphate retention, that develops secondary to renal failure, and caloric intake influence 1,25(OH)2-vitamin D that in turn plays a key role in muscle anabolism.
Collapse
Affiliation(s)
- Luz M Acevedo
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain.,Departamento de Ciencias Biomédicas, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Venezuela
| | - Ángela Vidal
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - Escolástico Aguilera-Tejero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - José-Luis L Rivero
- Department of Comparative Anatomy and Pathological Anatomy and Toxicology, Faculty of Veterinary Sciences, Laboratory of Muscular Biopathology, University of Cordoba, Spain
| |
Collapse
|
25
|
Pinzariu AC, Sova IA, Maranduca MA, Filip N, Drochioi IC, Vamesu CG, Clim A, Hurjui LL, Moscalu M, Soroceanu RP, Serban DN, Serban IL. Vitamin D Deficiency in Both Oral and Systemic Manifestations in SARS-CoV-2 Infection: Updated Review. Medicina (B Aires) 2022; 59:medicina59010068. [PMID: 36676692 PMCID: PMC9866644 DOI: 10.3390/medicina59010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The specialized literature emphasizes the fact that vitamin D has a potentially beneficial effect in the context of the current COVID-19 pandemic. The purpose of this article is to highlight the role of vitamin D, both prophylactic and curative, in the treatment of patients diagnosed with COVID-19. Even though its relevance is still unknown and causes various controversies, there is currently no specific treatment for patients diagnosed with COVID-19. There are various prevention strategies with new vaccination schedules, but additional randomized and clinical trials are still needed to combat this pandemic. In addition to the systemic manifestations of SARS-CoV-2 infection, oral manifestations of this disease have also been described in the literature. The etiology of oral manifestations associated with COVID-19 infection and vitamin D deficiency remains controversial. In the present studies, oral manifestations such as salivary gland infections, aphthae, erythema, gingivitis, ulcers, etc. have been reported. This is a new topic, and the prevalence of manifestations is described in only a few studies, which is inconsistent with the number of COVID-19 cases reported since the beginning of the pandemic. The clinical symptomatology in patients with current COVID-19 infection is polymorphic. Whether the oral manifestation is directly caused by SARS-CoV-2 or a secondary manifestation remains an important topic to analyze and discuss.
Collapse
Affiliation(s)
- Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ivona Andreea Sova
- IOSUD Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences II, Discipline of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ilie Cristian Drochioi
- Department of Oral and Maxillofacial Surgery and Reconstructive, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700020 Iasi, Romania
| | - Calin George Vamesu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.C.); (M.M.)
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.C.); (M.M.)
| | - Radu Petru Soroceanu
- Department of Surgery I, Discipline of Surgical Semiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragomir Nicolae Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
26
|
25-Hydroxyvitamin D Serum Levels Linked to Single Nucleotide Polymorphisms (SNPs) (rs2228570, rs2282679, rs10741657) in Skeletal Muscle Aging in Institutionalized Elderly Men Not Supplemented with Vitamin D. Int J Mol Sci 2022; 23:ijms231911846. [PMID: 36233147 PMCID: PMC9569711 DOI: 10.3390/ijms231911846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022] Open
Abstract
Sarcopenia (Sp) is the loss of skeletal muscle mass associated with aging that results in an involution of muscle function and strength. Vitamin D deficiency is a common health problem worldwide, especially among the elderly, and hypovitaminosis D leads to musculoskeletal disorders. The aim of this study was to evaluate the impact and presence of a possible linkage between Single Nucleotide Polymorphisms (SNPs) CYP2R1 (rs10741657), GC (rs2282679), and VDR (rs2228570), serum 25-OH/D concentrations and the link with the degree of sarcopenia in 19 institutionalized elderly men not supplemented with vitamin D. Levels of 25-OH vitamin D were quantified with a commercial enzyme-linked immunosorbent assay kit and 3 SNPs were genotyped with KASPar assays. Significant differences in 25-OH/D concentration were determined between the bi-allelic combinations of rs228679 and rs228570. We detected statistically significant weak positive correlations between the AA (rs10741657 and rs228570) and TT (rs228679) and alleles and 25-OH/D and the probability of having higher 25-OH/D concentrations was 2- to 3-fold higher. However, the GG alleles of the 3 SNPs showed that the probability of having optimal 25-0H/D concentrations decreases by 32% for rs10741657, 38% for rs228679, and 74% for rs228570, showing a strong negative correlation between the degree of sarcopenia and 25-OH/D levels. Allelic variations in CYP2R1 (rs10741657), GC (rs2282679), and VDR (rs10741657) affect vitamin D levels and decisively influence the degree of sarcopenia in institutionalized elderly people.
Collapse
|
27
|
The Promotion of Migration and Myogenic Differentiation in Skeletal Muscle Cells by Quercetin and Underlying Mechanisms. Nutrients 2022; 14:nu14194106. [PMID: 36235757 PMCID: PMC9572605 DOI: 10.3390/nu14194106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Aging and muscle disorders frequently cause a decrease in myoblast migration and differentiation, leading to losses in skeletal muscle function and regeneration. Several studies have reported that natural flavonoids can stimulate muscle development. Quercetin, one such flavonoid found in many vegetables and fruits, has been used to promote muscle development. In this study, we investigated the effect of quercetin on migration and differentiation, two processes critical to muscle regeneration. We found that quercetin induced the migration and differentiation of mouse C2C12 cells. These results indicated quercetin could induce myogenic differentiation at the early stage through activated p-IGF-1R. The molecular mechanisms of quercetin include the promotion of myogenic differentiation via activated transcription factors STAT3 and the AKT signaling pathway. In addition, we demonstrated that AKT activation is required for quercetin induction of myogenic differentiation to occur. In addition, quercetin was found to promote myoblast migration by regulating the ITGB1 signaling pathway and activating phosphorylation of FAK and paxillin. In conclusion, quercetin can potentially be used to induce migration and differentiation and thus improve muscle regeneration.
Collapse
|
28
|
Caswell G, Eshelby B. Skin microbiome considerations for long haul space flights. Front Cell Dev Biol 2022; 10:956432. [PMID: 36158225 PMCID: PMC9493037 DOI: 10.3389/fcell.2022.956432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the human skin microbiome has long been associated with changes to the pH of the skin, dermal immune function and chronic skin conditions. Dermatological issues have been noted as the most prevalent medical presentation in the microgravity environment of space. The change in gravitational forces has been implicated in human immuno-suppression, also impacted by changes in the gastrointestinal-skin axis and its impact on Vitamin D metabolism, altered microbial gene expression in resident flora (leading changes in biofilm formation) and increased virulence factors in potential pathogens. There are also other stressors to the skin microbiome unique to space travel, including increased exposure to radiation, prolonged periods of dry washing technique, air quality and changes in microbe replication and growth parameters. Optimal microbiome health leads to enhanced skin barrier manufacture and maintenance, along with improved skin immune function and healing. In a microgravity environment expected to be experienced during long space flights, disruptions to the skin microbiome, coupled with increased virulence of pathological viruses and bacteria has implications for holistic skin health, astronaut cognitive function and mental health, and is coupled with slowed rates of wound healing. Scenario management for holistic skin health and restoration of microbiome homeostasis on long space flights require consideration.
Collapse
|
29
|
Irazoqui AP, Gonzalez A, Buitrago C. Effects of calcitriol on the cell cycle of rhabdomyosarcoma cells. J Steroid Biochem Mol Biol 2022; 222:106146. [PMID: 35710090 DOI: 10.1016/j.jsbmb.2022.106146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Rhabdomyosarcoma (RMS) is a type of cancer of skeletal muscle. Calcitriol is the active form of vitamin D3, also recognised as a steroid hormone called 1α, 25-dihydroxy vitamin D3 (1,25D). We previously reported that 1,25D promoted cell proliferation and differentiation in non-cancerous skeletal muscle cells C2C12. The aim of this work is to evaluate some of the events triggered by 1,25D in RD cells, a human RMS cell line. In this work we reported that RD cells expressed vitamin D receptor (VDR) and treatment with 1,25D reduced VDR expression at 72 h. At the same time an acute decrease in viable cells as well as in cells in S-phase of cell cycle was also observed. Furthermore, up-regulation of p15INK4b was accompanied in a timely manner by down-regulation of cyclin D3, p21Waf1/Cip1 and myogenin protein levels. Simultaneously, 1,25D induced early apoptosis markers such as cyclin D1 and CDK4, and the disruption of the mitochondrial network together with a redistribution of mitochondria around the nucleus. Finally, 1,25D induced changes in the plasma membrane of RD cells associated with early and late apoptosis at 72 h, as determined by flow cytometry. Taken together, these results determine that treatment with 1,25D for 72 h triggers apoptosis in RD cells.
Collapse
Affiliation(s)
- Ana P Irazoqui
- Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA); Departamento de Biología, Bioquímica y Farmacia, UNS, (8000) Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Agustina Gonzalez
- Departamento de Biología, Bioquímica y Farmacia, UNS, (8000) Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Claudia Buitrago
- Departamento de Biología, Bioquímica y Farmacia, UNS, (8000) Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
30
|
Książek A, Zagrodna A, Słowińska-Lisowska M, Lombardi G. Relationship Between Metabolites of Vitamin D, Free 25-(OH)D, and Physical Performance in Indoor and Outdoor Athletes. Front Physiol 2022; 13:909086. [PMID: 35874521 PMCID: PMC9304810 DOI: 10.3389/fphys.2022.909086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The potential effects of vitamin D in athletes have received considerable attention in the literature. However, little is known about vitamin D metabolites and their association with physical performance in athletes. Therefore, the aim of our study was to determine the relationship between metabolites of vitamin D, vitamin D binding protein (VDBP), free, bioavailable 25-(OH)D, and physical fitness tests in athletes. A total of 40 indoor and outdoor players (16 judoists and 24 football players) participated in the study. Vitamin D metabolites (25-(OH)D, 24,25-(OH)2D3, 3-epi-25-(OH)D3, and 1,25-(OH)2D) were assessed using LM-MS/MS. Free 25-(OH)D concentration was evaluated by calculation using serum albumin and VDBP levels. Athletic performance was assessed using handgrip and vertical jump. Our study showed a significant correlation between vitamin D metabolites and handgrip strength and vertical jump variables in indoor players. It demonstrated a significant association between 3-epi-25-(OH)D3 and vertical jump parameters in outdoor players. The results of our study showed relationship between free, bioavailable 25-(OH)D, and vertical jump variables in indoor players. In conclusion, we provide novel information on the vitamin D metabolites and athletic performance in athletes. Based on the results of our study, we concluded that vitamin D metabolites might be involved in skeletal muscle function in relation to athletic performance.
Collapse
Affiliation(s)
- Anna Książek
- Department of Biological and Medical Basis of Sport, Faculty of Physical Education and Sports, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
- *Correspondence: Anna Książek,
| | - Aleksandra Zagrodna
- Department of Biological and Medical Basis of Sport, Faculty of Physical Education and Sports, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Małgorzata Słowińska-Lisowska
- Department of Biological and Medical Basis of Sport, Faculty of Physical Education and Sports, Wroclaw University of Health and Sport Sciences, Wroclaw, Poland
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, I.R.C.C.S. Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
31
|
Berretta M, Quagliariello V, Bignucolo A, Facchini S, Maurea N, Di Francia R, Fiorica F, Sharifi S, Bressan S, Richter SN, Camozzi V, Rinaldi L, Scaroni C, Montopoli M. The Multiple Effects of Vitamin D against Chronic Diseases: From Reduction of Lipid Peroxidation to Updated Evidence from Clinical Studies. Antioxidants (Basel) 2022; 11:1090. [PMID: 35739987 PMCID: PMC9220017 DOI: 10.3390/antiox11061090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Vitamin D exerts multiple beneficial effects in humans, including neuronal, immune, and bone homeostasis and the regulation of cardiovascular functions. Recent studies correlate vitamin D with cancer cell growth and survival, but meta-analyses on this topic are often not consistent. METHODS A systematic search of the PubMed database and the Clinical Trial Register was performed to identify all potentially relevant English-language scientific papers containing original research articles on the effects of vitamin D on human health. RESULTS In this review, we analyzed the antioxidant and anti-inflammatory effects of vitamin D against acute and chronic diseases, focusing particularly on cancer, immune-related diseases, cardiomyophaties (including heart failure, cardiac arrhythmias, and atherosclerosis) and infectious diseases. CONCLUSIONS Vitamin D significantly reduces the pro-oxidant systemic and tissue biomarkers involved in the development, progression, and recurrence of chronic cardiometabolic disease and cancer. The overall picture of this review provides the basis for new randomized controlled trials of oral vitamin D supplementation in patients with cancer and infectious, neurodegenerative, and cardiovascular diseases aimed at reducing risk factors for disease recurrence and improving quality of life.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80121 Naples, Italy; (V.Q.); (N.M.)
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy;
| | - Sergio Facchini
- Oncology Operative Unit, Santa Maria delle Grazie Hospital, 80078 Naples, Italy;
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80121 Naples, Italy; (V.Q.); (N.M.)
| | - Raffaele Di Francia
- Gruppo Oncologico Ricercatori Italiani, GORI Onlus, 33170 Pordenone, Italy;
- Italian Association of Pharmacogenomics and Molecular Diagnostics (IAPharmagen), 60126 Ancona, Italy
| | - Francesco Fiorica
- Department of Radiation Oncology and Nuclear Medicine, AULSS 9 Scaligera, 37100 Verona, Italy;
| | - Saman Sharifi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (S.B.); (M.M.)
| | - Silvia Bressan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (S.B.); (M.M.)
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Sara N. Richter
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, 35121 Padova, Italy; (S.N.R.); (C.S.)
| | - Valentina Camozzi
- Endocrinology Unit, Department of Medicine (DIMED), University of Padua, 35100 Padua, Italy;
| | - Luca Rinaldi
- Department of Advanced Medical and Surgery Sciences, Internal Medicine COVID Center, University of Campania Luigi Vanvitelli, 81100 Naples, Italy;
| | - Carla Scaroni
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, 35121 Padova, Italy; (S.N.R.); (C.S.)
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (S.S.); (S.B.); (M.M.)
| |
Collapse
|
32
|
Baumgartner M, Lischka J, Schanzer A, de Gier C, Walleczek NK, Greber-Platzer S, Zeyda M. Plasma Myostatin Increases with Age in Male Youth and Negatively Correlates with Vitamin D in Severe Pediatric Obesity. Nutrients 2022; 14:nu14102133. [PMID: 35631274 PMCID: PMC9144022 DOI: 10.3390/nu14102133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity already causes non-communicable diseases during childhood, but the mechanisms of disease development are insufficiently understood. Myokines such as myostatin and irisin are muscle-derived factors possibly involved in obesity-associated diseases. This explorative study aims to investigate whether myostatin and irisin are associated with metabolic parameters, including the vitamin D status in pediatric patients with severe obesity. Clinical, anthropometric and laboratory data from 108 patients with severe obesity (>97th percentile) aged between 9 and 19 years were assessed. Myostatin, its antagonist follistatin, and irisin, were measured from plasma by ELISA. Myostatin concentrations, particularly in males, positively correlated with age and pubertal stage, as well as metabolic parameters such as insulin resistance. Irisin concentrations correlated positively with HDL and negatively with LDL cholesterol values. For follistatin, the associations with age and pubertal stage were inverse. Strikingly, a negative correlation of myostatin with serum vitamin D levels was observed that remained significant after adjusting for age and pubertal stage. In conclusion, there is an independent association of low vitamin D and elevated myostatin levels. Further research may focus on investigating means to prevent increased myostatin levels in interventional studies, which might open several venues to putative options to treat and prevent obesity-associated diseases.
Collapse
|
33
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
34
|
Russo C, Valle MS, Casabona A, Spicuzza L, Sambataro G, Malaguarnera L. Vitamin D Impacts on Skeletal Muscle Dysfunction in Patients with COPD Promoting Mitochondrial Health. Biomedicines 2022; 10:biomedicines10040898. [PMID: 35453648 PMCID: PMC9026965 DOI: 10.3390/biomedicines10040898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle dysfunction is frequently associated with chronic obstructive pulmonary disease (COPD), which is characterized by a permanent airflow limitation, with a worsening respiratory disorder during disease evolution. In COPD, the pathophysiological changes related to the chronic inflammatory state affect oxidant–antioxidant balance, which is one of the main mechanisms accompanying extra-pulmonary comorbidity such as muscle wasting. Muscle impairment is characterized by alterations on muscle fiber architecture, contractile protein integrity, and mitochondrial dysfunction. Exogenous and endogenous sources of reactive oxygen species (ROS) are present in COPD pathology. One of the endogenous sources of ROS is represented by mitochondria. Evidence demonstrated that vitamin D plays a crucial role for the maintenance of skeletal muscle health. Vitamin D deficiency affects oxidative stress and mitochondrial function influencing disease course through an effect on muscle function in COPD patients. This review will focus on vitamin-D-linked mechanisms that could modulate and ameliorate the damage response to free radicals in muscle fibers, evaluating vitamin D supplementation with enough potent effect to contrast mitochondrial impairment, but which avoids potential severe side effects.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.V.); (A.C.)
| | - Antonino Casabona
- Section of Physiology, Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.V.); (A.C.)
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.S.); (G.S.)
| | - Gianluca Sambataro
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.S.); (G.S.)
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
- Correspondence:
| |
Collapse
|
35
|
Jiang Z, Zhang L, Yao Z, Cao W, Ma S, Chen Y, Guang L, Zheng Z, Li C, Yu K, Shyh-Chang N. Machine learning-based phenotypic screening for postmitotic growth inducers uncover vitamin D3 metabolites as small molecule ribosome agonists. Cell Prolif 2022; 55:e13214. [PMID: 35411556 PMCID: PMC9136510 DOI: 10.1111/cpr.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To restore tissue growth without increasing the risk for cancer during aging, there is a need to identify small molecule drugs that can increase cell growth without increasing cell proliferation. While there have been numerous high‐throughput drug screens for cell proliferation, there have been few screens for post‐mitotic anabolic growth. Materials and Methods A machine learning (ML)‐based phenotypic screening strategy was used to discover metabolites that boost muscle growth. Western blot, qRT‐PCR and immunofluorescence staining were used to evaluate myotube hypertrophy/maturation or protein synthesis. Mass spectrometry (MS)‐based thermal proteome profiling‐temperature range (TPP‐TR) technology was used to identify the protein targets that bind the metabolites. Ribo‐MEGA size exclusion chromatography (SEC) analysis was used to verify whether the ribosome proteins bound to calcitriol. Results We discovered both the inactive cholecalciferol and the bioactive calcitriol are amongst the top hits that boost post‐mitotic growth. A large number of ribosomal proteins' melting curves were affected by calcitriol treatment, suggesting that calcitriol binds to the ribosome complex directly. Purified ribosomes directly bound to pure calcitriol. Moreover, we found that calcitriol could increase myosin heavy chain (MHC) protein translation and overall nascent protein synthesis in a cycloheximide‐sensitive manner, indicating that calcitriol can directly bind and enhance ribosomal activity to boost muscle growth. Conclusion Through the combined strategy of ML‐based phenotypic screening and MS‐based omics, we have fortuitously discovered a new class of metabolite small molecules that can directly activate ribosomes to promote post‐mitotic growth.
Collapse
Affiliation(s)
- Zongmin Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liping Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ziyue Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shilin Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Guang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zipeng Zheng
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China
| | - Chunwei Li
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China
| | - Kang Yu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, China
| | - Ng Shyh-Chang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Oku Y, Noda S, Yamada A, Nakaoka K, Goseki-Sone M. wenty-eight days of vitamin D restriction and/or a high-fat diet influenced bone mineral density and body composition in young adult female rats. Ann Anat 2022; 243:151945. [DOI: 10.1016/j.aanat.2022.151945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/31/2022]
|
37
|
Yuzawa R, Koike H, Manabe I, Oishi Y. VDR regulates simulated microgravity-induced atrophy in C2C12 myotubes. Sci Rep 2022; 12:1377. [PMID: 35082348 PMCID: PMC8791983 DOI: 10.1038/s41598-022-05354-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Muscle wasting is a major problem leading to reduced quality of life and higher risks of mortality and various diseases. Muscle atrophy is caused by multiple conditions in which protein degradation exceeds its synthesis, including disuse, malnutrition, and microgravity. While Vitamin D receptor (VDR) is well known to regulate calcium and phosphate metabolism to maintain bone, recent studies have shown that VDR also plays roles in skeletal muscle development and homeostasis. Moreover, its expression is upregulated in muscle undergoing atrophy as well as after muscle injury. Here we show that VDR regulates simulated microgravity-induced atrophy in C2C12 myotubes in vitro. After 8 h of microgravity simulated using 3D-clinorotation, the VDR-binding motif was associated with chromatin regions closed by the simulated microgravity and enhancer regions inactivated by it, which suggests VDR mediates repression of enhancers. In addition, VDR was induced and translocated into the nuclei in response to simulated microgravity. VDR-deficient C2C12 myotubes showed resistance to simulated microgravity-induced atrophy and reduced induction of FBXO32, an atrophy-associated ubiquitin ligase. These results demonstrate that VDR contributes to the regulation of simulated microgravity-induced atrophy at least in part by controlling expression of atrophy-related genes.
Collapse
|
38
|
Mohanasundaram S, Fernando E. Uremic Sarcopenia. Indian J Nephrol 2022; 32:399-405. [PMID: 36568601 PMCID: PMC9775613 DOI: 10.4103/ijn.ijn_445_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
"Uremic sarcopenia" refers to a progressive decrease in muscle mass, strength, and function despite normal skeletal muscle physiology in patients with chronic kidney disease (CKD). Sarcopenia involves multiple risk factors, comprising immunological changes, hormonal, metabolic acidosis, reduced protein intake, and physical inactivity. All these risk factors, along with complex pathophysiological mechanisms including ubiquitin, insulin/IGF-1, myostatin, and indoxyl sulfate, activate downstream pathways that ultimately increase muscle degradation while reducing muscle regeneration. Uremic sarcopenia not only affects the quality of life but also increases the risk of morbidity and mortality in patients with CKD. Of all the treatment modalities, aerobic and resistance exercise have shown prevention and reduced rate of muscle degeneration. A variety of pharmacological agents have been tried to target different steps in the known pathogenetic pathways, including the use of androgens and anabolic steroids, correction of vitamin D deficiency, use of growth hormone supplementation, and suppression of the ubiquitin pathway. Though some of these techniques have had beneficial results in animal experiments, human trials are still sparse. This review article relates to recent publications that describe the abnormalities in skeletal muscle that primarily leads to muscle wasting and its consequences in patients with CKD.
Collapse
Affiliation(s)
- Subashri Mohanasundaram
- Department of Nephrology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India
| | - Edwin Fernando
- Department of Nephrology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India,Address for correspondence: Dr. Edwin Fernando, Department of Nephrology, Government Stanley Medical College and Hospital, Chennai, Tamil Nadu, India. E-mail:
| |
Collapse
|
39
|
Kirwan R, Isanejad M, Davies IG, Mazidi M. Genetically Determined Serum 25-Hydroxyvitamin D Is Associated with Total, Trunk, and Arm Fat-Free Mass: A Mendelian Randomization Study. J Nutr Health Aging 2022; 26:46-51. [PMID: 35067702 DOI: 10.1007/s12603-021-1696-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Low serum vitamin D status has been associated with reduced muscle mass in observational studies although the relationship is controversial and a causal association cannot be determined from such observations. Two-sample Mendelian randomization (MR) was applied to assess the association between serum vitamin D (25(OH)D) and total, trunk, arm and leg fat-free mass (FFM). METHODS MR was implemented using summary-level data from the largest genome-wide association studies (GWAS) on vitamin D (n=73,699) and total, trunk, arm and leg FFM. Inverse variance weighted method (IVW) was used to estimate the causal estimates. Weighted median (WM)-based method, and MR-Egger, leave-one-out were applied as sensitivity analysis. RESULTS Genetically higher serum 25(OH)D levels had a positive effect on total (IVW = Beta: 0.042, p = 0.038), trunk (IVW = Beta: 0.045, p = 0.023) and arm (right arm IVW = Beta: 0.044, p = 0.002; left arm IVW = Beta: 0.05, p = 0.005) FFM. However, the association with leg FFM was not significant (right leg IVW = Beta: 0.03, p = 0.238; left leg IVW = Beta: 0.039, p = 0.100). The likelihood of heterogeneity and pleiotropy was determined to be low (statistically non-significant), and the observed associations were not driven by single SNPs. Furthermore, MR pleiotropy residual sum and outlier test did not highlight any outliers. CONCLUSIONS Our results illustrate the potentially causal, positive effect of serum 25(OH)D concentration on total, trunk and upper body appendicular fat-free mass.
Collapse
Affiliation(s)
- R Kirwan
- Richard Kirwan, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK. https://orcid.org/0000-0003-4645-0077
| | | | | | | |
Collapse
|
40
|
Girgis CM, Brennan-Speranza TC. Vitamin D and Skeletal Muscle: Current Concepts From Preclinical Studies. JBMR Plus 2021; 5:e10575. [PMID: 34950830 PMCID: PMC8674777 DOI: 10.1002/jbm4.10575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/07/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
Muscle weakness has been recognized as a hallmark feature of vitamin D deficiency for many years. Until recently, the direct biomolecular effects of vitamin D on skeletal muscle have been unclear. Although in the past, some reservations have been raised regarding the expression of the vitamin D receptor in muscle tissue, this special issue review article outlines the clear evidence from preclinical studies for not only the expression of the receptor in muscle but also the roles of vitamin D activity in muscle development, mass, and strength. Additionally, muscle may also serve as a dynamic storage site for vitamin D, and play a central role in the maintenance of circulating 25-hydroxy vitamin D levels during periods of low sun exposure. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christian M Girgis
- Faculty of Medicine and Health University of Sydney Sydney NSW Australia.,Department of Diabetes and Endocrinology Westmead Hospital Sydney NSW Australia.,Department of Endocrinology Royal North Shore Hospital Sydney NSW Australia
| | - Tara C Brennan-Speranza
- Faculty of Medicine and Health University of Sydney Sydney NSW Australia.,School of Medical Sciences University of Sydney Sydney NSW Australia.,School of Public Health University of Sydney Sydney NSW Australia
| |
Collapse
|
41
|
Gerrard JC, Hay JP, Adams RN, Williams JC, Huot JR, Weathers KM, Marino JS, Arthur ST. Current Thoughts of Notch's Role in Myoblast Regulation and Muscle-Associated Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312558. [PMID: 34886282 PMCID: PMC8657396 DOI: 10.3390/ijerph182312558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
The evolutionarily conserved signaling pathway Notch is unequivocally essential for embryogenesis. Notch’s contribution to the muscle repair process in adult tissue is complex and obscure but necessary. Notch integrates with other signals in a functional antagonist manner to direct myoblast activity and ultimately complete muscle repair. There is profound recent evidence describing plausible mechanisms of Notch in muscle repair. However, the story is not definitive as evidence is slowly emerging that negates Notch’s importance in myoblast proliferation. The purpose of this review article is to examine the prominent evidence and associated mechanisms of Notch’s contribution to the myogenic repair phases. In addition, we discuss the emerging roles of Notch in diseases associated with muscle atrophy. Understanding the mechanisms of Notch’s orchestration is useful for developing therapeutic targets for disease.
Collapse
Affiliation(s)
- Jeffrey C. Gerrard
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Jamison P. Hay
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Ryan N. Adams
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - James C. Williams
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Joshua R. Huot
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Kaitlin M. Weathers
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Joseph S. Marino
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
| | - Susan T. Arthur
- Department of Applied Physiology, Health and Clinical Sciences, University of North Carolina-Charlotte, Charlotte, NC 28223, USA; (J.C.G.); (J.P.H.); (R.N.A.); (J.C.W.III); (K.M.W.); (J.S.M.)
- Correspondence:
| |
Collapse
|
42
|
Factors associated with unintentional weight loss among older adults in a geriatric outpatient clinic of university hospital. PLoS One 2021; 16:e0260233. [PMID: 34793549 PMCID: PMC8601429 DOI: 10.1371/journal.pone.0260233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Background Unintentional weight loss (UWL) is defined as unintentional reduction of more than 5% of baseline body weight over 6 to 12 months. UWL is a common problem in the older adults, resulting in increased rate of morbidity and mortality. With specific reference to Thailand, no information on factors associated with UWL in older adults could be traced. The aims of this research were to identify the factors associated with UWL and to assess the common causes of UWL among older adults in the geriatric outpatient clinic of university hospital. Methods A case-control study was conducted from June 1st, 2020 to December 31st, 2020. Eighty older adults aged 60 years or older were enrolled in the UWL group while the non-UWL group consisted of 160 participants. Data collection was performed by structural questionnaire including baseline characteristics, psychosocial factors, health information, lifestyle behaviors, and medications. The factors associated with UWL were analyzed by using univariate and multivariate logistic regression analysis. Causes of UWL were recorded from electronic medical records. Results The mean age of the 240 participants was 79.6 years (SD 7.4). Most patients were female (79.2%) and had fewer than 12 years of education (62.6%). The three common causes of UWL were reduced appetite (20.1%), dementia and behavioral and psychological symptoms of dementia (13.7%) and medications (11.0%). Multivariate logistic regression analysis showed that a Charlson Comorbidity Index (CCI) score of >1 (OR 2.55, 95% CI 1.37–4.73; P = 0.003), vitamin D deficiency (OR 4.01, 95% CI 1.62–9.97; P = 0.003), and hemoglobin level of <12 g/dL (OR 2.47, 95% CI 1.32–4.63; P = 0.005) were factors significantly associated with UWL. Conclusions Factors associated with UWL were CCI score >1, vitamin D deficiency, and hemoglobin level of <12 g/dl. The early detection of these associated factors, reduced appetite, dementia and polypharmacy may be important in UWL prevention in older adults.
Collapse
|
43
|
Yu S, Ren B, Chen H, Goltzman D, Yan J, Miao D. 1,25-Dihydroxyvitamin D deficiency induces sarcopenia by inducing skeletal muscle cell senescence. Am J Transl Res 2021; 13:12638-12649. [PMID: 34956479 PMCID: PMC8661220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/06/2021] [Indexed: 06/14/2023]
Abstract
To determine if 1,25(OH)2D deficiency can induce age-related sarcopenia, the skeletal muscular phenotype of male wild-type (WT) and Cyp27b1 knockout (KO) mice were compared at 3 and 6 months of age. We found that muscle mass, grip strength and muscle fiber size were significantly decreased in aging Cyp27b1 KO male mice. The expression levels of genes related to mitochondrial metabolic activity, and antioxidant enzymes including SOD1, catalase, Nqo1 and Gcs were significantly down-regulated in skeletal muscle tissue of Cyp27b1 KO male mice; in contrast, the percentage of p16+ and p21+ myofibers, and the expression of p16, p19, p21, p53, TNFα, IL6 and MMP3 at mRNA and/or protein levels were significantly increased. We then injected tibialis anterior muscle of WT and Cyp27b1+/- male mice with BaCl2, and analyzed the regenerative ability of skeletal muscle cells 7 days later. The results revealed that the numbers of newly formed regenerating central nucleated fibers (CNF), the percentage of BrdU+ cells and the expression of MyoD, MyHC and Myf5 at mRNA levels were significantly down-regulated in the injured skeletal muscle tissue of Cyp27b1+/- mice. In summary, our studies indicate that 1,25(OH)2D deficiency can result in the development of age-related sarcopenia by inducing oxidative stress, skeletal muscular cell senescence and SASP, and by inhibiting skeletal muscle regeneration. Cyp27b1 KO mice can therefore be used as an animal model of age-related sarcopenia in order to investigate the pathogenesis of age-related sarcopenia and potentially to test intervention measures for treatment of sarcopenia.
Collapse
Affiliation(s)
- Shuxiang Yu
- School of Medicine, Shanghai UniversityShanghai, China
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Key Laboratory for Aging & Disease, Nanjing Medical UniversityNanjing, China
- School of Environmental and Chemical Engineering, Shanghai UniversityShanghai, China
| | - Biqi Ren
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Key Laboratory for Aging & Disease, Nanjing Medical UniversityNanjing, China
| | - Haiyun Chen
- The Research Center for Aging, Friendship Affiliated Plastic Surgery Hospital of Nanjing Medical UniversityNanjing, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill UniversityMontreal, Canada
| | - Jianshe Yan
- School of Medicine, Shanghai UniversityShanghai, China
| | - Dengshun Miao
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Key Laboratory for Aging & Disease, Nanjing Medical UniversityNanjing, China
- The Research Center for Aging, Friendship Affiliated Plastic Surgery Hospital of Nanjing Medical UniversityNanjing, China
| |
Collapse
|
44
|
Upadhaya SD, Chung TK, Jung YJ, Kim IH. Dietary 25(OH)D3 supplementation to gestating and lactating sows and their progeny affects growth performance, carcass characteristics, blood profiles and myogenic regulatory factor- related gene expression in wean-finish pigs. Anim Biosci 2021; 35:461-474. [PMID: 34727644 PMCID: PMC8902224 DOI: 10.5713/ab.21.0304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022] Open
Abstract
Objective This experiment investigated the effects of supplementing vitamin D3-fortified sow and progeny diets with 25(OH)D3 on growth performance, carcass characteristics, immunity, and pork meat quality. Methods The present study involved the assessment of supplementing the diet of sows and their progeny with or without 25 (OH)D3 in a 2×2 factorial arrangement on the performance and production characteristics of wean-finish pigs. Forty-eight multiparous sows were assigned to a basal diet containing 2000 IU/kg vitamin D3 and supplemented without (CON) or with (TRT) 50 μg/kg 25 (OH)D3. At weaning, a total of 80 pigs each from CON and TRT sows were allocated to weaning and growing-finishing basal diets fortified with 2,500 and 1,750 IU/kg vitamin D3 respectively and supplemented without or with 50 μg/kg 25(OH)D3. Results Sows fed 25(OH)D3-supplemented diets improved pre-weaning growth rate of nursing piglets. A significant sow and pig weaning diet effect was observed for growth rate and feed efficiency (p<0.05) during days 1 to 42 post-weaning. Pigs consuming 25(OH)D3-supplemented diets gained weight faster (p = 0.016), ate more (p = 0.044) and tended to convert feed to gain more efficiently (p = 0.088) than those fed CON diet between days 98 and 140 post-weaning. Supplemental 25(OH)D3 improved water holding capacity and reduced drip loss of pork meat, increased serum 25(OH)D3 level, produced higher interleukin-1 and lower interleukin-6 concentrations in blood circulation, downregulated myostatin (MSTN) and upregulated myogenic differentiation (MYOD) and myogenic factor 5 (MYF5) gene expressions (p<0.05). Conclusion Supplementing vitamin D3-fortified sow and wean-finish pig diets with 50 μg/kg 25(OH)D3 significantly improved production performance suggesting their current dietary vitamin D3 levels are insufficient. In fulfilling the total need for vitamin D, it is strongly recommended to add 50 μg/kg 25(OH)D3 “on top” to practical vitamin D3-fortified sow and wean-finish pig diets deployed under commercial conditions.
Collapse
Affiliation(s)
- Santi Devi Upadhaya
- Department of Animal Resource and Science, Dankook University, Cheonan, 31116, Korea
| | - Thau Kiong Chung
- DSM Nutritional Products Asia Pacific, Mapletree Business City, Singapore 117440, MapleTree Business City, Singapore
| | - Yeon Jae Jung
- Department of Animal Resource and Science, Dankook University, Cheonan, 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, 31116, Korea
| |
Collapse
|
45
|
Alliband KH, Kozhevnikova SV, Parr T, Jethwa PH, Brameld JM. In vitro Effects of Biologically Active Vitamin D on Myogenesis: A Systematic Review. Front Physiol 2021; 12:736708. [PMID: 34566700 PMCID: PMC8458760 DOI: 10.3389/fphys.2021.736708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Vitamin D (VD) deficiency is associated with muscle weakness. A reduction in the incidence of falls in the elderly following VD supplementation and identification of the VD receptor within muscle cells suggests a direct effect of VD on muscle, but little is known about the underlying mechanisms. Here we systematically searched the literature to identify effects of active VD [1,25(OH)2D3] on skeletal muscle myogenesis in vitro, with no restriction on year of publication. Eligibility was assessed by strict inclusion/exclusion criteria and agreed by two independent investigators. Twelve relevant pa-pers were identified using four different cell types (C2C12, primary mouse satellite cells, primary chick myoblasts, and primary human myoblasts) and a range of myogenic markers (myoD, myogenin, creatine kinase, myosin heavy chain, and myotube size). A clear inhibitory effect of 1,25(OH)2D3 on proliferation was reported, while the effects on the different stages of differentiation were less consistent probably due to variation in cell type, time points and doses of 1,25(OH)2D3 used. However, myotube size was consistently increased by 1,25(OH)2D3. Overall, the evidence suggests that 1,25(OH)2D3 inhibits proliferation and promotes differentiation of myoblasts, but future studies should use time courses to gain a clearer understanding.
Collapse
Affiliation(s)
- Kathryn H Alliband
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| | - Sofia V Kozhevnikova
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| | - Tim Parr
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| | - Preeti H Jethwa
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| | - John M Brameld
- Division of Food Nutrition and Dietetics, School of Biosciences, University of Nottingham Sutton Bonington Campus, Loughborough, United Kingdom
| |
Collapse
|
46
|
Zhang L, Piao X. Use of 25-hydroxyvitamin D 3 in diets for sows: A review. ACTA ACUST UNITED AC 2021; 7:728-736. [PMID: 34466677 PMCID: PMC8379139 DOI: 10.1016/j.aninu.2020.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022]
Abstract
Dietary supplementation with 25-hydroxyvitamin D3 (25OHD3), as an alternative source of vitamin D, is becoming increasingly popular due to its commercialization and more efficient absorbability. The addition of 25OHD3 rather than its precursor vitamin D3 can circumvent the 25-hydroxylation reaction in the liver, indicating that supplementation of 25OHD3 can rapidly improve the circulating vitamin D status of animals. Emerging experiments have reported that maternal 25OHD3 supplementation could increase sow performances and birth outcomes and promote circulating vitamin D status of sows and their offspring. Increased milk fat content was observed in many experiments; however, others demonstrated that adding 25OHD3 to lactating sow diets increased the contents of milk protein and lactose. Although an inconsistency between the results of different experiments exists, these studies suggested that maternal 25OHD3 supplementation could alter milk composition via its effects on the mammary gland. Previous studies have demonstrated that adding 25OHD3 to sow diets could improve the mRNA expressions of insulin-induced gene 1 (INSIG1) and sterol regulatory element-binding protein 1 (SREBP1) in the mammary gland cells from milk and increase the mRNA expressions of acetyl-CoA carboxylase α (ACCα) and fatty acid synthase (FAS) in the mammary gland tissue. Maternal 25OHD3 supplementation promotes skeletal muscle development of piglets before and after parturition, and improves bone properties including bone density and bone breaking force in lactating sows and their piglets. Interestingly, 25OHD3 supplementation in sow diets could improve neonatal bone development via regulation of milk fatty acid composition related to bone metabolism and mineralization. In this review, we also discuss the effects of adding 25OHD3 to sow diets on the gut bacterial metabolites of suckling piglets, and propose that butyrate production may be associated with bone health. Therefore, to better understand the nutritional functions of maternal 25OHD3 supplementation, this paper reviews advances in the studies of 25OHD3 for sow nutrition and provides references for practical application.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
Gonnelli S, Tomai Pitinca MD, Camarri S, Lucani B, Franci B, Nuti R, Caffarelli C. Pharmacokinetic profile and effect on bone markers and muscle strength of two daily dosage regimens of calcifediol in osteopenic/osteoporotic postmenopausal women. Aging Clin Exp Res 2021; 33:2539-2547. [PMID: 33506314 PMCID: PMC8429405 DOI: 10.1007/s40520-020-01779-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Background At present, although cholecalciferol represents the form of vitamin D of choice for the treatment of vitamin D deficiency, there is a growing interest in calcifediol. Aims This study aimed to evaluate the efficacy and the safety of two different daily doses of calcifediol. Methods Fifty osteopenic/osteoporotic women with serum levels of 25-hydroxyvitamin D (25OHD) between 10 and 20 ng/ml were randomized to a 6-month treatment with oral calcifediol 20 µg/day (n = 25) or oral calcifediol 30 µg/day (n = 25). In all, we measured the time course of the levels of 25OHD and other biochemical parameters. Moreover, we evaluated handgrip strength and serum levels of myostatin. Results The peak increase in 25OHD levels was reached after 90 days of treatment in group 1 (59.3 ng/ml) and after only 60 days in group 2 (72.3 ng/ml); thereafter in both groups, the levels of 25OHD showed a tendency towards stabilization. After 30 days, all the patients treated with 30 µg/day had values of 25OHD > 30 ng/ml. Handgrip strength showed a modest but progressive increase which reached the statistical significance in the 30 µg/day group. This latter group also presented a modest and non-significant decrease in serum levels of myostatin. Conclusions Calcifediol is able to rapidly normalize the vitamin D deficiency, and the 30 µg daily dosage could be suggested in those patients who need to rapidly reach optimal 25OHD levels. Moreover, the 6-month treatment with calcifediol at a dose of 30 µg results in a modest but significant increase in upper limb strength.
Collapse
|
48
|
Saeki C, Tsubota A. Influencing Factors and Molecular Pathogenesis of Sarcopenia and Osteosarcopenia in Chronic Liver Disease. Life (Basel) 2021; 11:life11090899. [PMID: 34575048 PMCID: PMC8468289 DOI: 10.3390/life11090899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The liver plays a pivotal role in nutrient/energy metabolism and storage, anabolic hormone regulation, ammonia detoxification, and cytokine production. Impaired liver function can cause malnutrition, hyperammonemia, and chronic inflammation, leading to an imbalance between muscle protein synthesis and proteolysis. Patients with chronic liver disease (CLD) have a high prevalence of sarcopenia, characterized by progressive loss of muscle mass and function, affecting health-related quality of life and prognosis. Recent reports have revealed that osteosarcopenia, defined as the concomitant occurrence of sarcopenia and osteoporosis, is also highly prevalent in patients with CLD. Since the differentiation and growth of muscles and bones are closely interrelated through mechanical and biochemical communication, sarcopenia and osteoporosis often progress concurrently and affect each other. Osteosarcopenia further exacerbates unfavorable health outcomes, such as vertebral fracture and frailty. Therefore, a comprehensive assessment of sarcopenia, osteoporosis, and osteosarcopenia, and an understanding of the pathogenic mechanisms involving the liver, bones, and muscles, are important for prevention and treatment. This review summarizes the molecular mechanisms of sarcopenia and osteosarcopenia elucidated to data in hopes of promoting advances in treating these musculoskeletal disorders in patients with CLD.
Collapse
Affiliation(s)
- Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan;
| | - Akihito Tsubota
- Core Research Facilities, Research Center for Medical Science, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-3-3433-1111
| |
Collapse
|
49
|
Takahashi F, Hashimoto Y, Kaji A, Sakai R, Kawate Y, Okamura T, Kondo Y, Fukuda T, Kitagawa N, Okada H, Nakanishi N, Majima S, Senmaru T, Ushigome E, Hamaguchi M, Asano M, Yamazaki M, Fukui M. Vitamin Intake and Loss of Muscle Mass in Older People with Type 2 Diabetes: A Prospective Study of the KAMOGAWA-DM Cohort. Nutrients 2021; 13:nu13072335. [PMID: 34371843 PMCID: PMC8308571 DOI: 10.3390/nu13072335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this prospective cohort study was to examine the relationships between the intakes of various vitamins and the loss of muscle mass in older people with type 2 diabetes (T2DM). The change in skeletal muscle mass index (SMI, kg/m2) (kg/m2/year) was defined as follows: (SMI at baseline (kg/m2) - SMI at follow-up (kg/m2))/follow-up period (year). The rate of SMI reduction (%) was calculated as follows (the change in SMI (kg/m2/year)/SMI at baseline (kg/m2)) × 100. The rate of SMI reduction ≥ 1.2% was considered as the loss of muscle mass. Among 197 people with T2DM, 47.2% of them experienced the loss of muscle mass at the 13.7 ± 5.2 month follow-up. Vitamin B1 (0.8 ± 0.3 vs. 0.8 ± 0.3 mg/day, p = 0.031), vitamin B12 (11.2 ± 8.3 vs. 13.4 ± 7.5 μg/day, p = 0.049), and vitamin D (16.5 ± 12.2 vs. 21.6 ± 13.0 μg/day, p = 0.004) intakes in people with the loss of muscle mass were significantly lower than those without. Vitamin D intake was related to the loss of muscle mass after adjusting for sex, age, exercise, alcohol, smoking, body mass index, SMI, glucagon-like peptide-1 agonist, sodium glucose cotransporter-2 inhibitor, insulin, HbA1c, creatinine, energy intake, and protein intake (adjusted odds ratio 0.93, 95% confidence interval: 0.88-0.97, p = 0.003). This study showed that vitamin D intake was related to the loss of muscle mass in older people with T2DM. Vitamin B12 intake tended to be related to the loss of muscle mass, although vitamin A, vitamin B2, vitamin B6, vitamin C, and vitamin E intake were not related.
Collapse
Affiliation(s)
- Fuyuko Takahashi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
- Correspondence: ; Tel./Fax: +81-75-251-5505
| | - Ayumi Kaji
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Ryosuke Sakai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Yuka Kawate
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Yuriko Kondo
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Takuya Fukuda
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
- Department of Diabetology, Kameoka Municipal Hospital, Kyoto 621-8585, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Osaka 570-8540, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Mai Asano
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (F.T.); (A.K.); (R.S.); (Y.K.); (T.O.); (Y.K.); (T.F.); (N.K.); (H.O.); (N.N.); (S.M.); (T.S.); (E.U.); (M.H.); (M.A.); (M.Y.); (M.F.)
| |
Collapse
|
50
|
Watson EL, Wilkinson TJ, O'Sullivan TF, Baker LA, Gould DW, Xenophontos S, Graham-Brown M, Major R, Jenkinson C, Hewison M, Philp A, Smith AC. Association between vitamin D deficiency and exercise capacity in patients with CKD, a cross-sectional analysis. J Steroid Biochem Mol Biol 2021; 210:105861. [PMID: 33675951 DOI: 10.1016/j.jsbmb.2021.105861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Evidence is growing for a role of vitamin D in regulating skeletal muscle mass, strength and functional capacity. Given the role the kidneys play in activating total vitamin D, and the high prevalence of vitamin D deficiency in Chronic Kidney Disease (CKD), it is possible that deficiency contributes to the low levels of physical function and muscle mass in these patients. METHODS This is a secondary cross-sectional analysis of previously published interventional study, with in vitro follow up work. 34 CKD patients at stages G3b-5 (eGFR 25.5 ± 8.3 mL/min/1.73m2; age 61 ± 12 years) were recruited, with a sub-group (n = 20) also donating a muscle biopsy. Vitamin D and associated metabolites were analysed in plasma by liquid chromatography tandem-mass spectroscopy and correlated to a range of physiological tests of muscle size, function, exercise capacity and body composition. The effects of 1α,25(OH)2D3 supplementation on myogenesis and myotube size was investigated in primary skeletal muscle cells from vitamin D deficient donors. RESULTS In vivo, there was no association between total or active vitamin D and muscle size or strength, but a significant correlation with V̇O2Peak was seen with total vitamin D (25OHD). in vitro, 1α,25(OH)2D3 supplementation reduced IL-6 mRNA expression, but had no effect upon proliferation, differentiation or myotube diameter. CONCLUSIONS Vitamin D deficiency is not a prominent factor driving the loss of muscle mass in CKD, but may play a role in reduced exercise capacity.
Collapse
Affiliation(s)
- Emma L Watson
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom.
| | | | - Tom F O'Sullivan
- Department of Infection, Immunity and Inflammation, University of Leicester, United Kingdom
| | - Luke A Baker
- Department of Health Sciences, University of Leicester, United Kingdom
| | - Douglas W Gould
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| | | | - Matt Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| | - Rupert Major
- Department of Health Sciences, University of Leicester, United Kingdom
| | - Carl Jenkinson
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Andrew Philp
- Garvan Institute of Medical Research, New South Wales, Australia; UNSW Medicine, UNSW Sydney, New South Wales, Australia
| | - Alice C Smith
- Department of Health Sciences, University of Leicester, United Kingdom
| |
Collapse
|