1
|
Sentjens K, Pillai R, Joseph JW. The effects of free fatty acid-free bovine serum albumin and palmitate on pancreatic β-cell function. Islets 2025; 17:2479911. [PMID: 40091018 PMCID: PMC11917175 DOI: 10.1080/19382014.2025.2479911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Pancreatic β-cells release insulin in response to fluctuations in plasma glucose, amino acids, and free fatty acids (FFA). Clonal cell lines and isolated islets serve as essential early models for studying the impact of nutrients and evaluating potential therapies to address β-cell dysfunction. Acute and chronic changes in FFA levels have been shown to have positive and negative effects on β-cell function both in vivo and in vitro. A key problem in comparing islet lipid studies from different laboratories is that a wide variety of methods are used to isolate, culture, and assess islet function. The current study compares bovine serum albumin (BSA) types and lipid preparation methods in clonal 832/13 cells and human islets. Changing the percentage and culture conditions when using FFA-free BSA can negatively affect β-cell function compared to regular BSA. Preparing palmitate with FFA-free BSA can rescue insulin secretion compared to treating cells alone with FFA-free BSA. Different methods of preparing palmitate can have unique effects on insulin secretion. Overall, interpreting the effects of lipids on β-cell function is complicated by a number of variables that need to be controlled for in islet experiments.
Collapse
Affiliation(s)
| | - Renjitha Pillai
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
| | - Jamie W. Joseph
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
| |
Collapse
|
2
|
Buishand FO, Chan PYK, Xia D, Davison LJ. Single-cell transcriptome conservation in a multispecies comparative analysis of fresh and cryopreserved insulinoma cell lines. VETERINARY ONCOLOGY (LONDON, ENGLAND) 2025; 2:14. [PMID: 40438246 PMCID: PMC12106491 DOI: 10.1186/s44356-025-00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/07/2025] [Indexed: 06/01/2025]
Abstract
Background Insulinoma is the most common pancreatic neuroendocrine tumour in dogs and humans. The understanding of driving factors and critical survival genes in insulinomas is limited and overall survival is poor for canine and human malignant insulinoma. This study aimed to use single-cell RNA-sequencing to conduct a multispecies analysis of insulinoma cell lines to understand their single-cell transcriptomic landscape. Secondly, the impact of freeze-thawing on the pancreatic beta single-cell transcriptome was investigated, to determine whether cryoarchiving of primary insulinoma samples may be feasible in future studies. Methods Single-cell transcriptomic analysis was performed using fresh and cryopreserved multispecies insulinoma cell lines (canINS, CM, INS-1 and MIN6). R and Seurat were used to perform cell clustering and specific cluster marker genes were identified by the FindMarkers function. Metascape was used to identify statistically enriched pathways for specific cell clusters. Differentially expressed genes between fresh and cryopreserved single-cell transcriptome profiles, were defined as genes with a log2 fold change > 0.25 and a Bonferroni-adjusted P < 0.05, based on the Wilcoxon rank sum test. Results Based on the specific cell line single-cell transcriptome profiles, five or six cell clusters were constructed per cell line. All cell lines expressed neuroendocrine markers and additionally INS-1 and MIN6 displayed a gene signature indicative of mature/functional pancreatic islet/beta-cells. DEPTOR, BICC1, GHR, CCNB2, CENPA, LMO4, VANGL1, and L1CAM were identified as cross-species conserved insulinoma cluster marker genes. Little effect was found of cryopreservation and thawing on overall gene expression at the single-cell level in insulinoma cell lines: only 6 and 29 genes had a log2 fold change > 1 in cryopreserved versus fresh canINS and CM, respectively. Conclusions canINS, CM, INS-1 and MIN6 are all principally relevant as insulinoma models and the demonstrated differences in their single-cell transcriptomic profiles could aid researchers in selecting the appropriate cell lines for specific study objectives. Cross-species conserved insulinoma cluster marker genes were identified that harbour oncogenes and their involvement in insulinoma tumourigenesis should be investigated in future studies. The good comparability between cryopreserved and fresh insulinoma cells allows for inclusion of cryopreserved insulinoma patient samples in future studies, which allows for reduced assay-based variability. Supplementary Information The online version contains supplementary material available at 10.1186/s44356-025-00025-4.
Collapse
Affiliation(s)
- Floryne O. Buishand
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA UK
| | - Phoebe Y. K. Chan
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA UK
| | - Dong Xia
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, AL9 7TA UK
| | - Lucy J. Davison
- Department of Clinical Science and Services, Royal Veterinary College, Hatfield, AL9 7TA UK
| |
Collapse
|
3
|
Yamada Y, Urakawa N, Tamiya H, Sakamoto S, Takahashi H, Harada N, Kitakaze T, Izawa T, Matsumua S, Yoshihara E, Inui H, Mashimo T, Yamaji R. Nrf2- and p53-inducible REDD2/DDiT4L/Rtp801L confers pancreatic β-cell dysfunction, leading to glucose intolerance in high-fat diet-fed mice. J Biol Chem 2025:110271. [PMID: 40409543 DOI: 10.1016/j.jbc.2025.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/07/2025] [Accepted: 05/11/2025] [Indexed: 05/25/2025] Open
Abstract
Pancreatic β-cells play a critical role in glucose homeostasis by secreting insulin. Chronic oxidative stress causes β-cell dysfunction, including β-cell loss; however, the underlying mechanisms remain unclear. Here, we demonstrate the critical role of the regulated in development and DNA damage response 2 (REDD2/DDiT4L/Rtp801L) in β-cell dysfunction. In INS-1 β-cells, Redd2 was induced by high glucose/palmitate or streptozotocin (STZ) exposure. Knockdown of Redd2 attenuated STZ-induced loss of cell viability, while REDD2 overexpression reduced cell viability and p70S6K phosphorylation, suggesting the involvement of suppression of mTORC1 activation. STZ also activated the transcription factors nuclear factor erythroid 2-related factor 2 (Nrf2) and p53, and overexpression of these transcription factors synergistically induced Redd2 expression. Reporter assays using the Redd2 promoter (-2328/-1) and chromatin immunoprecipitation identified the functional binding sites for Nrf2 (EpRE2, -349/-340) and p53 (p53RE1, -90/-81) on the Redd2 promoter. Purified recombinant p53 and Nrf2 bound directly. There were no noticeable changes in male global Redd2-knockout mice (C57BL/6J background), except for inguinal adipose tissue decrease when the mice were fed a standard diet. In contrast, when the mice were fed a high-fat diet (HFD), Redd2-knockout mice exhibited improved glucose tolerance relative to littermate controls. Redd2-knockout in HFD-fed mice increased β-cell mass due to reduced β-cell apoptosis and elevated plasma insulin concentrations, whereas insulin sensitivity remained unaffected. In both STZ-induced male and female and HFD-fed male models, β-cell specific Redd2-knockout improved glucose tolerance without affecting insulin sensitivity. Our results identify REDD2 as a novel regulator of β-cell dysfunction under oxidative stress.
Collapse
Affiliation(s)
- Yukiho Yamada
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Natsuho Urakawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Hisato Tamiya
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Shuya Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Hiroki Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| | - Naoki Harada
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan; Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA.
| | - Tomoya Kitakaze
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan; Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takeshi Izawa
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | - Shigenobu Matsumua
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Habikino, Osaka, Japan
| | - Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA; David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Hiroshi Inui
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan; Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan; Department of Health and Nutrition, Otemae University, Osaka, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Ryoichi Yamaji
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan; Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan; Center for Research and Development of Bioresources, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
4
|
Kusunoki M, Hirota K, Shoji T, Uba T, Matsuo Y, Hayashi M. Dexmedetomidine suppresses glucose-stimulated insulin secretion in pancreatic β-cells. FEBS Open Bio 2025; 15:634-646. [PMID: 39704036 PMCID: PMC11961391 DOI: 10.1002/2211-5463.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Proper glycemic control is crucial for patient management in critical care, including perioperative care, and can influence patient prognosis. Blood glucose concentration determines insulin secretion and sensitivity and affects the intricate balance between the glucose metabolism. Human and other animal studies have demonstrated that perioperative drugs, including volatile anesthetics and intravenous anesthetics, affect glucose-stimulated insulin secretion (GSIS). Dexmedetomidine (DEX) decreases insulin release and affects glucose metabolism; however, the specific mechanism underlying this phenomenon remains largely unknown. Thus, we investigated the effect and mechanism of DEX on insulin secretion using mouse and rat pancreatic β-cell-derived MIN6 and INS-1 cell lines and primary pancreatic β-cells/islets extracted from mice. The amount of insulin secreted into the culture medium was determined using an enzyme-linked immunosorbent assay. Cell viability, cytotoxicity, and electrophysiological effects were investigated. Clinically relevant doses of DEX suppressed GSIS in MIN6 cells, INS-1 cells, and pancreatic β-cells/islets. Furthermore, DEX suppressed insulin secretion facilitated by insulinotropic factors. There was no significant difference in oxygen consumption rate, intracellular ATP levels, or caspase-3/7 activity. Electrophysiological evaluation using the patch-clamp method showed that DEX did not affect ATP-sensitive potassium (KATP) channels, voltage-dependent potassium channels, or voltage-gated calcium channels. We demonstrated that clinically relevant doses of DEX significantly suppressed GSIS. These findings suggest that DEX inhibits a signaling pathway via α2-adrenoceptor or insulin vesicle exocytosis, resulting in GSIS suppression. Our results support the hypothesis that DEX suppresses insulin secretion and reveal some underlying mechanisms.
Collapse
Affiliation(s)
- Munenori Kusunoki
- Department of AnesthesiologyKansai Medical UniversityHirakataOsakaJapan
| | - Kiichi Hirota
- Department of Pain Clinic MedicineMinamiuonuma City HospitalMinamiuonumaNiigataJapan
| | - Tomohiro Shoji
- Department of AnesthesiologyMitoyo General HospitalKan‐onjiKagawaJapan
| | - Takeo Uba
- Department of AnesthesiologyKansai Medical UniversityHirakataOsakaJapan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response ScienceInstitute of Biomedical Science, Kansai Medical UniversityHirakataOsakaJapan
| | - Mikio Hayashi
- Department of Cell PhysiologyInstitute of Biomedical Science, Kansai Medical UniversityHirakataOsakaJapan
| |
Collapse
|
5
|
De Lorenzi V, Ghignoli S, Bernardi M, Matteoli G, Ferri G, Storti B, Bizzarri R, Cardarelli F. Measuring pH in insulin secretory granules by phasor-based fluorescence lifetime imaging of a genetically encoded sensor. Commun Biol 2025; 8:304. [PMID: 40000885 PMCID: PMC11861725 DOI: 10.1038/s42003-025-07758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
It is widely accepted that the pH of insulin granules is acidic, and that its active regulation during granule maturation plays a role in the process of insulin secretion by β-cells. Yet, a calibrated measurement of the absolute granule pH with organelle specificity is still lacking. To tackle this issue, we use the genetically encoded E1GFP pH reporter inserted into the C-peptide of proinsulin and expressed in Insulinoma 1E cells. Following verification of correct targeting of the E1GFP reporter in the insulin granules, phasor-based Fluorescence Lifetime Imaging Microscopy (FLIM) is applied to obtain a calibrated and probe-concentration-independent measurement of insulin-granule pH. Our results confirm the acidic nature of insulin granules under maintenance cell culture conditions, with an average luminal pH of ~5.8, and show that acidity is actively maintained, as evidenced by its near-neutralization upon treatment with the vacuolar H+-ATPase inhibitor concanamycin. Additionally, by exploiting the intrinsic spatial resolution of FLIM, we highlight that granules which are proximal to the plasma membrane are slightly more acidic than those which are distal, a difference preserved even during the early phase of glucose-induced insulin secretion. This study lays the foundations for future investigations of granule pH in physiology and disease.
Collapse
Affiliation(s)
| | | | | | - Giulia Matteoli
- NEST Laboratory - Scuola Normale Superiore, Pisa, Italy
- CNR IFC Istituto di Fisiologia Clinica, Pisa, Italy
| | | | | | - Ranieri Bizzarri
- NEST, Istituto Nanoscienze - CNR, Pisa, Italy
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
6
|
Rao C, Cater DT, Roy S, Xu J, De Oliveira AG, Evans-Molina C, Piganelli JD, Eizirik DL, Mirmira RG, Sims EK. Beta cell extracellular vesicle PD-L1 as a novel regulator of CD8 + T cell activity and biomarker during the evolution of type 1 diabetes. Diabetologia 2025; 68:382-396. [PMID: 39508879 DOI: 10.1007/s00125-024-06313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
AIMS/HYPOTHESIS Surviving beta cells in type 1 diabetes respond to inflammation by upregulating programmed death-ligand 1 (PD-L1) to engage immune cell programmed death protein 1 (PD-1) and limit destruction by self-reactive immune cells. Extracellular vesicles (EVs) and their cargo can serve as biomarkers of beta cell health and contribute to islet intercellular communication. We hypothesised that the inflammatory milieu of type 1 diabetes increases PD-L1 in beta cell EV cargo and that EV PD-L1 may protect beta cells against immune-mediated cell death. METHODS Beta cell lines and human islets were treated with proinflammatory cytokines to model the proinflammatory type 1 diabetes microenvironment. EVs were isolated using ultracentrifugation or size exclusion chromatography and analysed via immunoblot, flow cytometry and ELISA. EV PD-L1 binding to PD-1 was assessed using a competitive binding assay and in vitro functional assays testing the ability of EV PD-L1 to inhibit NOD CD8+ T cells. Plasma EV and soluble PD-L1 were assayed in the plasma of islet autoantibody-positive (Ab+) individuals or individuals with recent-onset type 1 diabetes and compared with levels in non-diabetic control individuals. RESULTS PD-L1 protein co-localised with tetraspanin-associated proteins intracellularly and was detected on the surface of beta cell EVs. Treatment with IFN-α or IFN-γ for 24 h induced a twofold increase in EV PD-L1 cargo without a corresponding increase in the number of EVs. IFN exposure predominantly increased PD-L1 expression on the surface of beta cell EVs and beta cell EV PD-L1 showed a dose-dependent capacity to bind PD-1. Functional experiments demonstrated specific effects of beta cell EV PD-L1 to suppress proliferation and cytotoxicity of murine CD8+ T cells. Plasma EV PD-L1 levels were increased in Ab+individuals, particularly in those positive for a single autoantibody. Additionally, in Ab+ individuals or those who had type 1 diabetes, but not in control individuals, plasma EV PD-L1 positively correlated with circulating C-peptide, suggesting that higher EV PD-L1 could be protective for residual beta cell function. CONCLUSIONS/INTERPRETATION IFN exposure increases PD-L1 on the beta cell EV surface. Beta cell EV PD-L1 binds PD1 and inhibits CD8+ T cell proliferation and cytotoxicity. Circulating EV PD-L1 is higher in Ab+ individuals than in control individuals. Circulating EV PD-L1 levels correlate with residual C-peptide at different stages in type 1 diabetes progression. These findings suggest that EV PD-L1 could contribute to heterogeneity in type 1 diabetes progression and residual beta cell function and raise the possibility that EV PD-L1 could be exploited as a means to inhibit immune-mediated beta cell death.
Collapse
Affiliation(s)
- Chaitra Rao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel T Cater
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Saptarshi Roy
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jerry Xu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andre G De Oliveira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jon D Piganelli
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Raghavendra G Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Emily K Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Potdar P, Kharat A, Sanap A, Kheur S, Bhonde R. Pancreatic β cell models for screening insulin secretagogues and cytotoxicity. J Appl Toxicol 2025; 45:89-106. [PMID: 39662958 DOI: 10.1002/jat.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 12/13/2024]
Abstract
In the past 2-3 decades, numerous attempts have been made to create an insulin-secreting β cell line that maintains normal insulin secretion. However, primary β cell cultures have finite life and, therefore, cannot be used for long-term experiments. The most widely used insulin-secreting cell lines are Insulinoma-1, rat insulinoma cell line, hamster pancreatic β cell line, mouse insulinoma, and β tumor cell line. Insulinoma-derived cell lines show infinite growth in tissue culture but exhibit varying differences in their insulin responsiveness to glucose levels compared to normal β cells. Despite difficulties with β cell cultures, these cell lines have offered some useful insights in diabetes research concerning physiological functions and pathological investigations. In this review, we describe insulinoma cell lines used for drug screening, insulin secretion, cell viability, proliferation, and other relevant cellular functions. In addition, we have also incorporated recently developed human β cell lines. These cell lines have provided some helpful insights into physiological activities and pathology in diabetes research, despite challenges with β cell culturing. We propose that these cell lines could also be explored for screening Ayurvedic Rasayanas and homeopathy preparations for their cytotoxicity and insulin secretagogue activities to have evidence-based data on alternative and complementary medicines.
Collapse
Affiliation(s)
- Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
8
|
Rajkumari N, Shalayel I, Tubbs E, Perrier Q, Chabert C, Lablanche S, Benhamou PY, Arnol C, Gredy L, Divoux T, Stephan O, Zebda A, van der Sanden B. Matrix design for optimal pancreatic β cells transplantation. BIOMATERIALS ADVANCES 2024; 164:213980. [PMID: 39126900 DOI: 10.1016/j.bioadv.2024.213980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
New therapeutic approaches to treat type 1 diabetes mellitus relies on pancreatic islet transplantation. Here, developing immuno-isolation strategies is essential to eliminate the need for systemic immunosuppression after pancreatic islet grafts. A solution is the macro-encapsulation of grafts in semipermeable matrixes with a double function: separating islets from host immune cells and facilitating the diffusion of insulin, glucose, and other metabolites. This study aims to synthesize and characterize different types of gelatin-collagen matrixes to prepare a macro-encapsulation device for pancreatic islets that fulfill these functions. While natural polymers exhibit superior biocompatibility compared to synthetic ones, their mechanical properties are challenging to reproduce. To address this issue, we conducted a comparative analysis between photo-crosslinked gelatin matrixes and chemically crosslinked collagen matrixes. We show that the different crosslinkers and polymerization methods influence the survival and glucose-stimulated insulin production of pancreatic β cells (INS1) in vitro, as well as the in vitro and in vivo stability of the matrix and the immuno-isolation in vivo. Among the matrixes, the stiff multilayer GelMA matrixes (8.5 kPa), fabricated by digital light processing, were the best suited for pancreatic β cells macro-encapsulation regarding these parameters. Within the alveoli of this matrix, pancreatic β cells spontaneously formed aggregates.
Collapse
Affiliation(s)
- Nikita Rajkumari
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Nantes University, CRCI2NA, INSERM 1307, 44000 Nantes, France.
| | - Ibrahim Shalayel
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| | - Emily Tubbs
- Grenoble Alpes University, CEA, INSERM, IRIG, 38000 Grenoble, Biomics, France.
| | - Quentin Perrier
- Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Department of Pharmacy, LBFA U1055, Grenoble, France.
| | - Clovis Chabert
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France.
| | - Sandrine Lablanche
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Department of Endocrinology-Diabetology-Nutrition, Grenoble University Hospital, France.
| | - Pierre-Yves Benhamou
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Department of Endocrinology-Diabetology-Nutrition, Grenoble University Hospital, France.
| | - Capucine Arnol
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France
| | - Laetitia Gredy
- MoVe, Laboratoire interdisciplinaire de physique, CNRS UMR 5588, Grenoble Alpes University, St-Martin d'Hères, France.
| | - Thibaut Divoux
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
| | - Olivier Stephan
- MoVe, Laboratoire interdisciplinaire de physique, CNRS UMR 5588, Grenoble Alpes University, St-Martin d'Hères, France.
| | - Abdelkader Zebda
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| | - Boudewijn van der Sanden
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| |
Collapse
|
9
|
Tanaka Y, Farkhondeh A, Yang W, Ueno H, Noda M, Hirokawa N. Kinesin-1 mediates proper ER folding of the Ca V1.2 channel and maintains mouse glucose homeostasis. EMBO Rep 2024; 25:4777-4802. [PMID: 39322740 PMCID: PMC11549326 DOI: 10.1038/s44319-024-00246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells is a principal mechanism for systemic glucose homeostasis, of which regulatory mechanisms are still unclear. Here we show that kinesin molecular motor KIF5B is essential for GSIS through maintaining the voltage-gated calcium channel CaV1.2 levels, by facilitating an Hsp70-to-Hsp90 chaperone exchange to pass through the quality control in the endoplasmic reticulum (ER). Phenotypic analyses of KIF5B conditional knockout (cKO) mouse beta cells revealed significant abolishment of glucose-stimulated calcium transients, which altered the behaviors of insulin granules via abnormally stabilized cortical F-actin. KIF5B and Hsp90 colocalize to microdroplets on ER sheets, where CaV1.2 but not Kir6.2 is accumulated. In the absence of KIF5B, CaV1.2 fails to be transferred from Hsp70 to Hsp90 via STIP1, and is likely degraded via the proteasomal pathway. KIF5B and Hsc70 overexpression increased CaV1.2 expression via enhancing its chaperone binding. Thus, ER sheets may serve as the place of KIF5B- and Hsp90-dependent chaperone exchange, which predominantly facilitates CaV1.2 production in beta cells and properly enterprises GSIS against diabetes.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Atena Farkhondeh
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Wenxing Yang
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Hitoshi Ueno
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Mitsuhiko Noda
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, 272-0827, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
- Department of Advanced Morphological Imaging, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
10
|
Ferrero E, Masini M, Carli M, Moscato S, Beffy P, Vaglini F, Mattii L, Corti A, Scarselli M, Novelli M, De Tata V. Dopamine-mediated autocrine inhibition of insulin secretion. Mol Cell Endocrinol 2024; 592:112294. [PMID: 38838763 DOI: 10.1016/j.mce.2024.112294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/15/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The aim of the present research was to explore the mechanisms underlying the role of dopamine in the regulation of insulin secretion in beta cells. The effect of dopamine on insulin secretion was investigated on INS 832/13 cell line upon glucose and other secretagogues stimulation. Results show that dopamine significantly inhibits insulin secretion stimulated by both glucose and other secretagogues, while it has no effect on the basal secretion. This effect requires the presence of dopamine during incubation with the various secretagogues. Both electron microscopy and immunohistochemistry indicate that in beta cells the D2 dopamine receptor is localized within the insulin granules. Blocking dopamine entry into the insulin granules by inhibiting the VMAT2 transporter with tetrabenazine causes a significant increase in ROS production. Our results confirm that dopamine plays an important role in the regulation of insulin secretion by pancreatic beta cells through a regulated and precise compartmentalization mechanisms.
Collapse
Affiliation(s)
| | | | | | - Stefania Moscato
- Department of Clinical and Experimental Medicine, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health", Italy
| | | | | | - Letizia Mattii
- Department of Clinical and Experimental Medicine, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health", Italy
| | | | | | | | - Vincenzo De Tata
- Department of Translational Research, Italy; CIME (Interdepartmental Centre of Electron Microscopy), University of Pisa, Pisa, Italy.
| |
Collapse
|
11
|
Esser N, Hogan MF, Templin AT, Akter R, Fountaine BS, Castillo JJ, El-Osta A, Manathunga L, Zhyvoloup A, Raleigh DP, Zraika S, Hull RL, Kahn SE. The islet tissue plasminogen activator/plasmin system is upregulated with human islet amyloid polypeptide aggregation and protects beta cells from aggregation-induced toxicity. Diabetologia 2024; 67:1897-1911. [PMID: 39245780 PMCID: PMC11410534 DOI: 10.1007/s00125-024-06161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 09/10/2024]
Abstract
AIMS/HYPOTHESIS Apart from its fibrinolytic activity, the tissue plasminogen activator (tPA)/plasmin system has been reported to cleave the peptide amyloid beta, attenuating brain amyloid deposition in Alzheimer's disease. As aggregation of human islet amyloid polypeptide (hIAPP) is toxic to beta cells, we sought to determine whether activation of the fibrinolytic system can also reduce islet amyloid deposition and its cytotoxic effects, which are both observed in type 2 diabetes. METHODS The expression of Plat (encoding tPA) and plasmin activity were measured in isolated islets from amyloid-prone hIAPP transgenic mice or non-transgenic control islets expressing non-amyloidogenic mouse islet amyloid polypeptide cultured in the absence or presence of the amyloid inhibitor Congo Red. Plat expression was also determined in hIAPP-treated primary islet endothelial cells, bone marrow-derived macrophages (BMDM) and INS-1 cells, in order to determine the islet cell type(s) producing tPA in response to hIAPP aggregation. Cell-free thioflavin-T assays and MS were used to respectively monitor hIAPP aggregation kinetics and investigate plasmin cleavage of hIAPP. Cell viability was assessed in INS-1 beta cells treated with hIAPP with or without plasmin. Finally, to confirm the findings in human samples, PLAT expression was measured in freshly isolated islets from donors with and without type 2 diabetes. RESULTS In isolated islets from transgenic mice, islet Plat expression and plasmin activity increased significantly with the process of amyloid deposition (p≤0.01, n=5); these effects were not observed in islets from non-transgenic mice and were blocked by Congo Red (p≤0.01, n=4). In response to hIAPP exposure, Plat expression increased in BMDM and INS-1 cells vs vehicle-treated cells (p≤0.05, n=4), but not in islet endothelial cells. Plasmin reduced hIAPP fibril formation in a dose-dependent manner in a cell-free system, and restored hIAPP-induced loss of cell viability in INS-1 beta cells (p≤0.01, n=5). Plasmin cleaved monomeric hIAPP, inducing a rapid decrease in the abundance of full-length hIAPP and the appearance of hIAPP 1-11 and 12-37 fragments. hIAPP 12-37, which contains the critical amyloidogenic region, was not toxic to INS-1 cells. Finally, PLAT expression was significantly increased by 2.4-fold in islets from donors with type 2 diabetes (n=4) vs islets from donors without type 2 diabetes (n=7) (p≤0.05). CONCLUSIONS/INTERPRETATION The fibrinolytic system is upregulated in islets with hIAPP aggregation. Plasmin rapidly degrades hIAPP, limiting its aggregation into amyloid and thus protecting beta cells from hIAPP-induced toxicity. Thus, increasing islet plasmin activity might be a strategy to limit beta cell loss in type 2 diabetes.
Collapse
Affiliation(s)
- Nathalie Esser
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Laboratory of Immunometabolism and Nutrition, GIGA, University of Liège, CHU of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Meghan F Hogan
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew T Templin
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Endocrinology, Department of Medicine, Roudebush VA Medical Center and Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rehana Akter
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Joseph J Castillo
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Lakshan Manathunga
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alexander Zhyvoloup
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Research Department of Structural and Molecular Biology, University College London, London, UK.
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca L Hull
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven E Kahn
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Robertson CC, Elgamal RM, Henry-Kanarek BA, Arvan P, Chen S, Dhawan S, Eizirik DL, Kaddis JS, Vahedi G, Parker SCJ, Gaulton KJ, Soleimanpour SA. Untangling the genetics of beta cell dysfunction and death in type 1 diabetes. Mol Metab 2024; 86:101973. [PMID: 38914291 PMCID: PMC11283044 DOI: 10.1016/j.molmet.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.
Collapse
Affiliation(s)
- Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ruth M Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Belle A Henry-Kanarek
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Milešević M, Matić Jelić I, Rumenović V, Ivanjko N, Vukičević S, Bordukalo-Nikšić T. The Influence of BMP6 on Serotonin and Glucose Metabolism. Int J Mol Sci 2024; 25:7842. [PMID: 39063084 PMCID: PMC11276723 DOI: 10.3390/ijms25147842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies have suggested a potential role of bone morphogenetic protein 6 (BMP6) in glucose metabolism, which also seems to be regulated by serotonin (5-hydroxytryptamine, 5HT), a biogenic amine with multiple roles in the organism. In this study, we explored possible interactions between BMP6, serotonin, and glucose metabolism regulation. The effect of BMP6 or 5HT on pancreatic β-cells has been studied in vitro using the INS-1 832/13 rat insulinoma cell line. Studies in vivo have been performed on mice with the global deletion of the Bmp6 gene (BMP6-/-) and included glucose and insulin tolerance tests, gene expression studies using RT-PCR, immunohistochemistry, and ELISA analyses. We have shown that BMP6 and 5HT treatments have the opposite effect on insulin secretion from INS-1 cells. The effect of BMP6 on the 5HT system in vivo depends on the tissue studied, with no observable systemic effect on peripheral 5HT metabolism. BMP6 deficiency does not cause diabetic changes, although a mild difference in insulin tolerance test between BMP6-/- and WT mice was observed. In conclusion, BMP6 does not directly influence glucose metabolism, but there is a possibility that its deletion causes slowly developing changes in glucose and serotonin metabolism, which would become more expressed with ageing.
Collapse
Affiliation(s)
| | | | | | | | | | - Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (I.M.J.); (V.R.); (N.I.); (S.V.)
| |
Collapse
|
14
|
Sharifi S, Yamamoto T, Zeug A, Elsner M, Avezov E, Mehmeti I. Non-esterified fatty acid palmitate facilitates oxidative endoplasmic reticulum stress and apoptosis of β-cells by upregulating ERO-1α expression. Redox Biol 2024; 73:103170. [PMID: 38692092 PMCID: PMC11070623 DOI: 10.1016/j.redox.2024.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Adipose tissue-derived non-esterified saturated long-chain fatty acid palmitate (PA) decisively contributes to β-cell demise in type 2 diabetes mellitus in part through the excessive generation of hydrogen peroxide (H2O2). The endoplasmic reticulum (ER) as the primary site of oxidative protein folding could represent a significant source of H2O2. Both ER-oxidoreductin-1 (ERO-1) isoenzymes, ERO-1α and ERO-1β, catalyse oxidative protein folding within the ER, generating equimolar amounts of H2O2 for every disulphide bond formed. However, whether ERO-1-derived H2O2 constitutes a potential source of cytotoxic luminal H2O2 under lipotoxic conditions is still unknown. Here, we demonstrate that both ERO-1 isoforms are expressed in pancreatic β-cells, but interestingly, PA only significantly induces ERO-1α. Its specific deletion significantly attenuates PA-mediated oxidative ER stress and subsequent β-cell death by decreasing PA-mediated ER-luminal and mitochondrial H2O2 accumulation, by counteracting the dysregulation of ER Ca2+ homeostasis, and by mitigating the reduction of mitochondrial membrane potential and lowered ATP content. Moreover, ablation of ERO-1α alleviated PA-induced hyperoxidation of the ER redox milieu. Importantly, ablation of ERO-1α did not affect the insulin secretory capacity, the unfolded protein response, or ER redox homeostasis under steady-state conditions. The involvement of ERO-1α-derived H2O2 in PA-mediated β-cell lipotoxicity was corroborated by the overexpression of a redox-active ERO-1α underscoring the proapoptotic activity of ERO-1α in pancreatic β-cells. Overall, our findings highlight the critical role of ERO-1α-derived H2O2 in lipotoxic ER stress and β-cell failure.
Collapse
Affiliation(s)
- Sarah Sharifi
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Tomoko Yamamoto
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Andre Zeug
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Edward Avezov
- Department of Clinical Neurosciences and UK Dementia Research Institute, University of Cambridge, CB2 0AH Cambridge, UK
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Murata N, Nishimura K, Harada N, Kitakaze T, Yoshihara E, Inui H, Yamaji R. Insulin reduces endoplasmic reticulum stress-induced apoptosis by decreasing mitochondrial hyperpolarization and caspase-12 in INS-1 pancreatic β-cells. Physiol Rep 2024; 12:e16106. [PMID: 38884322 PMCID: PMC11181300 DOI: 10.14814/phy2.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Pancreatic β-cell mass is a critical determinant of insulin secretion. Severe endoplasmic reticulum (ER) stress causes β-cell apoptosis; however, the mechanisms of progression and suppression are not yet fully understood. Here, we report that the autocrine/paracrine function of insulin reduces ER stress-induced β-cell apoptosis. Insulin reduced the ER-stress inducer tunicamycin- and thapsigargin-induced cell viability loss due to apoptosis in INS-1 β-cells. Moreover, the effect of insulin was greater than that of insulin-like growth factor-1 at physiologically relevant concentrations. Insulin did not attenuate the ER stress-induced increase in unfolded protein response genes. ER stress did not induce cytochrome c release from mitochondria. Mitochondrial hyperpolarization was induced by ER stress and prevented by insulin. The protonophore/mitochondrial oxidative phosphorylation uncoupler, but not the antioxidants N-acetylcysteine and α-tocopherol, exhibited potential cytoprotection during ER stress. Both procaspase-12 and cleaved caspase-12 levels increased under ER stress. The caspase-12 inhibitor Z-ATAD-FMK decreased ER stress-induced apoptosis. Caspase-12 overexpression reduced cell viability, which was diminished in the presence of insulin. Insulin decreased caspase-12 levels at the post-translational stages. These results demonstrate that insulin protects against ER stress-induced β-cell apoptosis in this cell line. Furthermore, mitochondrial hyperpolarization and increased caspase-12 levels are involved in ER stress-induced and insulin-suppressed β-cell apoptosis.
Collapse
Affiliation(s)
- Nanako Murata
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
| | - Kana Nishimura
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
| | - Naoki Harada
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
| | - Tomoya Kitakaze
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
| | - Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor‐UCLA Medical CenterTorranceCaliforniaUSA
- David Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Hiroshi Inui
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
- Department of Health and NutritionOtemae UniversityOsakaJapan
| | - Ryoichi Yamaji
- Department of Applied Biological Chemistry, Graduate School of AgricultureOsaka Metropolitan UniversitySakaiOsakaJapan
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiOsakaJapan
- Center for Research and Development of BioresourcesOsaka Metropolitan UniversitySakaiOsakaJapan
| |
Collapse
|
16
|
Patibandla C, van Aalten L, Dinkova-Kostova AT, Honda T, Cuadrado A, Fernández-Ginés R, McNeilly AD, Hayes JD, Cantley J, Sutherland C. Inhibition of glycogen synthase kinase-3 enhances NRF2 protein stability, nuclear localisation and target gene transcription in pancreatic beta cells. Redox Biol 2024; 71:103117. [PMID: 38479223 PMCID: PMC10950707 DOI: 10.1016/j.redox.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances β-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or β-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the β-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and β-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or β-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.
Collapse
Affiliation(s)
- Chinmai Patibandla
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom.
| | - Lidy van Aalten
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Albena T Dinkova-Kostova
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Tadashi Honda
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Raquel Fernández-Ginés
- Instituto de Investigaciones Biomédicas Sols-Morreale UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Alison D McNeilly
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - John D Hayes
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - James Cantley
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Calum Sutherland
- Division of Cellular & Systems Medicine, James Arnott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| |
Collapse
|
17
|
Dani S, Schütz K, Dikici E, Bernhardt A, Lode A. The effect of continuous long-term illumination with visible light in different spectral ranges on mammalian cells. Sci Rep 2024; 14:9444. [PMID: 38658667 PMCID: PMC11043379 DOI: 10.1038/s41598-024-60014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.
Collapse
Affiliation(s)
- Sophie Dani
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Ezgi Dikici
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Neukam M, Sala P, Brunner AD, Ganß K, Palladini A, Grzybek M, Topcheva O, Vasiljević J, Broichhagen J, Johnsson K, Kurth T, Mann M, Coskun Ü, Solimena M. Purification of time-resolved insulin granules reveals proteomic and lipidomic changes during granule aging. Cell Rep 2024; 43:113836. [PMID: 38421874 DOI: 10.1016/j.celrep.2024.113836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.
Collapse
Affiliation(s)
- Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Pia Sala
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | | | - Katharina Ganß
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Michal Grzybek
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Oleksandra Topcheva
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jovana Vasiljević
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Thomas Kurth
- TU Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Electron Microscopy and Histology Facility, 01307 Dresden, Saxony, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
19
|
Ghiasi SM, Marchetti P, Piemonti L, Nielsen JH, Porse BT, Mandrup-Poulsen T, Rutter GA. Proinflammatory cytokines suppress nonsense-mediated RNA decay to impair regulated transcript isoform processing in pancreatic β cells. Front Endocrinol (Lausanne) 2024; 15:1359147. [PMID: 38586449 PMCID: PMC10995974 DOI: 10.3389/fendo.2024.1359147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Proinflammatory cytokines are implicated in pancreatic ß cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of nonsense-mediated RNA decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in ß cells. Methods A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-ßH3, or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity. The gain- or loss-of-function of two key NMD components, UPF3B and UPF2, is used to reveal the effect of cytokines on cell viability and function. RNA-sequencing and siRNA-mediated silencing are deployed using standard techniques. Results Cyt attenuate NMD activity in insulin-producing cell lines and primary human ß cells. These effects are found to involve ER stress and are associated with the downregulation of UPF3B. Increases or decreases in NMD activity achieved by UPF3B overexpression (OE) or UPF2 silencing raise or lower Cyt-induced cell death, respectively, in EndoC-ßH3 cells and are associated with decreased or increased insulin content, respectively. No effects of these manipulations are observed on glucose-stimulated insulin secretion. Transcriptomic analysis reveals that Cyt increases alternative splicing (AS)-induced exon skipping in the transcript isoforms, and this is potentiated by UPF2 silencing. Gene enrichment analysis identifies transcripts regulated by UPF2 silencing whose proteins are localized and/or functional in the extracellular matrix (ECM), including the serine protease inhibitor SERPINA1/α-1-antitrypsin, whose silencing sensitizes ß-cells to Cyt cytotoxicity. Cytokines suppress NMD activity via UPR signaling, potentially serving as a protective response against Cyt-induced NMD component expression. Conclusion Our findings highlight the central importance of RNA turnover in ß cell responses to inflammatory stress.
Collapse
Affiliation(s)
- Seyed M. Ghiasi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Development and Aging Program, and Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milano, Italy
| | - Jens H. Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T. Porse
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre Hospitalier de l'Université de Montréal (CHUM) Research Centre (CRCHUM) and Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
20
|
Mukherjee M, Mukherjee C, Ghosh V, Jain A, Sadhukhan S, Dagar S, Sahu BS. Endoplasmic reticulum stress impedes regulated secretion by governing key exocytotic and granulogenic molecular switches. J Cell Sci 2024; 137:jcs261257. [PMID: 38348894 DOI: 10.1242/jcs.261257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.
Collapse
Affiliation(s)
- Mohima Mukherjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | | - Vinayak Ghosh
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Aamna Jain
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Souren Sadhukhan
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | - Sushma Dagar
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122052, India
| | | |
Collapse
|
21
|
Firdos, Pramanik T, Verma P, Mittal A. (Re-)Viewing Role of Intracellular Glucose Beyond Extracellular Regulation of Glucose-Stimulated Insulin Secretion by Pancreatic Cells. ACS OMEGA 2024; 9:11755-11768. [PMID: 38496986 PMCID: PMC10938456 DOI: 10.1021/acsomega.3c09171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
For glucose-stimulated insulin secretion (GSIS) by pancreatic β-cells in animals, it is believed that ATP generated from glucose metabolism is primarily responsible. However, this ignores two well-established aspects in literature: (a) intracellular ATP generation from other sources resulting in an overall pool of ATP, regardless of the original source, and (b) that intracellular glucose transport is 10- to 100-fold higher than intracellular glucose phosphorylation in β-cells. The latter especially provides an earlier unaddressed, but highly appealing, observation pertaining to (at least transient) the presence of intracellular glucose molecules. Could these intracellular glucose molecules be responsible for the specificity of GSIS to glucose (instead of the widely believed ATP production from its metabolism)? In this work, we provide a comprehensive compilation of literature on glucose and GSIS using various cellular systems - all studies focus only on the extracellular role of glucose in GSIS. Further, we carried out a comprehensive analysis of differential gene expression in Mouse Insulinoma 6 (MIN6) cells, exposed to low and high extracellular glucose concentrations (EGC), from the existing whole transcriptome data. The expression of other genes involved in glycolysis, Krebs cycle, and electron transport chain was found to be unaffected by EGC, except Gapdh, Atp6v0a4, and Cox20. Remarkably, 3 upregulated genes (Atp6v0a4, Cacnb4, Kif11) in high EGC were identified to have an association with cellular secretion. Using glucose as a possible ligand for the 3 proteins, computational investigations were carried out (that will require future 'wet validation', both in vitro and in vivo, e.g., using primary islets and animal models). The glucose-affinity/binding scores (in kcal/mol) obtained were also compared with glucose binding scores for positive controls (GCK and GLUT2), along with negative controls (RPA1, KU70-80, POLA1, ACAA1A, POLR1A). The binding affinity scores of glucose molecules for the 3 proteins were found to be closer to positive controls. Therefore, we report the glucose binding ability of 3 secretion-related proteins and a possible direct role of intracellular glucose molecules in GSIS.
Collapse
Affiliation(s)
- Firdos
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Tapabrata Pramanik
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Prachi Verma
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
| | - Aditya Mittal
- Kusuma
School of Biological Sciences, Indian Institute
of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi 110016, India
- Supercomputing
Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
22
|
Li W, Li A, Yu B, Zhang X, Liu X, White KL, Stevens RC, Baumeister W, Sali A, Jasnin M, Sun L. In situ structure of actin remodeling during glucose-stimulated insulin secretion using cryo-electron tomography. Nat Commun 2024; 15:1311. [PMID: 38346988 PMCID: PMC10861521 DOI: 10.1038/s41467-024-45648-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Actin mediates insulin secretion in pancreatic β-cells through remodeling. Hampered by limited resolution, previous studies have offered an ambiguous depiction as depolymerization and repolymerization. We report the in situ structure of actin remodeling in INS-1E β-cells during glucose-stimulated insulin secretion at nanoscale resolution. After remodeling, the actin filament network at the cell periphery exhibits three marked differences: 12% of actin filaments reorient quasi-orthogonally to the ventral membrane; the filament network mainly remains as cell-stabilizing bundles but partially reconfigures into a less compact arrangement; actin filaments anchored to the ventral membrane reorganize from a "netlike" to a "blooming" architecture. Furthermore, the density of actin filaments and microtubules around insulin secretory granules decreases, while actin filaments and microtubules become more densely packed. The actin filament network after remodeling potentially precedes the transport and release of insulin secretory granules. These findings advance our understanding of actin remodeling and its role in glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Weimin Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Angdi Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bing Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoxiao Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Kate L White
- Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wolfgang Baumeister
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
- Department of Chemistry, Technical University of Munich, 85748, Garching, Germany.
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
23
|
Tanaka C, Harada N, Teraoka Y, Urushizaki H, Shinmori Y, Onishi T, Yotsumoto Y, Ito Y, Kitakaze T, Inui T, Murata Y, Inui H, Yamaji R. Mogrol stimulates G-protein-coupled bile acid receptor 1 (GPBAR1/TGR5) and insulin secretion from pancreatic β-cells and alleviates hyperglycemia in mice. Sci Rep 2024; 14:3244. [PMID: 38332164 PMCID: PMC10853268 DOI: 10.1038/s41598-024-53380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Target identification is a crucial step in elucidating the mechanisms by which functional food components exert their functions. Here, we identified the G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) as a target of the triterpenoid mogrol, a class of aglycone mogroside derivative from Siraitia grosvenorii. Mogrol, but not mogrosides, activated cAMP-response element-mediated transcription in a TGR5-dependent manner. Additionally, mogrol selectively activated TGR5 but not the other bile acid-responsive receptors (i.e., farnesoid X receptor, vitamin D receptor, or muscarinic acetylcholine receptor M3). Several amino acids in TGR5 (L71A2.60, W75AECL1, Q77AECL1, R80AECL1, Y89A3.29, F161AECL2, L166A5.39, Y240A6.51, S247A6.58, Y251A6.62, L262A7.35, and L266A7.39) were found to be important for mogrol-induced activation. Mogrol activated insulin secretion under low-glucose conditions in INS-1 pancreatic β-cells, which can be inhibited by a TGR5 inhibitor. Similar effects of mogrol on insulin secretion were observed in the isolated mouse islets. Mogrol administration partially but significantly alleviated hyperglycemia in KKAy diabetic mice by increasing the insulin levels without affecting the β-cell mass or pancreatic insulin content. These results suggest that mogrol stimulates insulin secretion and alleviates hyperglycemia by acting as a TGR5 agonist.
Collapse
Affiliation(s)
- Chisato Tanaka
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan.
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Yoshiaki Teraoka
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Hiroki Urushizaki
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yoh Shinmori
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Teruaki Onishi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yusuke Yotsumoto
- Natural Materials Laboratory, Saraya Company, Ltd., 24-12 Tamatecho, Kashiwara, 582-0028, Kashiwara, Osaka, Japan
| | - Yuta Ito
- Natural Materials Laboratory, Saraya Company, Ltd., 24-12 Tamatecho, Kashiwara, 582-0028, Kashiwara, Osaka, Japan
| | - Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Takashi Inui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Murata
- Natural Materials Laboratory, Saraya Company, Ltd., 24-12 Tamatecho, Kashiwara, 582-0028, Kashiwara, Osaka, Japan
| | - Hiroshi Inui
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Department of Health and Nutrition, Otemae University, Osaka, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Center for Research and Development of Bioresources, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
24
|
Gojani EG, Wang B, Li DP, Kovalchuk O, Kovalchuk I. The Impact of Psilocybin on High Glucose/Lipid-Induced Changes in INS-1 Cell Viability and Dedifferentiation. Genes (Basel) 2024; 15:183. [PMID: 38397173 PMCID: PMC10888174 DOI: 10.3390/genes15020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Serotonin emerges as a pivotal factor influencing the growth and functionality of β-cells. Psilocybin, a natural compound derived from mushrooms of the Psilocybe genus, exerts agonistic effects on the serotonin 5-HT2A and 5-HT2B receptors, thereby mimicking serotonin's behavior. This study investigates the potential impacts of psilocybin on β-cell viability, dedifferentiation, and function using an in vitro system. The INS-1 832/13 Rat Insulinoma cell line underwent psilocybin pretreatment, followed by exposure to high glucose-high lipid (HG-HL) conditions for specific time periods. After being harvested from treated cells, total transcript and cellular protein were utilized for further investigation. Our findings implied that psilocybin administration effectively mitigates HG-HL-stimulated β-cell loss, potentially mediated through the modulation of apoptotic biomarkers, which is possibly related to the mitigation of TXNIP, STAT-1, and STAT-3 phosphorylation. Furthermore, psilocybin exhibits the capacity to modulate the expression of key genes associated with β-cell dedifferentiation, including Pou5f1 and Nanog, indicating its potential in attenuating β-cell dedifferentiation. This research lays the groundwork for further exploration into the therapeutic potential of psilocybin in Type II diabetes intervention.
Collapse
Affiliation(s)
| | | | | | | | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.); (B.W.); (D.-P.L.); (O.K.)
| |
Collapse
|
25
|
Tranter JD, Kumar A, Nair VK, Sah R. Mechanosensing in Metabolism. Compr Physiol 2023; 14:5269-5290. [PMID: 38158369 PMCID: PMC11681368 DOI: 10.1002/cphy.c230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Electrical mechanosensing is a process mediated by specialized ion channels, gated directly or indirectly by mechanical forces, which allows cells to detect and subsequently respond to mechanical stimuli. The activation of mechanosensitive (MS) ion channels, intrinsically gated by mechanical forces, or mechanoresponsive (MR) ion channels, indirectly gated by mechanical forces, results in electrical signaling across lipid bilayers, such as the plasma membrane. While the functions of mechanically gated channels within a sensory context (e.g., proprioception and touch) are well described, there is emerging data demonstrating functions beyond touch and proprioception, including mechanoregulation of intracellular signaling and cellular/systemic metabolism. Both MR and MS ion channel signaling have been shown to contribute to the regulation of metabolic dysfunction, including obesity, insulin resistance, impaired insulin secretion, and inflammation. This review summarizes our current understanding of the contributions of several MS/MR ion channels in cell types implicated in metabolic dysfunction, namely, adipocytes, pancreatic β-cells, hepatocytes, and skeletal muscle cells, and discusses MS/MR ion channels as possible therapeutic targets. © 2024 American Physiological Society. Compr Physiol 14:5269-5290, 2024.
Collapse
Affiliation(s)
- John D. Tranter
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vinayak K. Nair
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Washington University, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Bernardi M, Cardarelli F. Phasor identifier: A cloud-based analysis of phasor-FLIM data on Python notebooks. BIOPHYSICAL REPORTS 2023; 3:100135. [PMID: 38053971 PMCID: PMC10694583 DOI: 10.1016/j.bpr.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
This paper introduces an innovative approach utilizing Google Colaboratory for the versatile analysis of phasor fluorescence lifetime imaging microscopy (FLIM) data collected from various samples (e.g., cuvette, cells, tissues) and in various input file formats. In fact, phasor-FLIM widespread adoption has been hampered by complex instrumentation and data analysis requirements. We mean to make advanced FLIM analysis more accessible to researchers through a cloud-based solution that 1) harnesses robust computational resources, 2) eliminates hardware limitations, and 3) supports both CPU and GPU processing. We envision a paradigm shift in FLIM data accessibility and potential, aligning with the evolving field of artificial intelligence-driven FLIM analysis. This approach simplifies FLIM data handling and opens doors for diverse applications, from studying cellular metabolism to investigating drug encapsulation, benefiting researchers across multiple domains. The comparative analysis of freely distributed FLIM tools highlights the unique advantages of this approach in terms of adaptability, scalability, and open-source nature.
Collapse
|
27
|
Hatakeyama H, Oshima T, Ono S, Morimoto Y, Takahashi N. Single-molecule analysis of intracellular insulin granule behavior and its application to analyzing cytoskeletal dependence and pathophysiological implications. Front Physiol 2023; 14:1287275. [PMID: 38124716 PMCID: PMC10731264 DOI: 10.3389/fphys.2023.1287275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Mobilization of intracellular insulin granules to the plasma membrane plays a crucial role in regulating insulin secretion. However, the regulatory mechanisms of this mobilization process have been poorly understood due to technical limitations. In this study, we propose a convenient approach for assessing intracellular insulin granule behavior based on single-molecule analysis of insulin granule membrane proteins labeled with Quantum dot fluorescent nanocrystals. Methods: This approach allows us to analyze intracellular insulin granule movement with subpixel accuracy at 33 fps. We tracked two insulin granule membrane proteins, phogrin and zinc transporter 8, fused to HaloTag in rat insulinoma INS-1 cells and, by evaluating the tracks with mean-square displacement, demonstrated the characteristic behavior of insulin granules. Results and discussion: Pharmacological perturbations of microtubules and F-actin affected insulin granule behavior on distinct modalities. Specifically, microtubule dynamics and F-actin positively and negatively regulate insulin granule behavior, respectively, presumably by modulating each different behavioral mode. Furthermore, we observed impaired insulin granule behavior and cytoskeletal architecture under chronic treatment of high concentrations of glucose and palmitate. Our approach provides detailed information regarding intracellular insulin granule mobilization and its pathophysiological implications. This study sheds new light on the regulatory mechanisms of intracellular insulin granule mobilization and has important implications for understanding the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tomomi Oshima
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shinichiro Ono
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yuichi Morimoto
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institute for Advanced Study (UTIAS), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
28
|
Lin P, Zhang X, Zhu B, Gao J, Yin D, Zeng J, Kang Z. Naringenin protects pancreatic β cells in diabetic rat through activation of estrogen receptor β. Eur J Pharmacol 2023; 960:176115. [PMID: 37866740 DOI: 10.1016/j.ejphar.2023.176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Naringenin is a citrus flavonoid that potently improves metabolic parameters in animal models of metabolic disorders, such as type 2 diabetes. Estrogen receptor (ER) activation promotes β cell function and survival, thereby improving systemic glucose metabolism. In this study, we used a luciferase reporter assay, isolated rat islets and a diabetic rat model to investigate the effects of naringenin on ER signaling and the underlying mechanism of naringenin-mediated improvement of islet function in diabetes. Naringenin specifically activated ERβ without affecting the activity of ERα, G protein-coupled estrogen receptor (GPER) or estrogen-related receptor (ERR) α/β/γ. Additionally, treatment with naringenin enhanced glucose-stimulated insulin secretion in isolated rat islets. This effect was abrogated by PHTPP, an ERβ antagonist. Transcriptomic analysis revealed that naringenin upregulated the expression of genes, such as Pdx1 and Mafa, which are closely linked to improved β-cell function. In consistence, single administration of naringenin to normal rats elevated plasma insulin levels and improved glucose responses. These beneficial effects were blocked by PHTPP. In streptozocin-nicotinamide induced diabetic rats, treatment for 2 weeks with naringenin alone, but not in combination with PHTPP, significantly restored pancreatic β cell mass and improved glucose metabolism. Collectively, these data support that naringenin specifically activate ERβ to improve insulin secretion in the primary rat islets. Furthermore, naringenin administration also protected β cell function and reversed glucose dysregulation in diabetic rats. These beneficial effects are at least partially dependent on the ERβ pathway.
Collapse
Affiliation(s)
- Peibin Lin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Xiaojing Zhang
- Department of Pharmacy, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Baoyi Zhu
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Dazhong Yin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China
| | - Jianwen Zeng
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| | - Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China; Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, China.
| |
Collapse
|
29
|
Wei B, Zhang X, Qian J, Tang Z, Zhang B. Nrf2: Therapeutic target of islet function protection in diabetes and islet transplantation. Biomed Pharmacother 2023; 167:115463. [PMID: 37703659 DOI: 10.1016/j.biopha.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been reported as a major intracellular regulator of antioxidant stress, notably in islet β cells with low antioxidant enzyme content. Nrf2 is capable of regulating antioxidant function, while it can also regulate insulin secretion, proliferation, and differentiation of β cells, ER stress, as well as mitochondrial function. Thus, Nrf2 pharmacological activators have been employed in the laboratory for the treatment of diabetic mice. Islet cells are exposed to oxidative environment when islet is being transplanted. Accordingly, less than 50% of islet cells are well transplanted, and their normal function is maintained. The pharmacological activation of Nrf2 has been confirmed to protect islet cells at different stages of transplantation stages during experiments for islet transplantation.
Collapse
Affiliation(s)
- Butian Wei
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Xin Zhang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Jiwei Qian
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Zhe Tang
- Department of general Surgery, The Fourth affiliated Hospital, Zhejiang university School of Medicine, Yiwu 322000, China
| | - Bo Zhang
- Department of general Surgery, The Second affiliated Hospital, Zhejiang university School of Medicine, Hangzhou 310000, China.
| |
Collapse
|
30
|
Iida H, Kono T, Lee CC, Krishnan P, Arvin MC, Weaver SA, Jarvela TS, Branco RCS, McLaughlin MR, Bone RN, Tong X, Arvan P, Lindberg I, Evans-Molina C. SERCA2 regulates proinsulin processing and processing enzyme maturation in pancreatic beta cells. Diabetologia 2023; 66:2042-2061. [PMID: 37537395 PMCID: PMC10542743 DOI: 10.1007/s00125-023-05979-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023]
Abstract
AIMS/HYPOTHESIS Increased circulating levels of incompletely processed insulin (i.e. proinsulin) are observed clinically in type 1 and type 2 diabetes. Previous studies have suggested that Ca2+ signalling within beta cells regulates insulin processing and secretion; however, the mechanisms that link impaired Ca2+ signalling with defective insulin maturation remain incompletely understood. METHODS We generated mice with beta cell-specific sarcoendoplasmic reticulum Ca2+ ATPase-2 (SERCA2) deletion (βS2KO mice) and used an INS-1 cell line model of SERCA2 deficiency. Whole-body metabolic phenotyping, Ca2+ imaging, RNA-seq and protein processing assays were used to determine how loss of SERCA2 impacts beta cell function. To test key findings in human model systems, cadaveric islets were treated with diabetogenic stressors and prohormone convertase expression patterns were characterised. RESULTS βS2KO mice exhibited age-dependent glucose intolerance and increased plasma and pancreatic levels of proinsulin, while endoplasmic reticulum (ER) Ca2+ levels and glucose-stimulated Ca2+ synchronicity were reduced in βS2KO islets. Islets isolated from βS2KO mice and SERCA2-deficient INS-1 cells showed decreased expression of the active forms of the proinsulin processing enzymes PC1/3 and PC2. Additionally, immunofluorescence staining revealed mis-location and abnormal accumulation of proinsulin and proPC2 in the intermediate region between the ER and the Golgi (i.e. the ERGIC) and in the cis-Golgi in beta cells of βS2KO mice. Treatment of islets from human donors without diabetes with high glucose and palmitate concentrations led to reduced expression of the active forms of the proinsulin processing enzymes, thus phenocopying the findings observed in βS2KO islets and SERCA2-deficient INS-1 cells. Similar findings were observed in wild-type mouse islets treated with brefeldin A, a compound that perturbs ER-to-Golgi trafficking. CONCLUSIONS/INTERPRETATION Taken together, these data highlight an important link between ER Ca2+ homeostasis and proinsulin processing in beta cells. Our findings suggest a model whereby chronic ER Ca2+ depletion due to SERCA2 deficiency impairs the spatial regulation of prohormone trafficking, processing and maturation within the secretory pathway. DATA AVAILABILITY RNA-seq data have been deposited in the Gene Expression Omnibus (GEO; accession no.: GSE207498).
Collapse
Affiliation(s)
- Hitoshi Iida
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuyoshi Kono
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Preethi Krishnan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew C Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Staci A Weaver
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Renato C S Branco
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Madeline R McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Robert N Bone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
31
|
Udagawa H, Funahashi N, Nishimura W, Uebanso T, Kawaguchi M, Asahi R, Nakajima S, Nammo T, Hiramoto M, Yasuda K. Glucocorticoid receptor-NECAB1 axis can negatively regulate insulin secretion in pancreatic β-cells. Sci Rep 2023; 13:17958. [PMID: 37863964 PMCID: PMC10589354 DOI: 10.1038/s41598-023-44324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
The mechanisms of impaired glucose-induced insulin secretion from the pancreatic β-cells in obesity have not yet been completely elucidated. Here, we aimed to assess the effects of adipocyte-derived factors on the functioning of pancreatic β-cells. We prepared a conditioned medium using 3T3-L1 cell culture supernatant collected at day eight (D8CM) and then exposed the rat pancreatic β-cell line, INS-1D. We found that D8CM suppressed insulin secretion in INS-1D cells due to reduced intracellular calcium levels. This was mediated by the induction of a negative regulator of insulin secretion-NECAB1. LC-MS/MS analysis results revealed that D8CM possessed steroid hormones (cortisol, corticosterone, and cortisone). INS-1D cell exposure to cortisol or corticosterone increased Necab1 mRNA expression and significantly reduced insulin secretion. The increased expression of Necab1 and reduced insulin secretion effects from exposure to these hormones were completely abolished by inhibition of the glucocorticoid receptor (GR). NECAB1 expression was also increased in the pancreatic islets of db/db mice. We demonstrated that the upregulation of NECAB1 was dependent on GR activation, and that binding of the GR to the upstream regions of Necab1 was essential for this effect. NECAB1 may play a novel role in the adipoinsular axis and could be potentially involved in the pathophysiology of obesity-related diabetes mellitus.
Collapse
Affiliation(s)
- Haruhide Udagawa
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Nobuaki Funahashi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, Narita, Chiba, 286-8686, Japan
- Division of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Miho Kawaguchi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Riku Asahi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Shigeru Nakajima
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
32
|
Forsythe SD, Pu T, Andrews SG, Madigan JP, Sadowski SM. Models in Pancreatic Neuroendocrine Neoplasms: Current Perspectives and Future Directions. Cancers (Basel) 2023; 15:3756. [PMID: 37568572 PMCID: PMC10416968 DOI: 10.3390/cancers15153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic neuroendocrine neoplasms (pNENs) are a heterogeneous group of tumors derived from multiple neuroendocrine origin cell subtypes. Incidence rates for pNENs have steadily risen over the last decade, and outcomes continue to vary widely due to inability to properly screen. These tumors encompass a wide range of functional and non-functional subtypes, with their rarity and slow growth making therapeutic development difficult as most clinically used therapeutics are derived from retrospective analyses. Improved molecular understanding of these cancers has increased our knowledge of the tumor biology for pNENs. Despite these advances in our understanding of pNENs, there remains a dearth of models for further investigation. In this review, we will cover the current field of pNEN models, which include established cell lines, animal models such as mice and zebrafish, and three-dimensional (3D) cell models, and compare their uses in modeling various disease aspects. While no study model is a complete representation of pNEN biology, each has advantages which allow for new scientific understanding of these rare tumors. Future efforts and advancements in technology will continue to create new options in modeling these cancers.
Collapse
Affiliation(s)
- Steven D. Forsythe
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Tracey Pu
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Stephen G. Andrews
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - James P. Madigan
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| | - Samira M. Sadowski
- Neuroendocrine Cancer Therapy Section, Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (S.D.F.); (S.G.A.); (J.P.M.)
| |
Collapse
|
33
|
Mauchauffée E, Leroy J, Chamcham J, Ejjoummany A, Maurel M, Nauton L, Ramassamy B, Mezghenna K, Boucher JL, Lajoix AD, Hernandez JF. S-Ethyl-Isothiocitrullin-Based Dipeptides and 1,2,4-Oxadiazole Pseudo-Dipeptides: Solid Phase Synthesis and Evaluation as NO Synthase Inhibitors. Molecules 2023; 28:5085. [PMID: 37446746 DOI: 10.3390/molecules28135085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
We previously reported dipeptidomimetic compounds as inhibitors of neuronal and/or inducible NO synthases (n/iNOS) with significant selectivity against endothelial NOS (eNOS). They were composed of an S-ethylisothiocitrullin-like moiety linked to an extension through a peptide bond or a 1,2,4-oxadiazole link. Here, we developed two further series where the extension size was increased to establish more favorable interactions in the NOS substrate access channel. The extension was introduced on the solid phase by the reductive alkylation of an amino-piperidine moiety or an aminoethyl segment in the case of dipeptide-like and 1,2,4-oxadiazole compounds, respectively, with various benzaldehydes. Compared to the previous series, more potent inhibitors were identified with IC50 in the micromolar to the submicromolar range, with significant selectivity toward nNOS. As expected, most compounds did not inhibit eNOS, and molecular modeling was carried out to characterize the reasons for the selectivity toward nNOS over eNOS. Spectral studies showed that compounds were interacting at the heme active site. Finally, selected inhibitors were found to inhibit intra-cellular iNOS and nNOS expressed in RAW264.7 and INS-1 cells, respectively.
Collapse
Affiliation(s)
- Elodie Mauchauffée
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Jérémy Leroy
- Centre Biocommunication en Cardio-Métabolique, Univ. Montpellier, UFR Pharmacie, 34093 Montpellier, France
| | - Jihanne Chamcham
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| | - Lionel Nauton
- Institut de Chimie de Clermont-Ferrand, Université Clermont-Auvergne, CNRS, 63178 Aubière, France
| | - Booma Ramassamy
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, CEDEX 06, 75270 Paris, France
| | - Karima Mezghenna
- Centre Biocommunication en Cardio-Métabolique, Univ. Montpellier, UFR Pharmacie, 34093 Montpellier, France
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, CNRS, Université Paris Descartes, CEDEX 06, 75270 Paris, France
| | - Anne-Dominique Lajoix
- Centre Biocommunication en Cardio-Métabolique, Univ. Montpellier, UFR Pharmacie, 34093 Montpellier, France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron, CNRS, Univ. Montpellier, ENSCM, Pôle Chimie Balard, 34293 Montpellier, France
| |
Collapse
|
34
|
Ihim SA, Kaneko YK, Yamamoto M, Yamaguchi M, Kimura T, Ishikawa T. Apigenin Alleviates Endoplasmic Reticulum Stress-Mediated Apoptosis in INS-1 β-Cells. Biol Pharm Bull 2023; 46:630-635. [PMID: 37005308 DOI: 10.1248/bpb.b22-00913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The improvement of type 2 diabetes mellitus induced by naturally occurring polyphenols, known as flavonoids, has received considerable attention. However, there is a dearth of information regarding the effect of the trihydroxyflavone apigenin on pancreatic β-cell function. In the present study, the anti-diabetic effect of apigenin on pancreatic β-cell insulin secretion, apoptosis, and the mechanism underlying its anti-diabetic effects, were investigated in the INS-ID β-cell line. The results showed that apigenin concentration-dependently facilitated 11.1-mM glucose-induced insulin secretion, which peaked at 30 µM. Apigenin also concentration-dependently inhibited the expression of endoplasmic reticulum (ER) stress signaling proteins, CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) and cleaved caspase-3, which was elevated by thapsigargin in INS-1D cells, with peak suppression at 30 µM. This was strongly correlated with the results of flow cytometric analysis of annexin V/propidium iodide (PI) staining and DNA fragmentation analysis. Moreover, the increased expression of thioredoxin-interacting protein (TXNIP) induced by thapsigargin was remarkably reduced by apigenin in a concentration-dependent manner. These results suggest that apigenin is an attractive candidate with remarkable and potent anti-diabetic effects on β-cells, which are mediated by facilitating glucose-stimulated insulin secretion and preventing ER stress-mediated β-cell apoptosis, the latter of which may be possibly mediated by reduced expression of CHOP and TXNIP, thereby promoting β-cell survival and function.
Collapse
Affiliation(s)
- Stella Amarachi Ihim
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yukiko K. Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Moe Yamamoto
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
35
|
Ho KH, Jayathilake A, Yagan M, Nour A, Osipovich AB, Magnuson MA, Gu G, Kaverina I. CAMSAP2 localizes to the Golgi in islet β-cells and facilitates Golgi-ER trafficking. iScience 2023; 26:105938. [PMID: 36718359 PMCID: PMC9883185 DOI: 10.1016/j.isci.2023.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Glucose stimulation induces the remodeling of microtubules, which potentiates insulin secretion in pancreatic β-cells. CAMSAP2 binds to microtubule minus ends to stabilize microtubules in several cultured clonal cells. Here, we report that the knockdown of CAMSAP2 in primary β-cells reduces total insulin content and attenuates GSIS without affecting the releasability of insulin vesicles. Surprisingly, CAMSAP2 knockdown does not change microtubule stability. Unlike in cultured insulinoma cells, CAMSAP2 in primary β-cells predominantly localizes to the Golgi apparatus instead of microtubule minus ends. This novel localization is specific to primary β- but not α-cells and is independent of microtubule binding. Consistent with its specific localization at the Golgi, CAMSAP2 promotes efficient Golgi-ER trafficking in primary β-cells. Moreover, primary β-cells and insulinoma cells likely express different CAMSAP2 isoforms. We propose that a novel CAMSAP2 isoform in primary β-cells has a non-canonical function, which promotes Golgi-ER trafficking to support efficient production of insulin and secretion.
Collapse
Affiliation(s)
- Kung-Hsien Ho
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anissa Jayathilake
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Mahircan Yagan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Aisha Nour
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
36
|
Srivastava V, Zelmanovich V, Shukla V, Abergel R, Cohen I, Ben-Sasson SA, Gross E. Distinct designer diamines promote mitophagy, and thereby enhance healthspan in C. elegans and protect human cells against oxidative damage. Autophagy 2023; 19:474-504. [PMID: 35579620 PMCID: PMC9851263 DOI: 10.1080/15548627.2022.2078069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Impaired mitophagy is a primary pathogenic event underlying diverse aging-associated diseases such as Alzheimer and Parkinson diseases and sarcopenia. Therefore, augmentation of mitophagy, the process by which defective mitochondria are removed, then replaced by new ones, is an emerging strategy for preventing the evolvement of multiple morbidities in the elderly population. Based on the scaffold of spermidine (Spd), a known mitophagy-promoting agent, we designed and tested a family of structurally related compounds. A prototypic member, 1,8-diaminooctane (VL-004), exceeds Spd in its ability to induce mitophagy and protect against oxidative stress. VL-004 activity is mediated by canonical aging genes and promotes lifespan and healthspan in C. elegans. Moreover, it enhances mitophagy and protects against oxidative injury in rodent and human cells. Initial structural characterization suggests simple rules for the design of compounds with improved bioactivity, opening the way for a new generation of agents with a potential to promote healthy aging.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Veronica Zelmanovich
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Virendra Shukla
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Abergel
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shmuel A. Ben-Sasson
- Department Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einav Gross
- Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel,CONTACT Einav Gross Department Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, the Hebrew University of Jerusalem, Ein Kerem. PO Box 12271, Jerusalem9112102, Israel
| |
Collapse
|
37
|
Harvey KE, Tang S, LaVigne EK, Pratt EPS, Hockerman GH. RyR2 regulates store-operated Ca2+ entry, phospholipase C activity, and electrical excitability in the insulinoma cell line INS-1. PLoS One 2023; 18:e0285316. [PMID: 37141277 PMCID: PMC10159205 DOI: 10.1371/journal.pone.0285316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The ER Ca2+ channel ryanodine receptor 2 (RyR2) is required for maintenance of insulin content and glucose-stimulated insulin secretion, in part, via regulation of the protein IRBIT in the insulinoma cell line INS-1. Here, we examined store-operated and depolarization-dependent Ca2+entry using INS-1 cells in which either RyR2 or IRBIT were deleted. Store-operated Ca2+ entry (SOCE) stimulated with thapsigargin was reduced in RyR2KO cells compared to controls, but was unchanged in IRBITKO cells. STIM1 protein levels were not different between the three cell lines. Basal and stimulated (500 μM carbachol) phospholipase C (PLC) activity was also reduced specifically in RyR2KO cells. Insulin secretion stimulated by tolbutamide was reduced in RyR2KO and IRBITKO cells compared to controls, but was potentiated by an EPAC-selective cAMP analog in all three cell lines. Cellular PIP2 levels were increased and cortical f-actin levels were reduced in RyR2KO cells compared to controls. Whole-cell Cav channel current density was increased in RyR2KO cells compared to controls, and barium current was reduced by acute activation of the lipid phosphatase pseudojanin preferentially in RyR2KO cells over control INS-1 cells. Action potentials stimulated by 18 mM glucose were more frequent in RyR2KO cells compared to controls, and insensitive to the SK channel inhibitor apamin. Taken together, these results suggest that RyR2 plays a critical role in regulating PLC activity and PIP2 levels via regulation of SOCE. RyR2 also regulates β-cell electrical activity by controlling Cav current density and SK channel activation.
Collapse
Affiliation(s)
- Kyle E Harvey
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shiqi Tang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Emily K LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Evan P S Pratt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Interdisciplinary Life Sciences Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
38
|
Sharifi S, Böger M, Lortz S, Mehmeti I. Luminal H 2 O 2 promotes ER Ca 2+ dysregulation and toxicity of palmitate in insulin-secreting INS-1E cells. FASEB J 2023; 37:e22685. [PMID: 36468845 DOI: 10.1096/fj.202201237r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) lumen is not only the major site for the assembly and folding of newly synthesized proteins but also the main intracellular Ca2+ store. Ca2+ ions are involved in versatile biochemical processes, including posttranslational processing and folding of nascent proteins. Disruption of ER Ca2+ homeostasis is usually accompanied by an ER stress response that can ultimately lead to apoptosis if unresolved. Abnormal ER Ca2+ depletion has been linked to pancreatic β-cell dysfunction and death under lipotoxic conditions. However, the underlying mechanisms how the β-cell toxic saturated free fatty acid palmitate perturbs ER Ca2+ homeostasis and its interplay with other organelles are not fully understood. In the present study, we demonstrate that treatment of insulin-secreting INS-1E cells with palmitate diminished ER Ca2+ levels, elevated cytosolic/mitochondrial Ca2+ content, lowered the mitochondrial membrane potential, and ATP content. In addition, palmitate-pretreated β-cells contained significantly less luminal Ca2+ , revealed a severely impaired ER Ca2+ reuptake rate, and substantially lower insulin content. Importantly, detoxification of luminal H2 O2 by expression of the ER-resident glutathione peroxidase 8 (GPx8) abrogated the lipotoxic effects of palmitate. Moreover, GPx8 supported oxidative protein folding and preserved insulin content under lipotoxic conditions. A direct involvement of luminal H2 O2 in palmitate-mediated ER Ca2+ depletion could be corroborated by the ectopic expression of an ER-luminal active catalase. Our data point to the critical role of luminal H2 O2 in palmitate-mediated depletion of ER Ca2+ through redox-dependent impairment of Ca2+ ATPase pump activity upstream of mitochondrial dysfunction in insulin-secreting INS-1E cells.
Collapse
Affiliation(s)
- Sarah Sharifi
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Maren Böger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Stephan Lortz
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
39
|
Ching C, Iich E, Teo AKK. Harnessing Human Pluripotent Stem Cell-Derived Pancreatic In Vitro Models for High-Throughput Toxicity Testing and Diabetes Drug Discovery. Handb Exp Pharmacol 2023; 281:301-332. [PMID: 37306817 DOI: 10.1007/164_2023_655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The long-standing goals in diabetes research are to improve β-cell survival, functionality and increase β-cell mass. Current strategies to manage diabetes progression are still not ideal for sustained maintenance of normoglycemia, thereby increasing demand for the development of novel drugs. Available pancreatic cell lines, cadaveric islets, and their culture methods and formats, either 2D or 3D, allow for multiple avenues of experimental design to address diverse aims in the research setting. More specifically, these pancreatic cells have been employed in toxicity testing, diabetes drug screens, and with careful curation, can be optimized for use in efficient high-throughput screenings (HTS). This has since spearheaded the understanding of disease progression and related mechanisms, as well as the discovery of potential drug candidates which could be the cornerstone for diabetes treatment. This book chapter will touch on the pros and cons of the most widely used pancreatic cells, including the more recent human pluripotent stem cell-derived pancreatic cells, and HTS strategies (cell models, design, readouts) that can be used for the purpose of toxicity testing and diabetes drug discovery.
Collapse
Affiliation(s)
- Carmen Ching
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elhadi Iich
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
40
|
Collado Camps E, van Lith SAM, Kip A, Frielink C, Joosten L, Brock R, Gotthardt M. Conjugation to a cell-penetrating peptide drives the tumour accumulation of the GLP1R antagonist exendin(9-39). Eur J Nucl Med Mol Imaging 2023; 50:996-1004. [PMID: 36446951 PMCID: PMC9931918 DOI: 10.1007/s00259-022-06041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Exendin, an analogue of the glucagon-like peptide 1 (GLP1), is an excellent tracer for molecular imaging of pancreatic beta cells and beta cell-derived tumours. The commonly used form, exendin-4, activates the GLP1 receptor and causes internalisation of the peptide-receptor complex. As a consequence, injection of exendin-4 can lead to adverse effects such as nausea, vomiting and hypoglycaemia and thus requires close monitoring during application. By comparison, the antagonist exendin(9-39) does not activate the receptor, but its lack of internalisation has precluded its use as a tracer. Improving the cellular uptake of exendin(9-39) could turn it into a useful alternative tracer with less side-effects than exendin-4. METHODS We conjugated exendin-4 and exendin(9-39) to the well-known cell-penetrating peptide (CPP) penetratin. We evaluated cell binding and internalisation of the radiolabelled peptides in vitro and their biodistribution in vivo. RESULTS Exendin-4 showed internalisation irrespective of the presence of the CPP, whereas for exendin(9-39) only the penetratin conjugate internalised. Conjugation to the CPP also enhanced the in vivo tumour uptake and retention of exendin(9-39). CONCLUSION We demonstrate that penetratin robustly improves internalisation and tumour retention of exendin(9-39), opening new avenues for antagonist-based in vivo imaging of GLP1R.
Collapse
Affiliation(s)
- Estel Collado Camps
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands ,Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands ,Present Address: Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 278 Tumor Immunology, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sanne A. M. van Lith
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Annemarie Kip
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands ,Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Martin Gotthardt
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
41
|
Asai S, Moravcová J, Žáková L, Selicharová I, Hadravová R, Brzozowski AM, Nováček J, Jiráček J. Characterization of insulin crystalline form in isolated β-cell secretory granules. Open Biol 2022; 12:220322. [PMID: 36541100 PMCID: PMC9768635 DOI: 10.1098/rsob.220322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Insulin is stored in vivo inside the pancreatic β-cell insulin secretory granules. In vitro studies have led to an assumption that high insulin and Zn2+ concentrations inside the pancreatic β-cell insulin secretory granules should promote insulin crystalline state in the form of Zn2+-stabilized hexamers. Electron microscopic images of thin sections of the pancreatic β-cells often show a dense, regular pattern core, suggesting the presence of insulin crystals. However, the structural features of the storage forms of insulin in native preparations of secretory granules are unknown, because of their small size, fragile character and difficult handling. We isolated and investigated the secretory granules from MIN6 cells under near-native conditions, using cryo-electron microscopic (Cryo-EM) techniques. The analysis of these data from multiple intra-granular crystals revealed two different rhomboidal crystal lattices. The minor lattice has unit cell parameters (a ≃ b ≃ 84.0 Å, c ≃ 35.2 Å), similar to in vitro crystallized human 4Zn2+-insulin hexamer, whereas the largely prevalent unit cell has more than double c-axis (a ≃ b ≃ c ≃ 96.5 Å) that probably corresponds to two or three insulin hexamers in the asymmetric unit. Our experimental data show that insulin can be present in pancreatic MIN6 cell granules in a microcrystalline form, probably consisting of 4Zn2+-hexamers of this hormone.
Collapse
Affiliation(s)
- Seiya Asai
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 11610 Prague 6, Czech Republic,Department of Biochemistry, Faculty of Science, Charles University, 12840 Prague 2, Czech Republic
| | - Jana Moravcová
- CEITEC, Cryo-Electron Microscopy and Tomography Core Facility, Masaryk University, Kamenice 5, 62500 Bohunice, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 11610 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 11610 Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 11610 Prague 6, Czech Republic
| | - Andrzej Marek Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Jiří Nováček
- CEITEC, Cryo-Electron Microscopy and Tomography Core Facility, Masaryk University, Kamenice 5, 62500 Bohunice, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 11610 Prague 6, Czech Republic
| |
Collapse
|
42
|
Marques C, Liu L, Duncan KD, Lanekoff I. A Direct Infusion Probe for Rapid Metabolomics of Low-Volume Samples. Anal Chem 2022; 94:12875-12883. [PMID: 36070505 PMCID: PMC9494293 DOI: 10.1021/acs.analchem.2c02918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Targeted and nontargeted metabolomics has the potential to evaluate and detect global metabolite changes in biological systems. Direct infusion mass spectrometric analysis enables detection of all ionizable small molecules, thus simultaneously providing information on both metabolites and lipids in chemically complex samples. However, to unravel the heterogeneity of the metabolic status of cells in culture and tissue a low number of cells per sample should be analyzed with high sensitivity, which requires low sample volumes. Here, we present the design and characterization of the direct infusion probe, DIP. The DIP is simple to build and position directly in front of a mass spectrometer for rapid metabolomics of chemically complex biological samples using pneumatically assisted electrospray ionization at 1 μL/min flow rate. The resulting data is acquired in a square wave profile with minimal carryover between samples that enhances throughput and enables several minutes of uniform MS signal from 5 μL sample volumes. The DIP was applied to study the intracellular metabolism of insulin secreting INS-1 cells and the results show that exposure to 20 mM glucose for 15 min significantly alters the abundance of several small metabolites, amino acids, and lipids.
Collapse
Affiliation(s)
- Cátia Marques
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Liangwen Liu
- Department
of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Kyle D. Duncan
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Ingela Lanekoff
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
43
|
Dani S, Windisch J, Valencia Guerrero XM, Bernhardt A, Gelinsky M, Krujatz F, Lode A. Selection of a suitable photosynthetically active microalgae strain for the co-cultivation with mammalian cells. Front Bioeng Biotechnol 2022; 10:994134. [PMID: 36199362 PMCID: PMC9528974 DOI: 10.3389/fbioe.2022.994134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing hypoxic zones in 3D bioprinted mammalian cell-laden constructs using an internal oxygen supply could enable a more successful cultivation both in vitro and in vivo. In this study, the suitability of green microalgae as photosynthetic oxygen generators within bioprinted constructs was evaluated by defining and investigating important parameters for a successful co-culture. First, we assessed the impact of light–necessary for photosynthesis–on two non-light adapted mammalian cell types and defined red-light illumination and a temperature of 37°C as essential factors in a co-culture. The four thermotolerant microalgae strains Chlorella sorokiniana, Coelastrella oocystiformis, Coelastrella striolata, and Scenedesmus sp. were cultured both in suspension culture and 3D bioprinted constructs to assess viability and photosynthetic activity under these defined co-culture conditions. Scenedesmus sp. proved to be performing best under red light and 37°C as well as immobilized in a bioprinted hydrogel based on alginate. Moreover, the presence of the antibiotic ampicillin and the organic carbon-source glucose, both required for mammalian cell cultures, had no impact on bioprinted Scenedesmus sp. cultures regarding growth, viability, and photosynthetic activity. This study is the first to investigate the influence of mammalian cell requirements on the metabolism and photosynthetic ability of different microalgal strains. In a co-culture, the strain Scenedesmus sp. could provide a stable oxygenation that ensures the functionality of the mammalian cells.
Collapse
Affiliation(s)
- Sophie Dani
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Johannes Windisch
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Xally Montserrat Valencia Guerrero
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Felix Krujatz
- Institute of Natural Materials Technology, Technische Universität Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Anja Lode,
| |
Collapse
|
44
|
Sharma AK, Singh S, Singh H, Mahajan D, Kolli P, Mandadapu G, Kumar B, Kumar D, Kumar S, Jena MK. Deep Insight of the Pathophysiology of Gestational Diabetes Mellitus. Cells 2022; 11:2672. [PMID: 36078079 PMCID: PMC9455072 DOI: 10.3390/cells11172672] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a severe metabolic disorder, which consistently requires medical care and self-management to restrict complications, such as obesity, kidney damage and cardiovascular diseases. The subtype gestational diabetes mellitus (GDM) occurs during pregnancy, which severely affects both the mother and the growing foetus. Obesity, uncontrolled weight gain and advanced gestational age are the prominent risk factors for GDM, which lead to high rate of perinatal mortality and morbidity. In-depth understanding of the molecular mechanism involved in GDM will help researchers to design drugs for the optimal management of the condition without affecting the mother and foetus. This review article is focused on the molecular mechanism involved in the pathophysiology of GDM and the probable biomarkers, which can be helpful for the early diagnosis of the condition. The early diagnosis of the metabolic disorder, most preferably in first trimester of pregnancy, will lead to its effective long-term management, reducing foetal developmental complications and mortality along with safety measures for the mother.
Collapse
Affiliation(s)
- Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sanjeev Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Himanshu Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA
| | | | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
45
|
Wen Y, Liu Y, Huang Q, Farag MA, Li X, Wan X, Zhao C. Nutritional assessment models for diabetes and aging. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yuxi Wen
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Yuanyuan Liu
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Qihui Huang
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- Department of Analytical and Food Chemistry Universidade de Vigo, Nutrition and Bromatology Group, Faculty of Sciences Ourense Spain
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy Cairo University Cairo Egypt
| | - Xiaoqing Li
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xuzhi Wan
- College of Biosystem Engineering and Food Science Zhejiang University Hangzhou China
| | - Chao Zhao
- College of Marine Sciences Fujian Agriculture and Forestry University Fuzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
46
|
Measuring Molecular Diffusion in Dynamic Subcellular Nanostructures by Fast Raster Image Correlation Spectroscopy and 3D Orbital Tracking. Int J Mol Sci 2022; 23:ijms23147623. [PMID: 35886970 PMCID: PMC9323805 DOI: 10.3390/ijms23147623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Here we provide demonstration that fast fluorescence fluctuation spectroscopy is a fast and robust approach to extract information on the dynamics of molecules enclosed within subcellular nanostructures (e.g., organelles or vesicles) which are also moving in the complex cellular environment. In more detail, Raster Image Correlation Spectroscopy (RICS) performed at fast timescales (i.e., microseconds) reveals the fast motion of fluorescently labeled molecules within two exemplary dynamic subcellular nanostructures of biomedical interest, the lysosome and the insulin secretory granule (ISG). The measurement of molecular diffusion is then used to extract information on the average properties of subcellular nanostructures, such as macromolecular crowding or molecular aggregation. Concerning the lysosome, fast RICS on a fluorescent tracer allowed us to quantitatively assess the increase in organelle viscosity in the pathological condition of Krabbe disease. In the case of ISGs, fast RICS on two ISG-specific secreting peptides unveiled their differential aggregation propensity depending on intragranular concentration. Finally, a combination of fast RICS and feedback-based 3D orbital tracking was used to subtract the slow movement of subcellular nanostructures from the fast diffusion of molecules contained within them and independently validate the results. Results presented here not only demonstrate the acquired ability to address the dynamic behavior of molecules in moving, nanoscopic reference systems, but prove the relevance of this approach to advance our knowledge on cell function at the subcellular scale.
Collapse
|
47
|
Stem Cell-Derived Islets for Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23095099. [PMID: 35563490 PMCID: PMC9105352 DOI: 10.3390/ijms23095099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of insulin a century ago, insulin injection has been a primary treatment for both type 1 (T1D) and type 2 diabetes (T2D). T2D is a complicated disea se that is triggered by the dysfunction of insulin-producing β cells and insulin resistance in peripheral tissues. Insulin injection partially compensates for the role of endogenous insulin which promotes glucose uptake, lipid synthesis and organ growth. However, lacking the continuous, rapid, and accurate glucose regulation by endogenous functional β cells, the current insulin injection therapy is unable to treat the root causes of the disease. Thus, new technologies such as human pluripotent stem cell (hPSC)-derived islets are needed for both identifying the key molecular and genetic causes of T2D and for achieving a long-term treatment. This perspective review will provide insight into the efficacy of hPSC-derived human islets for treating and understanding T2D. We discuss the evidence that β cells should be the primary target for T2D treatment, the use of stem cells for the modeling of T2D and the potential use of hPSC-derived islet transplantation for treating T2D.
Collapse
|
48
|
Shapoval O, Engstová H, Jirák D, Drahokoupil J, Sulková K, Berková Z, Pop-Georgievski O, Holendová B, Ježek P, Horák D. Poly(4-Styrenesulfonic Acid- co-maleic Anhydride)-Coated NaGdF 4:Yb,Tb,Nd Nanoparticles with Luminescence and Magnetic Properties for Imaging of Pancreatic Islets and β-Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18233-18247. [PMID: 35416039 DOI: 10.1021/acsami.2c04274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel Yb,Tb,Nd-doped GdF3 and NaGdF4 nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) in the presence of the poly(4-styrenesulfonic acid-co-maleic anhydride) stabilizer. The particle size and morphology, crystal structure, and phase change were controlled by adjusting the PSSMA concentration and source of fluoride anions in the reaction. Doping of Yb3+, Tb3+, and Nd3+ ions in the NaGdF4 host nanoparticles induced luminescence under ultraviolet and near-infrared excitation and high relaxivity in magnetic resonance (MR) imaging (MRI). In vitro toxicity of the nanoparticles and their cellular uptake efficiency were determined in model rat pancreatic β-cells (INS-1E). As the NaGdF4:Yb,Tb,Nd@PSSMA-EG nanoparticles were non-toxic and possessed good luminescence and magnetic properties, they were applicable for in vitro optical and MRI of isolated pancreatic islets in phantoms. The superior contrast was achieved for in vivo T2*-weighted MR images of the islets transplanted under the kidney capsule to mice in preclinical trials.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Hana Engstová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4 142 21, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, Prague 2 120 00, Czech Republic
| | - Jan Drahokoupil
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8 182 21, Czech Republic
| | - Kateřina Sulková
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4 142 21, Czech Republic
| | - Zuzana Berková
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4 142 21, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Blanka Holendová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Petr Ježek
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
49
|
Differential routing and disposition of the long-chain saturated fatty acid palmitate in rodent vs human beta-cells. Nutr Diabetes 2022; 12:22. [PMID: 35443738 PMCID: PMC9021209 DOI: 10.1038/s41387-022-00199-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Rodent and human β-cells are differentially susceptible to the "lipotoxic" effects of long-chain saturated fatty acids (LC-SFA) but the factors accounting for this are unclear. Here, we have studied the intracellular disposition of the LC-SFA palmitate in human vs rodent β-cells and present data that reveal new insights into the factors regulating β-cell lipotoxicity. METHODS The subcellular distribution of the LC-SFA palmitate was studied in rodent (INS-1E and INS-1 823/13 cells) and human (EndoC-βH1) β-cells using confocal fluorescence and electron microscopy (EM). Protein expression was assessed by Western blotting and cell viability, by vital dye staining. RESULTS Exposure of INS-1 cells to palmitate for 24 h led to loss of viability, whereas EndoC-βH1 cells remained viable even after 72 h of treatment with a high concentration (1 mM) of palmitate. Use of the fluorescent palmitate analogue BODIPY FL C16 revealed an early localisation of the LC-SFA to the Golgi apparatus in INS-1 cells and this correlated with distention of intracellular membranes, visualised under the EM. Despite this, the PERK-dependent ER stress pathway was not activated under these conditions. By contrast, BODIPY FL C16 did not accumulate in the Golgi apparatus in EndoC-βH1 cells but, rather, co-localised with the lipid droplet-associated protein, PLIN2, suggesting preferential routing into lipid droplets. When INS-1 cells were treated with a combination of palmitate plus oleate, the toxic effects of palmitate were attenuated and BODIPY FL C16 localised primarily with PLIN2 but not with a Golgi marker. CONCLUSION In rodent β-cells, palmitate accumulates in the Golgi apparatus at early time points whereas, in EndoC- βH1 cells, it is routed preferentially into lipid droplets. This may account for the differential sensitivity of rodent vs human β-cells to "lipotoxicity" since manoeuvres leading to the incorporation of palmitate into lipid droplets is associated with the maintenance of cell viability in both cell types.
Collapse
|
50
|
Hagenlocher C, Siebert R, Taschke B, Wieske S, Hausser A, Rehm M. ER stress-induced cell death proceeds independently of the TRAIL-R2 signaling axis in pancreatic β cells. Cell Death Dis 2022; 8:34. [PMID: 35075141 PMCID: PMC8786928 DOI: 10.1038/s41420-022-00830-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
AbstractProlonged ER stress and the associated unfolded protein response (UPR) can trigger programmed cell death. Studies in cancer cell lines demonstrated that the intracellular accumulation of TRAIL receptor-2 (TRAIL-R2) and the subsequent activation of caspase-8 contribute significantly to apoptosis induction upon ER stress. While this might motivate therapeutic strategies that promote cancer cell death through ER stress-induced caspase-8 activation, it could also support the unwanted demise of non-cancer cells. Here, we therefore investigated if TRAIL-R2 dependent signaling towards apoptosis can be induced in pancreatic β cells, whose loss by prolonged ER stress is associated with the onset of diabetes. Interestingly, we found that elevated ER stress in these cells does not result in TRAIL-R2 transcriptional induction or elevated protein levels, and that the barely detectable expression of TRAIL-R2 is insufficient to allow TRAIL-induced apoptosis to proceed. Overall, this indicates that apoptotic cell death upon ER stress most likely proceeds independent of TRAIL-R2 in pancreatic β cells. Our findings therefore point to differences in ER stress response and death decision-making between cancer cells and pancreatic β cells and also have implications for future targeted treatment strategies that need to differentiate between ER stress susceptibility of cancer cells and pancreatic β cells.
Collapse
|