1
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
2
|
Tanaka M, Shirakura K, Takayama Y, Μatsui M, Watanabe Y, Yamamoto T, Takahashi J, Tanaka S, Hino N, Doi T, Obana M, Fujio Y, Takayama K, Okada Y. Endothelial ROBO4 suppresses PTGS2/COX-2 expression and inflammatory diseases. Commun Biol 2024; 7:599. [PMID: 38762541 PMCID: PMC11102558 DOI: 10.1038/s42003-024-06317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Accumulating evidence suggests that endothelial cells can be useful therapeutic targets. One of the potential targets is an endothelial cell-specific protein, Roundabout4 (ROBO4). ROBO4 has been shown to ameliorate multiple diseases in mice, including infectious diseases and sepsis. However, its mechanisms are not fully understood. In this study, using RNA-seq analysis, we found that ROBO4 downregulates prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes cyclooxygenase-2. Mechanistic analysis reveals that ROBO4 interacts with IQ motif-containing GTPase-activating protein 1 (IQGAP1) and TNF receptor-associated factor 7 (TRAF7), a ubiquitin E3 ligase. In this complex, ROBO4 enhances IQGAP1 ubiquitination through TRAF7, inhibits prolonged RAC1 activation, and decreases PTGS2 expression in inflammatory endothelial cells. In addition, Robo4-deficiency in mice exacerbates PTGS2-associated inflammatory diseases, including arthritis, edema, and pain. Thus, we reveal the molecular mechanism by which ROBO4 suppresses the inflammatory response and vascular hyperpermeability, highlighting its potential as a promising therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Masato Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisuke Shirakura
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yui Takayama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Miki Μatsui
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yukio Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Junya Takahashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Shota Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobumasa Hino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masanori Obana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Yasushi Fujio
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan.
| |
Collapse
|
3
|
Liu S, Ezran C, Wang MFZ, Li Z, Awayan K, Long JZ, De Vlaminck I, Wang S, Epelbaum J, Kuo CS, Terrien J, Krasnow MA, Ferrell JE. An organism-wide atlas of hormonal signaling based on the mouse lemur single-cell transcriptome. Nat Commun 2024; 15:2188. [PMID: 38467625 PMCID: PMC10928088 DOI: 10.1038/s41467-024-46070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Hormones mediate long-range cell communication and play vital roles in physiology, metabolism, and health. Traditionally, endocrinologists have focused on one hormone or organ system at a time. Yet, hormone signaling by its very nature connects cells of different organs and involves crosstalk of different hormones. Here, we leverage the organism-wide single cell transcriptional atlas of a non-human primate, the mouse lemur (Microcebus murinus), to systematically map source and target cells for 84 classes of hormones. This work uncovers previously-uncharacterized sites of hormone regulation, and shows that the hormonal signaling network is densely connected, decentralized, and rich in feedback loops. Evolutionary comparisons of hormonal genes and their expression patterns show that mouse lemur better models human hormonal signaling than mouse, at both the genomic and transcriptomic levels, and reveal primate-specific rewiring of hormone-producing/target cells. This work complements the scale and resolution of classical endocrine studies and sheds light on primate hormone regulation.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Camille Ezran
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Michael F Z Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Zhengda Li
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyle Awayan
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford, CA, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Sheng Wang
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Jacques Epelbaum
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Christin S Kuo
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jérémy Terrien
- Adaptive Mechanisms and Evolution (MECADEV), UMR 7179, National Center for Scientific Research, National Museum of Natural History, Brunoy, France
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Lukácsi S, Munkácsy G, Győrffy B. Harnessing Hyperthermia: Molecular, Cellular, and Immunological Insights for Enhanced Anticancer Therapies. Integr Cancer Ther 2024; 23:15347354241242094. [PMID: 38818970 PMCID: PMC11143831 DOI: 10.1177/15347354241242094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperthermia, the raising of tumor temperature (≥39°C), holds great promise as an adjuvant treatment for cancer therapy. This review focuses on 2 key aspects of hyperthermia: its molecular and cellular effects and its impact on the immune system. Hyperthermia has profound effects on critical biological processes. Increased temperatures inhibit DNA repair enzymes, making cancer cells more sensitive to chemotherapy and radiation. Elevated temperatures also induce cell cycle arrest and trigger apoptotic pathways. Furthermore, hyperthermia modifies the expression of heat shock proteins, which play vital roles in cancer therapy, including enhancing immune responses. Hyperthermic treatments also have a significant impact on the body's immune response against tumors, potentially improving the efficacy of immune checkpoint inhibitors. Mild systemic hyperthermia (39°C-41°C) mimics fever, activating immune cells and raising metabolic rates. Intense heat above 50°C can release tumor antigens, enhancing immune reactions. Using photothermal nanoparticles for targeted heating and drug delivery can also modulate the immune response. Hyperthermia emerges as a cost-effective and well-tolerated adjuvant therapy when integrated with immunotherapy. This comprehensive review serves as a valuable resource for the selection of patient-specific treatments and the guidance of future experimental studies.
Collapse
Affiliation(s)
- Szilvia Lukácsi
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Gyöngyi Munkácsy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University, Budapest, Hungary
- University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| |
Collapse
|
5
|
Zhang Y, Pool AH, Wang T, Liu L, Kang E, Zhang B, Ding L, Frieda K, Palmiter R, Oka Y. Parallel neural pathways control sodium consumption and taste valence. Cell 2023; 186:5751-5765.e16. [PMID: 37989313 PMCID: PMC10761003 DOI: 10.1016/j.cell.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
The hedonic value of salt fundamentally changes depending on the internal state. High concentrations of salt induce innate aversion under sated states, whereas such aversive stimuli transform into appetitive ones under sodium depletion. Neural mechanisms underlying this state-dependent salt valence switch are poorly understood. Using transcriptomics state-to-cell-type mapping and neural manipulations, we show that positive and negative valences of salt are controlled by anatomically distinct neural circuits in the mammalian brain. The hindbrain interoceptive circuit regulates sodium-specific appetitive drive , whereas behavioral tolerance of aversive salts is encoded by a dedicated class of neurons in the forebrain lamina terminalis (LT) expressing prostaglandin E2 (PGE2) receptor, Ptger3. We show that these LT neurons regulate salt tolerance by selectively modulating aversive taste sensitivity, partly through a PGE2-Ptger3 axis. These results reveal the bimodal regulation of appetitive and tolerance signals toward salt, which together dictate the amount of sodium consumption under different internal states.
Collapse
Affiliation(s)
- Yameng Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Allan-Hermann Pool
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Departments of Neuroscience and Anesthesia and Pain Management and Peter O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tongtong Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lu Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Elin Kang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bei Zhang
- Spatial Genomics, Inc., Pasadena, CA, USA
| | - Liang Ding
- Spatial Genomics, Inc., Pasadena, CA, USA
| | | | - Richard Palmiter
- Departments of Biochemistry and Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Yuki Oka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Korzun T, Moses AS, Diba P, Sattler AL, Taratula OR, Sahay G, Taratula O, Marks DL. From Bench to Bedside: Implications of Lipid Nanoparticle Carrier Reactogenicity for Advancing Nucleic Acid Therapeutics. Pharmaceuticals (Basel) 2023; 16:1088. [PMID: 37631003 PMCID: PMC10459564 DOI: 10.3390/ph16081088] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In biomedical applications, nanomaterial-based delivery vehicles, such as lipid nanoparticles, have emerged as promising instruments for improving the solubility, stability, and encapsulation of various payloads. This article provides a formal review focusing on the reactogenicity of empty lipid nanoparticles used as delivery vehicles, specifically emphasizing their application in mRNA-based therapies. Reactogenicity refers to the adverse immune responses triggered by xenobiotics, including administered lipid nanoparticles, which can lead to undesirable therapeutic outcomes. The key components of lipid nanoparticles, which include ionizable lipids and PEG-lipids, have been identified as significant contributors to their reactogenicity. Therefore, understanding the relationship between lipid nanoparticles, their structural constituents, cytokine production, and resultant reactogenic outcomes is essential to ensure the safe and effective application of lipid nanoparticles in mRNA-based therapies. Although efforts have been made to minimize these adverse reactions, further research and standardization are imperative. By closely monitoring cytokine profiles and assessing reactogenic manifestations through preclinical and clinical studies, researchers can gain valuable insights into the reactogenic effects of lipid nanoparticles and develop strategies to mitigate undesirable reactions. This comprehensive review underscores the importance of investigating lipid nanoparticle reactogenicity and its implications for the development of mRNA-lipid nanoparticle therapeutics in various applications beyond vaccine development.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Ariana L. Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| | - Olena R. Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| |
Collapse
|
7
|
Kang Y, Gao Y, Li X, Guo X, Liu Z, Li W, Wei J, Qi Y. Bupleurum chinense exerts a mild antipyretic effect on LPS-induced pyrexia rats involving inhibition of peripheral TNF-α production. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116375. [PMID: 36934787 DOI: 10.1016/j.jep.2023.116375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bupleuri Radix, the dried roots of Bupleurum chinense DC. (BC) or Bupleurum scorzonerifolium Willd., is one of the most frequently used traditional Chinese medicines. As the species in Xiao-Chai-Hu decoction, BC has been used as an antipyretic medicine with a long history. However, its antipyretic characteristics and underlying mechanism(s) remain unclear. AIM OF THE STUDY To elucidate the antipyretic characteristics and mechanism(s) of BC used in its traditional way. METHODS The water extract of BC (BCE) was prepared according to the traditional decocting mode. Murine fever and endotoxemia models were induced by intravenous injection of lipopolysaccharide (LPS). In vitro complement activation assay and the levels of TNF-α, IL-6, IL-1β, and C5a were determined by ELISA. RESULTS BCE exerted a confirmed but mild antipyretic effect on LPS-induced fever of rat. In vitro, it significantly lowered LPS-elevated TNF-α in the supernatant of rat complete blood cells and THP-1 cells, but failed to decrease IL-6 and IL-1β. In murine endotoxemia models, BCE markedly decreased serum TNF-α, but had no impact on IL-6 and IL-1β. BCE also restricted complement activation in vitro and in vivo. Nevertheless, the mixture of saikosaponin A and D could not suppress supernatant TNF-α of monocytes and serum TNF-α of endotoxemia mice. CONCLUSIONS The present study dissects the peripheral mechanism for the antipyretic effect of BC used in the traditional way. Our findings indicate that BCE directly suppresses monocyte-produced TNF-α, thus decreasing circulating TNF-α, which may be responsible for its mild but confirmed antipyretic action.
Collapse
Affiliation(s)
- Yuan Kang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Ximeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Xinwei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhuangzhuang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Wenjing Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
8
|
Blomqvist A. Prostaglandin E 2 Production by Brain Endothelial Cells and the Generation of Fever. DNA Cell Biol 2023; 42:107-112. [PMID: 36720071 PMCID: PMC10024267 DOI: 10.1089/dna.2022.0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We recently demonstrated that prostaglandin production in brain endothelial cells is both necessary and sufficient for the generation of fever during systemic immune challenge. I here discuss this finding in light of the previous literature and point to some unresolved issues.
Collapse
Affiliation(s)
- Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Ohno M, Sagata M, Sekiya T, Nomura N, Shingai M, Endo M, Kimachi K, Suzuki S, Thanh Nguyen C, Nakayama M, Ishigaki H, Ogasawara K, Itoh Y, Kino Y, Kida H. Assessing the pyrogenicity of whole influenza virus particle vaccine in cynomolgus macaques. Vaccine 2023; 41:787-794. [PMID: 36526501 DOI: 10.1016/j.vaccine.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 10/31/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Among inactivated influenza vaccines, the whole virus particle vaccine (WPV) elicits superior priming responses to split virus vaccine (SV) in efficiently inducing humoral and cellular immunity. However, there is concern for undesired adverse events such as fever for WPV due to its potent immunogenicity. Therefore, this study investigated the febrile response induced by subcutaneous injection with quadrivalent inactivated influenza vaccines of good manufacturing grade for pharmaceutical or investigational products in cynomolgus macaques. Body temperature was increased by 1 °C-2 °C for 6-12 h after WPV administration at the first vaccination but not at the second shot, whereas SV did not affect body temperature at both points. Given the potent priming ability of WPV, WPV-induced fever may be attributed to immune responses that uniquely occur during priming. Since WPV-induced fever was blunted by pretreatment with indomethacin (a cyclooxygenase inhibitor), the febrile response by WPV is considered to depend on the increase in prostaglandins synthesized by cyclooxygenase. In addition, WPV, but not SV, induced the elevation of type I interferons and monocyte chemotactic protein 1 in the plasma; these factors may be responsible for pyrogenicity caused by WPV, as they can increase prostaglandins in the brain. Notably, sufficient antibody responses were acquired by half the amount of WPV without causing fever, suggesting that excessive immune responses to trigger the febrile response is not required for acquired immunity induction. Thus, we propose that WPV with a reduced antigen dose should be evaluated for potential clinical usage, especially in naïve populations.
Collapse
Affiliation(s)
- Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | | | - Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | | | | | - Saori Suzuki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Cong Thanh Nguyen
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Kazumasa Ogasawara
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan; Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | | | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Eskilsson A, Shionoya K, Blomqvist A. Prostaglandin production in brain endothelial cells during the initiation of fever. Commun Integr Biol 2023; 16:2166237. [PMID: 36644132 PMCID: PMC9839369 DOI: 10.1080/19420889.2023.2166237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The initiation of fever has been a matter of controversy. Based on observations of little or no induction of prostaglandin synthesizing enzymes in the brain during the first phase of fever it was suggested that fever is initiated by prostaglandin released into the circulation from cells in the liver and lungs. Here we show in the mouse that prostaglandin synthesis is rapidly induced in the brain after immune challenge. These data are consistent with our recent findings in functional experiments that prostaglandin production in brain endothelial cells is both necessary and sufficient for the generation of all phases of fever.
Collapse
Affiliation(s)
- Anna Eskilsson
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Kiseko Shionoya
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,CONTACT Anders Blomqvist Division of Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, SE-581 85Linköping, Sweden
| |
Collapse
|
11
|
Li X, Holtrop T, Jansen FAC, Olson B, Levasseur P, Zhu X, Poland M, Schalwijk W, Witkamp RF, Marks DL, van Norren K. Lipopolysaccharide-induced hypothalamic inflammation in cancer cachexia-anorexia is amplified by tumour-derived prostaglandin E2. J Cachexia Sarcopenia Muscle 2022; 13:3014-3027. [PMID: 36303458 PMCID: PMC9745464 DOI: 10.1002/jcsm.13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cachexia-anorexia syndrome is a complex metabolic condition characterized by skeletal muscle wasting, reduced food intake and prominent involvement of systemic and central inflammation. Here, the gut barrier function was investigated in pancreatic cancer-induced cachexia mouse models by relating intestinal permeability to the degree of cachexia. We further investigated the involvement of the gut-brain axis and the crosstalk between tumour, gut and hypothalamus in vitro. METHODS Two distinct mouse models of pancreatic cancer cachexia (KPC and 4662) were used. Intestinal inflammation and permeability were assessed through fluorescein isothiocyanate dextran (FITC-dextran) and lipopolysaccharide (LPS), and hypothalamic and systemic inflammation through mRNA expression and plasma cytokines, respectively. To simulate the tumour-gut-brain crosstalk, hypothalamic (HypoE-N46) cells were incubated with cachexia-inducing tumour secretomes and LPS. A synthetic mimic of C26 secretome was produced based on its secreted inflammatory mediators. Each component of the mimic was systematically omitted to narrow down the key mediator(s) with an amplifying inflammation. To substantiate its contribution, cyclooxygenase-2 (COX-2) inhibitor was used. RESULTS In vivo experiments showed FITC-dextran was enhanced in the KPC group (362.3 vs. sham 111.4 ng/mL, P < 0.001). LPS was increased to 140.9 ng/mL in the KPC group, compared with sham and 4662 groups (115.8 and 115.8 ng/mL, P < 0.05). Hypothalamic inflammatory gene expression of Ccl2 was up-regulated in the KPC group (6.3 vs. sham 1, P < 0.0001, 4662 1.3, P < 0.001), which significantly correlated with LPS concentration (r = 0.4948, P = 0.0226). These data suggest that intestinal permeability is positively related to the cachexic degree. Prostaglandin E2 (PGE2) was confirmed to be present in the plasma and PGE2 concentration (log10) in the KPC group was much higher than in 4662 group (1.85 and 0.56 ng/mL, P < 0.001), indicating a role for PGE2 in pancreatic cancer-induced cachexia. Parallel to in vivo findings, in vitro experiments revealed that the cachexia-inducing tumour secretomes (C26, LLC, KPC and 4662) amplified LPS-induced hypothalamic IL-6 secretion (419%, 321%, 294%, 160%). COX-2 inhibitor to the tumour cells reduced PGE2 content (from 105 to 102 pg/mL) in the secretomes and eliminated the amplified hypothalamic IL-6 production. Moreover, results could be reproduced by addition of PGE2 alone, indicating that the increased hypothalamic inflammation is directly related to the PGE2 from tumour. CONCLUSIONS PGE2 secreted by the tumour may play a role in amplifying the effects of bacteria-derived LPS on the inflammatory hypothalamic response. The cachexia-inducing potential of tumour mice models parallels the loss of intestinal barrier function. Tumour-derived PGE2 might play a key role in cancer-related cachexia-anorexia syndrome via tumour-gut-brain crosstalk.
Collapse
Affiliation(s)
- Xiaolin Li
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Tosca Holtrop
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.,Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Fleur A C Jansen
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Brennan Olson
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Pete Levasseur
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mieke Poland
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Winni Schalwijk
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Renger F Witkamp
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Klaske van Norren
- Nutritional Biology, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
12
|
Xiang Qin Kang Gan Granules Treated the Human Coronavirus 229E Induced Pneumonia with Damp-Heat Syndrome in Mice. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:7609550. [PMID: 36193093 PMCID: PMC9525736 DOI: 10.1155/2022/7609550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Coronavirus disease 2019 (COVID-19), which causes severe respiratory illness, was first reported in Wuhan, China. The etiology of the disease is a new novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was reported to share the same origin as SARS-CoV, causing severe public health events in 2002. Unlike the SARS-CoV, which was conquered in the early summer of 2003, this virus was still contagious widely and reached a pandemic level. It can still spread fast even if the season's temperature is raised. Here, we made a model of pneumonia of human coronavirus 229E (HCoV-229E) with damp-heat syndrome treated by Xiangqin Kanggan granules to find a new medicine for treating these kinds of infectious diseases coronaviruses induced.
Collapse
|
13
|
Reising JP, Phillips WS, Ramadan N, Herlenius E. Prostaglandin E2 Exerts Biphasic Dose Response on the PreBötzinger Complex Respiratory-Related Rhythm. Front Neural Circuits 2022; 16:826497. [PMID: 35669453 PMCID: PMC9163299 DOI: 10.3389/fncir.2022.826497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Inflammation in infants can cause respiratory dysfunction and is potentially life-threatening. Prostaglandin E2 (PGE2) is released during inflammatory events and perturbs breathing behavior in vivo. Here we study the effects of PGE2 on inspiratory motor rhythm generated by the preBötzinger complex (preBötC). We measured the concentration dependence of PGE2 (1 nM-1 μM) on inspiratory-related motor output in rhythmic medullary slice preparations. Low concentrations (1–10 nM) of PGE2 increased the duration of the inspiratory burst period, while higher concentrations (1 μM) decreased the burst period duration. Using specific pharmacology for prostanoid receptors (EP1-4R, FPR, and DP2R), we determined that coactivation of both EP2R and EP3R is necessary for PGE2 to modulate the inspiratory burst period. Additionally, biased activation of EP3 receptors lengthened the duration of the inspiratory burst period, while biased activation of EP2 receptors shortened the burst period. To help delineate which cell populations are affected by exposure to PGE2, we analyzed single-cell RNA-Seq data derived from preBötC cells. Transcripts encoding for EP2R (Ptger2) were differentially expressed in a cluster of excitatory neurons putatively located in the preBötC. A separate cluster of mixed inhibitory neurons differentially expressed EP3R (Ptger3). Our data provide evidence that EP2 and EP3 receptors increase the duration of the inspiratory burst period at 1–10 nM PGE2 and decrease the burst period duration at 1 μM. Further, the biphasic dose response likely results from differences in receptor binding affinity among prostanoid receptors.
Collapse
Affiliation(s)
- Jan Philipp Reising
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Wiktor S. Phillips
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Naify Ramadan
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Eric Herlenius,
| |
Collapse
|
14
|
The Potential Antipyretic Mechanism of Ellagic Acid with Brain Metabolomics Using Rats with Yeast-Induced Fever. Molecules 2022; 27:molecules27082465. [PMID: 35458665 PMCID: PMC9033033 DOI: 10.3390/molecules27082465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Fever is caused by an increase in the heat production process when the body is under the action of a heat source or the dysfunction of the temperature center. Ellagic acid (EA) is a polyphenol dilactone that has anti-inflammatory, anti-tumor, and antioxidant activities. Male Sprague-Dawley rats were injected yeast to reproduce an experimental fever model (150 ± 20 g), and the rectal temperature and its change values were subsequently taken 19 h later; the excessive production of interleukin-1β (IL-1β) and prostaglandin2 (PGE2) induced by yeast was regulated to normal by EA administration. Rat brain metabolomics investigation of pyrexia and the antipyretic anti-inflammatory effect of EA was performed using Ultra-High-Performance Liquid Chromatography–Mass spectrometry (UPLC-MS). Twenty-six metabolites, as potential biomarkers, significantly altered metabolites that were found in pyretic rats, and eleven metabolites, as biomarkers of the antipyretic mechanism of EA, were significantly adjusted by EA to help relieve pyrexia, which was involved in glycerophospholipid metabolism and sphingolipid metabolism, etc. In conclusion, potential metabolic biomarkers in the brain shed light on the mechanism of EA’s antipyretic effects, mainly involving metabolic pathways, which may contribute to a further understanding of the therapeutic mechanisms of fever and therapeutic mechanism of EA.
Collapse
|
15
|
Lau M, Sealy B, Combes V, Morsch M, Garcia-Bennett AE. Enhanced Antioxidant Effects of the Anti-Inflammatory Compound Probucol when Released from Mesoporous Silica Particles. Pharmaceutics 2022; 14:pharmaceutics14030502. [PMID: 35335878 PMCID: PMC8953917 DOI: 10.3390/pharmaceutics14030502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
Brain endothelial cells mediate the function and integrity of the blood brain barrier (BBB) by restricting its permeability and exposure to potential toxins. However, these cells are highly susceptible to cellular damage caused by oxidative stress and inflammation. Consequent disruption to the integrity of the BBB can lead to the pathogenesis of neurodegenerative diseases. Drug compounds with antioxidant and/or anti-inflammatory properties therefore have the potential to preserve the structure and function of the BBB. In this work, we demonstrate the enhanced antioxidative effects of the compound probucol when loaded within mesoporous silica particles (MSP) in vitro and in vivo zebrafish models. The dissolution kinetics were significantly enhanced when released from MSPs. An increased reduction in lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), cyclooxygenase (COX) enzyme activity and prostaglandin E2 production was measured in human brain endothelial cells treated with probucol-loaded MSPs. Furthermore, the LPS-induced permeability across an endothelial cell monolayer by paracellular and transcytotic mechanisms was also reduced at lower concentrations compared to the antioxidant ascorbic acid. Zebrafish pre-treated with probucol-loaded MSPs reduced hydrogen peroxide-induced ROS to control levels after 24-h incubation, at significantly lower concentrations than ascorbic acid. We provide compelling evidence that the encapsulation of antioxidant and anti-inflammatory compounds within MSPs can enhance their release, enhance their antioxidant effects properties, and open new avenues for the accelerated suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael Lau
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Benjamin Sealy
- Malaria and Microvesicles Research Group, School of Life Science, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia; (B.S.); (V.C.)
| | - Valery Combes
- Malaria and Microvesicles Research Group, School of Life Science, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia; (B.S.); (V.C.)
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Alfonso E. Garcia-Bennett
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia;
- Australian Research Council Industrial Transformation Training Centre for Facilitated Advancement of Australia’s Bioactives (FAAB), Macquarie University, Sydney, NSW 2109, Australia
- Correspondence:
| |
Collapse
|
16
|
Henrik SZŐKE, István BÓKKON, David M, Jan V, Ágnes K, Zoltán K, Ferenc F, Tibor K, László SL, Ádám D, Odilia M, Andrea K. The innate immune system and fever under redox control: A Narrative Review. Curr Med Chem 2022; 29:4324-4362. [DOI: 10.2174/0929867329666220203122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
ABSTRACT:
In living cells, redox potential is vitally important for normal physiological processes that are closely regulated by antioxidants, free amino acids and proteins that either have reactive oxygen and nitrogen species capture capability or can be compartmentalized. Although hundreds of experiments support the regulatory role of free radicals and their derivatives, several authors continue to claim that these perform only harmful and non-regulatory functions. In this paper we show that countless intracellular and extracellular signal pathways are directly or indirectly linked to regulated redox processes. We also briefly discuss how artificial oxidative stress can have important therapeutic potential and the possible negative effects of popular antioxidant supplements.
Next, we present the argument supported by a large number of studies that several major components of innate immunity, as well as fever, is also essentially associated with regulated redox processes. Our goal is to point out that the production of excess or unregulated free radicals and reactive species can be secondary processes due to the perturbed cellular signal pathways. However, researchers on pharmacology should consider the important role of redox mechanisms in the innate immune system and fever.
Collapse
Affiliation(s)
- SZŐKE Henrik
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - BÓKKON István
- Neuroscience and Consciousness Research Department, Vision Research Institute,
Lowell, MA, USA
| | - martin David
- Department of Human Medicine, University Witten/Herdecke, Witten, Germany
| | - Vagedes Jan
- University Children’s Hospital, Tuebingen University, Tuebingen, Germany
| | - kiss Ágnes
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - kovács Zoltán
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - fekete Ferenc
- Department of Nyerges Gábor Pediatric Infectology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - kocsis Tibor
- Department of Clinical Governance, Hungarian National Ambulance Service, Budapest, Hungary
| | | | | | | | - kisbenedek Andrea
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
17
|
McAllen RM, McKinley MJ, Martelli D. Reflex regulation of systemic inflammation by the autonomic nervous system. Auton Neurosci 2021; 237:102926. [PMID: 34906897 DOI: 10.1016/j.autneu.2021.102926] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
This short review focusses on the inflammatory reflex, which acts in negative feedback manner to moderate the inflammatory consequences of systemic microbial challenge. The historical development of the inflammatory reflex concept is reviewed, along with evidence that the endogenous reflex response to systemic inflammation is mediated by the splanchnic sympathetic nerves rather than by the vagi. We describe the coordinated nature of this reflex anti-inflammatory action: suppression of pro-inflammatory cytokines coupled with enhanced levels of the anti-inflammatory cytokine, interleukin 10. The limited information on the afferent and central pathways of the reflex is noted. We describe that the efferent anti-inflammatory action of the reflex is distributed among the abdominal viscera: several organs, including the spleen, can be removed without disabling the reflex. Understanding of the effector mechanism is incomplete, but it probably involves a very local action of neurally released noradrenaline on beta2 adrenoceptors on the surface of tissue resident macrophages and other innate immune cells. Finally we speculate on the biological and clinical significance of the reflex, citing evidence of its power to influence the resolution of experimental bacteraemia.
Collapse
Affiliation(s)
- Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| | - Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Davide Martelli
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Eskilsson A, Shionoya K, Engblom D, Blomqvist A. Fever During Localized Inflammation in Mice Is Elicited by a Humoral Pathway and Depends on Brain Endothelial Interleukin-1 and Interleukin-6 Signaling and Central EP 3 Receptors. J Neurosci 2021; 41:5206-5218. [PMID: 33941650 PMCID: PMC8211540 DOI: 10.1523/jneurosci.0313-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023] Open
Abstract
We examined the signaling route for fever during localized inflammation in male and female mice, elicited by casein injection into a preformed air pouch. The localized inflammation gave rise to high concentrations of prostaglandins of the E species (PGE2) and cytokines in the air pouch and elevated levels of these inflammatory mediators in plasma. There were also elevated levels of PGE2 in the cerebrospinal fluid, although there was little evidence for PGE2 synthesis in the brain. Global deletion of the PGE2 prostaglandin E receptor 3 (EP3) abolished the febrile response as did deletion of the EP3 receptor in neural cells, whereas its deletion on peripheral nerves had no effect, implying that PGE2 action on this receptor in the CNS elicited the fever. Global deletion of the interleukin-1 receptor type 1 (IL-1R1) also abolished the febrile response, whereas its deletion on neural cells or peripheral nerves had no effect. However, deletion of the IL-1R1 on brain endothelial cells, as well as deletion of the interleukin-6 receptor α on these cells, attenuated the febrile response. In contrast, deletion of the PGE2 synthesizing enzymes cyclooxygenase-2 and microsomal prostaglandin synthase-1 in brain endothelial cells, known to attenuate fever evoked by systemic inflammation, had no effect. We conclude that fever during localized inflammation is not mediated by neural signaling from the inflamed site, as previously suggested, but is dependent on humoral signaling that involves interleukin actions on brain endothelial cells, probably facilitating PGE2 entry into the brain from the circulation and hence representing a mechanism distinct from that at work during systemic inflammation.
Collapse
Affiliation(s)
- Anna Eskilsson
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - Kiseko Shionoya
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - David Engblom
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - Anders Blomqvist
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| |
Collapse
|
19
|
Dhondt L, Croubels S, Temmerman R, De Cock P, Meyer E, Van Den Broeck W, De Paepe P, Devreese M. The Development of a Juvenile Porcine Augmented Renal Clearance Model Through Continuous Infusion of Lipopolysaccharides: An Exploratory Study. Front Vet Sci 2021; 8:639771. [PMID: 33996970 PMCID: PMC8116505 DOI: 10.3389/fvets.2021.639771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
Augmented renal clearance (ARC) as observed in the critically ill (pediatric) population can have a major impact on the pharmacokinetics and posology of renally excreted drugs. Although sepsis has been described as a major trigger in the development of ARC in human critically ill patients, mechanistic insights on ARC are currently lacking. An appropriate ARC animal model could contribute to reveal these underlying mechanisms. In this exploratory study, a state of ARC was induced in 8-week-old piglets. Conscious piglets were continuously infused over 36 h with lipopolysaccharides (LPS) from Escherichia coli (O111:B4) to induce sepsis and subsequently trigger ARC. To study the dose-dependent effect of LPS on the renal function, three different doses (0.75, 2.0, 5.0 μg/kg/h) were administered (two ♂ piglets/dose, one sham piglet), in combination with fluid administration (0.9% NaCl) at 6 ml/kg/h. Single boluses of renal markers, i.e., creatinine [40 mg/kg body weight (BW)], iohexol (64.7 mg/kg BW), and para-aminohippuric acid (PAH, 10 mg/kg BW) were administered intravenously to evaluate the effect of LPS on the renal function. Clinical parameters were monitored periodically. Blood sampling was performed to determine the effect on hematology, neutrophil gelatinase-associated lipocalin, and prostaglandin E2 plasma levels. All piglets that were continuously infused with LPS displayed an elevated body temperature, heart rhythm, and respiratory rate ~1-3 h after start of the infusion. After infusion, considerably higher total body clearances of iohexol, creatinine, and PAH were observed, independent of the administration of LPS and/or its dose. Since also the sham piglet, receiving no LPS, demonstrated a comparable increase in renal function, the contribution of fluid administration to the development of ARC should be further evaluated.
Collapse
Affiliation(s)
- Laura Dhondt
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Ghent, Belgium
| | - Robin Temmerman
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Ghent, Belgium
| | - Pieter De Cock
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Paediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Ghent, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Peter De Paepe
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | - Mathias Devreese
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Du L, Wang H, Liu F, Wei Z, Weng C, Tang J, Feng WH. NSP2 Is Important for Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus to Trigger High Fever-Related COX-2-PGE2 Pathway in Pigs. Front Immunol 2021; 12:657071. [PMID: 33995374 PMCID: PMC8118602 DOI: 10.3389/fimmu.2021.657071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
In 2006, atypical porcine reproductive and respiratory syndrome (PRRS) caused by a highly pathogenic PRRSV (HP-PRRSV) strain broke out in China. Atypical PRRS is characterized by extremely high fever and high mortality in pigs of all ages. Prostaglandin E2 (PGE2) derived from arachidonic acid through the activation of the rate-limiting enzyme cyclooxygenase type 1/2 (COX-1/2) plays an important role in fever. Here, we showed that HP-PRRSV infection increased PGE2 production in microglia via COX-2 up-regulation depending on the activation of MEK1-ERK1/2-C/EBPβ signaling pathways. Then, we screened HP-PRRSV proteins and demonstrated that HP-PRRSV nonstructural protein 2 (NSP2) activated MEK1-ERK1/2-C/EBPβ signaling pathways by interacting with 14-3-3ζ to promote COX-2 expression, leading to PGE2 production. Furthermore, we identified that the amino acid residues 500-596 and 658-777 in HP-PRRSV NSP2 were essential to up-regulate COX-2 expression and PGE2 production. Finally, we made mutant HP-PRRS viruses with the deletion of residues 500-596 and/or 658-777, and found out that these viruses had impaired ability to up-regulate COX-2 and PGE2 production in vitro and in vivo. Importantly, pigs infected with the mutant viruses had relieved fever, clinical symptoms, and mortality. These data might help us understand the molecular mechanisms underlying the high fever and provide clues for the development of HP-PRRSV attenuated vaccines.
Collapse
Affiliation(s)
- Li Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Honglei Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zeyu Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.,Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Zhang B, Wang Y, Zhao Z, Han B, Yang J, Sun Y, Zhang B, Zang Y, Guan H. Temperature Plays an Essential Regulatory Role in the Tumor Immune Microenvironment. J Biomed Nanotechnol 2021; 17:169-195. [PMID: 33785090 DOI: 10.1166/jbn.2021.3030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, emerging immunotherapy has been included in various malignant tumor treatment standards. Temperature has been considered to affect different pathophysiological reactions such as inflammation and cancer for a long time. However, in tumor immunology research, temperature is still rarely considered a significant variable. In this review, we discuss the effects of room temperature, body temperature, and the local tumor temperature on the tumor immune microenvironment from multiple levels and perspectives, and we discuss changes in the body's local and whole-body temperature under tumor conditions. We analyze the current use of ablation treatment-the reason for the opposite immune effect. We should pay more attention to the therapeutic potential of temperature and create a better antitumor microenvironment that can be combined with immunotherapy.
Collapse
Affiliation(s)
- Bin Zhang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Youpeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Ziyin Zhao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Jinbo Yang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yang Sun
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Yunjin Zang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Huashi Guan
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
22
|
Protection Against Blood-Brain Barrier Permeability as a Possible Mechanism for Protective Effects of Thymoquinone Against Sickness Behaviors Induced by Lipopolysaccharide in Rats. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.67765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Blood-brain barrier (BBB), as well-known protection for the brain, plays an active role in normal homeostasis. It might be changed by a range of inflammatory mediators to have a role in sickness behaviors. Objectives: Regarding the anti-inflammatory effects of thymoquinone (TQ), its protection against BBB permeability, as a possible mechanism for protective effects against sickness behaviors elicited by lipopolysaccharide (LPS), was evaluated in rats. Methods: The animals were grouped as follows and treated (n = 10 in each): (1) control (saline); (2) LPS 1 mg/kg, was injected two hours before behavioral tests for two weeks; (3-5) 2, 5, and 10 mg/kg TQ, respectively was injected 30 min before LPS injection. Open-field (OF), elevated plus-maze (EPM) and Forced Swimming test (FST) were done. Finally, the animals were anesthetized to evaluate for BBB permeability using Evans blue (EB) dye method. Results: Compared with control, LPS decreased the peripheral distance and crossing and also total crossing and distance in OF, (P < 0.01 - P < 0.001). The central crossing and distance and central time in all three treatment groups were more than LPS (P < 0.05 - P < 0.001). LPS also reduced the entries and the time spent in the open arm while increased the time spent in the closed arm in EPM (P < 0.05 - P < 0.001). The effects of LPS were reversed by TQ (P < 0.05 - P < 0.001). In FST, the immobility time and active time were increased and decreased by LPS compared with control (P < 0.001), respectively. In all three TQ-treated groups, the active and climbing times were more while the immobility time was fewer than the LPS (P < 0.05 - P < 0.001). The animals of the LPS group showed more EB dye content in their brain tissue than the control group (P < 0.05 - P < 0.001). TQ significantly reduced EB dye content of the brain tissues (P < 0.05 - P < 0.001). Conclusions: According to this study, protection against BBB permeability as a possible mechanism for the protective effects of TQ against sickness behaviors induced by LPS might be suggested.
Collapse
|
23
|
Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci 2021; 22:2681. [PMID: 33800954 PMCID: PMC7961671 DOI: 10.3390/ijms22052681] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Emerging data indicate that neurological complications occur as a consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The blood-brain barrier (BBB) is a critical interface that regulates entry of circulating molecules into the CNS, and is regulated by signals that arise from the brain and blood compartments. In this review, we discuss mechanisms by which SARS-CoV-2 interactions with the BBB may contribute to neurological dysfunction associated with coronavirus disease of 2019 (COVID-19), which is caused by SARS-CoV-2. We consider aspects of peripheral disease, such as hypoxia and systemic inflammatory response syndrome/cytokine storm, as well as CNS infection and mechanisms of viral entry into the brain. We also discuss the contribution of risk factors for developing severe COVID-19 to BBB dysfunction that could increase viral entry or otherwise damage the brain.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Elizabeth M. Rhea
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Rachel C. Knopp
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A. Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA; (E.M.R.); (R.C.K.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
24
|
Öztürk K, Coşkuner T, Baglan E, Sönmez HE, Yener GO, Çakmak F, Demirkan FG, Tanatar A, Karadag SG, Ozdel S, Demir F, Çakan M, Aktay Ayaz N, Sözeri B. Real-Life Data From the Largest Pediatric Familial Mediterranean Fever Cohort. Front Pediatr 2021; 9:805919. [PMID: 35127599 PMCID: PMC8812847 DOI: 10.3389/fped.2021.805919] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 11/29/2022] Open
Abstract
Familial Mediterranean fever (FMF) is the most common monogenic autoinflammatory disease manifesting phenotypic heterogeneity. It is a clinically diagnosed disease supported by MEditerranean FeVer (MEFV) gene mutation analysis. However, the phenotype-genotype correlation is not yet established clearly. We aimed to determine the clinical findings, phenotype-genotype correlation, and treatment outcomes within a large pediatric FMF cohort. The medical charts of children with FMF who were diagnosed and followed up at the eight pediatric rheumatology units were reviewed retrospectively. All patients in the cohort were analyzed for sequence variants in exon 2,3,5 and 10 of the MEFV gene. Patients without any mutations or with polymorphisms including R202Q were excluded. A total of 3,454 children were involved in the study. The mean ± standard deviation of current age, age at symptom onset, and age at diagnosis were 12.1 ± 5.2, 5.1 ± 3.8, and 7.3 ± 4.0 years, respectively. Of 3,454 patients, 88.2% had abdominal pain, 86.7% had fever, 27.7% had arthritis, 20.2% had chest pain, 23% had myalgia, and 13.1% had erysipelas-like erythema. The most common MEFV mutation patterns were homozygous (32.5%) and heterozygous (29.9%) mutations of exon 10. Homozygous M694V was present in 969 patients (28.1%). Allele frequencies of common mutations were M694V (55.3%), M680I (11.3%), V726A (7.6%), and E148Q (7.2%). Children carrying homozygous or compound heterozygous exon 10 mutations had an earlier age of disease onset (4.6 vs. 5.6 years, p = 0.000) and a higher number of attacks per year (11.1 vs. 9.6, p = 0.001). Although 8% of the patients had a family history of amyloidosis, 0.3% (n = 11) had the presence of amyloidosis. M694V homozygosity was detected in nine patients who developed amyloidosis. Colchicine resistance was present in 4.2% of our patients. In this largest pediatric cohort reviewed and presented to date, patients with exon 10 mutations, particularly the M694V homozygous mutation, have been demonstrated earlier disease onset, annual attack count, and more frequent colchicine-resistant cases. Although E148Q is considered as a polymorphism in some populations, it was identified as a disease-causing mutation in our cohort. Secondary amyloidosis is still happening in adults however, it is extremely rare among children, presumably due to increased awareness, tight control, and the availability of anti-IL1 agents in colchicine-resistant cases.
Collapse
Affiliation(s)
- Kübra Öztürk
- Istanbul Medeniyet University, Göztepe Prof. Dr. Süleyman Yalçın City Hospital, Istanbul, Turkey
| | - Taner Coşkuner
- Department of Rheumatology, Umraniye Research and Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Esra Baglan
- Dr. Sami Ulus Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | | | | | - Figen Çakmak
- Pediatric Rheumatology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatma Gül Demirkan
- Pediatric Rheumatology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayşe Tanatar
- Pediatric Rheumatology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Semanur Ozdel
- Dr. Sami Ulus Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ferhat Demir
- Department of Rheumatology, Umraniye Research and Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Çakan
- Zeynep Kamil Maternity and Childrens Hospital, Istanbul, Turkey
| | - Nuray Aktay Ayaz
- Pediatric Rheumatology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Betül Sözeri
- Department of Rheumatology, Umraniye Research and Training Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
25
|
Böttcher M, Müller-Fielitz H, Sundaram SM, Gallet S, Neve V, Shionoya K, Zager A, Quan N, Liu X, Schmidt-Ullrich R, Haenold R, Wenzel J, Blomqvist A, Engblom D, Prevot V, Schwaninger M. NF-κB signaling in tanycytes mediates inflammation-induced anorexia. Mol Metab 2020; 39:101022. [PMID: 32446877 PMCID: PMC7292913 DOI: 10.1016/j.molmet.2020.101022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Infections, cancer, and systemic inflammation elicit anorexia. Despite the medical significance of this phenomenon, the question of how peripheral inflammatory mediators affect the central regulation of food intake is incompletely understood. Therefore, we have investigated the sickness behavior induced by the prototypical inflammatory mediator IL-1β. METHODS IL-1β was injected intravenously. To interfere with IL-1β signaling, we deleted the essential modulator of NF-κB signaling (Nemo) in astrocytes and tanycytes. RESULTS Systemic IL-1β increased the activity of the transcription factor NF-κB in tanycytes of the mediobasal hypothalamus (MBH). By activating NF-κB signaling, IL-1β induced the expression of cyclooxygenase-2 (Cox-2) and stimulated the release of the anorexigenic prostaglandin E2 (PGE2) from tanycytes. When we deleted Nemo in astrocytes and tanycytes, the IL-1β-induced anorexia was alleviated whereas the fever response and lethargy response were unchanged. Similar results were obtained after the selective deletion of Nemo exclusively in tanycytes. CONCLUSIONS Tanycytes form the brain barrier that mediates the anorexic effect of systemic inflammation in the hypothalamus.
Collapse
Affiliation(s)
- Mareike Böttcher
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Sivaraj M Sundaram
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany
| | - Sarah Gallet
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Lille, France; University of Lille, FHU 1000 days for Health, School of Medicine, U1172, Lille, France
| | - Vanessa Neve
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany
| | - Kiseko Shionoya
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - Adriano Zager
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - Ning Quan
- Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Xiaoyu Liu
- Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center (MDC) for Molecular Medicine, 13125, Berlin, Germany
| | - Ronny Haenold
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745, Jena, Germany; Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Anders Blomqvist
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Linköping University, S-581 85, Linköping, Sweden
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Lille, France; University of Lille, FHU 1000 days for Health, School of Medicine, U1172, Lille, France
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23562, Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
26
|
Litvin DG, Denstaedt SJ, Borkowski LF, Nichols NL, Dick TE, Smith CB, Jacono FJ. Peripheral-to-central immune communication at the area postrema glial-barrier following bleomycin-induced sterile lung injury in adult rats. Brain Behav Immun 2020; 87:610-633. [PMID: 32097765 PMCID: PMC8895345 DOI: 10.1016/j.bbi.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/02/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The pathways for peripheral-to-central immune communication (P → C I-comm) following sterile lung injury (SLI) are unknown. SLI evokes systemic and central inflammation, which alters central respiratory control and viscerosensory transmission in the nucleus tractus solitarii (nTS). These functional changes coincide with increased interleukin-1 beta (IL-1β) in the area postrema, a sensory circumventricular organ that connects P → C I-comm to brainstem circuits that control homeostasis. We hypothesize that IL-1β and its downstream transcriptional target, cyclooxygenase-2 (COX-2), mediate P → C I-comm in the nTS. In a rodent model of SLI induced by intratracheal bleomycin (Bleo), the sigh frequency and duration of post-sigh apnea increased in Bleo- compared to saline- treated rats one week after injury. This SLI-dependent change in respiratory control occurred concurrently with augmented IL-1β and COX-2 immunoreactivity (IR) in the funiculus separans (FS), a barrier between the AP and the brainstem. At this barrier, increases in IL-1β and COX-2 IR were confined to processes that stained for glial fibrillary acidic protein (GFAP) and that projected basolaterally to the nTS. Further, FS radial-glia did not express TNF-α or IL-6 following SLI. To test our hypothesis, we blocked central COX-1/2 activity by intracerebroventricular (ICV) infusion of Indomethacin (Ind). Continuous ICV Ind treatment prevented Bleo-dependent increases in GFAP + and IL-1β + IR, and restored characteristics of sighs that reset the rhythm. These data indicate that changes in sighs following SLI depend partially on activation of a central COX-dependent P → C I-comm via radial-glia of the FS.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Scott J Denstaedt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Lauren F Borkowski
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Nicole L Nichols
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, MO 65212, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
27
|
Hotta Y, Kawasaki T, Kotani T, Okada H, Ikeda K, Yamane S, Yamada N, Sekoguchi S, Isozaki Y, Nagao Y, Murotani M, Oyamada H. Familial Mediterranean Fever without Fever. Intern Med 2020; 59:1267-1270. [PMID: 32051376 PMCID: PMC7303446 DOI: 10.2169/internalmedicine.3175-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial Mediterranean fever (FMF) is an autosomal recessive hereditary disease commonly observed around the Mediterranean basin presenting as recurrent febrile episodes. We herein describe a Japanese case of genetically-confirmed FMF, in which fever was lacking during attacks. An otherwise healthy 34-year-old man presented with frequent episodes of abdominal pain, which resolved spontaneously. During the attacks, the patient was afebrile, but the inflammatory marker levels in his blood were increased. Abdominal CT demonstrated enhancement of the jejunal membrane. After the initiation of colchicine therapy, the patient experienced no attacks for more than one year. The diagnosis of FMF was confirmed by a genetic analysis.
Collapse
Affiliation(s)
- Yuma Hotta
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | - Tatsuya Kawasaki
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | - Tomoya Kotani
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | - Hiroshi Okada
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | - Kanami Ikeda
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | - Satoki Yamane
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | - Nobuhisa Yamada
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | - Satoru Sekoguchi
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | - Yutaka Isozaki
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | - Yasuyuki Nagao
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| | | | - Hirokazu Oyamada
- Department of General Internal Medicine, Matsushita Memorial Hospital, Japan
| |
Collapse
|
28
|
Banks WA. The Blood-Brain Barrier Interface in Diabetes Mellitus: Dysfunctions, Mechanisms and Approaches to Treatment. Curr Pharm Des 2020; 26:1438-1447. [DOI: 10.2174/1381612826666200325110014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) is one of the most common diseases in the world. Among its effects are an increase in the risk of cognitive impairment, including Alzheimer’s disease, and blood-brain barrier (BBB) dysfunction. DM is characterized by high blood glucose levels that are caused by either lack of insulin (Type I) or resistance to the actions of insulin (Type II). The phenotypes of these two types are dramatically different, with Type I animals being thin, with low levels of leptin as well as insulin, whereas Type II animals are often obese with high levels of both leptin and insulin. The best characterized change in BBB dysfunction is that of disruption. The brain regions that are disrupted, however, vary between Type I vs Type II DM, suggesting that factors other than hyperglycemia, perhaps hormonal factors such as leptin and insulin, play a regionally diverse role in BBB vulnerability or protection. Some BBB transporters are also altered in DM, including P-glycoprotein, lowdensity lipoprotein receptor-related protein 1, and the insulin transporter as other functions of the BBB, such as brain endothelial cell (BEC) expression of matrix metalloproteinases (MMPs) and immune cell trafficking. Pericyte loss secondary to the increased oxidative stress of processing excess glucose through the Krebs cycle is one mechanism that has shown to result in BBB disruption. Vascular endothelial growth factor (VEGF) induced by advanced glycation endproducts can increase the production of matrix metalloproteinases, which in turn affects tight junction proteins, providing another mechanism for BBB disruption as well as effects on P-glycoprotein. Through the enhanced expression of the redox-related mitochondrial transporter ABCB10, redox-sensitive transcription factor NF-E2 related factor-2 (Nrf2) inhibits BEC-monocyte adhesion. Several potential therapies, in addition to those of restoring euglycemia, can prevent some aspects of BBB dysfunction. Carbonic anhydrase inhibition decreases glucose metabolism and so reduces oxidative stress, preserving pericytes and blocking or reversing BBB disruption. Statins or N-acetylcysteine can reverse the BBB opening in some models of DM, fibroblast growth factor-21 improves BBB permeability through an Nrf2-dependent pathway, and nifedipine or VEGF improves memory in DM models. In summary, DM alters various aspects of BBB function through a number of mechanisms. A variety of treatments based on those mechanisms, as well as restoration of euglycemia, may be able to restore BBB functions., including reversal of BBB disruption.
Collapse
Affiliation(s)
- William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
| |
Collapse
|
29
|
Eskilsson A, Shionoya K, Enerbäck S, Engblom D, Blomqvist A. The generation of immune-induced fever and emotional stress-induced hyperthermia in mice does not involve brown adipose tissue thermogenesis. FASEB J 2020; 34:5863-5876. [PMID: 32144818 DOI: 10.1096/fj.201902945r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 11/11/2022]
Abstract
We examined the role of brown adipose tissue (BAT) for fever and emotional stress-induced hyperthermia. Wild-type and uncoupling protein-1 (UCP-1) knockout mice were injected with lipopolysaccharide intraperitoneally or intravenously, or subjected to cage exchange, and body temperature monitored by telemetry. Both genotypes showed similar febrile responses to immune challenge and both displayed hyperthermia to emotional stress. Neither procedure resulted in the activation of BAT, such as the induction of UCP-1 or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA, or reduced BAT weight and triglyceride content. In contrast, in mice injected with a β3 agonist, UCP-1 and PGC-1α were strongly induced, and BAT weight and triglyceride content reduced. Both lipopolysaccharide and the β3 agonist, and emotional stress, induced UCP-3 mRNA in skeletal muscle. A β3 antagonist did not attenuate lipopolysaccharide-induced fever, but augmented body temperature decrease and inhibited BAT activation when mice were exposed to cold. An α1 /α2b antagonist or a 5HT1A agonist, which inhibit vasoconstriction, abolished lipopolysaccharide-induced fever, but had no effect on emotional stress-induced hyperthermia. These findings demonstrate that in mice, UCP-1-mediated BAT thermogenesis does not take part in inflammation-induced fever, which is dependent on peripheral vasoconstriction, nor in stress-induced hyperthermia. However, both phenomena may involve UCP-3-mediated muscle thermogenesis.
Collapse
Affiliation(s)
- Anna Eskilsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kiseko Shionoya
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sven Enerbäck
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - David Engblom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Blomqvist
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
30
|
EP3R-Expressing Glutamatergic Preoptic Neurons Mediate Inflammatory Fever. J Neurosci 2020; 40:2573-2588. [PMID: 32079648 DOI: 10.1523/jneurosci.2887-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022] Open
Abstract
Fever is a common phenomenon during infection or inflammatory conditions. This stereotypic rise in body temperature (Tb) in response to inflammatory stimuli is a result of autonomic responses triggered by prostaglandin E2 action on EP3 receptors expressed by neurons in the median preoptic nucleus (MnPOEP3R neurons). To investigate the identity of MnPOEP3R neurons, we first used in situ hybridization to show coexpression of EP3R and the VGluT2 transporter in MnPO neurons. Retrograde tracing showed extensive direct projections from MnPOVGluT2 but few from MnPOVgat neurons to a key site for fever production, the raphe pallidus. Ablation of MnPOVGluT2 but not MnPOVgat neurons abolished fever responses but not changes in Tb induced by behavioral stress or thermal challenges. Finally, we crossed EP3R conditional knock-out mice with either VGluT2-IRES-cre or Vgat-IRES-cre mice and used both male and female mice to confirm that the neurons that express EP3R and mediate fever are glutamatergic, not GABAergic. This finding will require rethinking current concepts concerning the central thermoregulatory pathways based on the MnPOEP3R neurons being GABAergic.SIGNIFICANCE STATEMENT Body temperature is regulated by the CNS. The rise of the body temperature, or fever, is an important brain-orchestrated mechanism for fighting against infectious or inflammatory disease, and is tightly regulated by the neurons located in the median preoptic nucleus (MnPO). Here we demonstrate that excitatory MnPO neurons mediate fever and examine a potential central circuit underlying the development of fever responses.
Collapse
|
31
|
Joffre C, Rey C, Layé S. N-3 Polyunsaturated Fatty Acids and the Resolution of Neuroinflammation. Front Pharmacol 2019; 10:1022. [PMID: 31607902 PMCID: PMC6755339 DOI: 10.3389/fphar.2019.01022] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
In the past few decades, as a result of their anti-inflammatory properties, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), have gained greater importance in the regulation of inflammation, especially in the central nervous system (in this case known as neuroinflammation). If sustained, neuroinflammation is a common denominator of neurological disorders, including Alzheimer’s disease and major depression, and of aging. Hence, limiting neuroinflammation is a real strategy for neuroinflammatory disease therapy and treatment. Recent data show that n-3 LC-PUFAs exert anti-inflammatory properties in part through the synthesis of specialized pro-resolving mediators (SPMs) such as resolvins, maresins and protectins. These SPMs are crucially involved in the resolution of inflammation. They could be good candidates to resolve brain inflammation and to contribute to neuroprotective functions and could lead to novel therapeutics for brain inflammatory diseases. This review presents an overview 1) of brain n-3 LC-PUFAs as precursors of SPMs with an emphasis on the effect of n-3 PUFAs on neuroinflammation, 2) of the formation and action of SPMs in the brain and their biological roles, and the possible regulation of their synthesis by environmental factors such as inflammation and nutrition and, in particular, PUFA consumption.
Collapse
Affiliation(s)
- Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| | - Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France.,ITERG, Nutrition Health and Lipid Biochemistry Department, Canéjan, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| |
Collapse
|
32
|
Abstract
The blood-brain barrier (BBB) was first noted for its ability to prevent the unregulated exchange of substances between the blood and the central nervous system (CNS). Over time, its characterization as an interface that enables regulated exchanges between the CNS and substances that are carried in the blood in a hormone-like fashion have emerged. Therefore, communication between the CNS, BBB and peripheral tissues has many endocrine-like properties. In this Review, I examine the various ways in which the BBB exhibits endocrine-related properties. The BBB is a target for hormones, such as leptin and insulin, that affect many of its functions. The BBB is also a secretory body, releasing substances either into the blood or the interstitial fluid of the brain. The BBB selectively allows classical and non-classical hormones entry to and exit from the CNS, thus allowing the CNS to be both an endocrine target and a secretory tissue. The BBB is affected by endocrine diseases such as diabetes mellitus and can cause or participate in endocrine diseases, including those related to thyroid hormones and obesity. The endocrine-like mechanisms of the BBB can extend the definition of endocrine disease to include neurodegenerative conditions, including Alzheimer disease, and of hormones to include cytokines, triglycerides and fatty acids.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
33
|
Kong HK, Gan CF, Xiong M, Kwok KWH, Lui GCS, Li P, Chan HM, Lo SCL. Chronic Methylmercury Exposure Induces Production of Prostaglandins: Evidence From A Population Study and A Rat Dosing Experiment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7782-7791. [PMID: 31244059 DOI: 10.1021/acs.est.9b00660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Methylmercury (MeHg) is a well-known environmental neurotoxicant affecting millions worldwide who consume contaminated fishes and other food commodities. Exposure to MeHg has been shown to associate positively with some chronic diseases including cardiovascular diseases, but the mechanism is poorly characterized. MeHg had been shown to affect prostaglandin (PG) regulations in in vitro studies, but neither in vivo nor human studies investigating the effects of MeHg on PG regulations has been reported. Thus, the current study aimed to investigate the association between MeHg exposure and serum PG concentrations in a cross-sectional study among human adults followed by a validation investigation on the cause-effect relationship using a rat model. First, a total of 121 women were recruited from two cities: Wanshan and Leishan in Guizhou, China. Statistical analysis of the human data showed a positive association between blood total mercury (THg) levels and serum concentrations of PGF2α, 15-deoxy-PGJ2, and PGE2 after adjusting for site effects. In the animal study, adult female Sprague-Dawley rats were dosed with 40 μg MeHg/kg body weight/day for 12 weeks. Serum 15-deoxy-PGJ2 and 2,3 d-6-keto-PGF1α concentrations were found to increase significantly after 6 and 10 weeks of MeHg dosing, respectively, while serum PGF2α concentration increased significantly after 12 weeks of MeHg dosing. Combined results of our human and rat studies have shown that chronic MeHg exposure induced dysregulation of PG metabolism. As PGs are a set of mediators with very diverse functions, its abnormal production may serve as the missing mechanistic link between chronic MeHg exposure and various kinds of associated clinical conditions including neurodegeneration and cardiovascular diseases.
Collapse
Affiliation(s)
- Hang-Kin Kong
- Food Safety and Technology Research Center, Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Chun-Fang Gan
- School of Public Health & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education , Guizhou Medical University , Guiyang 550025 , China
| | - Min Xiong
- School of Public Health & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education , Guizhou Medical University , Guiyang 550025 , China
| | - Kevin Wing-Hin Kwok
- Food Safety and Technology Research Center, Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Gilbert Chiu-Sing Lui
- Department of Statistics and Actuarial Science , The University of Hong Kong , Pokfulam , Hong Kong
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an , 710061 , China
| | - Hing Man Chan
- Food Safety and Technology Research Center, Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Hong Kong
- Department of Biology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Samuel Chun-Lap Lo
- Food Safety and Technology Research Center, Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Hong Kong
| |
Collapse
|
34
|
Ruud J, Alber J, Tokarska A, Engström Ruud L, Nolte H, Biglari N, Lippert R, Lautenschlager Ä, Cieślak PE, Szumiec Ł, Hess ME, Brönneke HS, Krüger M, Nissbrandt H, Korotkova T, Silberberg G, Rodriguez Parkitna J, Brüning JC. The Fat Mass and Obesity-Associated Protein (FTO) Regulates Locomotor Responses to Novelty via D2R Medium Spiny Neurons. Cell Rep 2019; 27:3182-3198.e9. [DOI: 10.1016/j.celrep.2019.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/14/2018] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
|
35
|
Erickson MA, Banks WA. Age-Associated Changes in the Immune System and Blood⁻Brain Barrier Functions. Int J Mol Sci 2019; 20:ijms20071632. [PMID: 30986918 PMCID: PMC6479894 DOI: 10.3390/ijms20071632] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Age is associated with altered immune functions that may affect the brain. Brain barriers, including the blood-brain barrier (BBB) and blood-CSF barrier (BCSFB), are important interfaces for neuroimmune communication, and are affected by aging. In this review, we explore novel mechanisms by which the aging immune system alters central nervous system functions and neuroimmune responses, with a focus on brain barriers. Specific emphasis will be on recent works that have identified novel mechanisms by which BBB/BCSFB functions change with age, interactions of the BBB with age-associated immune factors, and contributions of the BBB to age-associated neurological disorders. Understanding how age alters BBB functions and responses to pathological insults could provide important insight on the role of the BBB in the progression of cognitive decline and neurodegenerative disease.
Collapse
Affiliation(s)
- Michelle A Erickson
- VA Puget Sound Healthcare System, Geriatric Research Education and Clinical Center, Seattle, WA 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| | - William A Banks
- VA Puget Sound Healthcare System, Geriatric Research Education and Clinical Center, Seattle, WA 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| |
Collapse
|
36
|
Sekiya T, Mifsud EJ, Ohno M, Nomura N, Sasada M, Fujikura D, Daito T, Shingai M, Ohara Y, Nishimura T, Endo M, Mitsumata R, Ikeda T, Hatanaka H, Kitayama H, Motokawa K, Sobue T, Suzuki S, Itoh Y, Brown LE, Ogasawara K, Kino Y, Kida H. Inactivated whole virus particle vaccine with potent immunogenicity and limited IL-6 induction is ideal for influenza. Vaccine 2019; 37:2158-2166. [PMID: 30857932 DOI: 10.1016/j.vaccine.2019.02.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 02/01/2023]
Abstract
In contrast to current ether- or detergent-disrupted "split" vaccines (SVs) for influenza, inactivated whole influenza virus particle vaccines (WPVs) retain the original virus structure and components and as such may confer similar immunity to natural infection. In a collaboration between academia and industry, the potential of WPV as a new seasonal influenza vaccine was investigated. Each of the four seasonal influenza vaccine manufacturers in Japan prepared WPVs and SVs from the same batches of purified influenza virus. Both mice and monkeys vaccinated with the WPVs exhibited superior immune responses to those vaccinated with the corresponding SVs. Vaccination with A/California/07/2009 (H1N1) WPV enabled mice to survive a lethal challenge dose of homologous virus whereas those vaccinated with SV succumbed to infection within 6 days. Furthermore, mice vaccinated with WPV induced substantial numbers of multifunctional CD8+ T cells, important for control of antigenically drifted influenza virus strains. In addition, cytokines and chemokines were detected at early time points in the sera of mice vaccinated with WPV but not in those animals vaccinated with SV. These results indicate that WPVs induce enhanced innate and adaptive immune responses compared to equivalent doses of SVs. Notably, WPV at one fifth of the dose of SV was able to induce potent immunity with limited production of IL-6, one of the pyrogenic cytokines. We thus propose that WPVs with balanced immunogenicity and safety may set a new global standard for seasonal influenza vaccines.
Collapse
Affiliation(s)
- Toshiki Sekiya
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Edin J Mifsud
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marumi Ohno
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoki Nomura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Mayumi Sasada
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Daisuke Fujikura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuji Daito
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | | | | | | | | | - Tomio Ikeda
- R&D Center, Denka Seiken Co., Ltd., Niigata, Japan
| | - Hironori Hatanaka
- The Research Foundation for Microbial Diseases of Osaka University, Kannonji, Kagawa, Japan
| | - Hiroki Kitayama
- The Research Foundation for Microbial Diseases of Osaka University, Kannonji, Kagawa, Japan
| | - Kenji Motokawa
- Manufacturing Department III, Kitasato Daiichi Sankyo Vaccine Co. Ltd., Saitama, Japan
| | - Tomoyoshi Sobue
- CMC Research Laboratories, Kitasato Daiichi Sankyo Vaccine Co. Ltd., Saitama, Japan
| | - Saori Suzuki
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yasushi Itoh
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Lorena E Brown
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kazumasa Ogasawara
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan; Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | | | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
37
|
Lee S, Son B, Park G, Kim H, Kang H, Jeon J, Youn H, Youn B. Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy. Int J Mol Sci 2018; 19:E2795. [PMID: 30227629 PMCID: PMC6164993 DOI: 10.3390/ijms19092795] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Hyperthermia is a cancer treatment where tumor tissue is heated to around 40 °C. Hyperthermia shows both cancer cell cytotoxicity and immune response stimulation via immune cell activation. Immunogenic responses encompass the innate and adaptive immune systems, involving the activation of macrophages, natural killer cells, dendritic cells, and T cells. Moreover, hyperthermia is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In this review, we will focus on hyperthermia-induced immunogenic effects and molecular events to improve radiotherapy efficacy. The beneficial potential of integrating radiotherapy with hyperthermia is also discussed.
Collapse
Affiliation(s)
- Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Gaeul Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Jaewan Jeon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea.
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
38
|
Wong CT, Bestard-Lorigados I, Crawford DA. Autism-related behaviors in the cyclooxygenase-2-deficient mouse model. GENES BRAIN AND BEHAVIOR 2018; 18:e12506. [PMID: 30027581 DOI: 10.1111/gbb.12506] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022]
Abstract
Prostaglandin E2 (PGE2) is an endogenous lipid molecule involved in normal brain development. Cyclooxygenase-2 (COX2) is the main regulator of PGE2 synthesis. Emerging clinical and molecular research provides compelling evidence that abnormal COX2/PGE2 signaling is associated with autism spectrum disorder (ASD). We previously found that COX2 knockout mice had dysregulated expression of many ASD genes belonging to important biological pathways for neurodevelopment. The present study is the first to show the connection between irregular COX2/PGE2 signaling and autism-related behaviors in male and female COX2-deficient knockin, (COX)-2- , mice at young (4-6 weeks) or adult (8-11 weeks) ages. Autism-related behaviors were prominent in male (COX)-2- mice for most behavioral tests. In the open field test, (COX)-2- mice traveled more than controls and adult male (COX)-2- mice spent less time in the center indicating elevated hyperactive and anxiety-linked behaviors. (COX)-2- mice also buried more marbles, with males burying more than females, suggesting increased anxiety and repetitive behaviors. Young male (COX)-2- mice fell more frequently in the inverted screen test revealing motor deficits. The three-chamber sociability test found that adult female (COX)-2- mice spent less time in the novel mouse chamber indicative of social abnormalities. In addition, male (COX)-2- mice showed altered expression of several autism-linked genes: Wnt2, Glo1, Grm5 and Mmp9. Overall, our findings offer new insight into the involvement of disrupted COX2/PGE2 signaling in ASD pathology with age-related differences and greater impact on males. We propose that (COX)-2- mice might serve as a novel model system to study specific types of autism.
Collapse
Affiliation(s)
- Christine T Wong
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
| | - Isabel Bestard-Lorigados
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
| | - Dorota A Crawford
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada.,Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada.,Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
39
|
Abstract
Fever is a common symptom of infectious and inflammatory disease. It is well-established that prostaglandin E2 is the final mediator of fever, which by binding to its EP3 receptor subtype in the preoptic hypothalamus initiates thermogenesis. Here, we review the different hypotheses on how the presence of peripherally released pyrogenic substances can be signaled to the brain to elicit fever. We conclude that there is unequivocal evidence for a humoral signaling pathway by which proinflammatory cytokines, through their binding to receptors on brain endothelial cells, evoke fever by eliciting prostaglandin E2 synthesis in these cells. The evidence for a role for other signaling routes for fever, such as signaling via circumventricular organs and peripheral nerves, as well as transfer into the brain of peripherally synthesized prostaglandin E2 are yet far from conclusive. We also review the efferent limb of the pyrogenic pathways. We conclude that it is well established that prostaglandin E2 binding in the preoptic hypothalamus produces fever by disinhibition of presympathetic neurons in the brain stem, but there is yet little understanding of the mechanisms by which factors such as nutritional status and ambient temperature shape the response to the peripheral immune challenge.
Collapse
Affiliation(s)
- Anders Blomqvist
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| |
Collapse
|
40
|
Boltana S, Sanhueza N, Donoso A, Aguilar A, Crespo D, Vergara D, Arriagada G, Morales-Lange B, Mercado L, Rey S, Tort L, Mackenzie S. The expression of TRPV channels, prostaglandin E2 and pro-inflammatory cytokines during behavioural fever in fish. Brain Behav Immun 2018; 71:169-181. [PMID: 29574261 DOI: 10.1016/j.bbi.2018.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/07/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023] Open
Abstract
A fever, or increased body temperature, is a symptom of inflammation, which is a complex defence reaction of the organism to pathogenic infections. After pathogens enter the body, immune cells secrete a number of agents, the functions of which stimulate the body to develop a functional immune and fever response. In mammals it is known that PGE2 is the principal mediator of fever. The extent to which PGE2 and other pro-inflammatory cytokines such as TNF-α, IL-6, or IL-1β could be involved in the induction of behavioural fever in fish remains to be clarified. Several members of the transient receptor potential (TRP) family of ion channels have been implicated as transducers of thermal stimuli, including TRPV1 and TRPV2, which are activated by heat. Here we show that members of the TRP family, TRPV1 and TRPV4, may participate in the coordination of temperature sensing during the behavioural fever. To examine the behavioral fever mechanism in Salmo salar an infection with IPNV, infectious pancreatic necrosis virus, was carried out by an immersion challenge with 10 × 105 PFU/mL-1 of IPNV. Behavioural fever impacted upon the expression levels of both TRPV1 and TRPV4 mRNAs after the viral challenge and revealed a juxtaposed regulation of TRPV channels. Our results suggest that an increase in the mRNA abundance of TRPV1 is tightly correlated with a significant elevation in the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and PGE2) in the Pre-Optic Area (POA) and cytokine release in plasma. Together, these data indicate that the reduction of TRPV4 expression during behavioural fever may contribute to the onset of behavioural fever influencing movement toward higher water temperatures. Our data also suggest an effect of TRPV channels in the regulation of behavioural fever through activation of EP3 receptors in the central nervous system by PGE2 induced by plasma-borne cytokines. These results highlight for first time in mobile ectotherms the key role of pro-inflammatory cytokines and TRPV channels in behavioural fever that likely involves a complex integration of prostaglandin induction, cytokine recognition and temperature sensing.
Collapse
Affiliation(s)
- Sebastian Boltana
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile.
| | - Nataly Sanhueza
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Andrea Donoso
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Andrea Aguilar
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Diego Crespo
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Kruyt Building, Room O809, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Daniela Vergara
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Gabriel Arriagada
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, 4030000 Concepción, Chile
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunologicos, Instituto de Biologia, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Mercado
- Grupo de Marcadores Inmunologicos, Instituto de Biologia, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Sonia Rey
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire FK9 4LA, UK
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Simon Mackenzie
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire FK9 4LA, UK
| |
Collapse
|
41
|
Bastos-Pereira AL, Fraga D, Dreifuss AA, Zampronio AR. Central mediators of the zymosan-induced febrile response. J Basic Clin Physiol Pharmacol 2018; 28:555-562. [PMID: 28981444 DOI: 10.1515/jbcpp-2017-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/15/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Zymosan is a fungal cell wall protein-carbohydrate complex that is known to activate inflammatory pathways through the Toll-like receptors and is commonly used to induce fever. Nevertheless, the central mediators that are involved in the zymosan-induced febrile response are only partially known. METHODS The present study evaluated the participation of prostaglandins, substance P, endothelin-1 (ET-1), and endogenous opioids (eOPs) in the zymosan-induced febrile response by using inhibitors and antagonists in male Wistar rats. RESULTS Both nonselective (indomethacin) and selective (celecoxib) cyclooxygenase inhibitors reduced the febrile response induced by an intraperitoneal (i.p.) injection of zymosan. Indomethacin also blocked the increase in the prostaglandin E2 levels in the cerebrospinal fluid. An intracerebroventricular injection of the neurokinin-1, ETB, and μ-opioid receptor antagonists also reduced the febrile response induced by the i.p. injected zymosan. Moreover, the μ-opioid receptor antagonist CTAP also reduced the febrile response induced by intra-articular injection of zymosan. CONCLUSIONS These results demonstrate that prostaglandins, substance P, ET-1, and eOPs are central mediators of the zymosan-induced febrile response.
Collapse
|
42
|
Prostaglandin Transporter OATP2A1/ SLCO2A1 Is Essential for Body Temperature Regulation during Fever. J Neurosci 2018; 38:5584-5595. [PMID: 29899035 DOI: 10.1523/jneurosci.3276-17.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 01/24/2023] Open
Abstract
Prostaglandin E2 (PGE2) in the hypothalamus is a principal mediator of the febrile response. However, the role of organic anion transporting polypeptide 2A1 (OATP2A1/SLCO2A1), a prostaglandin transporter, in facilitating this response is unknown. Here, we investigated the effect of Slco2a1 deficiency on the body core temperature (Tc) and on the PGE2 concentration in hypothalamus interstitial fluid (Cisf) and CSF (Ccsf) of lipopolysaccharide (LPS; 100 μg/kg, i.p.)-treated mice of both sexes. Slco2a1-/- mice did not develop a febrile response. Ccsf was increased in Slco2a1+/+ and Slco2a1-/- mice, and Ccsf of Slco2a1-/- mice was well maintained at 5 h after LPS injection (1160 pg/ml) compared with Slco2a1+/+ mice (316 pg/ml). A microdialysis study revealed that Cisf peaked at 2 h after LPS injection in Slco2a1+/+ mice (841 pg/ml), whereas the increase in Cisf was negligible in Slco2a1-/- mice. The PGE2 plasma concentration in Slco2a1-/- mice (201 pg/ml) was significantly higher than that in Slco2a1+/+ mice (54 pg/ml) at 1 h after LPS injection, whereas the two groups showed similar PGE2 concentrations in the hypothalamus. Strong Oatp2a1 immunoreactivity was observed in F4/80-positive microglia and perivascular cells and in brain capillary endothelial cells. The changes in Tc and Cisf seen in LPS-injected Slco2a1+/+ mice were partially attenuated in monocyte-/macrophage-specific Slco2a1-/- (Slco2a1Fl/Fl/LysMCre/+) mice. Thus, OATP2A1 facilitates the LPS-induced febrile response by maintaining a high level of Cisf, possibly by regulating PGE2 secretion from F4/80-positive glial cells and/or facilitating PGE2 transport across the blood-brain barrier. These findings suggest that OATP2A1 is a useful therapeutic target for neuroinflammation.SIGNIFICANCE STATEMENT Fever is a physiological response caused by pyrogen-induced release of prostaglandin E2 (PGE2) in the hypothalamus, which plays a central role in regulating the set-point of body temperature. However, it is unclear whether the prostaglandin transporter OATP2A1/SLCO2A1 is involved in this response. We show here that LPS-induced fever is associated with increased PGE2 concentration in hypothalamus interstitial fluid (Cisf), but not in CSF (Ccsf), by means of a microdialysis study in global Slco2a1-knock-out mice and monocyte-/macrophage-specific Slco2a1-knock-out mice. The results suggest that OATP2A1 serves as a regulator of Cisf in F4/80-positive glial cells. OATP2A1 was detected immunohistochemically in brain capillary endothelial cells and, therefore, may also play a role in PGE2 transport across the blood-brain barrier.
Collapse
|
43
|
Mirrasekhian E, Nilsson JLÅ, Shionoya K, Blomgren A, Zygmunt PM, Engblom D, Högestätt ED, Blomqvist A. The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1-mediated hypothermia and is associated with prostaglandin inhibition in the brain. FASEB J 2018; 32:5751-5759. [PMID: 29738273 DOI: 10.1096/fj.201800272r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mode of action of paracetamol (acetaminophen), which is widely used for treating pain and fever, has remained obscure, but may involve several distinct mechanisms, including cyclooxygenase inhibition and transient receptor potential ankyrin 1 (TRPA1) channel activation, the latter being recently associated with paracetamol's propensity to elicit hypothermia at higher doses. Here, we examined whether the antipyretic effect of paracetamol was due to TRPA1 activation or cyclooxygenase inhibition. Treatment of wild-type and TRPA1 knockout mice rendered febrile by immune challenge with LPS with a dose of paracetamol that did not produce hypothermia (150 mg/kg) but is known to be analgetic, abolished fever in both genotypes. Paracetamol completely suppressed the LPS-induced elevation of prostaglandin E2 in the brain and also reduced the levels of several other prostanoids. The hypothermia induced by paracetamol was abolished in mice treated with the electrophile-scavenger N-acetyl cysteine. We conclude that paracetamol's antipyretic effect in mice is dependent on inhibition of cyclooxygenase activity, including the formation of pyrogenic prostaglandin E2, whereas paracetamol-induced hypothermia likely is mediated by the activation of TRPA1 by electrophilic metabolites of paracetamol, similar to its analgesic effect in some experimental paradigms.-Mirrasekhian, E., Nilsson, J. L. Å., Shionoya, K., Blomgren, A., Zygmunt, P. M., Engblom, D., Högestätt, E. D., Blomqvist, A. The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1-mediated hypothermia and is associated with prostaglandin inhibition in the brain.
Collapse
Affiliation(s)
- Elahe Mirrasekhian
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; and
| | - Johan L Å Nilsson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kiseko Shionoya
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; and
| | - Anders Blomgren
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Peter M Zygmunt
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Engblom
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; and
| | - Edward D Högestätt
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anders Blomqvist
- Division of Neurobiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; and
| |
Collapse
|
44
|
Erickson MA, Banks WA. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol Rev 2018; 70:278-314. [PMID: 29496890 PMCID: PMC5833009 DOI: 10.1124/pr.117.014647] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood-brain barrier (BBB), blood-cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - William A Banks
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
45
|
Pakai E, Tekus V, Zsiboras C, Rumbus Z, Olah E, Keringer P, Khidhir N, Matics R, Deres L, Ordog K, Szentes N, Pohoczky K, Kemeny A, Hegyi P, Pinter E, Garami A. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice. Front Immunol 2018; 9:166. [PMID: 29459872 PMCID: PMC5807668 DOI: 10.3389/fimmu.2018.00166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Neurokinin (NK) signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS). A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally) to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ ) or absent (Tacr1-/- ) and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2) expression, and prostaglandin (PG) E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1-/- compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1-/- mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1-/- and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1-/- mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1-/- mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the "cytokine-COX-2-prostaglandin E2" axis in systemic inflammation, thereby open up the possibilities for new therapeutic approaches.
Collapse
Affiliation(s)
- Eszter Pakai
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences - University of Szeged, Szeged, Hungary
| | - Valeria Tekus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Csaba Zsiboras
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Patrik Keringer
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nora Khidhir
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Robert Matics
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Laszlo Deres
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Ordog
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztina Pohoczky
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Agnes Kemeny
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,Department of Medical Biology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences - University of Szeged, Szeged, Hungary.,First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
46
|
Garami A, Steiner AA, Romanovsky AA. Fever and hypothermia in systemic inflammation. HANDBOOK OF CLINICAL NEUROLOGY 2018; 157:565-597. [PMID: 30459026 DOI: 10.1016/b978-0-444-64074-1.00034-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic inflammation-associated syndromes (e.g., sepsis and septic shock) often have high mortality and remain a challenge in emergency medicine. Systemic inflammation is usually accompanied by changes in body temperature: fever or hypothermia. In animal studies, systemic inflammation is often modeled by administering bacterial lipopolysaccharide, which triggers autonomic and behavioral thermoeffector responses and causes either fever or hypothermia, depending on the dose and ambient temperature. Fever and hypothermia are regulated changes of body temperature, which correspond to mild and severe forms of systemic inflammation, respectively. Mediators of fever and hypothermia are called endogenous pyrogens and cryogens; they are produced when the innate immune system recognizes an infectious pathogen. Upon an inflammatory challenge, hepatic and pulmonary macrophages (and later brain endothelial cells) start to release lipid mediators, of which prostaglandin (PG) E2 plays the key role, and cytokines. Blood PGE2 enters the brain and triggers fever. At later stages of fever, PGE2 synthesized within the blood-brain barrier maintains fever. In both cases, PGE2 is synthesized by cyclooxygenase-2 and microsomal PGE2synthase-1. Mediators of hypothermia are not well established. Both fever and hypothermia are beneficial host defense responses. Based on evidence from studies in laboratory animals and clinical trials in humans, fever is beneficial for fighting mild infection. Based mainly on animal studies, hypothermia is beneficial in severe systemic inflammation and infection.
Collapse
Affiliation(s)
- Andras Garami
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| | - Alexandre A Steiner
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
47
|
Abstract
Fever depends on a complex physiologic response to infectious agents and other conditions. To alleviate fever, many medicinal agents have been developed over a century of trying to improve upon aspirin, which was determined to work by inhibiting prostaglandin synthesis. We present the process of fever induction through prostaglandin synthesis and discuss the development of pharmaceuticals that target enzymes and receptors involved in prostaglandin-mediated signal transduction, including prostaglandin H2 synthase (also known as cyclooxygenase), phospholipase A2, microsomal prostaglandin E2 synthase-1, EP receptors, and transient potential cation channel subfamily V member 1. Clinical use of established antipyretics will be discussed as well as medicinal agents under clinical trials and future research.
Collapse
Affiliation(s)
- Jonathan J Lee
- Biochemistry Department, Brigham Young University, Provo, UT, United States
| | - Daniel L Simmons
- Biochemistry Department, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
48
|
Matsuwaki T, Shionoya K, Ihnatko R, Eskilsson A, Kakuta S, Dufour S, Schwaninger M, Waisman A, Müller W, Pinteaux E, Engblom D, Blomqvist A. Involvement of interleukin-1 type 1 receptors in lipopolysaccharide-induced sickness responses. Brain Behav Immun 2017; 66:165-176. [PMID: 28655587 DOI: 10.1016/j.bbi.2017.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/15/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Sickness responses to lipopolysaccharide (LPS) were examined in mice with deletion of the interleukin (IL)-1 type 1 receptor (IL-1R1). IL-1R1 knockout (KO) mice displayed intact anorexia and HPA-axis activation to intraperitoneally injected LPS (anorexia: 10 or 120µg/kg; HPA-axis: 120µg/kg), but showed attenuated but not extinguished fever (120µg/kg). Brain PGE2 synthesis was attenuated, but Cox-2 induction remained intact. Neither the tumor necrosis factor-α (TNFα) inhibitor etanercept nor the IL-6 receptor antibody tocilizumab abolished the LPS induced fever in IL-1R1 KO mice. Deletion of IL-1R1 specifically in brain endothelial cells attenuated the LPS induced fever, but only during the late, 3rd phase of fever, whereas deletion of IL-1R1 on neural cells or on peripheral nerves had little or no effect on the febrile response. We conclude that while IL-1 signaling is not critical for LPS induced anorexia or stress hormone release, IL-1R1, expressed on brain endothelial cells, contributes to the febrile response to LPS. However, also in the absence of IL-1R1, LPS evokes a febrile response, although this is attenuated. This remaining fever seems not to be mediated by IL-6 receptors or TNFα, but by some yet unidentified pyrogenic factor.
Collapse
Affiliation(s)
- Takashi Matsuwaki
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden; Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kiseko Shionoya
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Robert Ihnatko
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Anna Eskilsson
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Shigeru Kakuta
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, 23538 Lübeck, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - David Engblom
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden
| | - Anders Blomqvist
- Department of Clinical and Experimental Medicine, Linköping University, 581 85 Linköping, Sweden.
| |
Collapse
|
49
|
Szymanski MC, Gillum TL, Gould LM, Morin DS, Kuennen MR. Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J Appl Physiol (1985) 2017; 124:330-340. [PMID: 28935827 DOI: 10.1152/japplphysiol.00515.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Szymanski MC, Gillum TL, Gould LM, Morin DS, Kuennen MR. Short-term dietary curcumin supplementation reduces gastrointestinal barrier damage and physiological strain responses during exertional heat stress. J Appl Physiol 124: 330-340, 2018. First published September 21, 2017; doi: 10.1152/japplphysiol.00515.2017 .-This work investigated the effect of 3 days of 500 mg/day dietary curcumin supplementation on gastrointestinal barrier damage and systems-physiology responses to exertional heat stress in non-heat-acclimated humans. Eight participants ran (65% V̇o2max) for 60 min in a Darwin chamber (37°C/25% relative humidity) two times (Curcumin/Placebo). Intestinal fatty acid-binding protein (I-FABP) and associated proinflammatory [monocyte chemoattractant protein-1, tumor necrosis factor-α (TNF-α), interleukin-6] and anti-inflammatory [interleukin-1 receptor antagonist (IL-1RA), interleukin-10 (IL-10)] cytokines were assayed from plasma collected before (Pre), after (Post) and 1 (1-Post) and 4 (4-Post) h after exercise. Core temperature and HR were measured throughout exercise; the physiological strain index (PSI) was calculated from these variables. Condition differences were determined with 2-way (condition × time) repeated-measures ANOVAs. The interaction of condition × time was significant ( P = 0.05) for I-FABP and IL-1RA. Post hoc analysis indicated I-FABP increased more from Pre to Post (87%) and 1-Post (33%) in Placebo than in Curcumin (58 and 18%, respectively). IL-1RA increased more from Pre to 1-Post in Placebo (153%) than in Curcumin (77%). TNF-α increased ( P = 0.01) from Pre to Post (19%) and 1-Post (24%) in Placebo but not in Curcumin ( P > 0.05). IL-10 increased ( P < 0.01) from Pre to Post (61%) and 1-Post (42%) in Placebo not in Curcumin ( P > 0.05). The PSI, which indicates exertional heatstroke risk, was also lower ( P < 0.01) in Curcumin than Placebo from 40 to 60 min of exercise. These data suggest 3 days curcumin supplementation may improve gastrointestinal function, associated cytokines, and systems-level physiology responses during exertional heat stress. This could help reduce exertional heatstroke risk in non-heat-acclimated individuals. NEW & NOTEWORTHY Exercise-heat stress increases gastrointestinal barrier damage and risk of exertional heatstroke. Over the past decade at least eight different dietary supplements have been tested for potential improvements in gastrointestinal barrier function and systems-level physiology responses during exercise-heat stress. None have been shown to protect against both insults simultaneously. In this report 3 days of 500 mg/day dietary curcumin supplementation are shown to improve gastrointestinal barrier function, associated cytokine responses, and systems-level physiology parameters. Further research is warranted.
Collapse
Affiliation(s)
- Mandy C Szymanski
- Department of Exercise Science, High Point University , High Point, North Carolina
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University , Riverside, California
| | - Lacey M Gould
- Department of Exercise Science, High Point University , High Point, North Carolina
| | - David S Morin
- Department of Exercise Science, High Point University , High Point, North Carolina
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University , High Point, North Carolina
| |
Collapse
|
50
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|