1
|
Cannarella R, Curto R, Condorelli RA, Lundy SD, La Vignera S, Calogero AE. Molecular insights into Sertoli cell function: how do metabolic disorders in childhood and adolescence affect spermatogonial fate? Nat Commun 2024; 15:5582. [PMID: 38961093 PMCID: PMC11222552 DOI: 10.1038/s41467-024-49765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Male infertility is a major public health concern globally with unknown etiology in approximately half of cases. The decline in total sperm count over the past four decades and the parallel increase in childhood obesity may suggest an association between these two conditions. Here, we review the molecular mechanisms through which obesity during childhood and adolescence may impair future testicular function. Several mechanisms occurring in obesity can interfere with the delicate metabolic processes taking place at the testicular level during childhood and adolescence, providing the molecular substrate to hypothesize a causal relationship between childhood obesity and the risk of low sperm counts in adulthood.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Scott D Lundy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Mancusi C, Izzo R, di Gioia G, Losi MA, Barbato E, Morisco C. Insulin Resistance the Hinge Between Hypertension and Type 2 Diabetes. High Blood Press Cardiovasc Prev 2020; 27:515-526. [PMID: 32964344 PMCID: PMC7661395 DOI: 10.1007/s40292-020-00408-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022] Open
Abstract
Epidemiological studies have documented a high incidence of diabetes in hypertensive patients.Insulin resistance is defined as a less than expected biologic response to a given concentration of the hormone and plays a pivotal role in the pathogenesis of diabetes. However, over the last decades, it became evident that insulin resistance is not merely a metabolic abnormality, but is a complex and multifaceted syndrome that can also affect blood pressure homeostasis. The dysregulation of neuro-humoral and neuro-immune systems is involved in the pathophysiology of both insulin resistance and hypertension. These mechanisms induce a chronic low grade of inflammation that interferes with insulin signalling transduction. Molecular abnormalities associated with insulin resistance include the defects of insulin receptor structure, number, binding affinity, and/or signalling capacity. For instance, hyperglycaemia impairs insulin signalling through the generation of reactive oxygen species, which abrogate insulin-induced tyrosine autophosphorylation of the insulin receptor. Additional mechanisms have been described as responsible for the inhibition of insulin signalling, including proteasome-mediated degradation of insulin receptor substrate 1/2, phosphatase-mediated dephosphorylation and kinase-mediated serine/threonine phosphorylation of both insulin receptor and insulin receptor substrates. Insulin resistance plays a key role also in the pathogenesis and progression of hypertension-induced target organ damage, like left ventricular hypertrophy, atherosclerosis and chronic kidney disease. Altogether these abnormalities significantly contribute to the increase the risk of developing type 2 diabetes.
Collapse
Affiliation(s)
- Costantino Mancusi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini n. 5, 80131, Naples, Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini n. 5, 80131, Naples, Italy
| | - Giuseppe di Gioia
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini n. 5, 80131, Naples, Italy
| | - Maria Angela Losi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini n. 5, 80131, Naples, Italy
| | - Emanuele Barbato
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini n. 5, 80131, Naples, Italy
| | - Carmine Morisco
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Via S. Pansini n. 5, 80131, Naples, Italy.
| |
Collapse
|
3
|
Wong CY, Al-Salami H, Dass CR. C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 2020; 72:1667-1693. [PMID: 32812252 DOI: 10.1111/jphp.13359] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The myoblast cell line, C2C12, has been utilised extensively in vitro as an examination model in understanding metabolic disease progression. Although it is indispensable in both preclinical and pharmaceutical research, a comprehensive review of its use in the investigation of insulin resistance progression and pharmaceutical development is not available. KEY FINDINGS C2C12 is a well-documented model, which can facilitate our understanding in glucose metabolism, insulin signalling mechanism, insulin resistance, oxidative stress, reactive oxygen species and glucose transporters at cellular and molecular levels. With the aid of the C2C12 model, recent studies revealed that insulin resistance has close relationship with various metabolic diseases in terms of disease progression, pathogenesis and therapeutic management. A holistic, safe and effective disease management is highly of interest. Therefore, significant efforts have been paid to explore novel drug compounds and natural herbs that can elicit therapeutic effects in the targeted sites at both cellular (e.g. mitochondria, glucose transporter) and molecular level (e.g. genes, signalling pathway). SUMMARY The use of C2C12 myoblast cell line is meaningful in pharmaceutical and biomedical research due to their expression of GLUT-4 and other features that are representative to human skeletal muscle cells. With the use of the C2C12 cell model, the impact of drug delivery systems (nanoparticles and quantum dots) on skeletal muscle, as well as the relationship between exercise, pancreatic β-cells and endothelial cells, was discovered.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
4
|
Velloso LA, Folli F, Saad MJ. TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev 2015; 36:245-71. [PMID: 25811237 DOI: 10.1210/er.2014-1100] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is accompanied by the activation of low-grade inflammatory activity in metabolically relevant tissues. Studies have shown that obesity-associated insulin resistance results from the inflammatory targeting and inhibition of key proteins of the insulin-signaling pathway. At least three apparently distinct mechanisms-endoplasmic reticulum stress, toll-like receptor (TLR) 4 activation, and changes in gut microbiota-have been identified as triggers of obesity-associated metabolic inflammation; thus, they are expected to represent potential targets for the treatment of obesity and its comorbidities. Here, we review the data that place TLR4 in the center of the events that connect the consumption of dietary fats with metabolic inflammation and insulin resistance. Changes in the gut microbiota can lead to reduced integrity of the intestinal barrier, leading to increased leakage of lipopolysaccharides and fatty acids, which can act upon TLR4 to activate systemic inflammation. Fatty acids can also trigger endoplasmic reticulum stress, which can be further stimulated by cross talk with active TLR4. Thus, the current data support a connection among the three main triggers of metabolic inflammation, and TLR4 emerges as a link among all of these mechanisms.
Collapse
Affiliation(s)
- Licio A Velloso
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Franco Folli
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Mario J Saad
- Department of Internal Medicine (L.A.V., F.F., M.J.S.), University of Campinas, 13084-970 Campinas SP, Brazil; and Department of Medicine (F.F.), Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
5
|
Lee SE, Koo YD, Lee JS, Kwak SH, Jung HS, Cho YM, Park YJ, Chung SS, Park KS. Retinoid X receptor α overexpression alleviates mitochondrial dysfunction-induced insulin resistance through transcriptional regulation of insulin receptor substrate 1. Mol Cells 2015; 38:356-61. [PMID: 25728751 PMCID: PMC4400311 DOI: 10.14348/molcells.2015.2280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial dysfunction is associated with insulin resistance and diabetes. We previously showed that retinoid X receptor α (RXRα) played an important role in transcriptional regulation of oxidative phosphorylation (OXPHOS) genes in cells with mitochondrial dysfunction caused by mitochondrial DNA mutation. In this study, we investigated whether mitochondrial dysfunction induced by incubation with OXPHOS inhibitors affects insulin receptor substrate 1 (IRS1) mRNA and protein levels and whether RXRα activation or overexpression can restore IRS1 expression. Both IRS1 and RXRα protein levels were significantly reduced when C2C12 myotubes were treated with the OXPHOS complex inhibitors, rotenone and antimycin A. The addition of RXRα agonists, 9-cis retinoic acid (9cRA) and LG1506, increased IRS1 transcription and protein levels and restored mitochondrial function, which ultimately improved insulin signaling. RXRα overexpression also increased IRS1 transcription and mitochondrial function. Because RXRα overexpression, knock-down, or activation by LG1506 regulated IRS1 transcription mostly independently of mitochondrial function, it is likely that RXRα directly regulates IRS1 transcription. Consistent with the hypothesis, we showed that RXRα bound to the IRS1 promoter as a heterodimer with peroxisome proliferator-activated receptor δ (PPARδ). These results suggest that RXRα overexpression or activation alleviates insulin resistance by increasing IRS1 expression.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744,
Korea
| | - Young Do Koo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744,
Korea
| | - Ji Seon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744,
Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744,
Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744,
Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744,
Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744,
Korea
| | - Sung Soo Chung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744,
Korea
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-744,
Korea
| |
Collapse
|
6
|
Regulation of insulin receptor substrate-1 by mTORC2 (mammalian target of rapamycin complex 2). Biochem Soc Trans 2013; 41:896-901. [PMID: 23863152 DOI: 10.1042/bst20130018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mTOR (mammalian target of rapamycin) responds to the presence of nutrients, energy and growth factors to link cellular metabolism, growth and proliferation. The rapamycin-sensitive mTORC (mTOR complex) 1 activates the translational regulator S6K (S6 kinase), leading to increased protein synthesis in the presence of nutrients. On the other hand, the rapamycin-insensitive mTORC2 responds to the presence of growth factors such as insulin by phosphorylating Akt to promote its maturation and allosteric activation. We recently found that mTORC2 can also regulate insulin signalling at the level of IRS-1 (insulin receptor substrate-1). Whereas mTORC1 promotes IRS-1 serine phosphorylation that is linked to IRS-1 down-regulation, we uncovered that mTORC2 mediates its degradation. In mTORC2-disrupted cells, inactive IRS-1 accumulated despite undergoing phosphorylation at the mTORC1-mediated serine sites. Defective IRS-1 degradation was due to attenuated expression of the CUL7 (Cullin 7) ubiquitin ligase substrate-targeting sub-unit Fbw8. mTORC2 and Fbw8 co-localize at the membrane where mTORC2 phosphorylates Ser86 to stabilize Fbw8 and promotes its cytosolic localization upon insulin stimulation. Under conditions of chronic insulin exposure, inactive serine-phosphorylated IRS-1 and Fbw8 co-localize to the cytosol where the former becomes ubiquitylated via CUL7/Fbw8. Thus mTORC2 negatively feeds back to IRS-1 via control of Fbw8 stability and localization. Our findings reveal that, in addition to persistent mTORC1 signalling, increased mTORC2 signals can promote insulin resistance due to mTORC2-mediated degradation of IRS-1.
Collapse
|
7
|
Mandavia C, Sowers JR. Phosphoprotein Phosphatase PP2A Regulation of Insulin Receptor Substrate 1 and Insulin Metabolic Signaling. Cardiorenal Med 2012; 2:308-313. [PMID: 23381670 DOI: 10.1159/000343889] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/24/2012] [Indexed: 12/19/2022] Open
Abstract
Insulin (INS) metabolic signaling is important for normal cardiovascular and renal function as well as for exerting the classic actions of INS, such as glucose uptake in skeletal muscle tissue. There is emerging evidence that tyrosine phosphatases as well as protein kinases have important modulating roles in INS metabolic signaling in both cardiovascular and classically INS- sensitive tissues. For example, increases in phosphatase activity may partially explain how angiotensin II and aldosterone attenuate activation of the INS receptor substrate protein 1 (IRS-1)-phosphatidylinositol 3 kinase-protein kinase B pathway, thereby promoting INS resistance. On the other hand, phosphatase activation may also exert beneficial and cardiovascular protective effects in conditions such as overnutrition by blocking serine phosphorylation of IRS-1, thereby improving downstream INS metabolic signaling. Both the beneficial and the detrimental effects exerted by the activation of phosphatases will be covered in this report.
Collapse
Affiliation(s)
- Chirag Mandavia
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | | |
Collapse
|
8
|
Kim SJ, DeStefano MA, Oh WJ, Wu CC, Vega-Cotto NM, Finlan M, Liu D, Su B, Jacinto E. mTOR complex 2 regulates proper turnover of insulin receptor substrate-1 via the ubiquitin ligase subunit Fbw8. Mol Cell 2012; 48:875-87. [PMID: 23142081 DOI: 10.1016/j.molcel.2012.09.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/21/2012] [Accepted: 09/27/2012] [Indexed: 12/24/2022]
Abstract
The mammalian target of rapamycin (mTOR) integrates signals from nutrients and insulin via two distinct complexes, mTORC1 and mTORC2. Disruption of mTORC2 impairs the insulin-induced activation of Akt, an mTORC2 substrate. Here, we found that mTORC2 can also regulate insulin signaling at the level of insulin receptor substrate-1 (IRS-1). Despite phosphorylation at the mTORC1-mediated serine sites, which supposedly triggers IRS-1 downregulation, inactive IRS-1 accumulated in mTORC2-disrupted cells. Defective IRS-1 degradation was due to attenuated expression and phosphorylation of the ubiquitin ligase substrate-targeting subunit, Fbw8. mTORC2 stabilizes Fbw8 by phosphorylation at Ser86, allowing the insulin-induced translocation of Fbw8 to the cytosol where it mediates IRS-1 degradation. Thus, mTORC2 negatively feeds back to IRS-1 via control of Fbw8 stability and localization. Our findings reveal that in addition to persistent mTORC1 signaling, heightened mTORC2 signals can promote insulin resistance due to mTORC2-mediated degradation of IRS-1.
Collapse
Affiliation(s)
- Sung Jin Kim
- Department of Biochemistry and Molecular Biology, UMDNJ-RWJMS, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Niizuma S, Inuzuka Y, Okuda J, Kato T, Kawashima T, Tamaki Y, Iwanaga Y, Yoshida Y, Kosugi R, Watanabe-Maeda K, Machida Y, Tsuji S, Aburatani H, Izumi T, Kita T, Kimura T, Shioi T. Effect of persistent activation of phosphoinositide 3-kinase on heart. Life Sci 2012; 90:619-28. [DOI: 10.1016/j.lfs.2012.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 12/21/2022]
|
10
|
Kim B, McLean LL, Philip SS, Feldman EL. Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons. Endocrinology 2011; 152:3638-47. [PMID: 21810948 PMCID: PMC3176655 DOI: 10.1210/en.2011-0029] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Insulin resistance (IR) is the major feature of metabolic syndrome, including type 2 diabetes. IR studies are mainly focused on peripheral tissues, such as muscle and liver. There is, however, little knowledge about IR in neurons. In this study, we examined whether neurons develop IR in response to hyperinsulinemia. We first examined insulin signaling using adult dorsal root ganglion neurons as a model system. Acute insulin treatment resulted in time- and concentration-dependent activation of the signaling cascade, including phosphorylation of the insulin receptor, Akt, p70S6K, and glycogen synthase kinase-3β. To mimic hyperinsulinemia, cells were pretreated with 20 nM insulin for 24 h and then stimulated with 20 nM insulin for 15 min. Chronic insulin treatment resulted in increased basal Akt phosphorylation. More importantly, acute insulin stimulation after chronic insulin treatment resulted in blunted phosphorylation of Akt, p70S6K, and glycogen synthase kinase-3β. Interestingly, when the cells were treated with phosphatidylinositol 3-kinase pathway inhibitor, but not MAPK pathway inhibitor, chronic insulin treatment did not block acute insulin treatment-induced Akt phosphorylation. Insulin-induced Akt phosphorylation was lower in dorsal root ganglion neurons from BKS-db/db compared with control BKS-db+ mice. This effect was age dependent. Our results suggest that hyperinsulinemia cause IR by disrupting the Akt-mediated pathway. We also demonstrate that hyperinsulinemia increases the mitochondrial fission protein dynamin-related protein 1. Our results suggest a new theory for the etiology of diabetic neuropathy, i.e. that, similar to insulin dependent tissues, neurons develop IR and, in turn, cannot respond to the neurotrophic properties of insulin, resulting in neuronal injury and the development of neuropathy.
Collapse
Affiliation(s)
- Bhumsoo Kim
- University of Michigan, Department of Neurology, 109 Zina Pitcher Place, 5371 BSRB, Ann Arbor, Michigan 48109-2200, USA.
| | | | | | | |
Collapse
|
11
|
Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes 2010; 1:68-75. [PMID: 21537430 PMCID: PMC3083885 DOI: 10.4239/wjd.v1.i3.68] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/22/2010] [Accepted: 06/29/2010] [Indexed: 02/05/2023] Open
Abstract
Free fatty acids are known to play a key role in promoting loss of insulin sensitivity in type 2 diabetes mellitus but the underlying mechanism is still unclear. It has been postulated that an increase in the intracellular concentration of fatty acid metabolites activates a serine kinase cascade, which leads to defects in insulin signaling downstream to the insulin receptor. In addition, the complex network of adipokines released from adipose tissue modulates the response of tissues to insulin. Among the many molecules involved in the intracellular processing of the signal provided by insulin, the insulin receptor substrate-2, the protein kinase B and the forkhead transcription factor Foxo 1a are of particular interest, as recent data has provided strong evidence that dysfunction of these proteins results in insulin resistance in vivo. Recently, studies have revealed that phosphoinositidedependent kinase 1-independent phosphorylation of protein kinase Cε causes a reduction in insulin receptor gene expression. Additionally, it has been suggested that mitochondrial dysfunction triggers activation of several serine kinases, and weakens insulin signal transduction. Thus, in this review, the current developments in understanding the pathophysiological processes of insulin resistance in type 2 diabetes have been summarized. In addition, this study provides potential new targets for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Vandana Saini
- Vandana Saini, Department of Biochemistry, Lady Hardinge Medical College, New Delhi 110001, India
| |
Collapse
|
12
|
Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol Cell Biol 2009; 29:4798-811. [PMID: 19546233 DOI: 10.1128/mcb.01347-08] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle atrophy caused by unloading is characterized by both decreased responsiveness to myogenic growth factors (e.g., insulin-like growth factor 1 [IGF-1] and insulin) and increased proteolysis. Here, we show that unloading stress resulted in skeletal muscle atrophy through the induction and activation of the ubiquitin ligase Cbl-b. Upon induction, Cbl-b interacted with and degraded the IGF-1 signaling intermediate IRS-1. In turn, the loss of IRS-1 activated the FOXO3-dependent induction of atrogin-1/MAFbx, a dominant mediator of proteolysis in atrophic muscle. Cbl-b-deficient mice were resistant to unloading-induced atrophy and the loss of muscle function. Furthermore, a pentapeptide mimetic of tyrosine(608)-phosphorylated IRS-1 inhibited Cbl-b-mediated IRS-1 ubiquitination and strongly decreased the Cbl-b-mediated induction of atrogin-1/MAFbx. Our results indicate that the Cbl-b-dependent destruction of IRS-1 is a critical dual mediator of both increased protein degradation and reduced protein synthesis observed in unloading-induced muscle atrophy. The inhibition of Cbl-b-mediated ubiquitination may be a new therapeutic strategy for unloading-mediated muscle atrophy.
Collapse
|
13
|
Abstract
Insulin signaling at target tissues is essential for growth and development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative feedback control mechanism whereby downstream components inhibit upstream elements along the insulin-signaling pathway (autoregulation) or by signals from apparently unrelated pathways that inhibit insulin signaling thus leading to insulin resistance. Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues has emerged as a key step in these control processes under both physiological and pathological conditions. The list of IRS kinases implicated in the development of insulin resistance is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here, we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on "hot spot" domains. The flexibility vs. specificity features of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin signaling, insulin resistance and type 2 diabetes, an emerging epidemic of the 21st century are outlined.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
14
|
Papaconstantinou J. Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol Cell Endocrinol 2009; 299:89-100. [PMID: 19103250 PMCID: PMC2873688 DOI: 10.1016/j.mce.2008.11.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 01/29/2023]
Abstract
Regulation of hormonal, insulin/IGF-1 (Ins/IGF-1) signaling activities, and pathways of the intrinsic generation of reactive oxygen species (ROS) play a role in aging and longevity determination. In this review we discuss the cross-talk between these pathways as mechanisms of signaling that may be important factors in the regulation of aging and longevity. The balance of physiological processes controlling the rate of aging and longevity in several mouse mutants suggests the involvement of cross-talk mechanisms of regulation of the insulin/IGF1 signaling pathway vs. the ROS signaling pathways. In mice, modulation of the Ins/IGF-1 signaling pathways resulting from the Prop1(df), Pit1(dw) and Igf1 receptor mutations exemplify the hormonal pathways associated with aging and longevity determination. These pathways are also targets of the ROS-mediated redox pathways. Similarly, the Klotho and p66(Shc) mutants link regulation of ROS signaling pathways to aging and longevity determination. Both of these models also display altered insulin signaling activity, a characteristic associated with longevity. The Ins/IGF-1 signaling pathway is of particular interest because of its decreased activity due to genetic manipulation vs. its responsiveness to ROS levels.
Collapse
Affiliation(s)
- John Papaconstantinou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University Blvd, Mail Route 0643, Galveston, TX 77555-0643, United States.
| |
Collapse
|
15
|
Morino K, Neschen S, Bilz S, Sono S, Tsirigotis D, Reznick RM, Moore I, Nagai Y, Samuel V, Sebastian D, White M, Philbrick W, Shulman GI. Muscle-specific IRS-1 Ser->Ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes 2008; 57:2644-51. [PMID: 18633112 PMCID: PMC2551673 DOI: 10.2337/db06-0454] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Insulin resistance in skeletal muscle plays a critical role in the pathogenesis of type 2 diabetes, yet the cellular mechanisms responsible for insulin resistance are poorly understood. In this study, we examine the role of serine phosphorylation of insulin receptor substrate (IRS)-1 in mediating fat-induced insulin resistance in skeletal muscle in vivo. RESEARCH DESIGN AND METHODS To directly assess the role of serine phosphorylation in mediating fat-induced insulin resistance in skeletal muscle, we generated muscle-specific IRS-1 Ser(302), Ser(307), and Ser(612) mutated to alanine (Tg IRS-1 Ser-->Ala) and IRS-1 wild-type (Tg IRS-1 WT) transgenic mice and examined insulin signaling and insulin action in skeletal muscle in vivo. RESULTS Tg IRS-1 Ser-->Ala mice were protected from fat-induced insulin resistance, as reflected by lower plasma glucose concentrations during a glucose tolerance test and increased insulin-stimulated muscle glucose uptake during a hyperinsulinemic-euglycemic clamp. In contrast, Tg IRS-1 WT mice exhibited no improvement in glucose tolerance after high-fat feeding. Furthermore, Tg IRS-1 Ser-->Ala mice displayed a significant increase in insulin-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity and Akt phosphorylation in skeletal muscle in vivo compared with WT control littermates. CONCLUSIONS These data demonstrate that serine phosphorylation of IRS-1 plays an important role in mediating fat-induced insulin resistance in skeletal muscle in vivo.
Collapse
Affiliation(s)
- Katsutaro Morino
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
de Tullio MB, Morelli L, Castaño EM. The irreversible binding of amyloid peptide substrates to insulin-degrading enzyme: a biological perspective. Prion 2008; 2:51-6. [PMID: 19098445 DOI: 10.4161/pri.2.2.6710] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a conserved Zn(2+)metalloendopeptidase involved in insulin degradation and in the maintenance of brain steady-state levels of amyloid beta peptide (Abeta) of Alzheimer's disease (AD). Our recent demonstration that IDE and Abeta are capable of forming a stoichiometric and extremely stable complex raises several intriguing possibilities regarding the role of this unique protein-peptide interaction in physiological and pathological conditions. These include a protective cellular function of IDE as a "dead-end chaperone" alternative to its proteolytic activity and the potential impact of the irreversible binding of Abeta to IDE upon its role as a varicella zoster virus receptor. In a pathological context, the implications for insulin signaling and its relationship to AD pathogenesis are discussed. Moreover, our findings warrant further research regarding a possible general and novel interaction between amyloidogenic peptides and other Zn(2+)metallopeptidases with an IDE-like fold and a substrate conformation-dependent recognition mechanism.
Collapse
Affiliation(s)
- Matías B de Tullio
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | | |
Collapse
|
17
|
Kang SG, Brown AL, Chung JH. Oxygen Tension Regulates the Stability of Insulin Receptor Substrate-1 (IRS-1) through Caspase-mediated Cleavage. J Biol Chem 2007; 282:6090-7. [PMID: 17179152 DOI: 10.1074/jbc.m610659200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The insulin and insulin-like growth factor-1 (IGF-1) receptors mediate signaling for energy uptake and growth through insulin receptor substrates (IRSs), which interact with these receptors as well as with downstream effectors. Oxygen is essential not only for ATP production through oxidative phosphorylation but also for many cellular processes, particularly those involved in energy homeostasis. The oxygen tension in vivo is significantly lower than that in the air and can vary widely depending on the tissue as well as on perfusion and oxygen consumption. How oxygen tension affects IRSs and their functions is poorly understood. Our findings indicate that transient hypoxia (1% oxygen) leads to caspase-mediated cleavage of IRS-1 without inducing cell death. The IRS-1 protein level rebounds rapidly upon return to normoxia. Protein tyrosine phosphatases (PTPs) appear to be important for the IRS-1 cleavage because tyrosine phosphorylation of the insulin receptor was decreased in hypoxia and IRS-1 cleavage could be blocked either with H(2)O(2) or with vanadate, each of which inhibits PTPs. Activity of Akt, a downstream effector of insulin and IGF-1 signaling that is known to suppress caspase activation, was suppressed in hypoxia. Overexpression of dominant-negative Akt led to IRS-1 cleavage even in normoxia, and overexpression of constitutively active Akt partially suppressed IRS-1 cleavage in hypoxia, suggesting that hypoxia-mediated suppression of Akt may induce caspase-mediated IRS-1 cleavage. In conclusion, our study elucidates a mechanism by which insulin and IGF-1 signaling can be matched to the oxygen level that is available to support growth and energy metabolism.
Collapse
Affiliation(s)
- Sung Gyun Kang
- Laboratory of Biochemical Genetics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
18
|
Morisco C, Lembo G, Trimarco B. Insulin resistance and cardiovascular risk: New insights from molecular and cellular biology. Trends Cardiovasc Med 2006; 16:183-8. [PMID: 16839860 DOI: 10.1016/j.tcm.2006.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/09/2006] [Accepted: 03/13/2006] [Indexed: 11/23/2022]
Abstract
Insulin resistance has been described in several diseases that increase cardiovascular risk and mortality, such as diabetes, obesity, hypertension, metabolic syndrome, and heart failure. Abnormalities of insulin signaling account for insulin resistance. Insulin mediates its action on target organs through phosphorylation of a transmembrane-spanning tyrosine kinase receptor, the insulin receptor (IR). Several mechanisms have been described as responsible for the inhibition of insulin-stimulated tyrosine phosphorylation of IR and the IR substrate (IRS) proteins, including proteasome-mediated degradation, phosphatase-mediated dephosphorylation, and kinase-mediated serine/threonine phosphorylation. In particular, phosphorylation of IRS-1 on serine Ser612 causes dissociation of the p85 subunit of phosphatidylinositol 3-kinase, inhibiting further signaling. On the other hand, phosphorylation of IRS-1 on Ser307 results in its dissociation from the IR and triggers proteasome-dependent degradation. Dysregulation of sympathetic nervous and renin-angiotensin systems resulting in enhanced stimulation of both adrenergic and angiotensin II receptors is a typical feature of several cardiovascular diseases and, at the same time, is involved in the pathogenesis of insulin resistance. The characterization of molecular mechanisms involved in the pathogenesis of insulin resistance may help to design efficacious pharmacologic molecules to treat endothelial and metabolic dysfunction associated with insulin resistance states to reduce the cardiovascular risk and to ameliorate the prognosis of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Carmine Morisco
- Dipartimento di Medicina Clinica Scienze Cardiovascolari ed Immunologiche, Université FEDERICO II Napoli, 80131 Napoli, Italy.
| | | | | |
Collapse
|
19
|
Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 2006; 55 Suppl 2:S9-S15. [PMID: 17130651 PMCID: PMC2995546 DOI: 10.2337/db06-s002] [Citation(s) in RCA: 588] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies using magnetic resonance spectroscopy have shown that decreased insulin-stimulated muscle glycogen synthesis due to a defect in insulin-stimulated glucose transport activity is a major factor in the pathogenesis of type 2 diabetes. The molecular mechanism underlying defective insulin-stimulated glucose transport activity can be attributed to increases in intramyocellular lipid metabolites such as fatty acyl CoAs and diacylglycerol, which in turn activate a serine/threonine kinase cascade, thus leading to defects in insulin signaling through Ser/Thr phosphorylation of insulin receptor substrate (IRS)-1. A similar mechanism is also observed in hepatic insulin resistance associated with nonalcoholic fatty liver, which is a common feature of type 2 diabetes, where increases in hepatocellular diacylglycerol content activate protein kinase C-epsilon, leading to reduced insulin-stimulated tyrosine phosphorylation of IRS-2. More recently, magnetic resonance spectroscopy studies in healthy lean elderly subjects and healthy lean insulin-resistant offspring of parents with type 2 diabetes have demonstrated that reduced mitochondrial function may predispose these individuals to intramyocellular lipid accumulation and insulin resistance. Further analysis has found that the reduction in mitochondrial function in the insulin-resistant offspring can be mostly attributed to reductions in mitochondrial density. By elucidating the cellular and molecular mechanisms responsible for insulin resistance, these studies provide potential new targets for the treatment and prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Katsutaro Morino
- Howard Hughes Medical Institute, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-8012, USA.
| | | | | |
Collapse
|
20
|
Brown PD, Badal S, Morrison S, Ragoobirsingh D. Acute impairment of insulin signalling by dexamethasone in primary cultured rat skeletal myocytes. Mol Cell Biochem 2006; 297:171-7. [PMID: 17072757 DOI: 10.1007/s11010-006-9344-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
In this study, we examined the cellular content of the insulin receptor substrate (IRS)-1, the levels of phosphorylated tyrosine (pY) and serine (pS) residues in IRS-1, and the glucose transporters GLUT-1 and GLUT-4 in primary cultured rat skeletal myocytes treated with the glucocorticoid, dexamethasone. Dexamethasone markedly increased basal and insulin-stimulated IRS-1 content 4 to 5-fold (p < 0.01). A similar level of increase was observed for IRS-1 pY content. However, dexamethasone treatment had no effect on IRS-1 pS content. Further, dexamethasone reduced the cellular content of GLUT-1 when insulin and glucose were absent (p < 0.05), but did not significantly affect the expression of GLUT-4 in the presence of insulin (p > 0.05). We conclude that dexamethasone treatment impairs insulin signalling by a mechanism independent of serine-phosphorylation-mediated IRS-1 depletion, or of impairment of GLUT-1 expression. Instead, dexamethasone-induced insulin resistance may be mediated via reduced cellular content of IRS-1 accompanied by parallel reduction in tyrosine phosphorylation in IRS-1.
Collapse
Affiliation(s)
- Paul D Brown
- Department of Basic Medical Sciences (Biochemistry section), University of the West Indies, Kingston, Jamaica.
| | | | | | | |
Collapse
|
21
|
Badal S, Brown PD, Ragoobirsingh D. Nitric oxide agents impair insulin-mediated signal transduction in rat skeletal muscle. BMC BIOCHEMISTRY 2006; 7:17. [PMID: 16729893 PMCID: PMC1524779 DOI: 10.1186/1471-2091-7-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 05/27/2006] [Indexed: 12/04/2022]
Abstract
Background Evidence demonstrates that exogenously administered nitric oxide (NO) can induce insulin resistance in skeletal muscle. We have investigated the modulatory effects of two NO donors, S-nitroso-N-acetyl-D, L-penicillamine (SNAP) and S-nitrosoglutathione (GSNO) on the early events in insulin signaling in rat skeletal myocytes. Results Skeletal muscle cells from 6–8 week old Sprague-Dawley rats were treated with SNAP or GSNO (25 ng/ml) in the presence or absence of glucose (25 mM) and insulin (100 nM). Cellular insulin receptor-β levels and tyrosine phosphorylation in IRS-1 were significantly reduced, while serine phosphorylation in IRS-1 was significantly increased in these cells, when compared to the insulin-stimulated control. Reversal to near normal levels was achieved using the NO scavenger, 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO). Conclusion These data suggest that NO is a potent modulator of insulin-mediated signal transduction and may play a significant role in the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Simone Badal
- Department of Basic Medical Sciences, Section of Biochemistry, The University of the West Indies, Kingston, Jamaica
| | - Paul D Brown
- Department of Basic Medical Sciences, Section of Biochemistry, The University of the West Indies, Kingston, Jamaica
| | - Dalip Ragoobirsingh
- Department of Basic Medical Sciences, Section of Biochemistry, The University of the West Indies, Kingston, Jamaica
| |
Collapse
|
22
|
Yi Z, Luo M, Mandarino LJ, Reyna SM, Carroll CA, Weintraub ST. Quantification of phosphorylation of insulin receptor substrate-1 by HPLC-ESI-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:562-567. [PMID: 16503154 DOI: 10.1016/j.jasms.2005.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 12/14/2005] [Accepted: 12/20/2005] [Indexed: 05/06/2023]
Abstract
Serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) regulates the function and subsequent insulin signaling of this protein. Human IRS-1 has 1242 amino acid residues, including 182 serines and 60 threonines. The size, complexity, and relatively low abundance of this protein in biological samples make it difficult to map and quantify phosphorylation sites by conventional means. A mass spectrometry peak area based quantification approach has been developed and applied to assess the relative abundance of IRS-1 phosphorylation in the absence or presence of stimuli. In this method, the peak area for a phosphopeptide of interest is normalized against the average of peak areas for six selected representative IRS-1 peptides that serve as endogenous internal standards. Relative quantification of each phosphopeptide is then obtained by comparing the normalized peak area ratios for untreated and treated samples. Two non-IRS-1 peptides were added to each digest for use as HPLC retention time markers and additional standards as well as references to the relative quantity of IRS-1 in different samples. This approach does not require isotopic or chemical labeling and can be applied to various cell lines and tissues. Using this method, we assessed the relative changes in the quantities of two tryptic phosphopeptides isolated from human IRS-1 expressed in L6 cells incubated in the absence or presence of insulin or tumor necrosis factor-alpha. Substantial increases of phosphorylation were observed for Thr(446) upon stimulation. In contrast, no obvious change in the level of phosphorylation was observed for Ser(1078). This mass spectrometry based strategy provides a powerful means to quantify changes in the relative phosphorylation of peptides in response to various stimuli in a complex, low-abundance protein.
Collapse
Affiliation(s)
- Zhengping Yi
- Department of Kinesiology, Arizona State University, P.O. Box 874501, 85287-4501, Tempe, AZ, USA
| | - Moulun Luo
- Department of Kinesiology, Arizona State University, P.O. Box 874501, 85287-4501, Tempe, AZ, USA
| | - Lawrence J Mandarino
- Department of Kinesiology, Arizona State University, P.O. Box 874501, 85287-4501, Tempe, AZ, USA.
- the Department of Kinesiology, Arizona State University, Tempe, Arizona.
| | - Sara M Reyna
- Department of Medicine, University of Texas Health Center at San Antonio, San Antonio, Texas, USA
| | - Christopher A Carroll
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Susan T Weintraub
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
23
|
He F, Stephens JM. Induction of SOCS-3 is insufficient to confer IRS-1 protein degradation in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2006; 344:95-8. [PMID: 16616006 DOI: 10.1016/j.bbrc.2006.03.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 03/20/2006] [Indexed: 11/16/2022]
Abstract
Insulin receptor substrate (IRS)-1 is a key protein in insulin signaling. Several studies have shown that the expression of IRS-1 can be modulated by protein degradation via the proteasome and the degradation of IRS-1 can be related to insulin-resistant states. The degradation of IRS-1 has been shown to be induced by SOCS-1 and SOCS-3 via the ubiquitin pathway. The goal of our study was to determine if the induction of SOCS-3 correlated with increased IRS-1 degradation in cultured 3T3-L1 adipocytes. Interestingly, our studies have shown that there is little correlation between the induction in SOCS-3 expression and the degradation of IRS-1 in mature 3T3-L1 adipocytes. Our results clearly demonstrate that treatment with leukemia inhibitory factor (LIF) or cardiotrophin (CT)-1 strongly induces the expression of SOCS-3 in mature 3T3-L1 adipocytes, but does not affect the degradation of IRS-1. On the contrary, tumor necrosis factor (TNF) alpha and insulin, which very weakly induce SOCS-3 expression, have profound effects on IRS-1 degradation. In summary, our results indicate that the expression of SOCS-3 does not correlate with the degradation of IRS-1 proteins in fat cells.
Collapse
Affiliation(s)
- Fang He
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
24
|
Müssig K, Fiedler H, Staiger H, Weigert C, Lehmann R, Schleicher ED, Häring HU. Insulin-induced stimulation of JNK and the PI 3-kinase/mTOR pathway leads to phosphorylation of serine 318 of IRS-1 in C2C12 myotubes. Biochem Biophys Res Commun 2005; 335:819-25. [PMID: 16099431 DOI: 10.1016/j.bbrc.2005.07.154] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Increased serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is associated with cellular insulin resistance. We have recently identified serine 318 (Ser318) as a novel protein kinase C-zeta (PKC-zeta)-dependent phosphorylation site within IRS-1. As other kinases may phosphorylate at this serine residue as well, we aimed to identify such kinases in the present study. In C2C12 myotubes, exposure to insulin or phorbol ester markedly increased Ser318 phosphorylation. In contrast, high glucose, tumor necrosis factor-alpha, and free fatty acids did not provoke Ser318 phosphorylation. JNK and the PI 3-kinase/mTOR pathway were found to be implicated in insulin-induced Ser318 phosphorylation, but not in TPA-stimulated phosphorylation that was, at least partly, mediated by classical or novel PKC. In conclusion, with JNK and the PI 3-kinase/mTOR pathway as mediators of insulin-induced Ser318 phosphorylation, we have identified kinases that have previously been reported to play key roles in phosphorylation of other serine residues in IRS-1.
Collapse
Affiliation(s)
- Karsten Müssig
- Division of Endocrinology, Metabolism and Pathobiochemistry, Department of Internal Medicine, University Hospital of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Jiang ZY, Zhou QL, Holik J, Patel S, Leszyk J, Coleman K, Chouinard M, Czech MP. Identification of WNK1 as a Substrate of Akt/Protein Kinase B and a Negative Regulator of Insulin-stimulated Mitogenesis in 3T3-L1 Cells. J Biol Chem 2005; 280:21622-8. [PMID: 15799971 DOI: 10.1074/jbc.m414464200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin signaling through protein kinase Akt/protein kinase B (PKB), a downstream element of the phosphatidylinositol 3-kinase (PI3K) pathway, regulates diverse cellular functions including metabolic pathways, apoptosis, mitogenesis, and membrane trafficking. To identify Akt/PKB substrates that mediate these effects, we used antibodies that recognize phosphopeptide sites containing the Akt/PKB substrate motif (RXRXX(p)S/T) to immunoprecipitate proteins from insulin-stimulated adipocytes. Tryptic peptides from a 250-kDa immunoprecipitated protein were identified as the protein kinase WNK1 (with no lysine) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, consistent with a recent report that WNK1 is phosphorylated on Thr60 in response to insulin-like growth factor I. Insulin treatment of 3T3-L1 adipocytes stimulated WNK1 phosphorylation, as detected by immunoprecipitation with antibody against WNK1 followed by immunoblotting with the anti-phosphoAkt substrate antibody. WNK1 phosphorylation induced by insulin was unaffected by rapamycin, an inhibitor of p70 S6 kinase pathway but abolished by the PI3K inhibitor wortmannin. RNA interference-directed depletion of Akt1/PKB alpha and Akt2/PKB beta attenuated insulin-stimulated WNK1 phosphorylation, but depletion of protein kinase C lambda did not. Whereas small interfering RNA-induced loss of WNK1 protein did not significantly affect insulin-stimulated glucose transport in 3T3-L1 adipocytes, it significantly enhanced insulin-stimulated thymidine incorporation by about 2-fold. Furthermore, depletion of WNK1 promoted serum-stimulated cell proliferation of 3T3-L1 preadipocytes, as evidenced by a 36% increase in cell number after 48 h in culture. These data suggest that WNK1 is a physiologically relevant target of insulin signaling through PI3K and Akt/PKB and functions as a negative regulator of insulin-stimulated mitogenesis.
Collapse
Affiliation(s)
- Zhen Y Jiang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Morisco C, Condorelli G, Trimarco V, Bellis A, Marrone C, Condorelli G, Sadoshima J, Trimarco B. Akt mediates the cross-talk between beta-adrenergic and insulin receptors in neonatal cardiomyocytes. Circ Res 2004; 96:180-8. [PMID: 15591229 DOI: 10.1161/01.res.0000152968.71868.c3] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Upregulation of the sympathetic nervous system plays a key role in the pathogenesis of insulin resistance. Although the heart is a target organ of insulin, few studies have examined the mechanisms by which beta-adrenergic stimulation affects insulin sensitivity in cardiac muscle. In this study, we explored the molecular mechanisms involved in the regulation of the cross-talk between beta adrenergic and insulin receptors in neonatal rat cardiomyocytes and in transgenic mice with cardiac overexpression of a constitutively active mutant of Akt (E40K Tg). The results of this study show that beta-adrenergic receptor stimulation has a biphasic effect on insulin-stimulated glucose uptake. Short-term stimulation induces an additive effect on insulin-induced glucose uptake, and this effect is mediated by phosphorylation of Akt in threonine 308 through PKA/Ca2+-dependent and PI3K-independent pathway, whereas insulin-evoked threonine phosphorylation of Akt is exclusively PI3K-dependent. On the other hand, long-term stimulation of beta-adrenergic receptors inhibits both insulin-stimulated glucose uptake and insulin-induced autophosphorylation of the insulin receptor, and at the same time promotes threonine phosphorylation of the insulin receptor. This is mediated by serine 473 phosphorylation of Akt through PKA/Ca2+ and PI3K-dependent pathways. Under basal conditions, E40K Tg mice show increased levels of threonine phosphorylation of the beta subunit of the insulin receptor and blunted tyrosine autophosphorylation of the beta-subunit of the insulin receptor after insulin stimulation. These results indicate that, in cardiomyocytes, beta-adrenergic receptor stimulation impairs insulin signaling transduction machinery through an Akt-dependent pathway, suggesting that Akt is critically involved in the regulation of insulin sensitivity.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Agonists/toxicity
- Amino Acid Substitution
- Animals
- Animals, Newborn
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cyclic AMP-Dependent Protein Kinases/physiology
- Deoxyglucose/metabolism
- Enzyme Activation
- Insulin Resistance/physiology
- Isoproterenol/pharmacology
- Isoproterenol/toxicity
- Mice
- Mice, Transgenic
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Phosphorylation
- Phosphoserine/metabolism
- Phosphothreonine/metabolism
- Protein Processing, Post-Translational/drug effects
- Protein Processing, Post-Translational/physiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-akt
- Rats
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/physiology
- Receptor, Insulin/physiology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Signal Transduction/physiology
- Structure-Activity Relationship
- Sympathetic Nervous System/physiology
Collapse
Affiliation(s)
- Carmine Morisco
- Dipartimento di Medicina Clinica, Scienze Cardiovascolari ed Immunologiche, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Krueckl SL, Sikes RA, Edlund NM, Bell RH, Hurtado-Coll A, Fazli L, Gleave ME, Cox ME. Increased Insulin-Like Growth Factor I Receptor Expression and Signaling Are Components of Androgen-Independent Progression in a Lineage-Derived Prostate Cancer Progression Model. Cancer Res 2004; 64:8620-9. [PMID: 15574769 DOI: 10.1158/0008-5472.can-04-2446] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis and inhibition of mitosis are primary mechanisms mediating androgen ablation therapy-induced regression of prostate cancer (PCa). However, PCa readily becomes androgen independent, leading to fatal disease. Up-regulated growth and survival signaling is implicated in development of resistance to androgen ablation therapy. We are testing the hypothesis that insulin-like growth factor (IGF) responsiveness is required for androgen-independent (AI) progression. Using the LNCaP human PCa progression model, we have determined that IGF-I-mediated protection from apoptotic stress and enhanced mitotic activity is androgen dependent in LNCaP cells but is androgen independent in lineage-derived C4-2 cells. Both cell lines exhibit androgen-responsive patterns of IGF-I receptor (IGF-IR) expression, activation, and signaling to insulin receptor substrate-2 and AKT. However, C4-2 cells express higher levels of IGF-IR mRNA and protein and exhibit enhanced IGF-I-mediated phosphorylation and downstream signaling under androgen-deprived conditions. In comparisons of naive and AI metastatic human PCa specimens, we have confirmed that IGF-IR levels are elevated in advanced disease. Together with our LNCaP/C4-2 AI progression model data, these results indicate that increased IGF-IR expression is associated with AI antiapoptotic and promitotic IGF signaling in PCa disease progression.
Collapse
Affiliation(s)
- Sandra L Krueckl
- Department of Surgery, The Prostate Center at Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kaiser C, James SR. Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol 2004; 2:23. [PMID: 15522123 PMCID: PMC529456 DOI: 10.1186/1741-7007-2-23] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Accepted: 11/02/2004] [Indexed: 12/21/2022] Open
Abstract
Background Insulin receptor substrate (IRS) proteins are key moderators of insulin action. Their specific regulation determines downstream protein-protein interactions and confers specificity on growth factor signalling. Regulatory mechanisms that have been identified include phosphorylation of IRS proteins on tyrosine and serine residues and ubiquitination of lysine residues. This study investigated other potential molecular mechanisms of IRS-1 regulation. Results Using the sos recruitment yeast two-hybrid system we found that IRS-1 and histone deacetylase 2 (HDAC2) interact in the cytoplasmic compartment of yeast cells. The interaction mapped to the C-terminus of IRS-1 and was confirmed through co-immunoprecipitation in vitro of recombinant IRS-1 and HDAC2. HDAC2 bound to IRS-1 in mammalian cells treated with phorbol ester or after prolonged treatment with insulin/IGF-1 and also in the livers of ob/ob mice but not PTP1B knockout mice. Thus, the association occurs under conditions of compromised insulin signalling. We found that IRS-1 is an acetylated protein, of which the acetylation is increased by treatment of cells with Trichostatin A (TSA), an inhibitor of HDAC activity. TSA-induced increases in acetylation of IRS-1 were concomitant with increases in tyrosine phosphorylation in response to insulin. These effects were confirmed using RNA interference against HDAC2, indicating that HDAC2 specifically prevents phosphorylation of IRS-1 by the insulin receptor. Conclusions Our results show that IRS-1 is an acetylated protein, a post-translational modification that has not been previously described. Acetylation of IRS-1 is permissive for tyrosine phosphorylation and facilitates insulin-stimulated signal transduction. Specific inhibition of HDAC2 may increase insulin sensitivity in otherwise insulin resistant conditions.
Collapse
Affiliation(s)
- Christina Kaiser
- Section of Cell Biology, Department of Biology, Biovitrum AB, SE-112 76, Stockholm, Sweden
| | - Stephen R James
- Section of Cell Biology, Department of Biology, Biovitrum AB, SE-112 76, Stockholm, Sweden
| |
Collapse
|
29
|
del Rincón SV, Guo Q, Morelli C, Shiu HY, Surmacz E, Miller WH. Retinoic acid mediates degradation of IRS-1 by the ubiquitin–proteasome pathway, via a PKC-dependant mechanism. Oncogene 2004; 23:9269-79. [PMID: 15516986 DOI: 10.1038/sj.onc.1208104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Insulin receptor substrate-1 (IRS-1) mediates signaling from the insulin-like growth factor type-I receptor. We found that all-trans retinoic acid (RA) decreases IRS-1 protein levels in MCF-7, T47-D, and ZR75.1 breast cancer cells, which are growth arrested by RA, but not in the RA-resistant MDA-MB-231 and MDA-MB-468 cells. Based on prior reports of ubiquitin-mediated degradation of IRS-1, we investigated the ubiquitination of IRS-1 in RA-treated breast cancer cells. Two proteasome inhibitors, MG-132 and lactacystin, blocked the RA-mediated degradation of IRS-1, and RA increased ubiquitination of IRS-1 in the RA-sensitive breast cancer cells. In addition, we found that RA increases serine phosphorylation of IRS-1. To elucidate the signaling pathway responsible for this phosphorylation event, pharmacologic inhibitors were used. Two PKC inhibitors, but not a MAPK inhibitor, blocked the RA-induced degradation and serine phosphorylation of IRS-1. We demonstrate that RA activates PKC-delta in the sensitive, but not in the resistant cells, with a time course that is consistent with the RA-induced decrease of IRS-1. We also show that: (1) RA-activated PKC-delta phosphorylates IRS-1 in vitro, (2) PKC-delta and IRS-1 interact in RA-treated cells, and (3) mutation of three PKC-delta serine sites in IRS-1 to alanines results in no RA-induced in vitro phosphorylation of IRS-1. Together, these results indicate that RA regulates IRS-1 levels by the ubiquitin-proteasome pathway, involving a PKC-sensitive mechanism.
Collapse
Affiliation(s)
- Sonia V del Rincón
- Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital and McGill University, Departments of Oncology and Medicine, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Zeigerer A, McBrayer MK, McGraw TE. Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160. Mol Biol Cell 2004; 15:4406-15. [PMID: 15254270 PMCID: PMC519136 DOI: 10.1091/mbc.e04-04-0333] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insulin maintains whole body blood glucose homeostasis, in part, by regulating the amount of the GLUT4 glucose transporter on the cell surface of fat and muscle cells. Insulin induces the redistribution of GLUT4 from intracellular compartments to the plasma membrane, by stimulating a large increase in exocytosis and a smaller inhibition of endocytosis. A considerable amount is known about the molecular events of insulin signaling and the complex itinerary of GLUT4 trafficking, but less is known about how insulin signaling is transmitted to GLUT4 trafficking. Here, we show that the AS160 RabGAP, a substrate of Akt, is required for insulin stimulation of GLUT4 exocytosis. A dominant-inhibitory mutant of AS160 blocks insulin stimulation of exocytosis at a step before the fusion of GLUT4-containing vesicles with the plasma membrane. This mutant, however, does not block insulin-induced inhibition of GLUT4 endocytosis. These data support a model in which insulin signaling to the exocytosis machinery (AS160 dependent) is distinct from its signaling to the internalization machinery (AS160 independent).
Collapse
Affiliation(s)
- Anja Zeigerer
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
31
|
Hartman ME, O'Connor JC, Godbout JP, Minor KD, Mazzocco VR, Freund GG. Insulin receptor substrate-2-dependent interleukin-4 signaling in macrophages is impaired in two models of type 2 diabetes mellitus. J Biol Chem 2004; 279:28045-50. [PMID: 15123681 DOI: 10.1074/jbc.m404368200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that hyperinsulinemia inhibits interferon-alpha-dependent activation of phosphatidylinositol 3-kinase (PI3-kinase) through mammalian target of rapamycin (mTOR)-induced serine phosphorylation of insulin receptor substrate (IRS)-1. Here we report that chronic insulin and high glucose synergistically inhibit interleukin (IL)-4-dependent activation of PI3-kinase in macrophages via the mTOR pathway. Resident peritoneal macrophages (PerMPhis) from diabetic (db/db) mice showed a 44% reduction in IRS-2-associated PI3-kinase activity stimulated by IL-4 compared with PerMPhis from heterozygote (db/+) control mice. IRS-2 from db/db mouse PerMPhis also showed a 78% increase in Ser/Thr-Pro motif phosphorylation without a difference in IRS-2 mass. To investigate the mechanism of this PI3-kinase inhibition, 12-O-tetradecanoylphorbol-13-acetate-matured U937 cells were treated chronically with insulin (1 nm, 18 h) and high glucose (4.5 g/liter, 48 h). In these cells, IL-4-stimulated IRS-2-associated PI3-kinase activity was reduced by 37.5%. Importantly, chronic insulin or high glucose alone did not impact IL-4-activated IRS-2-associated PI3-kinase. Chronic insulin + high glucose did reduce IL-4-dependent IRS-2 tyrosine phosphorylation and p85 association by 54 and 37%, respectively, but did not effect IL-4-activated JAK/STAT signaling. When IRS-2 Ser/Thr-Pro motif phosphorylation was examined, chronic insulin + high glucose resulted in a 92% increase in IRS-2 Ser/Thr-Pro motif phosphorylation without a change in IRS-2 mass. Pretreatment of matured U937 cells with rapamycin blocked chronic insulin + high glucose-dependent IRS-2 Ser/Thr-Pro motif phosphorylation and restored IL-4-dependent IRS-2-associated PI3-kinase activity. Taken together these results indicate that IRS-2-dependent IL-4 signaling in macrophages is impaired in models of type 2 diabetes mellitus through a mechanism that relies on insulin/glucose-dependent Ser/Thr-Pro motif serine phosphorylation mediated by the mTOR pathway.
Collapse
Affiliation(s)
- Matthew E Hartman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 506 South Mathews, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
32
|
Katome T, Obata T, Matsushima R, Masuyama N, Cantley LC, Gotoh Y, Kishi K, Shiota H, Ebina Y. Use of RNA interference-mediated gene silencing and adenoviral overexpression to elucidate the roles of AKT/protein kinase B isoforms in insulin actions. J Biol Chem 2003; 278:28312-23. [PMID: 12734182 DOI: 10.1074/jbc.m302094200] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin plays a central role in the regulation of glucose homeostasis in part by stimulating glucose uptake and glycogen synthesis. The serine/threonine protein kinase Akt has been proposed to mediate insulin signaling in several processes. However, it is unclear whether Akt is involved in insulin-stimulated glucose uptake and which isoforms of Akt are responsible for each insulin action. We confirmed that expression of a constitutively active Akt, using an adenoviral expression vector, promoted translocation of glucose transporter 4 (GLUT4) to plasma membrane, 2-deoxyglucose (2-DG) uptake, and glycogen synthesis in both Chinese hamster ovary cells and 3T3-L1 adipocytes. Inhibition of Akt either by adenoviral expression of a dominant negative Akt or by the introduction of synthetic 21-mer short interference RNA against Akt markedly reduced insulin-stimulated GLUT4 translocation, 2-DG uptake, and glycogen synthesis. Experiments with isoform-specific short interference RNA revealed that Akt2, and Akt1 to a lesser extent, has an essential role in insulin-stimulated GLUT4 translocation and 2-DG uptake in both cell lines, whereas Akt1 and Akt2 contribute equally to insulin-stimulated glycogen synthesis. These data suggest a prerequisite role of Akt in insulin-stimulated glucose uptake and distinct functions among Akt isoforms.
Collapse
Affiliation(s)
- Takashi Katome
- Division of Molecular Genetics, Institutes for Enzyme Research and Department of Ophthalmology, Graduate School of Medicine, University of Tokushima, 3-18-15 Kuramoto, Tokushima City, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J. Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem 2003; 278:24944-50. [PMID: 12714600 DOI: 10.1074/jbc.m300423200] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hypoglycemic effects of high dose salicylates in the treatment of diabetes were documented before the advent of insulin. However, the molecular mechanisms by which salicylates exert these anti-diabetic effects are not well understood. In this study, we analyzed the effects of aspirin (acetylsalicylic acid) on serine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells treated with tumor necrosis factor (TNF)-alpha. Phosphorylation of IRS-1 at Ser307, Ser267, and Ser612 was monitored by immunoblotting with phospho-specific IRS-1 antibodies. In 3T3-L1 and Hep G2 cells, phosphorylation of IRS-1 at Ser307 in response to TNF-alpha treatment correlated with phosphorylation of JNK, c-Jun, and degradation of IkappaBalpha. Moreover, phosphorylation of IRS-1 at Ser307 in embryo fibroblasts derived from either JNK or IKK knockout mice was reduced when compared with that in the wild-type controls. Taken together, these data suggest that serine phosphorylation of IRS-1 in response to TNF-alpha is mediated, in part, by JNK and IKK. Interestingly, aspirin treatment inhibited the phosphorylation of IRS-1 at Ser307 as well as the phosphorylation of JNK, c-Jun, and degradation of IkappaBalpha. Furthermore, other serine kinases including Akt, extracellular regulated kinase, mammalian target of rapamycin, and PKCzeta were also activated by TNF-alpha (as assessed by phospho-specific antibodies). Phosphorylation of IRS-1 at Ser267 and Ser612 correlated with the activation of these kinases. Phosphorylation of Akt and the mammalian target of rapamycin (but not extracellular regulated kinase or PKCzeta) in response to TNF-alpha was inhibited by aspirin treatment. Finally, aspirin rescued insulin-induced glucose uptake in 3T3-L1 adipocytes pretreated with TNF-alpha. We conclude that aspirin may enhance insulin sensitivity by protecting IRS proteins from serine phosphorylation catalyzed by multiple kinases.
Collapse
Affiliation(s)
- Zhanguo Gao
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808, USA
| | | | | | | | | |
Collapse
|
34
|
Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E. Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J Biol Chem 2003; 278:15641-51. [PMID: 12594228 DOI: 10.1074/jbc.m208984200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Impaired glucose tolerance precedes type 2 diabetes and is characterized by hyperinsulinemia, which develops to balance peripheral insulin resistance. To gain insight into the deleterious effects of hyperinsulinemia on skeletal muscle, we studied the consequences of prolonged insulin treatment of L6 myoblasts on insulin-dependent signaling pathways. A 24-h long insulin treatment desensitized the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) and p42/p44 MAPK pathways toward a second stimulation with insulin or insulin-like growth factor-1 and led to decreased insulin-induced glucose uptake. Desensitization was correlated to a reduction in insulin receptor substrate (IRS)-1 and IRS-2 protein levels, which was reversed by the PI3K inhibitor LY294002. Co-treatment of cells with insulin and LY294002, while reducing total IRS-1 phosphorylation, increased its phosphotyrosine content, enhancing IRS-1/PI3K association. PDK1, mTOR, and MAPK inhibitors did not block insulin-induced reduction of IRS-1, suggesting that the PI3K serine-kinase activity causes IRS-1 serine phosphorylation and its commitment to proteasomal degradation. Contrarily, insulin-induced IRS-2 down-regulation occurred via a PI3K/mTOR pathway. Suppression of IRS-1/2 down-regulation by LY294002 rescued the responsiveness of PKB and MAPK toward acute insulin stimulation. Conversely, adenoviral-driven expression of constitutively active PI3K induced an insulin-independent reduction in IRS-1/2 protein levels. IRS-2 appears to be the chief molecule responsible for MAPK and PKB activation by insulin, as knockdown of IRS-2 (but not IRS-1) by RNA interference severely impaired activation of both kinases. In summary, (i) PI3K mediates insulin-induced reduction of IRS-1 by phosphorylating it while a PI3K/mTOR pathway controls insulin-induced reduction of IRS-2, (ii) in L6 cells, IRS-2 is the major adapter molecule linking the insulin receptor to activation of PKB and MAPK, (iii) the mechanism of IRS-1/2 down-regulation is different in L6 cells compared with 3T3-L1 adipocytes. In conclusion, the reduction in IRS proteins via different PI3K-mediated mechanisms contributes to the development of an insulin-resistant state in L6 myoblasts.
Collapse
Affiliation(s)
- Luciano Pirola
- INSERM U145, IFR50, Faculté de Médecine, 06107 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
35
|
Potashnik R, Bloch-Damti A, Bashan N, Rudich A. IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia 2003; 46:639-48. [PMID: 12750770 DOI: 10.1007/s00125-003-1097-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 12/20/2002] [Indexed: 11/30/2022]
Abstract
AIM/HYPOTHESIS Oxidative stress was shown to selectively induce impaired metabolic response to insulin, raising the possible involvement of alterations in Insulin-Receptor-Substrate (IRS) proteins. This study was conducted to assess whether oxidative stress induced IRS protein degradation and enhanced serine phosphorylation, and to assess their functional importance. METHODS 3T3-L1 adipocytes and rat hepatoma cells (FAO) were exposed to micro-molar H(2)O(2) by adding glucose oxidase to the culture medium, and IRS1 content, its serine phosphorylation and downstream metabolic insulin effects were measured. RESULTS Cells exposed to oxidative stress exhibited decreased IRS1 (but not IRS2) content, and increased serine phosphorylation of both proteins. Total protein ubiquitination was increased in oxidized cells, but not in cells exposed to prolonged insulin treatment. Yet, lactacystin and MG132, two unrelated proteasome inhibitors, prevented IRS1 degradation induced by prolonged insulin but not by oxidative stress. The PI 3-kinase inhibitor LY294002 and the mTOR inhibitor rapamycin, but not the MEK1 inhibitor PD98059, could prevent IRS1 changes in oxidized cells. Rapamycin, which protected against IRS1 degradation and serine phosphorylation was not associated with improved response to acute insulin stimulation. Moreover, the antioxidant alpha lipoic acid, while protecting against oxidative stress-induced insulin resistance in 3T3-L1 adipocytes, could not prevent IRS1 degradation and serine phosphorylation. CONCLUSION/INTERPRETATION Oxidative stress induces serine phosphorylation of IRS1 and increases its degradation by a proteasome-independent pathway; yet, these changes do not correlate with the induction of impaired metabolic response to insulin.
Collapse
Affiliation(s)
- R Potashnik
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
36
|
Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA. Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem 2003; 278:8199-211. [PMID: 12510059 DOI: 10.1074/jbc.m209153200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ser/Thr phosphorylation of insulin receptor substrate-1 (IRS-1) is a negative regulator of insulin signaling. One potential mechanism for this is that Ser/Thr phosphorylation decreases the ability of IRS-1 to be tyrosine-phosphorylated by the insulin receptor. An additional mechanism for modulating insulin signaling is via the down-regulation of IRS-1 protein levels. Insulin-induced degradation of IRS-1 has been well documented, both in cells as well as in patients with diabetes. Ser/Thr phosphorylation of IRS-1 correlates with IRS-1 degradation, yet the details of how this occurs are still unknown. In the present study we have examined the potential role of different signaling cascades in the insulin-induced degradation of IRS-1. First, we found that inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin block the degradation. Second, knockout cells lacking one of the key effectors of this cascade, the phosphoinositide-dependent kinase-1, were found to be deficient in the insulin-stimulated degradation of IRS-1. Conversely, overexpression of this enzyme potentiated insulin-stimulated IRS-1 degradation. Third, concurrent with the decrease in IRS-1 degradation, the inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin also blocked the insulin-stimulated increase in Ser(312) phosphorylation. Most important, an IRS-1 mutant in which Ser(312) was changed to alanine was found to be resistant to insulin-stimulated IRS-1 degradation. Finally, an inhibitor of c-Jun N-terminal kinase, SP600125, at 10 microm did not block IRS-1 degradation and IRS-1 Ser(312) phosphorylation yet completely blocked insulin-stimulated c-Jun phosphorylation. Further, insulin-stimulated c-Jun phosphorylation was not blocked by inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin, indicating that c-Jun N-terminal kinase is unlikely to be the kinase phosphorylating IRS-1 Ser(312) in response to insulin. In summary, our results indicate that the insulin-stimulated degradation of IRS-1 via the phosphatidylinositol 3-kinase pathway is in part dependent upon the Ser(312) phosphorylation of IRS-1.
Collapse
Affiliation(s)
- Michael W Greene
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | |
Collapse
|
37
|
Egawa K, Maegawa H, Shi K, Nakamura T, Obata T, Yoshizaki T, Morino K, Shimizu S, Nishio Y, Suzuki E, Kashiwagi A. Membrane localization of 3-phosphoinositide-dependent protein kinase-1 stimulates activities of Akt and atypical protein kinase C but does not stimulate glucose transport and glycogen synthesis in 3T3-L1 adipocytes. J Biol Chem 2002; 277:38863-9. [PMID: 12147684 DOI: 10.1074/jbc.m203132200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is reported that 3-phosphoinositide-dependent protein kinase-1 (PDK-1) is activated in a phosphatidylinositol 3,4,5-trisphosphate-dependent manner and phosphorylates Akt, p70S6 kinase, and atypical protein kinase C (PKC), but its function on insulin signaling is still unclear. We cloned a full-length pdk-1 cDNA from a human brain cDNA library, and the adenovirus to overexpress wild type PDK-1 (PDK-1WT) or membrane-targeted PDK-1 (PDK-1CAAX) was constructed. Overexpressed PDK-1WT existed mainly at cytosol, and PDK-1CAAX was located at the plasma membrane. In 3T3-L1 adipocytes, insulin induced mobility shift of PDK-1 protein, but overexpressed PDK-1WT and CAAX were shifted at the basal state. Insulin stimulated tyrosine phosphorylation of PDK-1WT, but PDK-1CAAX was already tyrosine-phosphorylated at the basal state. Overexpression of PDK-1WT led to a full activation of PKC zeta/lambda without insulin stimulation but showed only the minimum effects to stimulate phosphorylation of Akt and GSK-3. In contrast, the overexpression of PDK-1CAAX caused phosphorylation of Akt and GSK-3 more strongly without insulin stimulation. However, PDK-1CAAX did not affect 2-deoxyglucose uptake and inhibited glycogen synthesis, surprisingly. Finally, PDK-1CAAX expression inhibited insulin-induced ERK1/2 phosphorylation in a dose-dependent manner. Taken together, the translocation of PDK-1 from cytosol to the plasma membrane is critical for Akt and GSK-3 activation. On the other hand, only atypical PKC and Akt activation was insufficient for stimulation of glucose transport, and constitutive activation of Akt-GSK-3 pathway may inhibit glycogen synthesis and MAPK cascade in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Katsuya Egawa
- Third Department of Medicine and Department of Anatomy, Shiga University of Medical Science, Seta, Otsu, Shiga 520-2192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jiang G, Dallas-Yang Q, Li Z, Szalkowski D, Liu F, Shen X, Wu M, Zhou G, Doebber T, Berger J, Moller DE, Zhang BB. Potentiation of insulin signaling in tissues of Zucker obese rats after acute and long-term treatment with PPARgamma agonists. Diabetes 2002; 51:2412-9. [PMID: 12145152 DOI: 10.2337/diabetes.51.8.2412] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thiazolidinediones (TZDs), agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma), improve insulin sensitivity in vivo, and the mechanism remains largely unknown. In this study, we showed that, in Zucker obese (fa/fa) rats, acute (1-day) treatment with both rosiglitazone (a TZD) and a non-TZD PPARgamma agonist (nTZD) reduced plasma free fatty acid and insulin levels and, concomitantly, potentiated insulin-stimulated Akt phosphorylation at threonine 308 (Akt-pT308) in adipose and muscle tissues. A similar effect on Akt was observed in liver after a 7-day treatment. The increase in Akt-pT308 was correlated with an increase in Akt phosphorylation at serine 473 (Akt-pS473), tyrosine phosphorylation of insulin receptor beta subunit and insulin receptor substrate-1, and serine phosphorylation of glycogen synthase kinase-3alpha/beta. The agonists appeared to potentiate Akt1 phosphorylation in muscle and liver and both Akt1 and Akt2 in adipose. Finally, potentiation of insulin signaling was also observed in isolated adipose tissue ex vivo and differentiated 3T3 L1 adipocytes in vitro, but not in rat primary hepatocytes in vitro. These results suggest that 1) PPARgamma agonists acutely potentiate insulin signaling in adipose and muscle tissues and such regulation may be physiologically relevant to insulin sensitization in vivo; 2) the agonists directly target adipose tissues; and 3) the metabolic and signaling effects of the agonists are mediated by structurally distinct PPARgamma agonists.
Collapse
Affiliation(s)
- Guoqiang Jiang
- Department of Molecular Endocrinology-Diabetes, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hartley D, Cooper GM. Role of mTOR in the degradation of IRS-1: regulation of PP2A activity. J Cell Biochem 2002; 85:304-14. [PMID: 11948686 DOI: 10.1002/jcb.10135] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have investigated the role of PI 3-kinase and mTOR in the degradation of IRS-1 induced by insulin. Inhibition of mTOR with rapamycin resulted in approximately 50% inhibition of the insulin-induced degradation of IRS-1. In contrast, inhibition of PI-3 kinase, an upstream activator of mTOR, leads to a complete block of the insulin-induced degradation. Inhibition of either PI-3 kinase or mTOR prevented the mobility shift in IRS-1 in response to insulin, a shift that is caused by Ser/Thr phosphorylation. These results indicate that insulin stimulates PI 3-kinase-mediated degradation of IRS-1 via both mTOR-dependent and -independent pathways. Platelet-derived growth factor (PDGF) stimulation leads to a lower level of degradation, but significant phosphorylation of IRS-1. Both the degradation and phosphorylation of IRS-1 in response to PDGF are completely inhibited by rapamycin, suggesting that PDGF stimulates IRS-1 degradation principally via the mTOR-dependent pathway. Inhibition of the serine/threonine phosphatase PP2A with okadaic acid also induced the phosphorylation and degradation of IRS-1. IRS-1 phosphorylation and degradation in response to okadaic acid were not inhibited by rapamycin, suggesting that the action of mTOR in the degradation of IRS-1 results from inhibition of PP2A. Consistent with this, treatment of cells with rapamycin stimulated PP2A activity. While the role of mTOR in the phosphorylation of IRS-1 appears to proceed primarily through the regulation of PP2A, we also provide evidence that the regulation of p70S6 kinase phosphorylation requires the direct activity of mTOR.
Collapse
Affiliation(s)
- David Hartley
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
40
|
Zhande R, Mitchell JJ, Wu J, Sun XJ. Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Mol Cell Biol 2002; 22:1016-26. [PMID: 11809794 PMCID: PMC134643 DOI: 10.1128/mcb.22.4.1016-1026.2002] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor substrate 1 (IRS-1) plays an important role in the insulin signaling cascade. In vitro and in vivo studies from many investigators have suggested that lowering of IRS-1 cellular levels may be a mechanism of disordered insulin action (so-called insulin resistance). We previously reported that the protein levels of IRS-1 were selectively regulated by a proteasome degradation pathway in CHO/IR/IRS-1 cells and 3T3-L1 adipocytes during prolonged insulin exposure, whereas IRS-2 was unaffected. We have now studied the signaling events that are involved in activation of the IRS-1 proteasome degradation pathway. Additionally, we have addressed structural elements in IRS-1 versus IRS-2 that are required for its specific proteasome degradation. Using ts20 cells, which express a temperature-sensitive mutant of ubiquitin-activating enzyme E1, ubiquitination of IRS-1 was shown to be a prerequisite for insulin-induced IRS-1 proteasome degradation. Using IRS-1/IRS-2 chimeric proteins, the N-terminal region of IRS-1 including the PH and PTB domains was identified as essential for targeting IRS-1 to the ubiquitin-proteasome degradation pathway. Activation of phosphatidylinositol 3-kinase is necessary but not sufficient for activating and sustaining the IRS-1 ubiquitin-proteasome degradation pathway. In contrast, activation of mTOR is not required for IRS-1 degradation in CHO/IR cells. Thus, our data provide insight into the molecular mechanism of insulin-induced activation of the IRS-1 ubiquitin-proteasome degradation pathway.
Collapse
Affiliation(s)
- Rachel Zhande
- Endocrinology Division, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
41
|
Shao J, Yamashita H, Qiao L, Draznin B, Friedman JE. Phosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus. Diabetes 2002; 51:19-29. [PMID: 11756318 DOI: 10.2337/diabetes.51.1.19] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Insulin resistance during pregnancy provokes gestational diabetes mellitus (GDM); however, the cellular mechanisms for this type of insulin resistance are not well understood. We evaluated the mechanisms(s) for insulin resistance in skeletal muscle from an animal model of spontaneous GDM, the heterozygous C57BL/KsJ-(db/+) mouse. Pregnancy triggered a novel functional redistribution of the insulin-signaling environment in skeletal muscle in vivo. This environment preferentially increases a pool of phosphatidylinositol (PI) 3-kinase activity associated with the insulin receptor, away from insulin receptor substrate (IRS)-1. In conjunction with the redistribution of PI 3-kinase to the insulin receptor, there is a selective increase in activation of downstream serine kinases Akt and p70S6. Furthermore, we show that redistribution of PI 3-kinase to the insulin receptor increases insulin-stimulated IRS-1 serine phosphorylation, impairs IRS-1 expression and its tyrosine phosphorylation, and decreases the ability of IRS-1 to bind and activate PI 3-kinase in response to insulin. Thus, the pool of IRS-1-associated PI 3-kinase activity is reduced, resulting in the inability of insulin to stimulate GLUT4 translocation to the plasma membrane. These defects are unique to pregnancy and suggest that redistribution of PI 3-kinase to the insulin receptor may be a primary defect underlying insulin resistance in skeletal muscle during gestational diabetes.
Collapse
Affiliation(s)
- Jianhua Shao
- Department of Pediatrics, Veterans Affairs Medical Center, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
42
|
Rui L, Fisher TL, Thomas J, White MF. Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 2001; 276:40362-7. [PMID: 11546773 DOI: 10.1074/jbc.m105332200] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin and insulin-like growth factor-1 (IGF-1) regulate metabolism and body growth through homologous receptor tyrosine kinases that phosphorylate the insulin receptor substrate (IRS) proteins. IRS-2 is an important IRS protein, as it mediates peripheral insulin action and beta-cell survival. In this study, we show that insulin, IGF-1, or osmotic stress promoted ubiquitin/proteasome-mediated degradation of IRS-2 in 3T3-L1 cells, Fao hepatoma, cells and mouse embryo fibroblasts; however, insulin/IGF-1 did not promote degradation of IRS-1 in 3T3-L1 preadipocytes or mouse embryo fibroblasts. MG132 or lactacystin, specific inhibitors of 26S proteasome, blocked insulin/IGF-1-induced degradation of IRS-2 and enhanced the detection of ubiquitinated IRS-2. Insulin/IGF1-induced ubiquitination and degradation of IRS-2 was blocked by inhibitors of phosphatidylinositol 3-kinase (wortmannin or LY294002) or mTOR (rapamycin). Chronic insulin or IGF-1 treatment of IRS-1-deficient mouse embryo fibroblasts inhibited IRS-2-mediated activation of Akt and ERK1/2, which was reversed by lactacystin pretreatment. By contrast, IRS-1 activation of Akt and ERK1/2 was not inhibited by chronic insulin/IGF-1 stimulation in IRS-2-deficient mouse embryo fibroblasts. Thus, we identified a novel negative feedback mechanism by which the ubiquitin/proteasome-mediated degradation of IRS-2 limits the magnitude and duration of the response to insulin or IGF-1.
Collapse
Affiliation(s)
- L Rui
- Howard Hughes Medical Institute, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
43
|
Richards RG, Klotz DM, Bush MR, Walmer DK, DiAugustine RP. E2-induced degradation of uterine insulin receptor substrate-2: requirement for an IGF-I-stimulated, proteasome-dependent pathway. Endocrinology 2001; 142:3842-9. [PMID: 11517161 DOI: 10.1210/endo.142.9.8370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insulin receptor substrates are docking proteins that bind various receptor tyrosine kinases and signaling proteins. Previous studies have shown that E2 or progesterone can regulate the relative abundance of insulin receptor substrate-1 and -2 in cells and tissues. For instance, uterine insulin receptor substrate-2 was decreased markedly at 24 h after E2 treatment of mice. In the present study we used various in vivo experimental approaches to examine the mechanism by which E2 influences uterine insulin receptor substrate-2 expression. Uterine insulin receptor substrate-2 mRNA levels were diminished after E2 treatment, but this diminution did not account for the total reduction in insulin receptor substrate-2 protein, suggesting that the E2-induced decrease in insulin receptor substrate-2 is not regulated solely at the mRNA level. Cotreatment with progesterone prevented the E2-stimulated reduction in insulin receptor substrate-2 protein at 24 h after hormone exposure. In addition, MG-132 and epoxomicin, inhibitors of proteasomal protease activity, inhibited the E2-induced decrease in uterine insulin receptor substrate-2 protein levels, and this correlated to an increase in uterine protein ubiquitination. Insulin receptor substrate-2 protein was diminished in uteri of E2-treated insulin receptor substrate-1-null mutant mice, but not in E2-treated IGF-I-null mutant mice. Furthermore, E2-induced diminution of uterine insulin receptor substrate-2 protein was only partially inhibited in the presence of wortmannin, a PI3K inhibitor. Collectively, these data suggest that the E2-induced decrease in uterine insulin receptor substrate-2 requires IGF-I signaling, is not dependent solely on insulin receptor substrate-1 and PI3K, and is blocked by progesterone as well as by pharmacological inhibition of proteasomal protease activity. We speculate that the IGF-I-activated IGF-I receptor, in response to E2, directly or indirectly modifies insulin receptor substrate-2, probably through phosphorylation, leading to ubiquitination and subsequent degradation of this docking protein by the proteasome. This degradation could be a regulatory step to inhibit insulin receptor substrate-2-dependent signaling in the uterus.
Collapse
Affiliation(s)
- R G Richards
- Hormones and Cancer Group, Laboratory of Molecular Carcinogenesis, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
44
|
Kim JK, Kim YJ, Fillmore JJ, Chen Y, Moore I, Lee J, Yuan M, Li ZW, Karin M, Perret P, Shoelson SE, Shulman GI. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 2001; 108:437-46. [PMID: 11489937 PMCID: PMC209353 DOI: 10.1172/jci11559] [Citation(s) in RCA: 501] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and may involve fat-induced activation of a serine kinase cascade involving IKK-beta. To test this hypothesis, we first examined insulin action and signaling in awake rats during hyperinsulinemic-euglycemic clamps after a lipid infusion with or without pretreatment with salicylate, a known inhibitor of IKK-beta. Whole-body glucose uptake and metabolism were estimated using [3-(3)H]glucose infusion, and glucose uptake in individual tissues was estimated using [1-(14)C]2-deoxyglucose injection during the clamp. Here we show that lipid infusion decreased insulin-stimulated glucose uptake and activation of IRS-1-associated PI 3-kinase in skeletal muscle but that salicylate pretreatment prevented these lipid-induced effects. To examine the mechanism of salicylate action, we studied the effects of lipid infusion on insulin action and signaling during the clamp in awake mice lacking IKK-beta. Unlike the response in wild-type mice, IKK-beta knockout mice did not exhibit altered skeletal muscle insulin signaling and action following lipid infusion. In summary, high-dose salicylate and inactivation of IKK-beta prevent fat-induced insulin resistance in skeletal muscle by blocking fat-induced defects in insulin signaling and action and represent a potentially novel class of therapeutic agents for type 2 diabetes.
Collapse
Affiliation(s)
- J K Kim
- Howard Hughes Medical Institute, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-8012, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Takano A, Usui I, Haruta T, Kawahara J, Uno T, Iwata M, Kobayashi M. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol 2001; 21:5050-62. [PMID: 11438661 PMCID: PMC87231 DOI: 10.1128/mcb.21.15.5050-5062.2001] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A pathway sensitive to rapamycin, a selective inhibitor of mammalian target of rapamycin (mTOR), down-regulates effects of insulin such as activation of Akt (protein kinase B) via proteasomal degradation of insulin receptor substrate 1 (IRS-1). We report here that the pathway also plays an important role in insulin-induced subcellular redistribution of IRS-1 from the low-density microsomes (LDM) to the cytosol. After prolonged insulin stimulation, inhibition of the redistribution of IRS-1 by rapamycin resulted in increased levels of IRS-1 and the associated phosphatidylinositol (PI) 3-kinase in both the LDM and cytosol, whereas the proteasome inhibitor lactacystin increased the levels only in the cytosol. Since rapamycin but not lactacystin enhances insulin-stimulated 2-deoxyglucose (2-DOG) uptake, IRS-1-associated PI 3-kinase localized at the LDM was suggested to be important in the regulation of glucose transport. The amino acid deprivation attenuated and the amino acid excess enhanced insulin-induced Ser/Thr phosphorylation and subcellular redistribution and degradation of IRS-1 in parallel with the effects on phosphorylation of p70 S6 kinase and 4E-BP1. Accordingly, the amino acid deprivation increased and the amino acid excess decreased insulin-stimulated activation of Akt and 2-DOG uptake. Furthermore, 2-DOG uptake was affected by amino acid availability even when the degradation of IRS-1 was inhibited by lactacystin. We propose that subcellular redistribution of IRS-1, regulated by the mTOR-dependent pathway, facilitates proteasomal degradation of IRS-1, thereby down-regulating Akt, and that the pathway also negatively regulates insulin-stimulated glucose transport, probably through the redistribution of IRS-1. This work identifies a novel function of mTOR that integrates nutritional signals and metabolic signals of insulin.
Collapse
Affiliation(s)
- A Takano
- First Department of Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Ishibashi KI, Imamura T, Sharma PM, Huang J, Ugi S, Olefsky JM. Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes. J Clin Invest 2001; 107:1193-202. [PMID: 11342583 PMCID: PMC209278 DOI: 10.1172/jci11753] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We recently reported that insulin and endothelin-1 (ET-1) can stimulate GLUT4 translocation via the heterotrimeric G protein G alpha q/11 and through PI3-kinase--mediated pathways in 3T3-L1 adipocytes. Because both hormones stimulate glucose transport through a common downstream pathway, we determined whether chronic ET-1 pretreatment would desensitize these cells to acute insulin signaling. We found that ET-1 pretreatment substantially inhibited insulin-stimulated 2-deoxyglucose uptake and GLUT4 translocation. Cotreatment with the ETA receptor antagonist BQ 610 prevented these effects, whereas inhibitors of G alpha i or G beta gamma were without effect. Chronic ET-1 treatment inhibited insulin-stimulated tyrosine phosphorylation of G alpha q/11 and IRS-1, as well as their association with PI3-kinase and blocked the activation of PI3-kinase activity and phosphorylation of AKT: In addition, chronic ET-1 treatment caused IRS-1 degradation, which could be blocked by inhibitors of PI3-kinase or p70 S6-kinase. Similarly, expression of a constitutively active G alpha q mutant, but not the wild-type G alpha q, led to IRS-1 degradation and inhibited insulin-stimulated phosphorylation of IRS-1, suggesting that the ET-1-induced decrease in IRS-1 depends on G alpha q/11 and PI3-kinase. Insulin-stimulated tyrosine phosphorylation of SHC was also reduced in ET-1 treated cells, resulting in inhibition of the MAPK pathway. In conclusion, chronic ET-1 treatment of 3T3-L1 adipocytes leads to heterologous desensitization of metabolic and mitogenic actions of insulin, most likely through the decreased tyrosine phosphorylation of the insulin receptor substrates IRS-1, SHC, and G alpha q/11.
Collapse
Affiliation(s)
- K I Ishibashi
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, California 92093-0673, USA
| | | | | | | | | | | |
Collapse
|
47
|
Parpal S, Karlsson M, Thorn H, Strålfors P. Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J Biol Chem 2001; 276:9670-8. [PMID: 11121405 DOI: 10.1074/jbc.m007454200] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insulin exerts its cellular control through receptor binding in caveolae in plasmalemma of target cells (Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K. H., Magnusson, K.-E., and Strålfors, P. (1999) FASEB. J. 13, 1961-1971). We now report that a progressive cholesterol depletion of 3T3-L1 adipocytes with beta-cyclodextrin gradually destroyed caveolae structures and concomitantly attenuated insulin stimulation of glucose transport, in effect making cells insulin-resistant. Insulin access to or affinity for the insulin receptor on rat adipocytes was not affected as determined by (125)I-insulin binding. By immunoblotting of plasma membranes, total amount of insulin receptor and of caveolin remained unchanged. Receptor autophosphorylation in response to insulin was not affected by cholesterol depletion. Insulin treatment of isolated caveolae preparations increased autophosphorylation of receptor before and following cholesterol depletion. Insulin-increased tyrosine phosphorylation of an immediate downstream signal transducer, insulin receptor substrate-1, and activation of the further downstream protein kinase B were inhibited. In contrast, insulin signaling to mitogenic control as determined by control of the extracellular signal-related kinases 1/2, mitogen-activated protein kinase pathway was not affected. Insulin did not control Shc phosphorylation, and Shc did not control extracellular signal-related kinases 1/2, whereas cholesterol depletion constitutively phosphorylated Shc. In conclusion, caveolae are critical for propagating the insulin receptor signal to downstream targets and have the potential for sorting signal transduction for metabolic and mitogenic effects.
Collapse
Affiliation(s)
- S Parpal
- Department of Cell Biology, Faculty of Health Sciences, Linköping University, S-58185 Linköping, Sweden
| | | | | | | |
Collapse
|
48
|
Hartman ME, Villela-Bach M, Chen J, Freund GG. Frap-dependent serine phosphorylation of IRS-1 inhibits IRS-1 tyrosine phosphorylation. Biochem Biophys Res Commun 2001; 280:776-81. [PMID: 11162588 DOI: 10.1006/bbrc.2000.4214] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that interferon-alpha (IFN alpha)-dependent tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) is impaired by serine phosphorylation of IRS-1 due to the reduced ability of serine phosphorylated IRS-1 to serve as a substrate for Janus kinase 1 (JAK1). Here we report that FKBP12-rapamycin-associated protein (FRAP) is a physiologic IRS-1 kinase that blocks IFN alpha signaling by serine phosphorylating IRS-1. We found that both FRAP and insulin-activated p70 S6 kinase (p70(s6k)) serine phosphorylated IRS-1 between residues 511 and 772 (IRS-1(511-772)). Importantly, only FRAP-dependent IRS-1(511-772) serine phosphorylation inhibited by 50% subsequent JAK1-dependent tyrosine phosphorylation of IRS-1. Furthermore, treatment of U266 cells with the FRAP inhibitor rapamycin increased IFN alpha-dependent tyrosine phosphorylation by twofold while reducing constitutive IRS-1 serine phosphorylation within S/T-P motifs by 80%. Taken together, these data indicate that FRAP, but not p70(s6k), is a likely physiologic IRS-1 serine kinase that negatively regulates JAK1-dependent IRS-1 tyrosine phosphorylation and suggests that FRAP may modulate IRS-dependent cytokine signaling.
Collapse
Affiliation(s)
- M E Hartman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
49
|
Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, White MF. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 2001; 107:181-9. [PMID: 11160134 PMCID: PMC199174 DOI: 10.1172/jci10934] [Citation(s) in RCA: 448] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Serine/threonine phosphorylation of IRS-1 might inhibit insulin signaling, but the relevant phosphorylation sites are difficult to identify in cultured cells and to validate in isolated tissues. Recently, we discovered that recombinant NH2-terminal Jun kinase phosphorylates IRS-1 at Ser307, which inhibits insulin-stimulated tyrosine phosphorylation of IRS-1. To monitor phosphorylation of Ser307 in various cell and tissue backgrounds, we prepared a phosphospecific polyclonal antibody designated alphapSer307. This antibody revealed that TNF-alpha, IGF-1, or insulin stimulated phosphorylation of IRS-1 at Ser307 in 3T3-L1 preadipocytes and adipocytes. Insulin injected into mice or rats also stimulated phosphorylation of Ser307 on IRS-1 immunoprecipitated from muscle; moreover, Ser307 was phosphorylated in human muscle during the hyperinsulinemic euglycemic clamp. Experiments in 3T3-L1 preadipocytes and adipocytes revealed that insulin-stimulated phosphorylation of Ser307 was inhibited by LY294002 or wortmannin, whereas TNF-alpha-stimulated phosphorylation was inhibited by PD98059. Thus, distinct kinase pathways might converge at Ser307 to mediate feedback or heterologous inhibition of IRS-1 signaling to counterregulate the insulin response.
Collapse
Affiliation(s)
- L Rui
- Harvard Medical School, Joslin Diabetes Center, 1 Joslin Place, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|