1
|
Furuminato K, Minatoya S, Senoo E, Goto T, Yamazaki S, Sakaguchi M, Toyota K, Iguchi T, Miyagawa S. The role of mesenchymal estrogen receptor 1 in mouse uterus in response to estrogen. Sci Rep 2023; 13:12293. [PMID: 37516793 PMCID: PMC10387046 DOI: 10.1038/s41598-023-39474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023] Open
Abstract
Estrogens play important roles in uterine growth and homeostasis through estrogen receptors (ESR1 and ESR2). To address the role of ESR1-mediated tissue events in the murine uterus, we analyzed mice with a mesenchymal tissue-specific knockout of Esr1. Isl1-driven Cre expression generated Esr1 deletion in the uterine stroma and endometrium (Isl-Esr1KO). We showed that overall structure of the Isl1-Esr1KO mouse uterus developed normally, but estrogen responsiveness and subsequent growth were defective, suggesting that mesenchymal ESR1 is necessary for both epithelial and mesenchymal cell proliferation. Furthermore, RNA-seq analysis revealed that the majority of estrogen-induced genes were regulated by stromal ESR1. In control mice, E2 administration induced 9476 up-regulated differentially expressed genes (DEGs), whereas only 1801 up-regulated DEGs were induced by E2 in Isl1-Esr1KO mice. We further showed that stromal ESR1-regulated genes in the mouse uterus included several growth factors and cytokines, which are potential factors that regulate epithelial and stromal tissue interaction, and also genes involved in lipid homeostasis. Therefore, we infer that stromal ESR1 expression is indispensable for most estrogen actions in the mouse uterus and the current results provide new insights into estrogen-mediated homeostasis in female reproductive organs.
Collapse
Affiliation(s)
- Keita Furuminato
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Saki Minatoya
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Eriko Senoo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Tatsuki Goto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Sho Yamazaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Moeka Sakaguchi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
| | - Kenji Toyota
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto, Ishikawa, 927-0552, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku 6-3-1, Katsushika, Tokyo, 125-8585, Japan.
| |
Collapse
|
2
|
Kim M, Park J, Lee H, Lim W, Song G. Bensulide exposure causes cell division cycle arrest and apoptosis in porcine trophectoderm and uterine luminal epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105460. [PMID: 37248025 DOI: 10.1016/j.pestbp.2023.105460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
As the use of herbicides in agriculture has increased worldwide, the importance of identifying unexpected toxic effects on non-target organisms is emerging. Bensulide is used on various agricultural crops as an organophosphate herbicide; however, it can pose a high risk to non-target organisms because of its long half-life and accumulative potential. Despite its high risk, the hazardous effects of bensulide on implantation and mechanisms in cells have not been reported. Therefore, in this study, intracellular mechanisms and potential risk of implantation failure were identified in porcine trophectoderm (pTr) and uterine luminal epithelial (pLE) cells derived from pigs with human-like molecular mechanisms in implantation. The LC50 values of bensulide were 5.21 mg/L in pTr cells and 6.49 mg/L in pLE cells. Both cell lines were exposed to bensulide at concentrations <5 mg/L in subsequent experiments. Treatment with 5 mg/L bensulide activated ERK1/2 and JNK. Disrupted mitochondrial membrane potentials of both cell types were identified. In addition, mitochondrial Ca2+ concentration increased to 261.24% and 228.04% in pTr and pLE cells, respectively, and cytoplasmic Ca2+ concentrations decreased by approximately 50% in both cell types. The abnormal regulation of various intracellular environments by bensulide causes cell division cycle arrest and apoptosis. Finally, 5 mg/L bensulide inhibited transcription of implantation-related genes. Collectively, our results suggest that bensulide may interrupt implantation during early pregnancy by disrupting maternal-fetal interaction.
Collapse
Affiliation(s)
- Miji Kim
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Simão VA, Lupi Júnior LA, Adan Araujo Leite G, Cherici Camargo IC, de Almeida Chuffa LG. Nandrolone decanoate causes uterine injury by changing hormone levels and sex steroid receptors in a dose- and time-dependent manner. Reprod Toxicol 2021; 102:98-108. [PMID: 33984419 DOI: 10.1016/j.reprotox.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023]
Abstract
Different doses of nandrolone decanoate (ND) were used to investigate the expression of uterine sex steroid receptors (AR, ER-α, and ER-β) and the levels of serum sex hormones after treatment and recovery periods in adult rats. ND doses of 1.87, 3.75, 7.5, or 15 mg/kg b.w. or mineral oil (control group) were injected subcutaneously for 15 days, and the experimental groups were divided into three periods of evaluation: (a) ND treatment for 15 days, (b) ND treatment followed by 30-day-recovery and (c) ND treatment followed by 60-day-recovery. Estrous cycle was monitored daily. At the end of each experimental period, rats were euthanized for the collection of serum samples and uterine tissues. All animals showed persistent diestrus and only the highest ND dose was capable of inducing persistent diestrus until 60-day-recovery. Immunoexpression of uterine sex steroid receptors varied in a time-dependent manner. While AR expression was increase after treatment period, ER-α and ER-β expressions decreased after 60- and 30-day-recovery, respectively. ND also increased the serum levels of testosterone, 17β-estradiol, and dihydrotestosterone, especially at the highest doses of 7.5 and 15 mg ND/kg until 30 days of recovery. The levels of progesterone were significantly reduced in all ND-treated animals. No significant difference was observed in the levels of follicle-stimulating hormone, whereas the levels of luteinizing hormone varied according to specific dose and period. We conclude that uterine sex steroid receptors and sex hormones are affected by ND administration and these alterations can be only restored following lower doses and long recovery periods.
Collapse
Affiliation(s)
- Vinícius Augusto Simão
- Department of Biotechnology, Faculty of Sciences and Letters of Assis, FCL/UNESP, SP, 19806-900, Brazil.
| | - Luiz Antonio Lupi Júnior
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, IBB/UNESP, SP, 16618-689, Brazil.
| | - Gabriel Adan Araujo Leite
- Department of Cell Biology, Embryology and Genetics, Biological Sciences Center, UFSC, SC, 88040-900, Brazil.
| | | | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, IBB/UNESP, SP, 16618-689, Brazil.
| |
Collapse
|
4
|
Hirano YU, Suzuki K, Iguchi T, Yamada G, Miyagawa S. The Role of Fgf Signaling on Epithelial Cell Differentiation in Mouse Vagina. In Vivo 2019; 33:1499-1505. [PMID: 31471398 DOI: 10.21873/invivo.11630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIM The mouse vagina exhibits stratified squamous epithelium, which is comprised of multiple cell layers. We previously showed that erbB signaling, induced by epithelial estrogen receptor 1 (ESR1), is required for the initial differentiation of the epithelium. However, the downstream effector that mediates terminal differentiation in the apical layers remains elusive. The contribution of fibroblast growth factor (FGF) to vaginal epithelial cell differentiation was investigated. MATERIALS AND METHODS Vaginas from wild-type or epithelium-specific Esr1 conditional knockout (cKO) mice were analyzed using immunohistochemistry and quantitative real-time RT-PCR. RESULTS Of the FGF ligands examined, Fgf22 mRNA was significantly induced following estrogen treatment. Furthermore, FGF downstream signaling, phosphorylated FRS2 and ERK1/2 were exclusively expressed in the apical layers of the vaginal epithelium. No changes in such expression were observed in the Esr1 cKO mice. CONCLUSION FGF-ERK/MAPK pathway may be a main inducer of terminal differentiation in the mouse vaginal epithelium.
Collapse
Affiliation(s)
- Y U Hirano
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kentaro Suzuki
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Miyagawa
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
5
|
Winuthayanon W, Lierz SL, Delarosa KC, Sampels SR, Donoghue LJ, Hewitt SC, Korach KS. Juxtacrine Activity of Estrogen Receptor α in Uterine Stromal Cells is Necessary for Estrogen-Induced Epithelial Cell Proliferation. Sci Rep 2017; 7:8377. [PMID: 28827707 PMCID: PMC5566397 DOI: 10.1038/s41598-017-07728-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/04/2017] [Indexed: 01/11/2023] Open
Abstract
Aberrant regulation of uterine cell growth can lead to endometrial cancer and infertility. To understand the molecular mechanisms of estrogen-induced uterine cell growth, we removed the estrogen receptor α (Esr1) from mouse uterine stromal cells, where the embryo is implanted during pregnancy. Without ESR1 in neighboring stroma cells, epithelial cells that line the inside of the uterus are unable to grow due to a lack of growth factors secreted from adjacent stromal cells. Moreover, loss of stromal ESR1 caused mice to deliver fewer pups due in part due to inability of some embryos to implant in the uterus, indicating that stromal ESR1 is crucial for uterine cell growth and pregnancy.
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164, United States.
| | - Sydney L Lierz
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, United States
| | - Karena C Delarosa
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164, United States
| | - Skylar R Sampels
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164, United States
| | - Lauren J Donoghue
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, United States
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, United States
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, 27709, United States
| |
Collapse
|
6
|
Elvis-Offiah UB, Bafor EE, Eze GI, Igbinumwen O, Viegelmann C, Edrada-Ebel R. In vivo investigation of female reproductive functions and parameters in nonpregnant mice models and mass spectrometric analysis of the methanol leaf extract of Emilia Coccinea(Sims) G Dons. Physiol Rep 2016. [PMCID: PMC5260090 DOI: 10.14814/phy2.13047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In Southern Nigeria, the leaves of Emilia coccinea (Sims) G Dons are used traditionally for birth control. This study was therefore aimed at evaluating the activities of the methanolic leaf extract of Emilia coccinea (EM) on parameters that affect reproduction as well as the acute toxic effects of the plant using nonpregnant female mice models. Leaves of EM were extracted by maceration with 99.8% methanol. Oral acute toxicity profiles were examined. The effects of EM on female reproductive cycle were determined after oral treatment with EM at 1000 and 100 mg/kg/day daily for 6 days using stilbesterol (1 mg/kg/day) and normal saline as controls. The activities of EM (1000 mg/kg/day and 100 mg/kg/day p.o) on reproductive hormones and organs were also studied using estradiol valerat (100 mg/kg/day p.o), progesterone (10 mg/kg/day s.c.), and normal saline as controls. The extract did not induce any observable toxic effect after 24 h. At 1000 mg/kg, the extract significantly shortened the estrus cycle (P < 0.05) while prolonging the estrus phase which were comparable to that observed with stilbesterol. The extract also increased uterine weight and altered the histology of uterine and ovarian tissues. The female reproductive hormones were additionally altered at 1000 mg/kg and the effects were comparable to that of estradiol valerat such as to indicate possible antifertility effects. LC‐HRFTMS analysis showed 9 putatively identified compounds with pyrrolizidine alkaloid occurring at the highest intensity among the identified compounds. In conclusion, the leaf extracts of EM has been shown in this study to exhibit antiovulatory and estrogenic activities which would support the traditional use of the plant in Nigeria.
Collapse
Affiliation(s)
- Uloma B. Elvis-Offiah
- Department of Science Laboratory Technology; Faculty of Life Sciences; University of Benin; Benin City Nigeria
| | - Enitome E. Bafor
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; University of Benin; Benin City Nigeria
| | - Gerald I. Eze
- Department of Anatomy; School of Basic Medical Sciences; University of Benin; Benin City Nigeria
| | - Osamwonyi Igbinumwen
- Haematology Department; University of Benin Teaching Hospital; Benin City Nigeria
| | | | | |
Collapse
|
7
|
Inada K, Hayashi S, Iguchi T, Sato T. Establishment of a Primary Culture Model of Mouse Uterine and Vaginal Stroma for Studying In Vitro Estrogen Effects. Exp Biol Med (Maywood) 2016; 231:303-10. [PMID: 16514177 DOI: 10.1177/153537020623100310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Effects of 17β-estradiol (E2) on uterine and vaginal epithelial cell proliferation could be mediated by stromal cell-derived paracrine factors. To study the epithelial-stromal interactions in mice, an in vitro model of uterine and vaginal stromal cells of immature mice is essential. Therefore, we established a primary culture model of stromal cells both from uterus and vagina and examined the effect of E2 on proliferation of cultured stromal cells. We found that E2 stimulated proliferation of stromal cells from both organs in vitro, showing an increase in the number of cells and the percentage of 5-bromo-2'-deoxyurldine (BrdU)-labeled cells. Interestingly, vaginal stromal cells responded to lower E2 than uterine stromal cells in proliferation (10−12 M vs. 10−8 M) and BrdU labeling (10−14 -10−10 M vs. 10−10 - 10−6 M). To examine the effect of E2 in vivo, cells were grafted into the subrenal capsule of the host mice and grown for 2 weeks. The BrdU labeling in cultured stromal cells was increased by E2 in vivo. To examine the effect of cultured stromal cells on epithelial cell proliferation, uterine and vaginal epithelium of adult mice were separated, recombined with the cultured stromal cells, and grafted under the renal capsule of hosts for 3 weeks. Epithelial cells recombined with cultured stromal cells showed simple columnar morphology in uterine grafts and stratified and keratinized morphology in vaginal grafts under the influence of the hormonal environment of the hosts. The BrdU labeling in epithelial cells was increased by E2, suggesting that cultured stromal cells can stimulate epithelial cell proliferation. In conclusion, we established a primary culture model of uterine and vaginal stromal cells, which can be mitogenically stimulated by E2 in vitro and in vivo after being grafted under the renal capsule. This culture system will be useful for investigating the underlying molecular mechanisms of uterine and vaginal epithelial-stromal interactions.
Collapse
Affiliation(s)
- Keiko Inada
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Yokohama 236-0027, Japan
| | | | | | | |
Collapse
|
8
|
Terakawa J, Rocchi A, Serna VA, Bottinger EP, Graff JM, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol 2016; 30:783-95. [PMID: 27164167 DOI: 10.1210/me.2016-1027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell fate of lower Müllerian duct epithelium (MDE), to become uterine or vaginal epithelium, is determined by the absence or presence of ΔNp63 expression, respectively. Previously, we showed that SMAD4 and runt-related transcription factor 1 (RUNX1) were independently required for MDE to express ΔNp63. Here, we report that vaginal mesenchyme directs vaginal epithelial cell fate in MDE through paracrine activation of fibroblast growth factor (FGF) receptor-MAPK pathway. In the developing reproductive tract, FGF7 and FGF10 were enriched in vaginal mesenchyme, whereas FGF receptor 2IIIb was expressed in epithelia of both the uterus and vagina. When Fgfr2 was inactivated, vaginal MDE underwent uterine cell fate, and this differentiation defect was corrected by activation of MEK-ERK pathway. In vitro, FGF10 in combination with bone morphogenetic protein 4 and activin A (ActA) was sufficient to induce ΔNp63 in MDE, and ActA was essential for induction of RUNX1 through SMAD-independent pathways. Accordingly, inhibition of type 1 receptors for activin in neonatal mice induced uterine differentiation in vaginal epithelium by down-regulating RUNX1, whereas conditional deletion of Smad2 and Smad3 had no effect on vaginal epithelial differentiation. In conclusion, vaginal epithelial cell fate in MDE is induced by FGF7/10-MAPK, bone morphogenetic protein 4-SMAD, and ActA-RUNX1 pathway activities, and the disruption in any one of these pathways results in conversion from vaginal to uterine epithelial cell fate.
Collapse
Affiliation(s)
- Jumpei Terakawa
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Altea Rocchi
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Vanida A Serna
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Erwin P Bottinger
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jonathan M Graff
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Takeshi Kurita
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
9
|
Robertshaw I, Bian F, Das SK. Mechanisms of uterine estrogen signaling during early pregnancy in mice: an update. J Mol Endocrinol 2016; 56:R127-38. [PMID: 26887389 PMCID: PMC4889031 DOI: 10.1530/jme-15-0300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/17/2016] [Indexed: 01/17/2023]
Abstract
Adherence of an embryo to the uterus represents the most critical step of the reproductive process. Implantation is a synchronized event between the blastocyst and the uterine luminal epithelium, leading to structural and functional changes for further embryonic growth and development. The milieu comprising the complex process of implantation is mediated by estrogen through diverse but interdependent signaling pathways. Mouse models have demonstrated the relevance of the expression of estrogen-modulated paracrine factors to uterine receptivity and implantation window. More importantly, some factors seem to serve as molecular links between different estrogen pathways, promoting cell growth, acting as molecular chaperones, or amplifying estrogenic effects. Abnormal expression of these factors can lead to implantation failure and infertility. This review provides an overview of several well-characterized signaling pathways that elucidates the molecular cross talk involved in the uterus during early pregnancy.
Collapse
Affiliation(s)
- I Robertshaw
- Department of Obstetrics and GynecologyUniversity of Cincinnati, West Chester, Ohio, USA Division of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - F Bian
- Division of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Perinatal InstituteCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - S K Das
- Division of Reproductive SciencesCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Perinatal InstituteCincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA Department of PediatricsUniversity of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, Retto G, Alfa M, Granese R, Abrão MS. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet 2015; 292:973-86. [DOI: 10.1007/s00404-015-3739-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
11
|
Hantak AM, Bagchi IC, Bagchi MK. Role of uterine stromal-epithelial crosstalk in embryo implantation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:139-46. [PMID: 25023679 DOI: 10.1387/ijdb.130348mb] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embryo implantation is a crucial step for successful pregnancy. Prior to implantation, the luminal epithelium undergoes steroid hormone-induced structural and functional changes that render it competent for embryo attachment. Subsequent invasion of the embryo into the maternal tissue triggers differentiation of the underlying stromal cells to form the decidua, a transient tissue which supports the developing embryo. Many molecular cues of both stromal and epithelial origin have been identified that are critical mediators of this process. An important aspect of uterine biology is the elaborate crosstalk that occurs between these tissue compartments during early pregnancy through expression of paracrine factors regulated by the steroid hormones estrogen and progesterone. Aberrant expression of these factors often leads to implantation failure and infertility. Genetically-engineered mouse models have been instrumental in elucidating what these paracrine factors are, what drives their expression, and what their effects are on neighboring cells. This review provides an overview of several well-characterized signaling pathways that span both epithelial and stromal compartments and their function during implantation in the mouse.
Collapse
Affiliation(s)
- Alison M Hantak
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
12
|
Haddad SN, Wira CR. Estradiol regulation of constitutive and keratinocyte growth factor-induced CCL20 and CXCL1 secretion by mouse uterine epithelial cells. Am J Reprod Immunol 2014; 72:34-44. [PMID: 24807244 DOI: 10.1111/aji.12260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/31/2014] [Indexed: 01/04/2023] Open
Abstract
PROBLEM Estradiol can directly affect epithelial cells or indirectly affect epithelial cells via stromal fibroblast secretion of growth factors, such as keratinocyte growth factor (KGF). The purpose of the present study was to determine whether estradiol regulates constitutive as well as KGF-induced uterine epithelial cell secretion of CCL20 and CXCL1. METHOD OF STUDY Freshly isolated and polarized uterine epithelial cells from Balb/c mice were cultured with estradiol in the presence or absence of KGF. CCL20 and CXCL1 were measured by ELISA. RESULTS Estradiol inhibited CCL20 secretion by freshly isolated and polarized uterine epithelial cells in the presence or absence of KGF. Unexpectedly, it enhanced KGF-induced CXCL1 secretion beyond that seen with KGF alone. Estradiol increased CXCL1 secretion at 24 hr and inhibited CCL20 at 48 hr. The effects of estradiol are specific in that progesterone, cortisol, dihydrotestosterone, and aldosterone had no effect on either CCL20 or CXCL1 secretion. The inhibitory effect of estradiol on CCL20 secretion was reversed with ICI 182,780, an estrogen receptor antagonist, indicating that this effect is estrogen receptor mediated. CONCLUSIONS Our data indicate that estradiol is important in regulating the effects of KGF on mouse uterine epithelial cell secretion of CCL20 and CXCL1.
Collapse
Affiliation(s)
- Severina N Haddad
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | | |
Collapse
|
13
|
Mvondo M, Njamen D, Fomum ST, Wandji J, Vollmer G. A postmenopause-like model of ovariectomized Wistar rats to identify active principles of Erythrina lysistemon (Fabaceae). Fitoterapia 2011; 82:939-49. [DOI: 10.1016/j.fitote.2011.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/09/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
|
14
|
Joshi A, Ellenson LH. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma. Exp Cell Res 2011; 317:1580-9. [PMID: 21397598 PMCID: PMC3103602 DOI: 10.1016/j.yexcr.2011.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 11/22/2022]
Abstract
Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten(+/-) mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten(+/-) mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ERα as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.
Collapse
Affiliation(s)
- Ayesha Joshi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA
| | | |
Collapse
|
15
|
Gao F, Ma X, Ostmann AB, Das SK. GPR30 activation opposes estrogen-dependent uterine growth via inhibition of stromal ERK1/2 and estrogen receptor alpha (ERα) phosphorylation signals. Endocrinology 2011; 152:1434-47. [PMID: 21303939 PMCID: PMC3060628 DOI: 10.1210/en.2010-1368] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although estradiol-17β (E2)-regulated early and late phase uterine responses have been well defined, the molecular mechanisms linking the phases remain poorly understood. We have previously shown that E2-regulated early signals mediate cross talk with estrogen receptor (ER)-α to elicit uterine late growth responses. G protein-coupled receptor (GPR30) has been implicated in early nongenomic signaling mediated by E2, although its role in E2-dependent uterine biology is unclear. Using selective activation of GPR30 by G-1, we show here a new function of GPR30 in regulating early signaling events, including the inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals and perturbation of growth regulation under the direction of E2 in the mouse uterus. We observed that GPR30 primarily localizes in the uterine epithelial cells, and its activation alters gene expression and mediates inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals in the stromal compartment, suggesting a paracrine signaling is involved. Importantly, viral-driven manipulation of GPR30 or pharmacological inhibition of ERK1/2 activation effectively alters E2-dependent uterine growth responses. Overall, GPR30 is a negative regulator of ERα-dependent uterine growth in response to E2. Our work has uncovered a novel GPR30-regulated inhibitory event, which may be physiologically relevant in both normal and pathological situations to negatively balance ERα-dependent uterine growth regulatory functions induced by E2.
Collapse
Affiliation(s)
- Fei Gao
- Division of Reproductive Sciences, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
16
|
Winuthayanon W, Hewitt SC, Orvis GD, Behringer RR, Korach KS. Uterine epithelial estrogen receptor α is dispensable for proliferation but essential for complete biological and biochemical responses. Proc Natl Acad Sci U S A 2010; 107:19272-7. [PMID: 20974921 PMCID: PMC2984169 DOI: 10.1073/pnas.1013226107] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female fertility requires estrogen to specifically stimulate estrogen receptor α (ERα)-dependent growth of the uterine epithelium in adult mice, while immature females show proliferation in both stroma and epithelium. To address the relative roles of ERα in mediating estrogen action in uterine epithelium versus stroma, a uterine epithelial-specific ERα knockout (UtEpiαERKO) mouse line was generated by crossing Esr mice with Wnt7a-Cre mice. Expression of Wnt7a directed Cre activity generated selective deletion of ERα in uterine epithelium, and female UtEpiαERKO are infertile. Herein, we demonstrate that 17β-estradiol (E(2))-induced uterine epithelial proliferation was independent of uterine epithelial ERα because DNA synthesis and up-regulation of mitogenic mediators were sustained in UtEpiαERKO uteri after E(2) treatment. IGF-1 treatment resulted in ligand-independent ER activation in both wild-type (WT) and UtEpiαERKO and mimicked the E(2) stimulatory effect on DNA synthesis in uterine epithelium. Uterine epithelial ERα was necessary to induce lactoferrin, an E(2)-regulated secretory protein selectively synthesized in the uterine epithelium. However, loss of uterine epithelial ERα did not alter the E(2)-dependent progesterone receptor (PR) down-regulation in epithelium. Strikingly, the uterine epithelium of UtEpiαERKO had robust evidence of apoptosis after 3 d of E(2) treatment. Therefore, we surmise that estrogen induced uterine hyperplasia involves a dispensable role for uterine epithelial ERα in the proliferative response, but ERα is required subsequent to proliferation to prevent uterine epithelial apoptosis assuring the full uterine epithelial response, illustrating the differential cellular roles for ERα in uterine tissue and its contribution during pregnancy.
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Sylvia C. Hewitt
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| | - Grant D. Orvis
- Developmental Biology Program, Sloan–Kettering Institute, York Avenue, New York, NY 10065; and
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Richard R. Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Kenneth S. Korach
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709
| |
Collapse
|
17
|
Yao L, Cooke PS, Meling DD, Shanks RD, Jameson JL, Sherwood OD. The effect of relaxin on cell proliferation in mouse cervix requires estrogen receptor {alpha} binding to estrogen response elements in stromal cells. Endocrinology 2010; 151:2811-8. [PMID: 20308531 PMCID: PMC2875817 DOI: 10.1210/en.2009-1327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study objective was to determine whether stromal and/or epithelial estrogen receptor-alpha (ERalpha) is required for relaxin to promote proliferation of stromal and epithelial cells in the mouse cervix. Four types of tissue recombinants were prepared with cervical stroma (St) and epithelium (Ep) from wild-type (wt) and ERalpha knockout (ko) mice: wt-St+wt-Ep, wt-St+ko-Ep, ko-St+wt-Ep and ko-St+ko-Ep. Tissue recombinants were grafted under the renal capsule of syngeneic female mice. After 3 wk of transplant growth, hosts were ovariectomized and fitted with silicon implants containing 17beta-estradiol (treatment d 1). Animals were injected sc with relaxin or vehicle PBS at 6-h intervals from 0600 h on d 8 through 0600 h on d 10. To evaluate cell proliferation, 5-bromo-2'-deoxyuridine was injected sc 10 h before tissue recombinants were collected at 1000 h on d 10. Relaxin promoted marked proliferation of both epithelial and stromal cells in tissue recombinants containing wt St (P < 0.001) but far lower proliferation in recombinants prepared with ko St, regardless of whether Ep was derived from wt or ko mice. An additional experiment using mice expressing wt ERalpha, a mutant of ERalpha that selectively lacks classical signaling through estrogen response element binding, or no ERalpha demonstrated that ERalpha must bind to an estrogen response element to enable relaxin's proliferative effects. In conclusion, this study shows that ERalpha-expressing cells in St, using a classical signaling pathway, are necessary for relaxin to promote marked proliferation in both stromal and epithelial cells of the mouse cervix.
Collapse
Affiliation(s)
- Lijuan Yao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
18
|
Simon L, Hess RA, Cooke PS. Spermatogonial stem cells, in vivo transdifferentiation and human regenerative medicine. Expert Opin Biol Ther 2010; 10:519-30. [PMID: 20146635 PMCID: PMC6635956 DOI: 10.1517/14712591003614731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IMPORTANCE OF THE FIELD Embryonic stem (ES) cells have potential for use in regenerative medicine, but use of these cells is hindered by moral, legal and ethical issues. Induced pluripotent cells have promise in regenerative medicine. However, since generation of these cells involves genetic manipulation, it also faces significant hurdles before clinical use. This review discusses spermatogonial stem cells (SSCs) as a potential alternative source of pluripotent cells for use in human regenerative medicine. AREAS COVERED IN THE REVIEW The potential of SSCs to give rise to a wide range of other cell types either directly, when recombined with instructive inducers, or indirectly, after being converted to ES-like cells. Current understanding of the differentiation potential of murine SSCs and recent progress in isolating and culturing human SSCs and demonstrating their properties is also discussed. WHAT THE READER WILL GAIN Insight into the plasticity of SSCs and the unique properties of these cells for regenerative applications, the limitations of SSCs for stem-cell-based therapy and the potential alternatives available. TAKE HOME MESSAGE If methodologies for isolation and conversion of adult human SSCs directly into other cell types can be effectively developed, SSCs could represent an important alternate source of pluripotent cells that can be used in human tissue repair and/or regeneration.
Collapse
Affiliation(s)
- Liz Simon
- University of Illinois at Urbana Champaign, Veterinary Biosciences, VMBSB, 2001, S. Lincoln Avenue, Urbana, IL 61802, USA
| | - Rex A Hess
- University of Illinois at Urbana Champaign, Veterinary Biosciences, VMBSB, 2001, S. Lincoln Avenue, Urbana, IL 61802, USA
| | - Paul S Cooke
- University of Illinois at Urbana Champaign, Veterinary Biosciences, VMBSB, 2001, S. Lincoln Avenue, Urbana, IL 61802, USA
| |
Collapse
|
19
|
Strand DW, Franco OE, Basanta D, Anderson ARA, Hayward SW. Perspectives on tissue interactions in development and disease. Curr Mol Med 2010; 10:95-112. [PMID: 20205682 PMCID: PMC4195241 DOI: 10.2174/156652410791065363] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/30/2009] [Indexed: 12/20/2022]
Abstract
From the morphogenetic movements of the three germ layers during development to the reactive stromal microenvironment in cancer, tissue interactions are vital to maintaining healthy organ morphologic architecture and function. The stromal compartment is thought to be complicit in tumor progression and, as such, represents an opportune target for disease therapies. However, recent developments in our understanding of the diversity of the stromal compartment and the lack of appropriate models to study its relevance in human disease have limited our further understanding of the role of tissue interactions in tumor progression. The failure any model to fully recapitulate the complexities of systemic biology continue to create a higher imperative for incorporating various perspectives into a broader understanding for the ultimate goal of designing interventional therapies. Understanding this potential, this review examines the biological models used to study stromal-epithelial interactions and includes an attempt to incorporate behavioral terminology to define and mathematically model ecological relationships in stromal-epithelial interactions. In addition, the current attempt to incorporate these diverse ecological perspectives into in silico mathematical models through cross-disciplinary coordination is reviewed, which will provide a fresh perspective on defining cell group behavior and tissue ecology in disease and hopefully lead to the generation of new hypotheses to be empirically validated.
Collapse
Affiliation(s)
- D W Strand
- Vanderbilt Prostate Cancer Center, Department of Urologic Surgery, Vanderbilt University Medical Center, AA-1309 Medical Center North, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
20
|
Kim TH, Lee DK, Franco HL, Lydon JP, Jeong JW. ERBB receptor feedback inhibitor 1 regulation of estrogen receptor activity is critical for uterine implantation in mice. Biol Reprod 2009; 82:706-13. [PMID: 20018910 DOI: 10.1095/biolreprod.109.081307] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Normal endometrial function requires a balance of progesterone (P4) and estrogen (E2) effects. E2 acts to stimulate the proliferation of uterine epithelial cells, while P4 action inhibits E2-mediated proliferation of the epithelium. P4 through its cognate receptor, the P4 receptor (Pgr), has important roles in the establishment and maintenance of pregnancy. In previous studies, we have identified ERBB receptor feedback inhibitor 1 (Errfi1) as a downstream target of Pgr action in the uterus. Herein, we show that Errfi1 mRNA expression was significantly increased in the uterus after Day 2.5 of gestation. Its expression is also induced in the uterus by acute E2 treatment, and this induction is synergistically induced by chronic E2 and P4 treatment. Although it is known that conditional ablation of Errfi1 in the Pgr-positive cells (Errfi1(d/d)) results in infertility, the function of Errfi1 in reproductive biology has remained elusive. Using Errfi1(d/d) mice, we have identified Errfi1 as an important mediator of uterine implantation. Epithelial ESR1 and target genes were significantly increased in the uteri of Errfi1(d/d) mice. Our results identify a new signaling paradigm of steroid hormone regulation in female reproductive biology that adds insight into the underlying dysregulation of hormonal signaling in human reproductive disorders such as endometriosis and endometrial cancer.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Estrogen receptor alpha (ERalpha), plays essential roles in the female reproduction. To investigate the dynamic changes in ERalpha activity in vivo, we have developed an ER Alpha Activity Indicator (ERAAI) mouse. This ERAAI mouse harbors both a modified ERalpha Bacterial Artificial Chromosome (BAC) clone and a reporter gene which is regulated specifically by the modified receptor. The ERalpha modification (Gal4-ERalpha) consists replacing the DNA binding domain (DBD) of ERalpha with the DBD of yeast Gal4 transcription factor. This reporter transgene consisting of a humanized renilla Green Fluorescent Protein (hrGFP) sequence controlled by the Upstream Activating Sequences for the Gal4 gene (UAS(G)) was inserted into the modified ERalpha BAC clone. Expression of Gal4-ERalpha and hrGFP reliably recapitulates endogenous ERalpha expression and activity in the estrogen target tissues in response to estrogen stimulation. Therefore, the ERAAI mouse represents a novel animal model to investigate dynamic ERalpha activity in vivo.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Da Silva Lara LA, Da Silva AR, Rosa‐e‐Silva JC, Chaud F, Silva‐de‐Sá MF, Meireles e Silva AR, De Sá Rosa‐e‐Silva ACJ. Menopause Leading to Increased Vaginal Wall Thickness in Women with Genital Prolapse: Impact on Sexual Response. J Sex Med 2009; 6:3097-110. [DOI: 10.1111/j.1743-6109.2009.01407.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Simon L, Spiewak KA, Ekman GC, Kim J, Lydon JP, Bagchi MK, Bagchi IC, DeMayo FJ, Cooke PS. Stromal progesterone receptors mediate induction of Indian Hedgehog (IHH) in uterine epithelium and its downstream targets in uterine stroma. Endocrinology 2009; 150:3871-6. [PMID: 19372202 PMCID: PMC2717869 DOI: 10.1210/en.2008-1691] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uterine receptivity to embryo implantation depends on appropriate progesterone (P4) and estrogen stimulation. P4 rapidly stimulates production of the morphogen Indian hedgehog (IHH) in murine uterine epithelium as well as downstream molecules in the hedgehog pathway such as Patched homolog 1 (PTCH1) and nuclear receptor subfamily 2, group F, member 2 (NR2F2) in uterine stroma. Studies using IHH-null mice indicate that IHH is obligatory for the normal P4 response in the uterus. To determine whether IHH induction in uterine epithelium is mediated through P4 receptor (PR) in epithelium (E) and/or stroma (S), we produced tissue recombinants using uteri from neonatal PR knockout (ko) mice and wild-type (wt) mice containing PR in S and/or E or lacking PR altogether using a tissue recombinant methodology and assessed their response to P4. In tissue recombinants containing wt-S (wt-S + wt-E and wt-S + ko-E), P4 induced Ihh mRNA expression at 6 h that was 6-fold greater than in oil-treated controls (P < 0.05; n = 6) in both types of tissue recombinants despite the absence of epithelial PR in wt-S + ko-E grafts. Conversely, Ihh mRNA expression was unaffected by P4 in ko-S + ko-E and ko-S + wt-E grafts despite epithelial PR expression in the latter. Nr2f2 and Ptch1 mRNA expression was similar in that it was stimulated by P4 only in recombinants containing stromal PR. These results indicate that stromal PR is both necessary and sufficient for P4 stimulation of epithelial IHH as well as downstream events such as PTCH1 and NR2F2 increases in stroma.
Collapse
Affiliation(s)
- Liz Simon
- Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Jeong JW, Lee HS, Franco HL, Broaddus RR, Taketo MM, Tsai SY, Lydon JP, DeMayo FJ. beta-catenin mediates glandular formation and dysregulation of beta-catenin induces hyperplasia formation in the murine uterus. Oncogene 2009; 28:31-40. [PMID: 18806829 PMCID: PMC2646831 DOI: 10.1038/onc.2008.363] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/05/2008] [Accepted: 08/24/2008] [Indexed: 11/08/2022]
Abstract
Endometrioid adenocarcinoma is the most frequent form of endometrial cancer, usually developing in pre- and peri-menopausal women. beta-catenin abnormalities are common in endometrioid type endometrial carcinomas with squamous differentiation. To investigate the role of beta-catenin (Ctnnb1) in uterine development and tumorigenesis, mice were generated which expressed a dominant stabilized beta-catenin or had beta-catenin conditionally ablated in the uterus by crossing the PR(Cre) mouse with the Ctnnb1(f(ex3)/+) mouse or Ctnnb1(f/f) mouse, respectively. Both of the beta-catenin mutant mice have fertility defects and the ability of the uterus to undergo a hormonally induced decidual reaction was lost. Expression of the dominant stabilized beta-catenin, PR(cre/+)Ctnnb1(f(ex3)/+), resulted in endometrial glandular hyperplasia, whereas ablation of beta-catenin, PR(cre/+)Ctnnb1(f/f), induced squamous cell metaplasia in the murine uterus. Therefore, we have demonstrated that correct regulation of beta-catenin is important for uterine function as well as in the regulation of endometrial epithelial differentiation.
Collapse
Affiliation(s)
- J-W Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - HS Lee
- Infertility & Reproductive Endocrinology Center, Department of Obstetrics and Gynecology, MizMedi Hospital, Seoul, Korea
| | - HL Franco
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - RR Broaddus
- Department of Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - MM Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo, Kyoto, Japan
| | - SY Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - JP Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - FJ DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
|
27
|
Yao L, Agoulnik AI, Cooke PS, Meling DD, Sherwood OD. Relaxin acts on stromal cells to promote epithelial and stromal proliferation and inhibit apoptosis in the mouse cervix and vagina. Endocrinology 2008; 149:2072-9. [PMID: 18218691 PMCID: PMC2329284 DOI: 10.1210/en.2007-1176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine whether stromal and/or epithelial relaxin receptor (LGR7) is required for relaxin to promote proliferation and inhibit apoptosis of stromal and epithelial cells in the mouse cervix and vagina. Tissue recombinants were prepared with stroma (St) and epithelium (Ep) from wild-type (wt) and LGR7 knockout (ko) mice: wt-St+wt-Ep, wt-St+ko-Ep, ko-St+wt-Ep, and ko-St+ko-Ep. Tissue recombinants were grafted under the renal capsule of intact syngeneic female mice. After 3 wk of transplant growth, hosts were ovariectomized and fitted with silicon implants containing progesterone and estradiol-17beta (designated d 1 of treatment). Animals were injected sc with relaxin or relaxin vehicle PBS at 6-h intervals from 0600 h on d 8 through 0600 h on d 10 of treatment. To evaluate cell proliferation, 5-bromo-2'-deoxyuridine was injected sc 10 h before cervices and vaginas were collected at 1000 h on d 10. Terminal deoxynucleotidyl transferase-mediated deoxyuridine 5'-triphosphate nick end labeling was used to quantify apoptosis. Relaxin markedly increased proliferation and decreased apoptosis of epithelial and stromal cells in tissue recombinants containing wt stroma (P < 0.01) but had no effect on tissue recombinants prepared with ko stroma, regardless of whether epithelium was derived from wt or ko mice. In conclusion, this study shows that LGR7-expressing cells in the stroma are both necessary and sufficient for relaxin to promote proliferation and inhibit apoptosis in both stromal and epithelial cells of cervix and vagina, whereas epithelial LGR7 does not affect these processes.
Collapse
Affiliation(s)
- LiJuan Yao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
28
|
Kurihara I, Lee DK, Petit FG, Jeong J, Lee K, Lydon JP, DeMayo FJ, Tsai MJ, Tsai SY. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet 2007; 3:e102. [PMID: 17590085 PMCID: PMC1892047 DOI: 10.1371/journal.pgen.0030102] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 05/09/2007] [Indexed: 11/29/2022] Open
Abstract
Progesterone and estrogen are critical regulators of uterine receptivity. To facilitate uterine remodeling for embryo attachment, estrogen activity in the uterine epithelia is attenuated by progesterone; however, the molecular mechanism by which this occurs is poorly defined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma and its expression is regulated by the progesterone–Indian hedgehog–Patched signaling axis that emanates from the epithelium. To further assess COUP-TFII uterine function, a conditional COUP-TFII knockout mouse was generated. This mutant mouse is infertile due to implantation failure, in which both embryo attachment and uterine decidualization are impaired. Using this animal model, we have identified a novel genetic pathway in which BMP2 lies downstream of COUP-TFII. Epithelial progesterone-induced Indian hedgehog regulates stromal COUP-TFII, which in turn controls BMP2 to allow decidualization to manifest in vivo. Interestingly, enhanced epithelial estrogen activity, which impedes maturation of the receptive uterus, was clearly observed in the absence of stromal-derived COUP-TFII. This finding is consistent with the notion that progesterone exerts its control of implantation through uterine epithelial-stromal cross-talk and reveals that stromal-derived COUP-TFII is an essential mediator of this complex cross-communication pathway. This finding also provides a new signaling paradigm for steroid hormone regulation in female reproductive biology, with attendant implications for furthering our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in such human reproductive disorders as endometriosis and endometrial cancer. Pregnancy is established and maintained through a series of precisely choreographed cellular and molecular events that are controlled by two sex hormones, estrogen and progesterone. Both hormones exert their actions through their distinct nuclear receptors. During the peri-implantation period, estrogen activity is attenuated by progesterone to facilitate epithelial remodeling and embryo attachment, but the detailed molecular mechanism of how this process is achieved remains largely undefined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma, and its expression is controlled by progesterone–Indian hedgehog–Patched signaling from the epithelium to the stroma. To assess the uterine function of COUP-TFII, uterine-specific COUP-TFII knockout mice were generated. These mutant mice are infertile due to failure of implantation. We identified a novel genetic pathway in which the epithelial Ihh regulates the stroma COUP-TFII to control BMP2 and regulates decidualization. Interestingly, enhanced epithelial estrogen activity, which impedes the maturation of receptive uterus, was clearly noted in the absence of COUP-TFII. This finding reveals that COUP-TFII plays a critical role in maintaining the balance between estrogen and progesterone activities to establish proper implantation. This finding also provides new insights into women's health care associated with uncontrolled estrogen activity, such as breast cancer and endometriosis.
Collapse
Affiliation(s)
- Isao Kurihara
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dong-Kee Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabrice G Petit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jaewook Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kevin Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail: (MJT); (SYT)
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Program of Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail: (MJT); (SYT)
| |
Collapse
|
29
|
Jackson KS, Brudney A, Hastings JM, Mavrogianis PA, Kim JJ, Fazleabas AT. The altered distribution of the steroid hormone receptors and the chaperone immunophilin FKBP52 in a baboon model of endometriosis is associated with progesterone resistance during the window of uterine receptivity. Reprod Sci 2007; 14:137-50. [PMID: 17636225 DOI: 10.1177/1933719106298409] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study examines the distribution of estrogen receptors (ESR), progesterone receptors (Pgr), and the chaperone immunophilin FKBP52 in the eutopic endometrium in a baboon model of endometriosis during the window of receptivity to determine if their aberrant distribution contributes to reduced fecundity. Endometriosis was induced by inoculation of menstrual endometrium into the peritoneal cavity. Eutopic endometrium was collected at 3, 6, 9, 12, and 15 months postinoculation. Western blot (WB) and immunohistochemical analyses were performed. Isolated endometrial stromal cells were cultured in the presence or absence of steroid hormones. In animals with endometriosis, ESR-1 (ER-alpha) decreased in endometrial stromal cells, while ESR-2 (ER-beta) was reduced in both glandular epithelial (GE) and stromal cells. Immunoreactive total Pgr was markedly diminished in the GE, which was confirmed by WB analysis. Furthermore, treatment of isolated stromal cells from baboons with endometriosis with hormones did not increase levels of PRA or PRB as in control baboons. FKBP52 was also reduced in the eutopic endometrium of baboons with endometriosis. Endometriosis results in an aberrant distribution of ESR-1, ESR-2, Pgr, and FKBP52 in the eutopic endometrium. The authors propose that a dysregulation in the paracrine signaling between the endometrial stromal and GE cells reduces the responsiveness of Pgr, creating an endometrial environment that is unsuitable for implantation.
Collapse
Affiliation(s)
- Kevin S Jackson
- Department of Obstetrics and Gynecology (MC808), College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
30
|
Di Cristofano A, Ellenson LH. Endometrial Carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 2:57-85. [DOI: 10.1146/annurev.pathol.2.010506.091905] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antonio Di Cristofano
- Human Genetics Program, Division of Population Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111;
| | - Lora Hedrick Ellenson
- Division of Gynecologic Pathology, Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021;
| |
Collapse
|
31
|
Scarano WR, Vilamaior PSL, Taboga SR. Tissue evidence of the testosterone role on the abnormal growth and aging effects reversion in the gerbil (Meriones unguiculatus) prostate. ACTA ACUST UNITED AC 2006; 288:1190-200. [PMID: 17031809 DOI: 10.1002/ar.a.20391] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Prostate differentiation during embryogenesis and its further homeostatic state maintenance during adult life depend on androgens. Abundant biological data suggest that androgens play an important role in the development of the prostate cancer and other prostatic diseases. The objective of this work was to evaluate the effects of the testosterone supplementation in gerbil (a new experimental model) at different ages. Tissues from experimental animals were studied by histological and histochemistry procedures, androgen receptor immunohistochemistry assay, morphometric-stereological analysis, and transmission electron microscopy (TEM). After the treatment were observed increase of prostate weight and epithelium height in all ages studied. In some adult and aged treated animals, hyperplasic and dysplastic process were observed, including prostatic intraepithelial neoplasias and adenocarcinomas. Increase of the thickness of the smooth muscle cell (SMC) layer was observed in pubescent and adult animals and TEM revealed apparent SMC hypertrophy. An apparent increase in the frequency of blood vessels distributed by the subepithelial stroma in the treated animals was noticed. Reversion of the natural effects of aging on the prostate was observed in the aged treated animals in some acini of the gland. These data demonstrate that the gerbil prostate is susceptible to androgenic action at the studied ages and it can serve, for example, as experimental model to studies of prostate neoplastic process induction and hormonal therapy in aged animals.
Collapse
|
32
|
Kurita T, Medina R, Schabel AB, Young P, Gama P, Parekh TV, Brody J, Cunha GR, Osteen KG, Bruner-Tran KL, Gold LI. The activation function-1 domain of estrogen receptor α in uterine stromal cells is required for mouse but not human uterine epithelial response to estrogen. Differentiation 2005; 73:313-22. [PMID: 16138832 DOI: 10.1111/j.1432-0436.2005.00033.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The activation function-1 (AF-1) domain of the estrogen receptor alpha (ERalpha) in stromal cells has been shown to be required for epithelial responses to estrogen in the mouse uterus. To investigate the role of the stroma in estrogenic responses of human uterine epithelium (hUtE), human/mouse chimeric uteri composed of human epithelium and mouse stroma were prepared as tissue recombinants (TR) that were grown in vivo under the renal capsule of female nude mouse hosts. In association with mouse uterine stroma (mUtS), hUtE formed normal glands surrounded by mouse endometrial stroma and the human epithelium influenced the differentiation of stroma into myometrium, such that a histologically normal appearing uterine tissue was formed. The hUtE showed a similar proliferative response and increase in progesterone receptors (PR) in response to 17beta-estradiol (E2) in association with either human or mUtS, as TRs. However, under identical endocrine and micro-environmental conditions, hUtE required 5-7 days exposure to E2 rather than 1 day, as shown for mouse uterine epithelium, to obtain a maximal proliferative response. Moreover, this extended length of E2 exposure inhibited mouse epithelial proliferation in the presence of mouse stroma. In addition, unlike the mouse epithelium, which does not proliferate or show regulation of PR expression in response to E2 in association with uterine stroma derived from mice that are null for the AF-1 domain of ERalpha, hUtE proliferates and PR are up-regulated in response to E2 in association genetically identical ERalpha knock-out mouse stromal cells. These results clearly demonstrate fundamental differences between mouse and human uterine epithelia with respect to the mechanisms that regulate estrogen-induced proliferation and expression of PR. Moreover, we show that genetically engineered mouse models could potentially aid in dissecting molecular pathways of stromal epithelial interactions in the human uterus.
Collapse
Affiliation(s)
- Takeshi Kurita
- Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu YJ, Huang GY, Yang MW, Gong P, Zhang MM, Lu FE. Effects of Jiantaiye on estrogen receptor and mRNA expressions in uterus of mice with embryo implantation dysfunction. Chin J Integr Med 2005; 11:41-4. [PMID: 15975307 DOI: 10.1007/bf02835748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To explore the effect of Jiantaiye (JTY) on the expression of estrogen receptor (ER) and ER mRNA in uterus of mice with embryo implantation dysfunction. METHODS Embryo implantation dysfunction mouse models were induced with mifepristone and treated with JTY. All animals were sacrificed on day 8 of pregnancy. The endometrial ER and ER mRNA expressions were assessed by immunnohistochemical SP method and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS Area ratio and absorbency of ER in the JTY treated group's gland and stroma were higher than those of the model group, quite similar to those of the normal control's, and ER mRNA expression in treated group's uterus was significantly higher than that in the models, but it was not significantly different from the normal control. CONCLUSION JTY improves the endometrial development by increasing ER and ER mRNA expressions of uterus of mice with embryo implantation dysfunction.
Collapse
Affiliation(s)
- Yan-juan Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan.
| | | | | | | | | | | |
Collapse
|
34
|
Wira CR, Grant-Tschudy KS, Crane-Godreau MA. Epithelial cells in the female reproductive tract: a central role as sentinels of immune protection. Am J Reprod Immunol 2005; 53:65-76. [PMID: 15790340 DOI: 10.1111/j.1600-0897.2004.00248.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The continued presence of bacterial and viral antigens in the lumen of the vagina coupled with the periodic presence of antigens in the lumen of the upper reproductive tract provide an ongoing challenge that can compromise female reproductive health and threaten life. Separating underlying tissues from luminal antigens, polarized epithelial cells of the cervix, uterus and Fallopian tubes have evolved to protect against potential pathogens. Once thought to function exclusively by providing a crucial barrier, mucosal epithelial cells are now known to function as sentinels that recognize antigens, respond in ways that lead to bacterial and viral killing, as well as signal to underlying immune cells when pathogenic challenge exceeds their protective capacity. Unique to epithelial cells of the female reproductive tract is the regulatory control of the female sex hormones. Acting both directly and indirectly through underlying stromal cells, estradiol and progesterone regulate epithelial cell innate and adaptive immune functions to protect against potential pathogens while providing an environment that supports an allogeneic fetus. In this article, we will outline how polarized epithelial cells function as the first line of defense against potential pathogens in the female reproductive tract.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology, Dartmouth Medical School, Lebanon, NH, USA.
| | | | | |
Collapse
|
35
|
Grant-Tschudy KS, Wira CR. Effect of oestradiol on mouse uterine epithelial cell tumour necrosis factor-alpha release is mediated through uterine stromal cells. Immunology 2005; 115:99-107. [PMID: 15819702 PMCID: PMC1782123 DOI: 10.1111/j.1365-2567.2005.02134.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 01/18/2005] [Accepted: 01/18/2005] [Indexed: 12/01/2022] Open
Abstract
Oestradiol-17beta (Oe(2)) stimulates uterine epithelial cell proliferation and is critical for normal uterine differentiation and secretory function. Oe(2) can act directly on the epithelium via the epithelial oestrogen receptor (OR) or indirectly via the OR-positive underlying stroma. A primary role for epithelial-stromal interactions has been established for mediating steroid hormone action in the uterus. This study was undertaken to determine the mode of Oe(2) action in regulating epithelial cell cytokine release in the uterus. Mouse uterine epithelial and stromal cells were isolated and cultured separately. Transepithelial resistance (TER) was monitored with an EVOM voltohmmeter to determine monolayer polarity and integrity. Epithelial cells grown alone or in coculture with stromal cells were treated with Oe(2). Supernatants collected were assayed for transforming growth factor-beta (TGF-beta) and tumour necrosis factor-alpha (TNF-alpha) by bioassay and enzyme-linked immunosorbent assay, respectively. While Oe(2) treatment of epithelial cells led to a significant decrease in TER, the amount of TNF-alpha released was not altered. However, when epithelial cells were cocultured with stromal cells and treated with Oe(2), apical TNF-alpha release was significantly decreased, compared to cells not treated with hormone. As determined by oestrogen receptor antagonist studies, Oe(2) primed epithelial cells for the action of the stromal paracrine factor(s). In contrast, TGF-beta release by epithelial cells was not affected by Oe(2) when grown alone or in the presence of stromal cells. These studies indicate that Oe(2) has both direct and indirect effects on the uterine epithelium. While epithelial monolayer integrity is directly influenced by Oe(2), TNF-alpha release in response to Oe(2) is dependent on the presence of stromal cells, indicating that paracrine communication is necessary for steroid regulation of some but not all cytokines.
Collapse
|
36
|
Grant-Tschudy KS, Wira CR. Effect of estradiol on mouse uterine epithelial cell transepithelial resistance (TER). Am J Reprod Immunol 2005; 52:252-62. [PMID: 15494046 DOI: 10.1111/j.1600-0897.2004.00218.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PROBLEM The effects of estradiol on epithelial cell function in the uterus may either be direct or indirect through the paracrine effects of underlying stromal cells. The aim of this study was to test whether estradiol-17beta (E(2)) acts directly to regulate uterine epithelial cell monolayer integrity. METHODS OF STUDY Mouse uterine epithelial cells were isolated and grown on cell culture inserts to form confluent, polarized monolayers, as indicated by the development of high transepithelial resistance (TER). RESULTS When polarized epithelial cells were treated with E(2), TER was significantly decreased within 24 hr of exposure. Epithelial cells remained hormonally responsive in culture for at least 10 days. In contrast to estradiol, incubation with progesterone, cortisol, aldosterone, and DHT had no effect on uterine epithelial cell TER. The ability of E(2) to decrease TER was inhibited following co-incubation with ICI 182,780, a pure estrogen receptor antagonist. To further investigate the mechanism involved in estradiol-induced decreases in TER, we tested the effect of TAPI-0, an inhibitor of matrix metalloproteinases. Our findings indicate that TAPI-0 reversed the inhibitory effect of E(2) on TER. CONCLUSIONS These studies demonstrate that epithelial monolayer integrity is directly influenced by E(2) and ER mediated. Further, it suggests that the mechanism through which estradiol decreases TER is mediated by matrix metalloproteinases.
Collapse
|
37
|
Cunha GR, Cooke PS, Kurita T. Role of stromal-epithelial interactions in hormonal responses. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2004; 67:417-34. [PMID: 15781983 DOI: 10.1679/aohc.67.417] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Steroid sex hormones (17beta-estradiol, testosterone, dihydrotestosterone, and progesterone) and aryl hydrocarbons such as the dioxins regulate epithelial proliferation and secretory protein production and differentiation in their respective target organs in male and female urogenital tracts and mammary glands. Recent evidence has demonstrated that stromal-epithelial interactions are critical for mediating the effects of these molecules on epithelial cells. Our results have indicated that estradiol, testosterone, progesterone, and dioxin regulate epithelial proliferation (stimulation or inhibition) via paracrine mechanisms requiring the appropriate receptor in the stroma. The androgen receptor (AR), estrogen receptor alpha (ERalpha), progesterone receptor (PR), or aryl hydrocarbon receptor (AhR) in the epithelium are neither necessary nor sufficient for the regulation of epithelial proliferation. Moreover, during prostatic development, signaling through the stromal AR is required to induce prostatic epithelial identity, ductal morphogenesis and glandular differentiation. Epithelial functional differentiation is regulated in the prostate, uterus, and vagina via AR (prostate) and ERalpha(uterus and vagina). In these organs both epithelial and stromal steroid receptors are required for steroidal regulation of certain aspects of epithelial differentiation such as epithelial secretory protein production in the uterus and epithelial cornification in the vagina and prostate (squamous metaplasia). The mechanistic basis of these stromal-epithelial interactions is poorly understood, but growth factors appear to be mediators of these cell-cell interactions.
Collapse
Affiliation(s)
- Gerald R Cunha
- University of California, 3rd and Parnassus, Department of Anatomy, HSW 1323, San Francisco, USA.
| | | | | |
Collapse
|
38
|
Cárdenas H, Pope WF. Attenuation of Estrogenic Effects by Dihydrotestosterone in the Pig Uterus Is Associated with Downregulation of the Estrogen Receptors1. Biol Reprod 2004; 70:297-302. [PMID: 14522825 DOI: 10.1095/biolreprod.103.022384] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Androgens are known to attenuate some effects of estradiol-17beta (E) in the uterus. The objectives of the present experiment were to determine effects of 5alpha-dihydrotestosterone (DHT) on estrogenic actions in the pig uterus and its associations with changes in expression of the estrogen receptor (ER) alpha and ERbeta. Postpubertal gilts (120-130 kg of body weight; n = 16) were ovariectomized, and 3-4 weeks later received once-a-day injections (i.m.) of one of the following treatments during four consecutive days: 1) vehicle (corn oil), 2) E (250 microg), 3) E (250 microg) plus 1 mg DHT, or 4) E (250 microg) plus 10 mg DHT. Uterine tissues were collected 24 h after the last treatment. Gilts receiving E or E plus 1 mg DHT had greater uterine wet weight, uterine horn diameter, luminal epithelium thickness, and endometrial gland diameter compared with gilts treated with vehicle or E plus 10 mg DHT. Gilts receiving E or E plus 1 mg DHT were not different in these characteristics. Relative amounts of mRNAs in the endometrium for the cell proliferation marker histone H2a and the E-inducible protein complement component C3 increased in gilts treated with E compared with gilts treated with vehicle. E-induced increases in histone H2a and C3 mRNAs were not altered by cotreatment with E plus 1 mg DHT but were inhibited by E plus 10 mg DHT. Androgen receptor (AR) mRNA in the endometrium increased by treatment with E. Cotreatment of gilts with E and DHT did not alter the E-induced AR mRNA increase. Gilts treated with E plus 10 mg DHT had lesser amounts of immunoreactive ERalpha in cell nuclei of the myometrium and endometrial stroma and a tendency for a decrease in luminal epithelium compared with gilts treated with E. Amounts of immunoreactive ERalpha in glandular epithelium were not influenced by the treatments. Relative amounts of ERalpha and ERbeta mRNAs decreased in the endometrium of gilts treated with E plus 10 mg DHT compared with gilts treated with E. Downregulation of the ERs, particularly ERalpha in the myometrium and endometrial stroma, might be a relevant mechanism in the antagonism of estrogenic effects by DHT in the pig uterus.
Collapse
Affiliation(s)
- Horacio Cárdenas
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
39
|
Domino SE, Hurd EA. LacZ expression in Fut2-LacZ reporter mice reveals estrogen-regulated endocervical glandular expression during estrous cycle, hormone replacement, and pregnancy. Glycobiology 2004; 14:169-75. [PMID: 14576173 PMCID: PMC1502365 DOI: 10.1093/glycob/cwh019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The secretor gene (FUT2) encodes an alpha(1,2)fucosyltransferase (E.C. 2.4.1.69) that elaborates alpha(1,2)fucose residues on mucosal epithelium and secreted mucins. Though uterine alpha(1,2)fucosylated glycans have been proposed to be involved in embryo adhesion, mice with a homozygous null mutation of Fut2 displayed normal fertility. To help develop alternative hypotheses for function, the cell type and regulation of Fut2 expression during the estrous cycle, hormone replacement, and pregnancy was examined in Fut2-LacZ reporter mice containing targeted replacement of Fut2 with bacterial lacZ. LacZ expression in the reproductive tract of Fut2-LacZ mice is most prominent in the glandular epithelium of the endocervix during estrus and pregnancy. Nuclear LacZ expression identifies cell-specific expression of Fut2 in mucus-secreting cells of the endocervix, uterine glands, foveolar pit and chief cells of the stomach, and goblet cells of the colon. In ovariectomized Fut2-LacZ mice, estradiol treatment stimulates X-gal staining in endocervix and uterus but does not affect expression in stomach and colon. Northern blot analysis in wild-type mice shows 15-fold elevations of Fut2 steady-state mRNA with estradiol treatment, whereas Fut1 varies little. Fut2 levels in the glandular stomach and distal colon remain constant, and uterine Fut2 levels vary eightfold during the estrous cycle. These data represent the first demonstration of a glycosyltransferase gene under tissue-specific hormonal regulation in a LacZ reporter mouse model. Endocervical expression of Fut2 in estrus and pregnancy may modify cervical mucus barrier properties from microbial infection analogous to the potential role of mucosal glycans in humans.
Collapse
Affiliation(s)
- Steven E Domino
- Department of Obstetrics and Gynecology, Cellular and Molecular Biology Program, 6428 Medical Science I Box 0617, University of Michigan Medical Center, Ann Arbor, MI 48109-0617, USA.
| | | |
Collapse
|
40
|
Grant KS, Wira CR. Effect of mouse uterine stromal cells on epithelial cell transepithelial resistance (TER) and TNFalpha and TGFbeta release in culture. Biol Reprod 2003; 69:1091-8. [PMID: 12773432 DOI: 10.1095/biolreprod.103.015495] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Recognizing that uterine stromal cells regulate several uterine epithelial cell function(s), the current study was undertaken to more fully define cell-cell communication in the uterus and to examine the role of uterine stromal cells in regulating epithelial cell monolayer integrity and cytokine release. Uterine epithelial and stromal cells from adult intact mice were isolated and cultured separately on cell culture inserts and/or in culture plates. Epithelial cells, which reach confluence as indicated by high transepithelial resistance (TER > 1000 ohms/well), preferentially release transforming growth factor-beta (TGFbeta) into the basolateral chamber ( approximately 70% > apical) and tumor necrosis factor-alpha (TNFalpha) into the apical compartment ( approximately 30% > basolateral). When epithelial cells on cell culture inserts were transferred to plates containing stromal cells, coculture for 24-48 h increased epithelial cell TER ( approximately 70% higher than control) and decreased TNFalpha release into both the apical and basolateral chambers ( approximately 30%-50%). In contrast, TGFbeta release was not affected by the presence of stromal cells. In other studies, the effects of stromal cells on epithelial cell TER and TNFalpha release persisted for 5-7 days following the removal of stromal cells and were also seen in coculture studies in which conditioned stromal media (CSM) was placed in the basolateral chamber. These studies indicate that uterine stromal cells produce a soluble factor(s) that regulates epithelial cell TER and release of TNFalpha without effecting TGFbeta release. These results suggest that uterine stromal cells communicate with epithelial cells via a soluble factor(s) to maintain uterine integrity and epithelial secretory function.
Collapse
Affiliation(s)
- Katherine S Grant
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | |
Collapse
|
41
|
Abstract
Prostatic development is induced by androgens acting via mesenchymal-epithelial interactions. Androgens elicit their morphogenetic effects by acting through androgen receptors (ARs) in urogenital sinus mesenchyme (UGM), which induces prostatic epithelial development. In adulthood reciprocal homeostatic stromal-epithelial interactions maintain functional differentiation and growth-quiescence. Testosterone plus estradiol (T+E2) have been shown to induce prostatic carcinogenesis in animal models. Thus, tissue recombinant studies were undertaken to explore the mechanisms of prostatic carcinogenesis in BPH-1 cells in which ARs and estrogen receptors (ERs) are undetectable. For this purpose, BPH-1 cells were combined with UGM, and the UGM+BPH-1 recombinants were grafted to adult male hosts. Solid branched epithelial cords and ductal structures formed in untreated UGM+BPH-1 recombinants. Growth was modest, and tumors did not develop. UGM+BPH-1 recombinants treated with T+E2 formed invasive carcinomas. BPH-1 cells lack ARs and ERs, whereas rat UGM expresses both of these receptors. These data show that immortalized nontumorigenic human prostatic epithelial cells can undergo hormonal carcinogenesis in response to T+E2 stimulation via paracrine mechanisms and demonstrate that the stromal environment plays an important role in mediating hormonal carcinogenesis. During prostatic carcinogenesis the stroma undergoes progressive loss of smooth muscle with the appearance of carcinoma-associated fibroblasts (CAF). This altered stroma was tested for its ability to promote carcinogenesis of nontumorigenic but immortalized human prostatic epithelial cells (BPH-1). CAF+BPH-1 tissue recombinants formed large carcinomas. In contrast, recombinants composed of normal prostatic stroma+BPH-1 cells exhibited minimal growth. This stroma-induced malignant transformation was associated with additional genetic alterations and changes in gene expression. Thus, alteration in the stromal microenvironment was sufficient to promote malignant transformation of human prostatic epithelial cells.
Collapse
Affiliation(s)
- Gerald R Cunha
- Departments of Anatomy and Urology, University of California, San Francisco, CA 94143-0452, USA.
| | | | | |
Collapse
|
42
|
Brosens JJ, Pijnenborg R, Brosens IA. The myometrial junctional zone spiral arteries in normal and abnormal pregnancies: a review of the literature. Am J Obstet Gynecol 2002; 187:1416-23. [PMID: 12439541 DOI: 10.1067/mob.2002.127305] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deep placentation in the human requires physiologic transformation of the spiral arteries into uteroplacental vessels. This process involves the inner myometrial segment (junctional zone) of the spiral arteries and is effected by trophoblast invasion of the vessel wall, resulting in complete loss of the arterial structure and deposition of fibrinoid and fibrous tissues. Absent or inadequate physiologic changes in the junctional zone spiral arteries limits placental blood flow in pregnancies complicated by preeclampsia and fetal growth restriction. The cause of defective deep placentation is still unknown, although it is often attributed to impaired trophoblast function and migration. However, trophoblast invasion is preceded by decidual remodeling of maternal tissues, a process that is initiated in the endometrium but extends into the junctional zone. This review examines the mechanisms that control decidualization and subsequent trophoblast invasion in normal and abnormal pregnancies. The possibility that disruption of the decidual process in the secretory phase of the menstrual cycle triggers a cascade of events resulting in failed deep placentation is explored.
Collapse
Affiliation(s)
- Jan J Brosens
- Institute of Reproductive and Developmental Biology, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom.
| | | | | |
Collapse
|
43
|
Teng CT, Beard C, Gladwell W. Differential expression and estrogen response of lactoferrin gene in the female reproductive tract of mouse, rat, and hamster. Biol Reprod 2002; 67:1439-49. [PMID: 12390874 DOI: 10.1095/biolreprod.101.002089] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Lactoferrin, an iron-binding glycoprotein, kills bacteria and modulates inflammatory and immune responses. Presence of lactoferrin in the female reproductive tract suggests that the protein may be part of the mucosal immune system and act as the first line of defense against pathogenic organisms. We have discovered that lactoferrin is a major estrogen-inducible protein in the uterus of immature mice and is up-regulated by physiological levels of estrogen during proestrous in mature mice. In the present study, we examined lactoferrin gene expression and its response to estrogen stimulation in the female reproductive tract of several strains of immature mouse, rat, and hamster. The lactoferrin expression in the cycling adult female rat was also evaluated. Lactoferrin gene polymorphism exists among the different mouse strains. In the three inbred mouse strains studied, lactoferrin gene expression is stimulated by estrogen in the immature uterus, although it is less robust than in the outbred CD-1 mouse. We found that the lactoferrin gene is constitutively expressed in the epithelium of the vagina and the isthmus oviduct; however, it is estrogen inducible in the uterus of immature mice and rats. Furthermore, lactoferrin is elevated in the uterine epithelium of the mature rat during the proestrous and estrous stages of the estrous cycle. Estrogen stimulation of lactoferrin gene expression in the reproductive tract of an immature hamster is limited to the vaginal epithelium. The present study demonstrates differential expression and estrogen responsiveness of the lactoferrin gene in different regions of the female rodent reproductive tract and variation among the rodent species studied.
Collapse
Affiliation(s)
- Christina T Teng
- Gene Regulation Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
44
|
Engelhardt H, Croy BA, King GJ. Conceptus influences the distribution of uterine leukocytes during early porcine pregnancy. Biol Reprod 2002; 66:1875-80. [PMID: 12021075 DOI: 10.1095/biolreprod66.6.1875] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Pregnancy in humans and rodents is associated with dramatic changes in leukocyte populations within the uterus. In these species, recruitment of leukocytes, mostly natural killer (NK) lymphocytes, accompanies decidualization of endometrial stroma even in the absence of pregnancy. In the pig, a nondecidualizing species, the predominant lymphocytes in the pregnant uterus are T and/or NK cells, but their distribution relative to embryonic attachment sites has not been reported. The objective of this study was to compare the abundance of leukocytes in porcine endometrium in contact with trophoblast with that between attachment sites during the early postattachment period. Uteri were recovered on Days 15-17 (n = 4), 18 and 19 (n = 4), 21 and 22 (n = 5), and 25-27 (n = 2) of gestation and from cycling pigs during the luteal phase (Day 15; n = 3). Leukocytes were identified in uterus obtained at versus between attachment sites using an antibody reactive with all leukocytes (CD44). In all pregnant animals, leukocytes were diffusely scattered throughout the endometrial stroma but were rare or absent in the luminal epithelium. Leukocyte density was approximately 3-fold greater in endometrium in contact with conceptuses than in endometrium between attachment sites throughout the early postattachment period. Leukocyte density during the luteal phase was similar to that between attachment sites, suggesting that leukocyte recruitment was a localized response to the embryo. The ability of an individual porcine conceptus to recruit maternal leukocytes to the adjacent stroma may be a vital step in early placental development and embryo survival.
Collapse
Affiliation(s)
- Heidi Engelhardt
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | |
Collapse
|
45
|
DeMayo FJ, Zhao B, Takamoto N, Tsai SY. Mechanisms of action of estrogen and progesterone. Ann N Y Acad Sci 2002; 955:48-59; discussion 86-8, 396-406. [PMID: 11949965 DOI: 10.1111/j.1749-6632.2002.tb02765.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Estrogen and progesterone are steroid hormones that play a pivotal role in the regulation of mammalian reproduction. One primary action of these hormones is to regulate the development and function of the uterus. These hormones act by regulating the transcription of specific genes in the uterus. The actions of these hormones are mediated by their specific hormone receptors. These receptors are nuclear transcription factors, whose transcriptional regulatory activity is mediated by the binding of the specific steroid to these molecules. Once these receptors bind hormone, they can bind to specific cis-acting sequences in the promoter region of responsive genes and regulate transcription of these genes. In the regulation of transcription, these receptors interact with specific cofactors to activate the transcriptional machinery. A second gene family, the Steroid Receptor Coactivator (SRC) family, has been identified that serves to modulate the transcriptional activity of the hormone receptors. To date, three members of the SRC family have been identified. During the last decade, gene targeting technology has been used to identify the role of these receptors in the regulation of reproduction and uterine biology.
Collapse
Affiliation(s)
- Francesco J DeMayo
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
46
|
Bigsby RM. Control of growth and differentiation of the endometrium: the role of tissue interactions. Ann N Y Acad Sci 2002; 955:110-7; discussion 118, 396-406. [PMID: 11949941 DOI: 10.1111/j.1749-6632.2002.tb02771.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early work with neonatal mice showed that estrogen receptor-negative uterine epithelium responded to estrogen treatment. Since the underlying mesenchymal cells were estrogen receptor-positive, it was suggested that these cells mediated the hormonal response through elaboration of a paracrine factor. Cell culture work showed that mesenchymal cells produced soluble factors that stimulate uterine epithelium, but hormonal regulation was absent or minimal. The paracrine hypothesis of estrogen action has been proved by the use of tissue recombinant studies in which epithelium from estrogen receptor-alpha knockout mice was combined with wild-type mesenchyme; estrogen stimulated the ER alpha-negative epithelium if the underlying stromal cells were receptor-positive. Also, it is hypothesized that there is a reciprocal paracrine interaction during stimulation with progesterone and estrogen. Accordingly, under progesterone dominance, the epithelium elaborates factors that direct the underlying stroma to proliferate when estrogen is administered. Although this hypothesis needs further testing, it has been shown that the uterine epithelium is required for stromal responsiveness to hormones. The question arises: What are the factors that mediate the effects of the steroid hormones in the uterus? Several peptide growth factors are regulated by estrogen and/or progesterone. Use of knockout animals will allow a determination of the role that these factors play in the uterus. However, ablation of many of these growth factor genes has proved lethal to the newborn animals, making it impossible to study hormonal effects using standard techniques. Tissue xenograft and tissue recombination studies offer a means of defining the role of specific growth factors in uterine physiology.
Collapse
Affiliation(s)
- Robert M Bigsby
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis 46202-5121, USA.
| |
Collapse
|
47
|
Rosenfeld CS, Roberts RM, Lubahn DB. Estrogen receptor- and aromatase-deficient mice provide insight into the roles of estrogen within the ovary and uterus. Mol Reprod Dev 2001; 59:336-46. [PMID: 11424220 DOI: 10.1002/mrd.1039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Estrogen receptor (ER)- (alpha, beta, and both alpha and beta) and aromatase (Ar) knockout (KO) mice have been created to assess the biological effects of estrogens. This review article discusses the ovarian and uterine phenotypes of these mice. The data obtained have confirmed some older inferences about how the steroid acts, but have also revealed some unexpected aspects of estrogen action. Mol. Reprod. Dev. 59:336-346, 2001.
Collapse
Affiliation(s)
- C S Rosenfeld
- Department of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
48
|
Osborne LJ, Tonissen KF, Tang VH, Clarke FM. Expression and localisation of thioredoxin in mouse reproductive tissues during the oestrous cycle. Mol Reprod Dev 2001; 58:359-67. [PMID: 11241771 DOI: 10.1002/1098-2795(20010401)58:4<359::aid-mrd2>3.0.co;2-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thioredoxin expression within the reproductive tissues of the female mouse was analysed during the oestrous cycle stages of dioestrus, oestrus and metoestrus by Western blot analyses and immunocytochemistry. From Western blot analyses the expression of thioredoxin was found to be increased in oestrus compared to dioestrus and metoestrus. Localisation of thioredoxin within the reproductive organs of the mouse during the oestrous cycle has shown that the expression of thioredoxin is specific for distinct areas within the reproductive organs. These areas are the stratified squamous epithelium of the vagina, the simple columnar epithelium and the uterine glands of the uterus, the ciliated columnar epithelium of the oviduct, the corpus lutea, the interstitial cells and the secondary follicles of the ovary. The discrete cellular localisation and oestrous dependence of thioredoxin expression are suggestive of specific roles in various reproductive processes.
Collapse
Affiliation(s)
- L J Osborne
- School of Biomolecular and Biomedical Science, Faculty of Science, Griffith University, Nathan, Qld, Australia
| | | | | | | |
Collapse
|
49
|
Kurita T, Wang YZ, Donjacour AA, Zhao C, Lydon JP, O'Malley BW, Isaacs JT, Dahiya R, Cunha GR. Paracrine regulation of apoptosis by steroid hormones in the male and female reproductive system. Cell Death Differ 2001; 8:192-200. [PMID: 11313721 DOI: 10.1038/sj.cdd.4400797] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2000] [Revised: 08/30/2000] [Accepted: 10/11/2000] [Indexed: 11/09/2022] Open
Abstract
In males, androgens are essential in maintaining the integrity of the prostate. Androgen-ablation induces apoptosis of the prostatic epithelium. In females, ovariectomy induces apoptosis in uterine epithelium while progesterone inhibits this process. The objective of this study was to determine whether androgen and progesterone inhibit apoptosis, respectively, in mouse prostatic and uterine epithelia via steroid receptors in the epithelium or in the stroma. To address this question, prostatic tissue recombinants were prepared with rat urogenital sinus mesenchyme plus bladder epithelium from wild-type or testicular feminization mutant (Tfm) mice. Thus, prostatic tissue was generated having androgen receptor (AR) in both epithelium and stroma or in the stroma only. Castration of hosts induced apoptosis in the AR-negative Tfm prostatic epithelium with an epithelial apoptotic index virtually identical to prostatic tissue recombinants containing wild-type epithelium. Moreover, this castration-induced prostatic epithelial apoptosis was blocked by testosterone and dihydrotestosterone in both wild-type and Tfm prostatic tissue recombinants. Likewise, uterine tissue recombinants were prepared in which epithelium and/or stroma was devoid of progesterone receptor (PR) by using uterine epithelium and stroma of wild-type and PR knockout mice. Progesterone inhibited uterine epithelial apoptosis only in tissue recombinants prepared with PR-positive stroma. The PR status of the epithelium did not affect epithelial apoptotic index. Therefore, the apoptosis in prostatic and uterine epithelia is regulated by androgen and progesterone via stromal AR and PR, respectively. In both cases, epithelial AR or PR is not required for hormonal regulation of epithelial apoptosis in prostatic and uterine epithelium.
Collapse
Affiliation(s)
- T Kurita
- Department of Anatomy, University of California, San Francisco 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Risbridger G, Wang H, Young P, Kurita T, Wang YZ, Lubahn D, Gustafsson JA, Cunha G, Wong YZ. Evidence that epithelial and mesenchymal estrogen receptor-alpha mediates effects of estrogen on prostatic epithelium. Dev Biol 2001; 229:432-42. [PMID: 11150243 DOI: 10.1006/dbio.2000.9994] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In combination with androgens, estrogens can induce aberrant growth and malignancy of the prostate gland. Estrogen action is mediated through two receptor subtypes: estrogen receptors alpha (ERalpha) and beta (ERbeta). Wild-type (wt) and transgenic mice lacking a functional ERalpha (alphaERKO) or ERbeta (betaERKO) were treated with the synthetic estrogen diethylstilbestrol (DES). DES induced prostatic squamous metaplasia (SQM) in wt and betaERKO but not in alphaERKO mice, indicating an essential role for ERalpha, but not ERbeta, in the induction of SQM of prostatic epithelium. In order to determine the respective roles of epithelial and stromal ERalpha in this response, the following tissue recombinants were constructed with prostatic epithelia (E) and stroma (S) from wt and ERKO mice: wt-S+wt-E, alphaERKO-S+alphaERKO-E, wt-S+alphaERKO-E, and alphaERKO-S+wt-E. A metaplastic response to DES was observed in wt-S+wt-E tissue recombinants. This response to DES involved multilayering of basal epithelial cells, expression of cytokeratin 10, and up-regulation of the progesterone receptor. Tissue recombinants containing alphaERKO-E and/or -S (alphaERKO-S+alphaERKO-E, wt-S+alphaERKO-E, and alphaERKO-S+wt-E) failed to respond to DES. Therefore, full and uniform epithelial SQM requires ERalpha in the epithelium and stroma. These results provide a novel insight into the cell-cell interactions mediating estrogen action in the prostate via ERalpha.
Collapse
Affiliation(s)
- G Risbridger
- Institute of Reproduction & Development, Monash University, Melbourne, Victoria, 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|