1
|
Li Y, Mao J, Chai G, Zheng R, Liu X, Xie J. Neurobiological mechanisms of nicotine's effects on feeding and body weight. Neurosci Biobehav Rev 2025; 169:106021. [PMID: 39826824 DOI: 10.1016/j.neubiorev.2025.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure. The energy homeostasis-related neurons, pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), prolactin-releasing hormone (Prlh), etc, were discussed about the responsibility for nicotine's effects on feeding. Nicotine's actions on hypothalamus and its related neural circuits were described in view of peripheral nervous system, reward system, adipose browning, hormone secretion, and gut-brain axis. Elucidation of neurobiological mechanism of nicotine's actions on feeding and body weight will be of immense value to the therapeutic strategies of smoking, and advance the medicine research for the therapy of obesity.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Guobi Chai
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruimao Zheng
- Department of Anatomy Histology and Embryology School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xingyu Liu
- Beijing Life Science Academy, Beijing, China.
| | - Jianping Xie
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
2
|
Ramírez-Sánchez E, Mondragón-García A, Garduño J, Hernández-Vázquez F, Ortega-Tinoco S, Hernández-López S. Opposing effects of nicotine on hypothalamic arcuate nucleus POMC and NPY neurons. Prog Neurobiol 2024; 242:102682. [PMID: 39490889 DOI: 10.1016/j.pneurobio.2024.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The hypothalamic arcuate nucleus (ARC) contains two main populations of neurons essential for energy homeostasis: neuropeptide Y (NPY) neurons, which are orexigenic and stimulate food intake, and proopiomelanocortin (POMC) neurons, which have an anorexigenic effect. Located near the blood-brain barrier, ARC neurons sense blood-borne signals such as leptin, insulin, and glucose. Exogenous substances, such as nicotine, can also alter ARC neuron activity and energy balance. Nicotine, an addictive drug used worldwide, inhibits appetite, and reduces body weight, although its mechanisms in regulating ARC neurons are not well understood. Using electrophysiological techniques in brain slices, we investigated the effects of nicotine on POMC and NPY neurons at physiological glucose concentrations. We found that nicotine increased the firing rate of POMC and inhibited NPY neurons. Additionally, nicotine-enhanced glutamatergic inputs to POMC cells and GABAergic inputs to NPY neurons, mediated by α7 and α4β2 nicotinic acetylcholine receptors (nAChRs), respectively. These findings can contribute to the understanding of the anorexigenic effects of nicotine in smokers.
Collapse
Affiliation(s)
- E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - F Hernández-Vázquez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - S Ortega-Tinoco
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico.
| |
Collapse
|
3
|
Hindawy RF, Refaat RMM, Fouda AE, El-Shishtawy MA, Kumar A, El-Shafai NM, Faruk EM, Nafea OE. Exploring the potential of selenium nanoparticles and fabricated selenium nanoparticles @vitamin C nanocomposite in mitigating nicotine-induced testicular toxicity in rats. Toxicol Res (Camb) 2024; 13:tfae154. [PMID: 39359714 PMCID: PMC11442148 DOI: 10.1093/toxres/tfae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background The tobacco epidemic signifies a major public health threat. Nicotine (NIC), a major active constituent in tobacco, impedes male fertility and semen quality. This work is implemented to explore the potential of selenium nanoparticles (SeNPs) and the newly fabricated SeNPs @vitamin C (SeNPs@VITC) nanocomposite in mitigating testicular toxicity induced by NIC. Materials and methods The six groups of 48 adult Wistar rats were designed as follows: the control group injected intraperitoneally with normal saline, the SeNPs group treated orally with 2 mg/kg of SeNPs, the SeNPs@VITC nanocomposite group treated orally with 2 mg/kg of SeNPs@VITC nanocomposite, the NIC group injected intraperitoneally with 1.25 mL/kg of NIC, the NIC+ SeNPs group received SeNPs plus NIC, and the NIC+ SeNPs@VITC nanocomposite group received SeNPs@VITC nanocomposite plus NIC. Treatments were administered over a 28-day period. Results NIC treatment significantly caused poor sperm quality, decreased serum testosterone, increased follicle-stimulating hormone (FSH), luteinizing hormone (LH) concentrations, reduced hemoglobin levels, leukocytosis, disrupted testicular oxidant/antioxidant balance, and disorganized testicular structure. The construction of the novel SeNPs@VITC nanocomposite, compared to NIC plus SeNPs alone, demonstrated a more potent ameliorative effect on NIC-induced reproductive toxicity in adult rats. The SeNPs@VITC nanocomposite significantly increased sperm count, reduced the percentage of sperm head abnormalities, lowered both serum FSH and LH concentrations, and improved the hemoglobin response. Conclusions Both SeNPs and SeNPs@VITC nanocomposite alleviated the testicular toxicity induced by NIC, but the SeNPs@VITC nanocomposite exhibited superior efficacy. The SeNPs@VITC nanocomposite could be employed to advance enhanced therapeutic strategies for addressing male infertility.
Collapse
Affiliation(s)
- Rabab F Hindawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Rana M M Refaat
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Atef E Fouda
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Mohamed A El-Shishtawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Adarsh Kumar
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences (AIIMS), AIIMS Campus, Ansari Nagar East, New Delhi, India
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Qism Kafr El-Shaikh, Kafr Al Sheikh First, Kafr El-Sheikh Governorate, Kafrelsheikh 33516, Egypt
| | - Eman M Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, College of Medicine, Umm Al-Qura, University, Al Abidiyah, Makkah, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha, Egypt
| | - Ola E Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig Rd inside Zagazig University, Shaibet an Nakareyah, Al-Sharqia Governorate, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Luo Y, Zhang L, Lu Y, Lin X, Weng Z, Xu Y. Association Between the Serum Copper Levels and Environmental Tobacco Exposure on the Risk of Overweight and Obesity in Children: a Study Based on the National Health and Nutrition Examination Survey. Biol Trace Elem Res 2024; 202:4440-4449. [PMID: 38158458 DOI: 10.1007/s12011-023-04037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
This study was to assess the individual effects of serum copper levels and environmental tobacco exposure and their joint effects on the risk of overweight and obesity among children and adolescents of 6 to 19 year olds. We analyzed cross-sectional data from 1849 children and adolescents participating in the National Health and Nutrition Examination Survey (NHANES) collected between 2011 and 2016. Environmental tobacco exposure was determined by cotinine levels. The serum copper level was divided into < median group and ≥ median groups according to the median of 109.81 µg/dL. The outcome was overweight/obese in children and adolescents. Weighted multinomial multivariate logistic regression models were used to assess the association of serum copper and cotinine levels, with the risk of overweight/obesity, and the joint effects on the risk of overweight and obesity among children and adolescents. The subgroup analyses based on age, gender, and household smoking status were conducted. Among 1849 children and adolescents, 332 children and adolescents had overweight BMI, and 450 children and adolescents had obese BMI. Higher serum copper levels were associated with the risk of obesity in children and adolescents (odds ratio (OR) 2.96, 95% confidence interval (CI) 1.39-6.31, P = 0.006). A positive association between increasing levels of cotinine levels and the risk of overweight (OR 1.83, 95% CI 1.16-2.87, P = 0.010) and obesity (OR 2.56, 95% CI 1.03-6.40, P = 0.044) in children and adolescents was observed. A remarkable association was found between higher serum copper in combination with higher cotinine levels and the risk of overweight (OR 3.23, 95% CI 1.19-8.83, P = 0.023) and obesity (OR 8.76, 95% CI 2.14-35.87, P = 0.003) in children and adolescents. The subgroup analyses revealed positive associations between high serum copper levels in combination with high cotinine levels and overweight and obesity in children and adolescents aged ≥ 12 years, of female sex, and without smoking family members. There may exist a joint effect of serum copper levels and environmental tobacco exposure on overweight/obesity among children and adolescents. These findings offer an insight that early weight control and reduction of tobacco exposure and the detection of serum copper levels may be important in reducing the risk of obesity in children.
Collapse
Affiliation(s)
- Yujun Luo
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
- Xiaorong Luo's Renowned Expert Inheritance Studio, 3Rd Floor, East District, Guangdong Provincial Hospital of Chinese Medicine, No.111, Dade Road, Yuexiu District, Guangzhou, Guangdong Province, 510120, People's Republic of China
| | - Linzhu Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Yanting Lu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China
| | - Xiaohong Lin
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
- Xiaorong Luo's Renowned Expert Inheritance Studio, 3Rd Floor, East District, Guangdong Provincial Hospital of Chinese Medicine, No.111, Dade Road, Yuexiu District, Guangzhou, Guangdong Province, 510120, People's Republic of China
| | - Zelin Weng
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.
- Xiaorong Luo's Renowned Expert Inheritance Studio, 3Rd Floor, East District, Guangdong Provincial Hospital of Chinese Medicine, No.111, Dade Road, Yuexiu District, Guangzhou, Guangdong Province, 510120, People's Republic of China.
| | - Youjia Xu
- Department of Pediatrics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.
- Xiaorong Luo's Renowned Expert Inheritance Studio, 3Rd Floor, East District, Guangdong Provincial Hospital of Chinese Medicine, No.111, Dade Road, Yuexiu District, Guangzhou, Guangdong Province, 510120, People's Republic of China.
| |
Collapse
|
5
|
Guo JT, Li HY, Cheng C, Shi JX, Ruan HN, Li J, Liu CM. Lead-induced liver fibrosis and inflammation in mice by the AMPK/MAPKs/NF-κB and STAT3/TGF-β1/Smad2/3 pathways: the role of Isochlorogenic acid a. Toxicol Res (Camb) 2024; 13:tfae072. [PMID: 38737339 PMCID: PMC11081073 DOI: 10.1093/toxres/tfae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Lead (Pb) is a nonessential heavy metal, which can cause many health problems. Isochlorogenic acid A (ICAA), a phenolic acid present in tea, fruits, vegetables, coffee, plant-based food products, and various medicinal plants, exerts multiple effects, including anti-oxidant, antiviral, anti-inflammatory and antifibrotic functions. Thus, the purpose of our study was to determine if ICAA could prevent Pb-induced hepatotoxicity in ICR mice. An evaluation was performed on oxidative stress, inflammation and fibrosis, and related signaling. The results indicate that ICAA attenuates Pb-induced abnormal liver function. ICAA reduced liver fibrosis, inflammation and oxidative stress caused by Pb. ICAA abated Pb-induced fibrosis and decreased inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). ICAA abrogated reductions in activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Masson staining revealed that ICAA reduced collagen fiber deposition in Pb-induced fibrotic livers. Western blot and immunohistochemistry analyses showed ICAA increased phosphorylated AMP-activated protein kinase (p-AMPK) expression. ICAA also reduced the expression of collagen I, α-smooth muscle actin (α-SMA), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-jun N-terminal kinase (p-JNK), p-p38, phosphorylated signal transducer and phosphorylated activator of transcription 3 (p-STAT3), transforming growth factor β1 (TGF-β1), and p-Smad2/3 in livers of mice. Overall, ICAA ameliorates Pb-induced hepatitis and fibrosis by inhibiting the AMPK/MAPKs/NF-κB and STAT3/TGF-β1/Smad2/3 pathways.
Collapse
Affiliation(s)
- Jun-Tao Guo
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Han-Yu Li
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tongshan New Area, 221116, Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
6
|
Lu N, Mei X, Li X, Tang X, Yang G, Xiang W. Preventive effects of caffeine on nicotine plus high-fat diet-induced hepatic steatosis and gain weight: a possible explanation for why obese smokers with high coffee consumption tend to be leaner. Br J Nutr 2024; 131:1342-1351. [PMID: 38149470 DOI: 10.1017/s0007114523002969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder, affecting approximately 25 % of the population. Coffee-drinking obese smokers exhibit lower body weights and decreased NAFLD rates, but the reasons behind this remain unclear. Additionally, the effect of nicotine, the main component of tobacco, on the development of NAFLD is still controversial. Our study aimed to explore the possible reasons that drinking coffee could alleviate NAFLD and gain weight and identify the real role of nicotine in NAFLD of obese smokers. A NAFLD model in mice was induced by administering nicotine and a high-fat diet (HFD). We recorded changes in body weight and daily food intake, measured the weights of the liver and visceral fat, and observed liver and adipose tissue histopathology. Lipid levels, liver function, liver malondialdehyde (MDA), superoxide dismutase (SOD), serum inflammatory cytokine levels and the expression of hepatic genes involved in lipid metabolism were determined. Our results demonstrated that nicotine exacerbated the development of NAFLD and caffeine had a hepatoprotective effect on NAFLD. The administration of caffeine could ameliorate nicotine-plus-HFD-induced NAFLD by reducing lipid accumulation, regulating hepatic lipid metabolism, alleviating oxidative stress, attenuating inflammatory response and restoring hepatic functions. These results might explain why obese smokers with high coffee consumption exhibit the lower incidence rate of NAFLD and tend to be leaner. It is essential to emphasise that the detrimental impact of smoking on health is multifaceted. Smoking cessation remains the sole practical and effective strategy for averting the tobacco-related complications and reducing the risk of mortality.
Collapse
Affiliation(s)
- Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xue Mei
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xu Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Guofeng Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Wen Xiang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Zhang W, Pan X, Fu J, Cheng W, Lin H, Zhang W, Huang Z. Phytochemicals derived from Nicotiana tabacum L. plant contribute to pharmaceutical development. Front Pharmacol 2024; 15:1372456. [PMID: 38681197 PMCID: PMC11045950 DOI: 10.3389/fphar.2024.1372456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
The Nicotiana tabacum L. plant, a medicinal resource, holds significant potential for benefiting human health, as evidenced by its use in Native American and ancient Chinese cultures. Modern medical and pharmaceutical studies have investigated that the abundant and distinctive function metabolites in tobacco including nicotine, solanesol, cembranoid diterpenes, essential oil, seed oil and other tobacco extracts, avoiding the toxic components of smoke, mainly have the anti-oxidation, anti-lipid production, pro-lipid oxidation, pro-insulin sensitivity, anti-inflammation, anti-apoptosis and antimicrobial activities. They showed potential pharmaceutical value mainly as supplements or substitutes for treating neurodegenerative diseases including Alzheimer's and Parkinson's disease, inflammatory diseases including colitis, arthritis, sepsis, multiple sclerosis, and myocarditis, and metabolic syndrome including Obesity and fatty liver. This review comprehensively presents the research status and the molecular mechanisms of tobacco and its metabolites basing on almost all the English and Chinese literature in recent 20 years in the field of medicine and pharmacology. This review serves as a foundation for future research on the medicinal potential of tobacco plants.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiaqi Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
8
|
Shankar K, Ramborger J, Bonnet-Zahedi S, Carrette LLG, George O. Acute nicotine intake increases feeding behavior through decreasing glucagon signaling in dependent male and female rats. Horm Behav 2024; 159:105447. [PMID: 37926623 PMCID: PMC11384237 DOI: 10.1016/j.yhbeh.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Chronic use of nicotine is known to dysregulate metabolic signaling through altering circulating levels of feeding-related hormones, contributing to the onset of disorders like type 2 diabetes. However, little is known about the acute effects of nicotine on hormonal signaling. We previously identified an acute increase in food intake following acute nicotine, and we sought to determine whether this behavior was due to a change in hormone levels. We first identified that acute nicotine injection produces an increase in feeding behavior in dependent rats, but not nondependent rats. We confirmed that chronic nicotine use increases circulating levels of insulin, leptin, and ghrelin, and these correlate with rats' body weight and food intake. Acute nicotine injection in dependent animals decreased circulating GLP-1 and glucagon levels, and administration of glucagon prior to acute nicotine injection prevented the acute increase in feeding behavior. Thus, acute nicotine injection increases feeding behavior in dependent rats by decreasing glucagon signaling.
Collapse
Affiliation(s)
- Kokila Shankar
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jarryd Ramborger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sélène Bonnet-Zahedi
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille 13005, France
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Tao Z, Wang Y. The health benefits of dietary short-chain fatty acids in metabolic diseases. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 38189336 DOI: 10.1080/10408398.2023.2297811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Short-chain fatty acids (SCFAs) are a subset of fatty acids that play crucial roles in maintaining normal physiology and developing metabolic diseases, such as obesity, diabetes, cardiovascular disease, and liver disease. Even though dairy products and vegetable oils are the direct dietary sources of SCFAs, their quantities are highly restricted. SCFAs are produced indirectly through microbial fermentation of fibers. The biological roles of SCFAs in human health and metabolic diseases are mainly due to their receptors, GPR41 and GPR43, FFAR2 and FFAR3. Additionally, it has been demonstrated that SCFAs modulate DNMTs and HDAC activities, inhibit NF-κB-STAT signaling, and regulate G(i/o)βγ-PLC-PKC-PTEN signaling and PPARγ-UCP2-AMPK autophagic signaling, thus mitigating metabolic diseases. Recent studies have uncovered that SCFAs play crucial roles in epigenetic modifications of DNAs, RNAs, and post-translational modifications of proteins, which are critical regulators of metabolic health and diseases. At the same time, dietary recommendations for the purpose of SCFAs have been proposed. The objective of the review is to summarize the most recent research on the role of dietary SCFAs in metabolic diseases, especially the signal transduction of SCFAs in metabolic diseases and their functional efficacy in different backgrounds and models of metabolic diseases, at the same time, to provide dietary and nutritional recommendations for using SCFAs as food ingredients to prevent metabolic diseases.
Collapse
Affiliation(s)
- Zhipeng Tao
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Nutrition Sciences, Texas Woman's University, Denton, Texas, USA
| | - Yao Wang
- Diabetes Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Souza LL, Rossetti CL, Peixoto TC, Manhães AC, de Moura EG, Lisboa PC. Neonatal nicotine exposure affects adult rat hepatic pathways involved in endoplasmic reticulum stress and macroautophagy in a sex-dependent manner. J Dev Orig Health Dis 2023; 14:639-647. [PMID: 38037831 DOI: 10.1017/s2040174423000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) involves changes in hepatic pathways, as lipogenesis, oxidative stress, endoplasmic reticulum (ER) stress, and macroautophagy. Maternal nicotine exposure exclusively during lactation leads to fatty liver (steatosis) only in the adult male offspring, not in females. Therefore, our hypothesis is that neonatal exposure to nicotine sex-dependently affects the signaling pathways involved in hepatic homeostasis of the offspring, explaining the hepatic lipid accumulation phenotype only in males. For this, between postnatal days 2 and 16, Wistar rat dams were implanted with osmotic minipumps, which released nicotine (NIC; 6 mg/Kg/day) or vehicle. The livers of offspring were evaluated at postnatal day 180. Only the male offspring that had been exposed to nicotine neonatally showed increased protein expression of markers of unfolded protein response (UPR), highlighting the presence of ER stress, as well as disruption of the activation of the macroautophagy repair pathway. These animals also had increased expression of diacylglycerol O-acyltransferase 1 and 4-hydroxynonenal, suggesting increased triglyceride esterification and oxidative stress. These parameters were not altered in the female offspring that had been neonatally exposed to nicotine, however they exhibited increased phospho adenosine monophosphate-activated protein kinase pAMPK expression, possibly as a protective mechanism. Thus, the disturbance in the hepatic homeostasis by UPR, macroautophagy, and oxidative stress modifications seem to be the molecular mechanisms underlying the liver steatosis in the adult male offspring of the nicotine-programming model. This highlights the importance of maternal smoking cessation during breastfeeding to decrease the risk of NAFLD development, especially in males.
Collapse
Affiliation(s)
- Luana Lopes Souza
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Lüdke Rossetti
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thamara Cherem Peixoto
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Chen Z, Liu XA, Kenny PJ. Central and peripheral actions of nicotine that influence blood glucose homeostasis and the development of diabetes. Pharmacol Res 2023; 194:106860. [PMID: 37482325 DOI: 10.1016/j.phrs.2023.106860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Cigarette smoking has long been recognized as a risk factor for type 2 diabetes (T2D), although the precise causal mechanisms underlying this relationship remain poorly understood. Recent evidence suggests that nicotine, the primary reinforcing component in tobacco, may play a pivotal role in connecting cigarette smoking and T2D. Extensive research conducted in both humans and animals has demonstrated that nicotine can elevate blood glucose levels, disrupt glucose homeostasis, and induce insulin resistance. The review aims to elucidate the genetic variants of nicotinic acetylcholine receptors associated with diabetes risk and provide a comprehensive overview of the available data on the mechanisms through which nicotine influences blood glucose homeostasis and the development of diabetes. Here we emphasize the central and peripheral actions of nicotine on the release of glucoregulatory hormones, as well as its effects on glucose tolerance and insulin sensitivity. Notably, the central actions of nicotine within the brain, which encompass both insulin-dependent and independent mechanisms, are highlighted as potential targets for intervention strategies in diabetes management.
Collapse
Affiliation(s)
- Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
12
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Vigil P, Meléndez J, Petkovic G, Del Río JP. The importance of estradiol for body weight regulation in women. Front Endocrinol (Lausanne) 2022; 13:951186. [PMID: 36419765 PMCID: PMC9677105 DOI: 10.3389/fendo.2022.951186] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity in women of reproductive age has a number of adverse metabolic effects, including Type II Diabetes (T2D), dyslipidemia, and cardiovascular disease. It is associated with increased menstrual irregularity, ovulatory dysfunction, development of insulin resistance and infertility. In women, estradiol is not only critical for reproductive function, but they also control food intake and energy expenditure. Food intake is known to change during the menstrual cycle in humans. This change in food intake is largely mediated by estradiol, which acts directly upon anorexigenic and orexigenic neurons, largely in the hypothalamus. Estradiol also acts indirectly with peripheral mediators such as glucagon like peptide-1 (GLP-1). Like estradiol, GLP-1 acts on receptors at the hypothalamus. This review describes the physiological and pathophysiological mechanisms governing the actions of estradiol during the menstrual cycle on food intake and energy expenditure and how estradiol acts with other weight-controlling molecules such as GLP-1. GLP-1 analogs have proven to be effective both to manage obesity and T2D in women. This review also highlights the relationship between steroid hormones and women's mental health. It explains how a decline or imbalance in estradiol levels affects insulin sensitivity in the brain. This can cause cerebral insulin resistance, which contributes to the development of conditions such as Parkinson's or Alzheimer's disease. The proper use of both estradiol and GLP-1 analogs can help to manage obesity and preserve an optimal mental health in women by reducing the mechanisms that trigger neurodegenerative disorders.
Collapse
Affiliation(s)
- Pilar Vigil
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Jaime Meléndez
- Reproductive Health Research Institute (RHRI), Santiago, Chile
| | - Grace Petkovic
- Arrowe Park Hospital, Department of Paediatrics, Wirral CH49 5PE, Merseyside, United Kingdom
| | - Juan Pablo Del Río
- Unidad de Psiquiatría Infantil y del Adolescente, Clínica Psiquiátrica Universitaria, Universidad de Chile, Santiago, Chile
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Millennium Science Initiative, Santiago, Chile
| |
Collapse
|
14
|
Drewe J, Boonen G, Culmsee C. Treat more than heat-New therapeutic implications of Cimicifuga racemosa through AMPK-dependent metabolic effects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154060. [PMID: 35338990 DOI: 10.1016/j.phymed.2022.154060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cimicifuga racemosa extracts (CRE) have obtained a "well-established use status" in the treatment of postmenopausal (i.e., climacteric) complaints, which predominantly include vasomotor symptoms such as hot flushes and sweating, as well as nervousness, irritability, and metabolic changes. Although characteristic postmenopausal complaints are known for a very long time and the beneficial effects of CRE on climacteric symptoms are well accepted, both the pathophysiology of postmenopausal symptoms and the mechanism of action of CREs are not yet fully understood. In particular, current hypotheses suggest that changes in the α-adrenergic and serotonergic signaling pathways secondary to estrogen depletion are responsible for the development of hot flushes. PURPOSE Some of the symptoms associated with menopause cannot be explained by these hypotheses. Therefore, we attempted to extend our classic understanding of menopause by integrating of partly age-related metabolic impairments. METHODS A comprehensive literature survey was performed using the PubMed database for articles published through September 2021. The following search terms were used: (cimicifuga OR AMPK) AND (hot flush* OR hot flash* OR menopaus* OR osteoporos* OR cancer OR antioxida* OR cardiovasc*). No limits were set with respect to language, and the references cited in the articles retrieved were used to identify additional publications. RESULTS We found that menopause is a manifestation of the general aging process, with specific metabolic changes that aggravate menopausal symptoms, which are accelerated by estrogen depletion and associated neurotransmitter dysregulation. Cimicifuga extracts with their metabolic effects mitigate climacteric symptoms but may also modulate the aging process itself. Central to these effects are effects of CRE on the metabolic key regulator, the AMP-activated protein kinase (AMPK). CONCLUSIONS As an extension of this effect dimension, other off-label indications may appear attractive in the sense of repurposing of this herbal treatment.
Collapse
Affiliation(s)
- Jürgen Drewe
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland.
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, CH-8590 Romanshorn, Switzerland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, D-35043 Marburg, Germany; Center for Mind, Brain and Behavior, D-35032 Marburg, Germany
| |
Collapse
|
15
|
López M. Hypothalamic AMPK as a possible target for energy balance-related diseases. Trends Pharmacol Sci 2022; 43:546-556. [DOI: 10.1016/j.tips.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
|
16
|
Zhang W, Lin H, Zou M, Yuan Q, Huang Z, Pan X, Zhang W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front Immunol 2022; 13:826889. [PMID: 35251010 PMCID: PMC8895249 DOI: 10.3389/fimmu.2022.826889] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
As an anti-inflammatory alkaloid, nicotine plays dual roles in treating diseases. Here we reviewed the anti-inflammatory and pro-inflammatory effects of nicotine on inflammatory diseases, including inflammatory bowel disease, arthritis, multiple sclerosis, sepsis, endotoxemia, myocarditis, oral/skin/muscle inflammation, etc., mainly concerning the administration methods, different models, therapeutic concentration and duration, and relevant organs and tissues. According to the data analysis from recent studies in the past 20 years, nicotine exerts much more anti-inflammatory effects than pro-inflammatory ones, especially in ulcerative colitis, arthritis, sepsis, and endotoxemia. On the other hand, in oral inflammation, nicotine promotes and aggravates some diseases such as periodontitis and gingivitis, especially when there are harmful microorganisms in the oral cavity. We also carefully analyzed the nicotine dosage to determine its safe and effective range. Furthermore, we summarized the molecular mechanism of nicotine in these inflammatory diseases through regulating immune cells, immune factors, and the vagus and acetylcholinergic anti-inflammatory pathways. By balancing the “beneficial” and “harmful” effects of nicotine, it is meaningful to explore the effective medical value of nicotine and open up new horizons for remedying acute and chronic inflammation in humans.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingmin Zou
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| |
Collapse
|
17
|
Ajoolabady A, Liu S, Klionsky DJ, Lip GYH, Tuomilehto J, Kavalakatt S, Pereira DM, Samali A, Ren J. ER stress in obesity pathogenesis and management. Trends Pharmacol Sci 2022; 43:97-109. [PMID: 34893351 PMCID: PMC8796296 DOI: 10.1016/j.tips.2021.11.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Given the unprecedented global pandemic of obesity, a better understanding of the etiology of adiposity will be necessary to ensure effective management of obesity and related complications. Among the various potential factors contributing to obesity, endoplasmic reticulum (ER) stress refers to a state of excessive protein unfolding or misfolding that is commonly found in metabolic diseases including diabetes mellitus, insulin resistance (IR), and non-alcoholic fatty liver disease, although its role in obesogenesis remains controversial. ER stress is thought to drive adiposity by dampening energy expenditure, making ER stress a likely therapeutic target for the management of obesity. We summarize the role of ER stress and the ER stress response in the onset and development of obesity, and discuss the underlying mechanisms involved with a view to identifying novel therapeutic strategies for obesity prevention and management.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Simin Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Departments of Epidemiology, Medicine, and Surgery and Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory Y H Lip
- University of Liverpool Institute of Ageing and Chronic Disease, Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Takeda K, Aotani D, Kuga Y, Jinno T, Guo T, Ogawa K, Shimizu Y, Hattori R, Yagi T, Koyama H, Matsumura S, Kataoka H, Tanaka T. A mouse model of weight gain after nicotine withdrawal. Biochem Biophys Res Commun 2022; 588:140-146. [PMID: 34954521 DOI: 10.1016/j.bbrc.2021.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022]
Abstract
Smoking cessation increases body weight. The underlying mechanisms, however, have not been fully understood. We here report an establishment of a mouse model that exhibits an augmented body weight gain after nicotine withdrawal. High fat diet-fed mice were infused with nicotine for two weeks, and then with vehicle for another two weeks using osmotic minipumps. Body weight increased immediately after nicotine cessation and was significantly higher than that of mice continued on nicotine. Mice switched to vehicle consumed more food than nicotine-continued mice during the first week of cessation, while oxygen consumption was comparable. Elevated expression of orexigenic agouti-related peptide was observed in the hypothalamic appetite center. Pair-feeding experiment revealed that the accelerated weight gain after nicotine withdrawal is explained by enhanced energy intake. As a showcase of an efficacy of pharmacologic intervention, exendin-4 was administered and showed a potent suppression of energy intake and weight gain in mice withdrawn from nicotine. Our current model provides a unique platform for the investigation of the changes of energy regulation after smoking cessation.
Collapse
Affiliation(s)
- Katsushi Takeda
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Daisuke Aotani
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Yusuke Kuga
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tomoki Jinno
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tingting Guo
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kento Ogawa
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yuki Shimizu
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Rei Hattori
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Takashi Yagi
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shigenobu Matsumura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan; Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, 3-7-30 Habikino, Habikino, Osaka, 583-8555, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
19
|
Yang Z, Yu GL, Zhu X, Peng TH, Lv YC. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: Implications in lipid metabolic disorders. Genes Dis 2022; 9:51-61. [PMID: 35005107 PMCID: PMC8720706 DOI: 10.1016/j.gendis.2021.01.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
The goal this review is to clarify the effects of the fat mass and obesity-associated protein (FTO) in lipid metabolism regulation and related underlying mechanisms through the FTO-mediated demethylation of m6A modification. FTO catalyzes the demethylation of m6A to alter the processing, maturation and translation of the mRNAs of lipid-related genes. FTO overexpression in the liver promotes lipogenesis and lipid droplet (LD) enlargement and suppresses CPT-1–mediated fatty acid oxidation via the SREBP1c pathway, promoting excessive lipid storage and nonalcoholic fatty liver diseases (NAFLD). FTO enhances preadipocyte differentiation through the C/EBPβ pathway, and facilitates adipogenesis and fat deposition by altering the alternative splicing of RUNX1T1, the expression of PPARγ and ANGPTL4, and the phosphorylation of PLIN1, whereas it inhibits lipolysis by inhibiting IRX3 expression and the leptin pathway, causing the occurrence and development of obesity. Suppression of the PPARβ/δ and AMPK pathways by FTO-mediated m6A demethylation damages lipid utilization in skeletal muscles, leading to the occurrence of diabetic hyperlipidemia. m6A demethylation by FTO inhibits macrophage lipid influx by downregulating PPARγ protein expression and accelerates cholesterol efflux by phosphorylating AMPK, thereby impeding foam cell formation and atherosclerosis development. In summary, FTO-mediated m6A demethylation modulates the expression of lipid-related genes to regulate lipid metabolism and lipid disorder diseases.
Collapse
Affiliation(s)
- Zhou Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Guang-Li Yu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| | - Tian-Hong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Yun-Cheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, PR China
| |
Collapse
|
20
|
Xia J, Yu P, Zeng Z, Ma M, Yan X, Zhao J, Gong D, Zhang G, Wang J. Medium chain triglycerides improve lipid metabolism in obese rats by increasing the browning of adipose tissue through the sympathetic regulation. Food Funct 2022; 13:8068-8080. [DOI: 10.1039/d2fo00239f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to determine the mechanism of medium chain triglyceride (MCT) promoting the browning of adipose tissue. High fat diet was fed to the Sprague-Dawley rats to induce obesity,...
Collapse
|
21
|
Nicotine Improves Survivability, Hypotension, and Impaired Adenosinergic Renal Vasodilations in Endotoxic Rats: Role of α7-nAChRs/HO-1 Pathway. Shock 2021; 53:503-513. [PMID: 31135706 DOI: 10.1097/shk.0000000000001384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nicotinic/cholinergic antiinflammatory pathway protects against acute kidney injury and other end-organ damages induced by endotoxemia. In this study, we tested the hypothesis that functional α7-nAChRs/heme oxygenase-1 (HO-1) pathway is imperative for the nicotine counteraction of hemodynamic and renovascular dysfunction caused by acute endotoxemia in rats. Renal vasodilations were induced by cumulative bolus injections of acetylcholine (ACh, 0.01 nmol-7.29 nmol) or ethylcarboxamidoadenosine (NECA, adenosine receptor agonist, 1.6 nmol-100 nmol) in isolated phenylephrine-preconstricted perfused kidneys. The data showed that 6-h treatment with lipopolysaccharide (LPS, 5 mg/kg i.p.) decreased systolic blood pressure and renal vasodilations caused by NECA but not Ach. The endotoxic insult also increased the mortality rate and elevated serum urea and creatinine. These LPS effects were sex-unrelated, except hypotension, and enhanced mortality which were more evident in male rodents, and abrogated after co-administration of nicotine (0.5, 1 mg/kg and 2 mg/kg) in a dose-dependent fashion. The advantageous effects of nicotine on NECA vasodilations, survivability, and kidney biomarkers in endotoxic male rats disappeared upon concurrent exposure to methyllycaconitine citrate (α7-nAChR blocker) or zinc protoporphyrin (HO-1 inhibitor) and were reproduced after treatment with bilirubin, but not hemin (HO-1 inducer) or tricarbonyldichlororuthenium (II) dimer (carbon monoxide-releasing molecule). Together, current biochemical and pharmacological evidence suggests key roles for α7-nAChRs and the bilirubin byproduct of the HO-1 signaling in the nicotine counteraction of renal dysfunction and reduced adenosinergic renal vasodilator capacity in endotoxic rats.
Collapse
|
22
|
van der Vaart JI, Boon MR, Houtkooper RH. The Role of AMPK Signaling in Brown Adipose Tissue Activation. Cells 2021; 10:cells10051122. [PMID: 34066631 PMCID: PMC8148517 DOI: 10.3390/cells10051122] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is becoming a pandemic, and its prevalence is still increasing. Considering that obesity increases the risk of developing cardiometabolic diseases, research efforts are focusing on new ways to combat obesity. Brown adipose tissue (BAT) has emerged as a possible target to achieve this for its functional role in energy expenditure by means of increasing thermogenesis. An important metabolic sensor and regulator of whole-body energy balance is AMP-activated protein kinase (AMPK), and its role in energy metabolism is evident. This review highlights the mechanisms of BAT activation and investigates how AMPK can be used as a target for BAT activation. We review compounds and other factors that are able to activate AMPK and further discuss the therapeutic use of AMPK in BAT activation. Extensive research shows that AMPK can be activated by a number of different kinases, such as LKB1, CaMKK, but also small molecules, hormones, and metabolic stresses. AMPK is able to activate BAT by inducing adipogenesis, maintaining mitochondrial homeostasis and inducing browning in white adipose tissue. We conclude that, despite encouraging results, many uncertainties should be clarified before AMPK can be posed as a target for anti-obesity treatment via BAT activation.
Collapse
Affiliation(s)
- Jamie I. van der Vaart
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Mariëtte R. Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Leiden University Medical Center, Einthoven Laboratory for Experimental Vascular Medicine, 2333 ZA Leiden, The Netherlands
- Correspondence: (M.R.B.); (R.H.H.)
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: (M.R.B.); (R.H.H.)
| |
Collapse
|
23
|
Seoane-Collazo P, Romero-Picó A, Rial-Pensado E, Liñares-Pose L, Estévez-Salguero Á, Fernø J, Nogueiras R, Diéguez C, López M. κ-Opioid Signaling in the Lateral Hypothalamic Area Modulates Nicotine-Induced Negative Energy Balance. Int J Mol Sci 2021; 22:ijms22041515. [PMID: 33546289 PMCID: PMC7913331 DOI: 10.3390/ijms22041515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Several studies have reported that nicotine, the main bioactive component of tobacco, exerts a marked negative energy balance. Apart from its anorectic action, nicotine also modulates energy expenditure, by regulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. These effects are mainly controlled at the central level by modulation of hypothalamic neuropeptide systems and energy sensors, such as AMP-activated protein kinase (AMPK). In this study, we aimed to investigate the kappa opioid receptor (κOR)/dynorphin signaling in the modulation of nicotine’s effects on energy balance. We found that body weight loss after nicotine treatment is associated with a down-regulation of the κOR endogenous ligand dynorphin precursor and with a marked reduction in κOR signaling and the p70 S6 kinase/ribosomal protein S6 (S6K/rpS6) pathway in the lateral hypothalamic area (LHA). The inhibition of these pathways by nicotine was completely blunted in κOR deficient mice, after central pharmacological blockade of κOR, and in rodents where κOR was genetically knocked down specifically in the LHA. Moreover, κOR-mediated nicotine effects on body weight do not depend on orexin. These data unravel a new central regulatory pathway modulating nicotine’s effects on energy balance.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (P.S.-C.); (M.L.)
| | - Amparo Romero-Picó
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Eva Rial-Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Ánxela Estévez-Salguero
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (A.R.-P.); (E.R.-P.); (L.L.-P.); (Á.E.-S.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
- Correspondence: (P.S.-C.); (M.L.)
| |
Collapse
|
24
|
Dragano NRV, Fernø J, Diéguez C, López M, Milbank E. Reprint of: Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020; 447:191-215. [PMID: 33046217 DOI: 10.1016/j.neuroscience.2020.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
25
|
Zheng CM, Lee YH, Chiu IJ, Chiu YJ, Sung LC, Hsu YH, Chiu HW. Nicotine Causes Nephrotoxicity through the Induction of NLRP6 Inflammasome and Alpha7 Nicotinic Acetylcholine Receptor. TOXICS 2020; 8:toxics8040092. [PMID: 33114531 PMCID: PMC7711477 DOI: 10.3390/toxics8040092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Current cigarette smoking is associated with chronic kidney disease (CKD) or death from end-stage renal disease (ESRD). Mainstream cigarette smoke includes over 4000 compounds. Among the compounds present in tobacco smoke, nicotine is one of a large number of biologically stable and active compounds present in tobacco. However, the mechanisms by which nicotine exacerbates kidney disease progression have not been identified. It is known that the inflammasomes constitute an important innate immune pathway and contribute to the pathophysiology of diverse kidney diseases. The relationship between inflammasomes and nicotine-induced kidney damage still remains unclear. In the present study, we studied the mechanisms of nicotine-induced nephrotoxicity. We found that nicotine decreased cell viability and induced reactive oxygen species (ROS) generation in human kidney cells. Furthermore, nicotine significantly increased the expression of the alpha7 nicotinic acetylcholine receptor (α7nAChR). Nicotine activated the NLRP6 inflammasome and induced endoplasmic reticulum (ER) stress. Nicotine caused mild apoptosis and necrosis but triggered significant autophagy in human kidney cells. In addition, nicotine induced the NLRP6 inflammasome and autophagy via α7nAChR. In an animal model, the histological analysis in kidney showed evident changes and injury. The results indicated that α7nAChR, IRE1α, LC3 and NLRP6 expression in kidney sections was markedly increased in the nicotine groups. These findings suggest that nicotine causes kidney damage by modulating α7nAChR, NLRP6 inflammasome, ER stress and autophagy.
Collapse
Affiliation(s)
- Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (I.-J.C.); (Y.-J.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 40604, Taiwan;
| | - I-Jen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (I.-J.C.); (Y.-J.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Jhe Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (I.-J.C.); (Y.-J.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (I.-J.C.); (Y.-J.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-H.H.); (H.-W.C.); Tel.: +886-2-22490088 (ext. 8156) (Y.-H.H.); +886-2-22490088 (ext. 8884) (H.-W.C.)
| | - Hui-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (I.-J.C.); (Y.-J.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (Y.-H.H.); (H.-W.C.); Tel.: +886-2-22490088 (ext. 8156) (Y.-H.H.); +886-2-22490088 (ext. 8884) (H.-W.C.)
| |
Collapse
|
26
|
Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2020; 219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Obesity has reached pandemic proportions and is associated with severe comorbidities, such as type 2 diabetes mellitus, hepatic and cardiovascular diseases, and certain cancer types. However, the therapeutic options to treat obesity are limited. Extensive epidemiological studies have shown a strong relationship between smoking and body weight, with non-smokers weighing more than smokers at any age. Increased body weight after smoking cessation is a major factor that interferes with their attempts to quit smoking. Numerous controlled studies in both humans and rodents have reported that nicotine, the main bioactive component of tobacco, exerts a marked anorectic action. Furthermore, nicotine is also known to modulate energy expenditure, by regulating the thermogenic activity of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT), as well as glucose homeostasis. Many of these actions occur at central level, by controlling the activity of hypothalamic neuropeptide systems such as proopiomelanocortin (POMC), or energy sensors such as AMP-activated protein kinase (AMPK). However, direct impact of nicotine on metabolic tissues, such as BAT, WAT, liver and pancreas has also been described. Here, we review the actions of nicotine on energy balance. The relevance of this interaction is interesting, because considering the restricted efficiency of obesity treatments, a possible complementary approach may focus on compounds with known pharmacokinetic profile and pharmacological actions, such as nicotine or nicotinic acetylcholine receptors signaling.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine and Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
27
|
Dragano NRV, Fernø J, Diéguez C, López M, Milbank E. Recent Updates on Obesity Treatments: Available Drugs and Future Directions. Neuroscience 2020; 437:215-239. [PMID: 32360593 DOI: 10.1016/j.neuroscience.2020.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
In the last thirty years, obesity has reached epidemic proportions and is now regarded as a major health issue in contemporary society trending to serious economic and social burdens. The latest projections of the World Health Organization are alarming. By 2030, nearly 60% of the worldwide population could be either obese or overweight, highlighting the needs to find innovative treatments. Currently, bariatric surgery is the most effective way to efficiently lower body mass. Although great improvements in terms of recovery and patient care were made in these surgical procedures, bariatric surgery remains an option for extreme forms of obesity and seems unable to tackle obesity pandemic expansion. Throughout the last century, numerous pharmacological strategies targeting either peripheral or central components of the energy balance regulatory system were designed to reduce body mass, some of them reaching sufficient levels of efficiency and safety. Nevertheless, obesity drug therapy remains quite limited on its effectiveness to actually overcome the obesogenic environment. Thus, innovative unimolecular polypharmacology strategies, able to simultaneously target multiple actors involved in the obesity initiation and expansion, were developed during the last ten years opening a new promising avenue in the pharmacological management of obesity. In this review, we first describe the clinical features of obesity-associated conditions and then focus on the outcomes of currently approved drug therapies for obesity as well as new ones expecting to reach the clinic in the near future.
Collapse
Affiliation(s)
- Nathalia R V Dragano
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
28
|
Chen KY, Brychta RJ, Abdul Sater Z, Cassimatis TM, Cero C, Fletcher LA, Israni NS, Johnson JW, Lea HJ, Linderman JD, O'Mara AE, Zhu KY, Cypess AM. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J Biol Chem 2019; 295:1926-1942. [PMID: 31914415 DOI: 10.1074/jbc.rev119.007363] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The current obesity pandemic results from a physiological imbalance in which energy intake chronically exceeds energy expenditure (EE), and prevention and treatment strategies remain generally ineffective. Approaches designed to increase EE have been informed by decades of experiments in rodent models designed to stimulate adaptive thermogenesis, a long-term increase in metabolism, primarily induced by chronic cold exposure. At the cellular level, thermogenesis is achieved through increased rates of futile cycling, which are observed in several systems, most notably the regulated uncoupling of oxidative phosphorylation from ATP generation by uncoupling protein 1, a tissue-specific protein present in mitochondria of brown adipose tissue (BAT). Physiological activation of BAT and other organ thermogenesis occurs through β-adrenergic receptors (AR), and considerable effort over the past 5 decades has been directed toward developing AR agonists capable of safely achieving a net negative energy balance while avoiding unwanted cardiovascular side effects. Recent discoveries of other BAT futile cycles based on creatine and succinate have provided additional targets. Complicating the current and developing pharmacological-, cold-, and exercise-based methods to increase EE is the emerging evidence for strong physiological drives toward restoring lost weight over the long term. Future studies will need to address technical challenges such as how to accurately measure individual tissue thermogenesis in humans; how to safely activate BAT and other organ thermogenesis; and how to sustain a negative energy balance over many years of treatment.
Collapse
Affiliation(s)
- Kong Y Chen
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Zahraa Abdul Sater
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas M Cassimatis
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Laura A Fletcher
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Nikita S Israni
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - James W Johnson
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Hannah J Lea
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Joyce D Linderman
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Alana E O'Mara
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth Y Zhu
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
29
|
González-García I, Milbank E, Martinez-Ordoñez A, Diéguez C, López M, Contreras C. HYPOTHesizing about central comBAT against obesity. J Physiol Biochem 2019; 76:193-211. [PMID: 31845114 DOI: 10.1007/s13105-019-00719-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamus is a brain region in charge of many vital functions. Among them, BAT thermogenesis represents an essential physiological function to maintain body temperature. In the metabolic context, it has now been established that energy expenditure attributed to BAT function can contribute to the energy balance in a substantial extent. Thus, therapeutic interest in this regard has increased in the last years and some studies have shown that BAT function in humans can make a real contribution to improve diabetes and obesity-associated diseases. Nevertheless, how the hypothalamus controls BAT activity is still not fully understood. Despite the fact that much has been known about the mechanisms that regulate BAT activity in recent years, and that the central regulation of thermogenesis offers a very promising target, many questions remain still unsolved. Among them, the possible human application of knowledge obtained from rodent studies, and drug administration strategies able to specifically target the hypothalamus. Here, we review the current knowledge of homeostatic regulation of BAT, including the molecular insights of brown adipocytes, its central control, and its implication in the development of obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Anxo Martinez-Ordoñez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
| | - Carlos Diéguez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Miguel López
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
30
|
Sodium acetate protects against nicotine-induced excess hepatic lipid in male rats by suppressing xanthine oxidase activity. Chem Biol Interact 2019; 316:108929. [PMID: 31857090 DOI: 10.1016/j.cbi.2019.108929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/11/2019] [Accepted: 12/15/2019] [Indexed: 12/18/2022]
Abstract
Fatty liver is the hepatic consequence of chronic insulin resistance (IR) and related syndromes. It is mostly accompanied by inflammatory and oxidative molecules. Increased activity of xanthine oxidase (XO) exerts both inflammatory and oxidative effects and has been implicated in metabolic derangements including non-alcoholic fatty liver disease. Short chain fatty acids (SCFAs) elicit beneficial metabolic alterations in IR and related syndromes. In the present study, we evaluated the preventive effects of a SCFA, acetate, on nicotine-induced dysmetabolism and fatty liver. Twenty-four male Wistar rats (n = 6/group): vehicle-treatment (p.o.), nicotine-treated (1.0 mg/kg; p.o.), sodium acetate-treated (200 mg/kg; p.o.) and nicotine + sodium acetate-treated groups. The treatments lasted for 8 weeks. IR was estimated by oral glucose tolerance test and homeostatic model assessment of IR. Plasma and hepatic free fatty acid, triglyceride (TG), glutathione peroxidase, adenosine deaminase (ADA), XO and uric acid (UA) were measured. Nicotine exposure resulted in reduced body weight, liver weight, visceral adiposity, glycogen content and glycogen synthase activity. Conversely, exposure to nicotine increased fasting plasma glucose, lactate, IR, plasma and hepatic TG, free fatty acid, TG/HDL-cholesterol ratio, lipid peroxidation, liver function enzymes, plasma and hepatic UA, XO and ADA activities. However, plasma and hepatic glucose-6-phosphate dehydrogenase-dependent antioxidant defense was not affected by nicotine. Concomitant treatment with acetate ameliorated nicotine-induced effects. Taken together, these results indicate that nicotine exposure leads to excess deposition of lipid in the liver by enhancing XO activity. The results also imply that acetate confers hepatoprotection and is accompanied by decreased XO activity.
Collapse
|
31
|
Xing R, Cheng X, Qi Y, Tian X, Yan C, Liu D, Han Y. Low-dose nicotine promotes autophagy of cardiomyocytes by upregulating HO-1 expression. Biochem Biophys Res Commun 2019; 522:1015-1021. [PMID: 31813548 DOI: 10.1016/j.bbrc.2019.11.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/14/2019] [Indexed: 12/16/2022]
Abstract
Nicotine as a major component of addiction in cigarettes has been reported to play protective roles in some pathological processes. It is reported that activation of the nicotinic acetylcholine receptor also has a cardioprotective effect. Thus, in our study, we investigated the effect and mechanism of nicotine on the autophagy of cardiomyocytes, and whether nicotine protects cardiomyocytes against palmitic acid (PA) injury. The results indicated that low-dose nicotine promoted neonatal mouse cardiac myocytes (NMCMs) autophagy and accelerated autophagic flux while inhibiting NMCMs apoptosis, but high-dose nicotine inhibited autophagy and promoted apoptosis. Moreover, low-dose nicotine upregulated heme oxygenase-1 (HO-1) expression and knocking down HO-1 abolished the effects of nicotine on the autophagy and apoptosis of NMCMs. Methyllycaconitine citrate (α7-nAChR blocker, MLA) inhibited HO-1 expression and the effects of nicotine on autophagy and apoptosis of NMCMs. Furthermore, low-dose nicotine improved the inhibited autophagy and increased apoptosis induced by palmitic acid (PA) in NMCMs and these effects were reversed by knocking down HO-1. In conclusion, our data suggested that low-dose nicotine promoted autophagy and inhibited apoptosis of cardiomyocytes by upregulating HO-1.
Collapse
Affiliation(s)
- Ruinan Xing
- Second Clinical College of Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Xiaoli Cheng
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Yanping Qi
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China.
| | - Yaling Han
- Second Clinical College of Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
32
|
Central nicotine induces browning through hypothalamic κ opioid receptor. Nat Commun 2019; 10:4037. [PMID: 31492869 PMCID: PMC6731305 DOI: 10.1038/s41467-019-12004-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Increased body weight is a major factor that interferes with smoking cessation. Nicotine, the main bioactive compound in tobacco, has been demonstrated to have an impact on energy balance, since it affects both feeding and energy expenditure at the central level. Among the central actions of nicotine on body weight, much attention has been focused on its effect on brown adipose tissue (BAT) thermogenesis, though its effect on browning of white adipose tissue (WAT) is unclear. Here, we show that nicotine induces the browning of WAT through a central mechanism and that this effect is dependent on the κ opioid receptor (KOR), specifically in the lateral hypothalamic area (LHA). Consistent with these findings, smokers show higher levels of uncoupling protein 1 (UCP1) expression in WAT, which correlates with smoking status. These data demonstrate that central nicotine-induced modulation of WAT browning may be a target against human obesity. Nicotine reduces food intake and increases energy expenditure in brown adipose tissue. Here the authors show that nicotine also induces white adipose tissue browning via central kappa opioid receptor action.
Collapse
|
33
|
He L, Tian X, Yan C, Liu D, Wang S, Han Y. Nicotine promotes the differentiation of C2C12 myoblasts and improves skeletal muscle regeneration in obese mice. Biochem Biophys Res Commun 2019; 511:739-745. [DOI: 10.1016/j.bbrc.2019.02.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/04/2023]
|
34
|
Milbank E, López M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:830. [PMID: 31920958 PMCID: PMC6918865 DOI: 10.3389/fendo.2019.00830] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Originally described to be involved in feeding regulation, orexins/hypocretins are now also considered as major regulatory actors of numerous biological processes, such as pain, sleep, cardiovascular function, neuroendocrine regulation, and energy expenditure. Therefore, they constitute one of the most pleiotropic families of hypothalamic neuropeptides. Although their orexigenic effect is well documented, orexins/hypocretins also exert central effects on energy expenditure, notably on the brown adipose tissue (BAT) thermogenesis. A better comprehension of the underlying mechanisms and potential interactions with other hypothalamic molecular pathways involved in the modulation of food intake and thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, is essential to determine the exact implication and pathophysiological relevance of orexins/hypocretins on the control of energy balance. Here, we will review the actions of orexins on energy balance, with special focus on feeding and brown fat function.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- *Correspondence: Edward Milbank
| | - Miguel López
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Miguel López
| |
Collapse
|
35
|
Inhibition of endoplasmic reticulum stress in high-fat-diet-induced obese C57BL/6 mice: Efficacy of a novel extract from mulberry ( Morus alba) leaves fermented with Cordyceps militaris. Lab Anim Res 2018; 34:288-294. [PMID: 30671117 PMCID: PMC6333616 DOI: 10.5625/lar.2018.34.4.288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 12/22/2022] Open
Abstract
A few clues about correlation between endoplasmic reticulum (ER) stress and mulberry (Morus alba) leaves were investigated in only the experimental autoimmune myocarditis and streptozotocin-induced diabetes. To investigate whether a novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) could suppress ER in fatty liver, alterations in the key parameters for ER stress response were measured in high fat diet (HFD)-induced obese C57L/6 mice treated with EMfC for 12 weeks. The area of adipocytes in the liver section were significantly decreased in the HFD+EMfC treated group as compared to the HFD+Vehicle treated group, while their level was higher in HFD+Vehicle treated group than No treated group. The level of the eukaryotic initiation factor 2 alpha (eIF2α) and inositol-requiring enzyme 1 beta (IRE1α) phosphorylation and CCAAT-enhancer-binding protein homologous protein (CHOP) expression were remarkably enhanced in the HFD+Vehicle treated group. However, their levels were restored in the HFD+EMfC treated group, although some differences were detected in the decrease rate. Similar recovery was observed on the ER stress-induced apoptosis. The level of Caspase-3, Bcl-2 and Bax were decreased in the HFD+EMfC and HFD+orlistat (OT) treated group compared to the HFD+Vehicle treated group. The results of the present study therefore provide first evidence that EMfC with the anti-obesity effects can be suppressed ER stress and ER stress-induced apoptosis in the hepatic steatosis of HFD-induced obesity model.
Collapse
|
36
|
de Araujo TM, Razolli DS, Correa-da-Silva F, de Lima-Junior JC, Gaspar RS, Sidarta-Oliveira D, Victorio SC, Donato J, Kim YB, Velloso LA. The partial inhibition of hypothalamic IRX3 exacerbates obesity. EBioMedicine 2018; 39:448-460. [PMID: 30522931 PMCID: PMC6354701 DOI: 10.1016/j.ebiom.2018.11.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/01/2022] Open
Abstract
Background The Iroquois homeobox 3 (Irx3) gene has been identified as a functional long-range target of obesity-associated variants within the fat mass and obesity-associated protein (FTO) gene. It is highly expressed in the hypothalamus, and both whole-body knockout and hypothalamic restricted abrogation of its expression results in a lean phenotype, which is mostly explained by the resulting increased energy expenditure in the brown adipose tissue. Because of its potential implication in the pathogenesis of obesity, we evaluated the hypothalamic cell distribution of Irx3 and the outcomes of inhibiting its expression in a rodent model of diet-induced obesity. Methods Bioinformatics tools were used to evaluate the correlations between hypothalamic Irx3 and neurotransmitters, markers of thermogenesis and obesity related phenotypes. Droplet-sequencing analysis in >20,000 hypothalamic cells was used to explore the types of hypothalamic cells expressing Irx3. Lentivirus was used to inhibit hypothalamic Irx3 and the resulting phenotype was studied. Findings IRX3 is expressed predominantly in POMC neurons. Its expression is inhibited during prolonged fasting, as well as when mice are fed a high-fat diet. The partial inhibition of hypothalamic Irx3 using a lentivirus resulted in increased diet-induced body mass gain and adiposity due to increased caloric intake and reduced energy expenditure. Interpretation Contrary to the results obtained when lean mice are submitted to complete inhibition of Irx3, partial inhibition of hypothalamic Irx3 in obese mice causes an exacerbation of the obese phenotype. These data suggest that at least some of the Irx3 functions in the hypothalamus are regulated according to a hormetic pattern, and modulation of its expression can be a novel approach to modifying the body's energy-handling regulation. Fund Sao Paulo Research Foundation grants 2013/07607-8 (LAV) and 2017/02983-2 (JDJ); NIH grants R01DK083567 (YBK).
Collapse
Affiliation(s)
- Thiago Matos de Araujo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil; Divison of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Daniela S Razolli
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Felipe Correa-da-Silva
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Jose C de Lima-Junior
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Rodrigo S Gaspar
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Sheila C Victorio
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Young-Bum Kim
- Divison of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, State University of Campinas (UNICAMP), Brazil.
| |
Collapse
|
37
|
Seoane-Collazo P, Roa J, Rial-Pensado E, Liñares-Pose L, Beiroa D, Ruíz-Pino F, López-González T, Morgan DA, Pardavila JÁ, Sánchez-Tapia MJ, Martínez-Sánchez N, Contreras C, Fidalgo M, Diéguez C, Coppari R, Rahmouni K, Nogueiras R, Tena-Sempere M, López M. SF1-Specific AMPKα1 Deletion Protects Against Diet-Induced Obesity. Diabetes 2018; 67:2213-2226. [PMID: 30104247 PMCID: PMC6198345 DOI: 10.2337/db17-1538] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
AMPK is a cellular gauge that is activated under conditions of low energy, increasing energy production and reducing energy waste. Current evidence links hypothalamic AMPK with the central regulation of energy balance. However, it is unclear whether targeting hypothalamic AMPK has beneficial effects in obesity. Here, we show that genetic inhibition of AMPK in the ventromedial nucleus of the hypothalamus (VMH) protects against high-fat diet (HFD)-induced obesity by increasing brown adipose tissue (BAT) thermogenesis and subsequently energy expenditure. Notably, this effect depends upon the AMPKα1 isoform in steroidogenic factor 1 (SF1) neurons of the VMH, since mice bearing selective ablation of AMPKα1 in SF1 neurons display resistance to diet-induced obesity, increased BAT thermogenesis, browning of white adipose tissue, and improved glucose and lipid homeostasis. Overall, our findings point to hypothalamic AMPK in specific neuronal populations as a potential druggable target for the treatment of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Juan Roa
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eva Rial-Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Daniel Beiroa
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Francisco Ruíz-Pino
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Tania López-González
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA
| | - José Ángel Pardavila
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - María Jesús Sánchez-Tapia
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Noelia Martínez-Sánchez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel Fidalgo
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba, Spain
- FiDiPro Program, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| |
Collapse
|
38
|
González-García I, Contreras C, Estévez-Salguero Á, Ruíz-Pino F, Colsh B, Pensado I, Liñares-Pose L, Rial-Pensado E, Martínez de Morentin PB, Fernø J, Diéguez C, Nogueiras R, Le Stunff H, Magnan C, Tena-Sempere M, López M. Estradiol Regulates Energy Balance by Ameliorating Hypothalamic Ceramide-Induced ER Stress. Cell Rep 2018; 25:413-423.e5. [PMID: 30304681 PMCID: PMC6198289 DOI: 10.1016/j.celrep.2018.09.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence has shown that, besides its putative effect on the regulation of the gonadal axis, estradiol (E2) exerts a dichotomic effect on the hypothalamus to regulate food intake and energy expenditure. The anorectic effect of E2 is mainly mediated by its action on the arcuate nucleus (ARC), whereas its effects on brown adipose tissue (BAT) thermogenesis occur in the ventromedial nucleus (VMH). Here, we demonstrate that central E2 decreases hypothalamic ceramide levels and endoplasmic reticulum (ER) stress. Pharmacological or genetic blockade of ceramide synthesis and amelioration of ER stress selectively occurring in the VMH recapitulate the effect of E2, leading to increased BAT thermogenesis, weight loss, and metabolic improvement. These findings demonstrate that E2 regulation of ceramide-induced hypothalamic lipotoxicity and ER stress is an important determinant of energy balance, suggesting that dysregulation of this mechanism may underlie some changes in energy homeostasis seen in females.
Collapse
Affiliation(s)
- Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Cristina Contreras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Ánxela Estévez-Salguero
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Francisco Ruíz-Pino
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, 14004, Spain
| | - Benoit Colsh
- CEA-Centre d'Etude de Saclay, Laboratoire d'étude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Iván Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Eva Rial-Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Pablo B Martínez de Morentin
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, 5021, Norway
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Hervé Le Stunff
- Paris-Saclay Institute of Neuroscience, CNRS UMR 9197, Université Paris-Sud, University Paris Saclay, Orsay 91405 Cedex, France; Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75205, France
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, 14004, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, 14004, Spain; FiDiPro Program, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
39
|
Abstract
AMP-activated protein kinase (AMPK) is the main cellular energy sensor. Activated following a depletion of cellular energy stores, AMPK will restore the energy homoeostasis by increasing energy production and limiting energy waste. At a central level, the AMPK pathway will integrate peripheral signals (mostly hormones and metabolites) through neuronal networks. Hypothalamic AMPK is directly implicated in feeding behaviour, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). It also participates in other metabolic functions: glucose and muscle metabolisms, as well as hepatic function. Numerous anti-obesity and/or antidiabetic agents, such as nicotine, metformin and liraglutide, are known to induce their effects through a modulation of AMPK pathway, either at central or at peripheral levels. Moreover, the weight-gaining side effects of antipsychotic drugs, such as olanzapine, are also mediated by hypothalamic AMPK. Therefore, considering hypothalamic AMPK as a therapeutic target in metabolic diseases appears as an interesting strategy due to its implication in feeding and energy expenditure, the two sides of the energy balance equation.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| |
Collapse
|
40
|
Genetic Targeting of GRP78 in the VMH Improves Obesity Independently of Food Intake. Genes (Basel) 2018; 9:genes9070357. [PMID: 30018241 PMCID: PMC6070933 DOI: 10.3390/genes9070357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Recent data have demonstrated that the hypothalamic GRP78/BiP (glucose regulated protein 78 kDa/binding immunoglobulin protein) modulates brown adipose tissue (BAT) thermogenesis by acting downstream on AMP-activated protein kinase (AMPK). Herein, we aimed to investigate whether genetic over-expression of GRP78 in the ventromedial nucleus of the hypothalamus (VMH: a key site regulating thermogenesis) could ameliorate very high fat diet (vHFD)-induced obesity. Our data showed that stereotaxic treatment with adenoviruses harboring GRP78 in the VMH reduced hypothalamic endoplasmic reticulum ER stress and reversed vHFD-induced obesity. Herein, we also demonstrated that this body weight decrease was more likely associated with an increased BAT thermogenesis and browning of white adipose tissue (WAT) than to anorexia. Overall, these results indicate that the modulation of GRP78 in the VMH may be a target against obesity.
Collapse
|
41
|
Ye Z, Liu G, Guo J, Su Z. Hypothalamic endoplasmic reticulum stress as a key mediator of obesity-induced leptin resistance. Obes Rev 2018. [PMID: 29514392 DOI: 10.1111/obr.12673] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is an epidemic disease that is increasing worldwide and is a major risk factor for many metabolic diseases. However, effective agents for the prevention or treatment of obesity remain limited. Therefore, it is urgent to clarify the pathophysiological mechanisms underlying the development and progression of obesity and exploit potential agents to cure and prevent this disease. According to a recent study series, obesity is associated with the development of endoplasmic reticulum stress and the activation of its stress responses (unfolded protein response) in metabolically active tissues, which contribute to the development of obesity-related insulin and leptin resistance, inflammation and energy imbalance. Hypothalamic endoplasmic reticulum stress is the central mechanism underlying the development of obesity-associated leptin resistance and disruption of energy homeostasis; thus, targeting endoplasmic reticulum stress offers a promising therapeutic strategy for improving leptin sensitivity, increasing energy expenditure and ultimately combating obesity. In this review, we highlight the relationship between and mechanism underlying hypothalamic endoplasmic reticulum stress and obesity-associated leptin resistance and energy imbalance and provide new insight regarding strategies for the treatment of obesity.
Collapse
Affiliation(s)
- Z Ye
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - G Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - J Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Z Su
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
42
|
Xu Y, López M. Central regulation of energy metabolism by estrogens. Mol Metab 2018; 15:104-115. [PMID: 29886181 PMCID: PMC6066788 DOI: 10.1016/j.molmet.2018.05.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Estrogenic actions in the brain prevent obesity. Better understanding of the underlying mechanisms may facilitate development of new obesity therapies. SCOPE OF REVIEW This review focuses on the critical brain regions that mediate effects of estrogens on food intake and/or energy expenditure, the molecular signals that are involved, and the functional interactions between brain estrogens and other signals modulating metabolism. Body weight regulation by estrogens in male brains will also be discussed. MAJOR CONCLUSIONS 17β-estradiol acts in the brain to regulate energy homeostasis in both sexes. It can inhibit feeding and stimulate brown adipose tissue thermogenesis. A better understanding of the central actions of 17β-estradiol on energy balance would provide new insight for the development of therapies against obesity in both sexes.
Collapse
Affiliation(s)
- Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
43
|
Rupprecht LE, Kreisler AD, Spierling SR, de Guglielmo G, Kallupi M, George O, Donny EC, Zorrilla EP, Sved AF. Self-administered nicotine increases fat metabolism and suppresses weight gain in male rats. Psychopharmacology (Berl) 2018; 235:1131-1140. [PMID: 29354872 PMCID: PMC8162771 DOI: 10.1007/s00213-018-4830-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
Abstract
RATIONALE The ability of nicotine to suppress body weight is cited as a factor impacting smoking initiation and the failure to quit. Self-administered nicotine in male rats suppresses weight independent of food intake, suggesting that nicotine increases energy expenditure. OBJECTIVE The current experiment evaluated the impact of self-administered nicotine on metabolism in rats using indirect calorimetry and body composition analysis. METHODS Adult male rats with ad libitum access to powdered standard rodent chow self-administered intravenous infusions of nicotine (60 μg/kg/infusion or saline control) in daily 1-h sessions in the last hour of the light cycle. Indirect calorimetry measured respiratory exchange ratio (RER), energy expenditure, motor activity, and food and water consumption for 22.5 h between select self-administration sessions. RESULTS Self-administered nicotine suppressed weight gain and reduced the percent of body fat without altering the percent of lean mass, as measured by Echo MRI. Nicotine reduced RER, indicating increased fat utilization; this effect was observed prior to weight suppression. Moreover, nicotine intake did not affect motor activity or energy expenditure. Daily food intake was not altered by nicotine self-administration; however, a trend in suppression of meal size, a transient suppression of water intake, and an increase in meal frequency was observed. CONCLUSION These data provide evidence that self-administered nicotine suppresses body weight via increased fat metabolism, independent of significant changes in feeding, activity, or energy expenditure.
Collapse
Affiliation(s)
| | - Alison D. Kreisler
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Marsida Kallupi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Olivier George
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Eric C. Donny
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric P. Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Alan F. Sved
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Liu M, Chuang Key CC, Weckerle A, Boudyguina E, Sawyer JK, Gebre AK, Spoo W, Makwana O, Parks JS. Feeding of tobacco blend or nicotine induced weight loss associated with decreased adipocyte size and increased physical activity in male mice. Food Chem Toxicol 2018; 113:287-295. [PMID: 29421645 DOI: 10.1016/j.fct.2018.01.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
Although epidemiological data and results from rodent studies support an inverse relationship between nicotine consumption and body weight, the molecular mechanisms are poorly understood. CD-1 mice were fed a basal diet or a basal diet containing low or high dose smokeless tobacco blend or high dose nicotine tartrate for 14 weeks. High dose tobacco blend and nicotine tartrate diets vs. basal diet reduced mouse body weight (16.3% and 19.7%, respectively), epididymal (67.6% and 72.5%, respectively) and brown adipose weight (42% and 38%, respectively), epididymal adipocyte size (46.4% and 41.4%, respectively), and brown adipose tissue lipid droplet abundance, with no elevation of adipose tissue inflammation. High dose tobacco blend and nicotine diets also increased mouse physical activity and decreased respiratory exchange ratio, suggesting that high dose nicotine intake induces adipose tissue triglyceride lipolysis to provide fatty acids as an energy source. Both low and high dose tobacco blend and nicotine diet feeding vs. basal diet increased plasma insulin levels (2.9, 3.6 and 4.3-fold, respectively) and improved blood glucose disposal without affecting insulin sensitivity. Feeding of the high dose tobacco blend or nicotine feeding in mice induces body weight loss likely by increasing physical activity and stimulating adipose tissue triglyceride lipolysis.
Collapse
Affiliation(s)
- Mingxia Liu
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA.
| | - Chia-Chi Chuang Key
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Allison Weckerle
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Elena Boudyguina
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Janet K Sawyer
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Abraham K Gebre
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA
| | - Wayne Spoo
- RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, NC 27101, USA
| | - Om Makwana
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA; RAI Services Company, Scientific and Regulatory Affairs, Winston-Salem, NC 27101, USA
| | - John S Parks
- Departments of Internal Medicine, Section on Molecular Medicine, Winston-Salem, NC 27157, USA; Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
45
|
Li DJ, Liu J, Hua X, Fu H, Huang F, Fei YB, Lu WJ, Shen FM, Wang P. Nicotinic acetylcholine receptor α7 subunit improves energy homeostasis and inhibits inflammation in nonalcoholic fatty liver disease. Metabolism 2018; 79:52-63. [PMID: 29129819 DOI: 10.1016/j.metabol.2017.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide; yet, the pathogenesis of the disorder is not completely understood. The nicotinic acetylcholine receptor α7 subunit (α7nAChR) plays an indispensable role in the vagus nerve-regulated cholinergic anti-inflammatory pathway. METHODS In the present study, we investigated the key role of α7nAChR in NAFLD development. Male wild-type (WT) and α7nAChR knockout (α7nAChR-/-) mice were fed a normal chow or a high-fat diet (HFD) for 16weeks to induce NAFLD. RESULTS We found that both the mRNA and protein levels of α7nAChR in the liver tissue of NAFLD mice were significantly higher than those in mice fed normal chow. There were no differences in food intake, body weight, hepatic cholesterol and triglyceride contents, and insulin sensitivity between WT and α7nAChR-/- mice under normal condition. When the WT and α7nAChR-/- mice were challenged with HFD, the body weight of α7nAChR-/- mice became higher than that of WT mice. The oxygen consumption and energy expenditure in HFD-fed α7nAChR-/- mice were significantly lower than that in HFD-fed WT mice. The HFD-fed α7nAChR-/- mice also showed more aggravated hepatic lipid accumulation, steatosis and oxidative stress than HFD-fed WT mice. Macrophage infiltration; mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β; and liver fibrosis were significantly accelerated in HFD-fed α7nAChR-/- mice compared to that in HFD-fed WT mice. In addition, the bolus insulin injection-activated insulin signaling pathway, which was reflected by the phosphorylation of insulin receptor at Tyr1162/Tyr1163 site (p-IRTyr1162/Tyr1163), insulin receptor substrate-1 at Tyr612 site (p-IRS-1Tyr612) and Akt at Ser473 (p-AktSer473), was significantly compromised in liver tissues of HFD-fed α7nAChR-/- mice relative to HFD-fed WT mice. Finally, pharmacologically activation of α7nAChR in HFD-fed mice, with a selective agonist PNU-282987, remarkably ameliorated the hepatic steatosis, inflammatory cell infiltration and fibrosis. CONCLUSION In conclusion, our results demonstrate that activation of α7nAChR improves energy homeostasis and inhibits inflammation in nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Jian Liu
- Department of Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xia Hua
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hui Fu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Fang Huang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Yi-Bo Fei
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Jie Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China.
| | - Pei Wang
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
46
|
Hasan MK, Friedman TC, Sims C, Lee DL, Espinoza-Derout J, Ume A, Chalfant V, Lee ML, Sinha-Hikim I, Lutfy K, Liu Y, Mahata SK, Sinha-Hikim AP. α7-Nicotinic Acetylcholine Receptor Agonist Ameliorates Nicotine Plus High-Fat Diet-Induced Hepatic Steatosis in Male Mice by Inhibiting Oxidative Stress and Stimulating AMPK Signaling. Endocrinology 2018; 159:931-944. [PMID: 29272360 PMCID: PMC5776480 DOI: 10.1210/en.2017-00594] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
α7-Nicotinic acetylcholine receptor (α7nAChR) agonists confer protection against a wide variety of cytotoxic insults and suppress oxidative stress and apoptosis in various cell systems, including hepatocytes. We recently demonstrated that nicotine, when combined with a high-fat diet (HFD), triggers oxidative stress, activates hepatocyte apoptosis, and exacerbates HFD-induced hepatic steatosis in male mice. This study evaluates whether PNU-282987 (PNU), a specific α7nAChR agonist, is effective in preventing nicotine plus HFD-induced hepatic steatosis. Adult C57BL6 male mice were fed a normal chow diet or HFD with 60% of calories derived from fat and received twice-daily intraperitoneal injections of 0.75 mg/kg body weight (BW) of nicotine, PNU (0.26 mg/kg BW), PNU plus nicotine, or saline for 10 weeks. PNU treatment was effective in attenuating nicotine plus HFD-induced increase in hepatic triglyceride levels, hepatocyte apoptosis, and hepatic steatosis. The preventive effects of PNU on nicotine plus HFD-induced hepatic steatosis were mediated by suppression of oxidative stress and activation of adenosine 5'-monophosphate-activated protein kinase (AMPK) together with inhibition of its downstream target sterol regulatory element binding protein 1c (SREBP1c), fatty acid synthase (FAS), and acetyl-coenzyme A-carboxylase (ACC). We conclude that the α7nAChR agonist PNU protects against nicotine plus HFD-induced hepatic steatosis in obese mice. PNU appears to work at various steps of signaling pathways involving suppression of oxidative stress, activation of AMPK, and inhibition of SREBP1c, FAS, and ACC. α7nAChR agonists may be an effective therapeutic strategy for ameliorating fatty liver disease, especially in obese smokers.
Collapse
Affiliation(s)
- Mohammad Kamrul Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Carl Sims
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Desean L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Adaku Ume
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Victor Chalfant
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Martin L. Lee
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Indrani Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, California 91766
| | - Yanjun Liu
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
| | - Sushil K. Mahata
- Department of Medicine, University of California, San Diego, San Diego, California 92093
- VA San Diego Health Care System, San Diego, California 92161
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California 90059
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
47
|
Eder K, Siebers M, Most E, Scheibe S, Weissmann N, Gessner DK. An excess dietary vitamin E concentration does not influence Nrf2 signaling in the liver of rats fed either soybean oil or salmon oil. Nutr Metab (Lond) 2017; 14:71. [PMID: 29176993 PMCID: PMC5693465 DOI: 10.1186/s12986-017-0225-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Background Reactive oxygen species (ROS) are known to stimulate the activation of nuclear factor-erythroid 2-related factor-2 (Nrf2), the key regulator of the antioxidant and cytoprotective defense system in the body. The hypothesis underlying this study was that high dietary concentrations of vitamin E suppress Nrf2 activation, and thus could weaken the body’s antioxidative and cytoprotective capacity. As the effect of vitamin E on Nrf2 pathway might be influenced by concentrations of fatty acids susceptible to oxidation in the diet, we used also diets containing either soybean oil as a reference oil or salmon oil as a source of oil rich in n-3 polyunsatuated fatty acids. Methods Seventy-two rats were divided into 6 groups of rats which received diets with either 25, 250 or 2500 mg vitamin E/kg, with either soybean oil or salmon oil as dietary fat sources according to a bi-factorial experimental design. Electron spin resonance spectroscopy was used to determine ROS production in the liver. qPCR analysis and western blot were performed to examine the expression of Nrf2 target genes in the liver of rats. Results Rats fed the salmon oil diet with 25 mg vitamin E/kg showed a higher production of ROS in the liver than the 5 other groups of rats which did not differ in ROS production. Relative mRNA concentrations of NFE2L2 (encoding Nrf2), KEAP1 and various Nrf2 target genes, protein concentrations of glutathione peroxidase (GPX), heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1) and activities of the antioxidant enzymes GPX, superoxide dismutase and catalase were not influenced by the dietary vitamin E concentration. The dietary fat had also less effect on Nrf2 target genes and no effect on protein concentrations of GPX, HO-1, NQO1 and activities of antioxidant enzymes. Dietary vitamin E concentration and type of fat moreover had less effect on mRNA concentrations of genes and concentrations of proteins involved in the unfolded protein response, a pathway which is closely linked with activation of Nrf2. Conclusion We conclude that excess dietary concentrations of vitamin E do not suppress Nrf2 signaling, and thus do not weaken the endogenous antioxidant and cytoprotective capacity in the liver of rats.
Collapse
Affiliation(s)
- Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Marina Siebers
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Susan Scheibe
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-Universität Gießen, Aulweg 130, 35392 Gießen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-Universität Gießen, Aulweg 130, 35392 Gießen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
48
|
Cruciani-Guglielmacci C, López M, Campana M, le Stunff H. Brain Ceramide Metabolism in the Control of Energy Balance. Front Physiol 2017; 8:787. [PMID: 29075199 PMCID: PMC5643460 DOI: 10.3389/fphys.2017.00787] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/26/2017] [Indexed: 01/11/2023] Open
Abstract
The regulation of energy balance by the central nervous system (CNS) is a key actor of energy homeostasis in mammals, and deregulations of the fine mechanisms of nutrient sensing in the brain could lead to several metabolic diseases such as obesity and type 2 diabetes (T2D). Indeed, while neuronal activity primarily relies on glucose (lactate, pyruvate), the brain expresses at high level enzymes responsible for the transport, utilization and storage of lipids. It has been demonstrated that discrete neuronal networks in the hypothalamus have the ability to detect variation of circulating long chain fatty acids (FA) to regulate food intake and peripheral glucose metabolism. During a chronic lipid excess situation, this physiological lipid sensing is impaired contributing to type 2 diabetes in predisposed subjects. Recently, different studies suggested that ceramides levels could be involved in the regulation of energy balance in both hypothalamic and extra-hypothalamic areas. Moreover, under lipotoxic conditions, these ceramides could play a role in the dysregulation of glucose homeostasis. In this review we aimed at describing the potential role of ceramides metabolism in the brain in the physiological and pathophysiological control of energy balance.
Collapse
Affiliation(s)
- Céline Cruciani-Guglielmacci
- Unité de Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Miguel López
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mélanie Campana
- Unité de Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France
| | - Hervé le Stunff
- Unité de Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Paris Diderot, Université Sorbonne Paris Cité, Paris, France.,UMR9197 Institut des Neurosciences Paris Saclay (Neuro-PSI), Université Paris-Saclay, Saclay, France
| |
Collapse
|
49
|
Stojakovic A, Espinosa EP, Farhad OT, Lutfy K. Effects of nicotine on homeostatic and hedonic components of food intake. J Endocrinol 2017; 235:R13-R31. [PMID: 28814527 PMCID: PMC5578410 DOI: 10.1530/joe-17-0166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022]
Abstract
Chronic tobacco use leads to nicotine addiction that is characterized by exaggerated urges to use the drug despite the accompanying negative health and socioeconomic burdens. Interestingly, nicotine users are found to be leaner than the general population. Review of the existing literature revealed that nicotine affects energy homeostasis and food consumption via altering the activity of neurons containing orexigenic and anorexigenic peptides in the brain. Hypothalamus is one of the critical brain areas that regulates energy balance via the action of these neuropeptides. The equilibrium between these two groups of peptides can be shifted by nicotine leading to decreased food intake and weight loss. The aim of this article is to review the existing literature on the effect of nicotine on food intake and energy homeostasis and report on the changes that nicotine brings about in the level of these peptides and their receptors that may explain changes in food intake and body weight induced by nicotine. Furthermore, we review the effect of nicotine on the hedonic aspect of food intake. Finally, we discuss the involvement of different subtypes of nicotinic acetylcholine receptors in the regulatory action of nicotine on food intake and energy homeostasis.
Collapse
Affiliation(s)
- Andrea Stojakovic
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
- Mitochondrial Neurobiology and Therapeutics LaboratoryMayo Clinic, Rochester, Minnesota, USA
| | - Enma P Espinosa
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
- Faculty of MedicineSchool of Clinica Biochemistry, Pontifical Catholic University of Ecuador (PUCE), Quito, Ecuador
| | - Osman T Farhad
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Kabirullah Lutfy
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
50
|
Lin F, Liao C, Sun Y, Zhang J, Lu W, Bai Y, Liao Y, Li M, Ni X, Hou Y, Qi Y, Chen Y. Hydrogen Sulfide Inhibits Cigarette Smoke-Induced Endoplasmic Reticulum Stress and Apoptosis in Bronchial Epithelial Cells. Front Pharmacol 2017; 8:675. [PMID: 29033840 PMCID: PMC5625329 DOI: 10.3389/fphar.2017.00675] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/08/2017] [Indexed: 01/23/2023] Open
Abstract
Background: Apoptosis of lung structural cells contributes to the process of lung damage and remodeling in chronic obstructive pulmonary disease (COPD). Our previous studies demonstrated that exogenous hydrogen sulfide (H2S) can reduce the lung tissue pathology score, anti-inflammation and anti-oxidation effects in COPD, but the effect of H2S in regulating cigarette smoke (CS) induced bronchial epithelial cell apoptosis and the underlying mechanisms are not clear. Objectives: To investigate the effect of H2S on CS induced endoplasmic reticulum stress (ERS) and bronchial epithelial cell apoptosis. Methods: Male Sprague–Dawley rats randomly divided into four groups for treatment: control, CS, NaHS + CS, and propargylglycine (PPG) + CS. The rats in the CS group were exposed to CS generated from 20 commercial unfiltered cigarettes for 4 h/day, 7 days/week for 4 months. Since the beginning of the third month, freshly prepared NaHS (14 μmol/kg) and PPG (37.5 mg/kg) were intraperitoneally administered 30 min before CS-exposure in the NaHS and PPG groups. 16HBE cells were pretreated with Taurine (10 mM), 5 mmol/L 4-phenylbutyric acid (4-PBA) or NaHS (100, 200, and 400 μM) for 30 min, and then cells were exposed to 40 μmol/L nicotine for 72 h. ERS markers (GRP94, GRP78) and ERS-mediated apoptosis markers 4-C/EBP homologous protein (CHOP), caspase-3 and caspase-12 were assessed in rat lung tissues and human bronchial epithelial cells. The apoptotic bronchial epithelial cells were detected by Hoechst staining in vitro and TUNEL staining in vivo. Results: In CS exposed rats, peritoneal injection of NaHS significantly inhibited CS induced overexpression ERS-mediated apoptosis markers and upregulation of apoptotic rate in rat lungs, and inhibiting the endogenous H2S production by peritoneal injection of PPG exacerbated these effects. In the nicotine-exposed bronchial epithelial cells, appropriate concentration of NaHS and ERS inhibitors taurine and 4-PBA inhibited nicotine-induced upregulation of apoptotic rate and overexpression of ERS-mediated apoptosis markers. Conclusion: H2S inhibited lung tissue damage by attenuating CS induced ERS in rat lung and exogenous H2S attenuated nicotine induced ERS-mediated apoptosis in bronchial epithelial cells.
Collapse
Affiliation(s)
- Fan Lin
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China.,Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chengcheng Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yun Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jinsheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Weiwei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yu Bai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yixuan Liao
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Minxia Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xianqiang Ni
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yuelong Hou
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|