1
|
Nan W, Yin J, Hao W, Meng H, Wu J, Yin X, Wu H. Cardamonin protects against diabetic cardiomyopathy by activating macrophage NRF2 signaling through molecular interaction with KEAP1. Food Funct 2024. [PMID: 39431579 DOI: 10.1039/d4fo03543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Diabetic cardiomyopathy (DCM) contributes to a large proportion of heart failure incidents in the diabetic population, but effective therapeutic approaches are rare. Cardamonin (CAD), a flavonoid found in Alpinia, possesses anti-inflammatory and anti-oxidative activities. Here we report a profound protective effect of CAD on DCM in a mouse model of type 2 diabetes induced by streptozotocin and a high-fat diet, in which gavage with CAD improved hyperglycemia and glucose intolerance and mitigated diabetic cardiac injuries including cardiac dysfunction, hypertrophy, apoptotic cell death and infiltration of inflammatory cells, especially M1 polarized macrophages. To verify whether CAD could protect against cardiomyocyte injury through inhibiting macrophage M1 polarization, M1 polarized macrophages were treated with CAD, followed by washing out and co-culturing with cardiomyocytes, showing that CAD remarkably inhibited macrophage M1 polarization and the following cardiomyocyte injury, along with activation of the nuclear factor erythroid 2-related factor 2 (NRF2) antioxidant signaling pathway. Molecular docking and surface plasmon resonance assays found Kelch-like ECH-associated protein 1 (KEAP1) as the molecular target of CAD. Both CAD and the Kelch domain inhibitor Ki696 promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2). This work may provide CAD as a novel NRF2 activator in future interventions for DCM.
Collapse
Affiliation(s)
- Wenshan Nan
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Jialin Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Wenhao Hao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Huali Meng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang St., Changchun, Jilin 130041, China
| | - Xiao Yin
- Department of Endocrinology and Metabolic Diseases, Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
| | - Hao Wu
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
- Shandong Provincial Engineering and Technology Research Center for Food Safety Monitoring and Evaluation, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| |
Collapse
|
2
|
Nath A, Ghosh S, Bandyopadhyay D. Role of melatonin in mitigation of insulin resistance and ensuing diabetic cardiomyopathy. Life Sci 2024; 355:122993. [PMID: 39154810 DOI: 10.1016/j.lfs.2024.122993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Addressing insulin resistance or hyperinsulinemia might offer a viable treatment approach to stop the onset of diabetic cardiomyopathy, as these conditions independently predispose to the development of the disease, which is initially characterized by diastolic abnormalities. The development of diabetic cardiomyopathy appears to be driven mainly by insulin resistance or impaired insulin signalling and/or hyperinsulinemia. Oxidative stress, hypertrophy, fibrosis, cardiac diastolic dysfunction, and, ultimately, systolic heart failure are the outcomes of these pathophysiological alterations. Melatonin is a ubiquitous indoleamine, a widely distributed compound secreted mainly by the pineal gland, and serves a variety of purposes in almost every living creature. Melatonin is found to play a leading role by improving myocardial cell metabolism, decreasing vascular endothelial cell death, reversing micro-circulation disorders, reducing myocardial fibrosis, decreasing oxidative and endoplasmic reticulum stress, regulating cell autophagy and apoptosis, and enhancing mitochondrial function. This review highlights a relationship between insulin resistance and associated cardiomyopathy. It explores the potential therapeutic strategies offered by the neurohormone melatonin, an important antioxidant that plays a leading role in maintaining glucose homeostasis by influencing the glucose transporters independently and through its receptors. The vast distribution of melatonin receptors in the body, including beta cells of pancreatic islets, asserts the role of this indole molecule in maintaining glucose homeostasis. Melatonin controls the production of GLUT4 and/or the phosphorylation process of the receptor for insulin and its intracellular substrates, activating the insulin-signalling pathway through its G-protein-coupled membrane receptors.
Collapse
Affiliation(s)
- Anupama Nath
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Songita Ghosh
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, University College of Science, Technology and Agriculture, 92 APC Road, Kolkata 700 009, India.
| |
Collapse
|
3
|
Caturano A, Galiero R, Vetrano E, Sardu C, Rinaldi L, Russo V, Monda M, Marfella R, Sasso FC. Insulin-Heart Axis: Bridging Physiology to Insulin Resistance. Int J Mol Sci 2024; 25:8369. [PMID: 39125938 PMCID: PMC11313400 DOI: 10.3390/ijms25158369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy;
| | - Vincenzo Russo
- Department of Biology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (E.V.); (C.S.); (R.M.)
| |
Collapse
|
4
|
Fang T, Wang J, Sun S, Deng X, Xue M, Han F, Sun B, Chen L. JinLiDa granules alleviates cardiac hypertrophy and inflammation in diabetic cardiomyopathy by regulating TP53. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155659. [PMID: 38759318 DOI: 10.1016/j.phymed.2024.155659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/14/2024] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND JinLiDa granules (JLD) is a traditional Chinese medicine (TCM) used to treat type 2 diabetes mellitus with Qi and Yin deficiency. Clinical evidence has shown that JLD can alleviate diabetic cardiomyopathy, but the exact mechanism is not yet clear. PURPOSE The purpose of this study was to examine the potential role and mechanism of JLD in the treatment of diabetic cardiomyopathy through network pharmacological analysis and basic experiments. METHODS The targets of JLD associated with diabetic cardiomyopathy were examined by network pharmacology. Protein interaction analysis was performed on the targets, and the associated pathways were searched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Diabetic mice were treated with low or high doses of JLD by gavage, and AC16 and H9C2 cardiomyocytes exposed to high-glucose conditions were treated with JLD. The analysis results were verified by various experimental techniques to examine molecular mechanisms. RESULTS Network pharmacological analysis revealed that JLD acted on the tumor suppressor p53 (TP53) during inflammation and fibrosis associated with diabetic cardiomyopathy. The results of basic experiments showed that after JLD treatment, ventricular wall thickening in diabetic mouse hearts was attenuated, cardiac hypertrophy and myocardial inflammation were alleviated, and the expression of cardiac hypertrophy- and inflammation-related factors in cardiomyocytes exposed to a high-glucose environment was decreased. Cardiomyocyte morphology also improved after JLD treatment. TP53 expression and the tumor necrosis factor (TNF) and transforming growth factor beta-1 (TGFβ1) signaling pathways were significantly altered, and inhibiting TP53 expression effectively alleviated the activation of the TNF and TGFβ1 signaling pathways under high glucose conditions. Overexpression of TP53 activated these signaling pathways. CONCLUSIONS JLD acted on TP53 to regulate the TNF and TGFβ1 signaling pathways, effectively alleviating cardiomyocyte hypertrophy and inflammation in high glucose and diabetic conditions. Our study provides a solid foundation for the future treatment of diabetic cardiomyopathy with JLD.
Collapse
Affiliation(s)
- Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Jingyi Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Shengnan Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaoqing Deng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Mei Xue
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, China
| | - Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
5
|
Yu PL, Yu Y, Li S, Mu BC, Nan MH, Pang M. Dapagliflozin in heart failure and type 2 diabetes: Efficacy, cardiac and renal effects, safety. World J Diabetes 2024; 15:1518-1530. [PMID: 39099807 PMCID: PMC11292345 DOI: 10.4239/wjd.v15.i7.1518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Heart failure (HF), especially HF with reduced ejection fraction (HFrEF), presents complex challenges, particularly in the aging population where it often coexists with type 2 diabetes mellitus (T2DM). AIM To analyze the effect of dapagliflozin treatment on cardiac, renal function, and safety in patients with HFrEF combined with T2DM. METHODS Patients with T2DM complicated with HFrEF who underwent treatment in our hospital from February 2018 to March 2023 were retrospectively analyzed as the subjects of this study. The propensity score matching method was used, and a total of 102 eligible samples were scaled. The clinical efficacy of the two groups was evaluated at the end of the treatment, comparing the results of blood glucose, insulin, cardiac function, markers of myocardial injury, renal function indexes, and 6-min walk test (6MWT) before and after the treatment. We compared the occurrence of adverse effects on the treatment process of the two groups of patients. The incidence of adverse outcomes in patients within six months of treatment was counted. RESULTS The overall clinical efficacy rate of patients in the study group was significantly higher than that of patients in the control group (P = 0.013). After treatment, the pancreatic beta-cell function index, left ventricular ejection fraction, and glomerular filtration rate of patients in the study group were significantly higher than control group (P < 0.001), while their fasting plasma glucose, 2-h postprandial glucose, glycosylated hemoglobin, insulin resistance index, left ventricular end-systolic diameter, left ventricular end-diastolic diameter, cardiac troponin I, creatine kinase-MB, N-terminal pro b-type natriuretic peptide, serum creatinine, and blood urea nitrogen were significantly lower than those of the control group. After treatment, patients in the study group had a significantly higher 6MWT than those in the control group (P < 0.001). Hypoglycemic reaction (P = 0.647), urinary tract infection (P = 0.558), gastrointestinal adverse effect (P = 0.307), respiratory disturbance (P = 0.558), and angioedema (P = 0.647) were not statistically different. There was no significant difference between the incidence of adverse outcomes between the two groups (P = 0.250). CONCLUSION Dapagliflozin significantly enhances clinical efficacy, cardiac and renal function, and ambulatory capacity in patients with HFrEF and T2DM without an increased risk of adverse effects or outcomes.
Collapse
Affiliation(s)
- Pei-Ling Yu
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - You Yu
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - Shuang Li
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - Bai-Chen Mu
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - Ming-Hua Nan
- The Second Department of Cardiology, The Second Affiliated Hospital of Liaoning Hospital of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| | - Min Pang
- Department of Outpatient, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110034, Liaoning Province, China
| |
Collapse
|
6
|
Fuentevilla-Alvarez G, Soto ME, Robles-Herrera GJ, Vargas-Alarcón G, Sámano R, Meza-Toledo SE, Huesca-Gómez C, Gamboa R. Analysis of Circulating miRNA Expression Profiles in Type 2 Diabetes Patients with Diabetic Foot Complications. Int J Mol Sci 2024; 25:7078. [PMID: 39000190 PMCID: PMC11241130 DOI: 10.3390/ijms25137078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with various complications, including diabetic foot, which can lead to significant morbidity and mortality. Non-healing foot ulcers in diabetic patients are a major risk factor for infections and amputations. Despite conventional treatments, which have limited efficacy, there is a need for more effective therapies. MicroRNAs (miRs) are small non-coding RNAs that play a role in gene expression and have been implicated in diabetic wound healing. miR expression was analyzed through RT-qPCR in 41 diabetic foot Mexican patients and 50 controls. Diabetic foot patients showed significant increases in plasma levels of miR-17-5p (p = 0.001), miR-191-5p (p = 0.001), let-7e-5p (p = 0.001), and miR-33a-5p (p = 0.005) when compared to controls. Elevated levels of miR-17, miR-191, and miR-121 correlated with higher glucose levels in patients with diabetic foot ulcers (r = 0.30, p = 0.004; r = 0.25, p = 0.01; and r = 0.21, p = 0.05, respectively). Levels of miR-17 showed the highest diagnostic potential (AUC 0.903, p = 0.0001). These findings underscore the possible role of these miRs in developing diabetes complications. Our study suggests that high miR-17, miR-191, and miR-121 expression is strongly associated with higher glucose levels and the development of diabetic foot ulcers.
Collapse
Affiliation(s)
- Giovanny Fuentevilla-Alvarez
- Endocrinology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico;
| | - María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (M.E.S.); (G.V.-A.)
- Cardiovascular Line in American British Cowdary (ABC) Medical Center, Sur 136 No. 116 Col. Las Américas, Mexico City 01120, Mexico
| | - Gustavo Jaziel Robles-Herrera
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (G.J.R.-H.); (C.H.-G.)
| | - Gilberto Vargas-Alarcón
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (M.E.S.); (G.V.-A.)
| | - Reyna Sámano
- Coordinación de Nutrición y Bioprogramación, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | - Sergio Enrique Meza-Toledo
- Biochemistry Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| | - Claudia Huesca-Gómez
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (G.J.R.-H.); (C.H.-G.)
| | - Ricardo Gamboa
- Phisiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Col. Sección XVI, Mexico City 14080, Mexico; (G.J.R.-H.); (C.H.-G.)
| |
Collapse
|
7
|
Shen MT, Yang ZG, Guo YK, Shi K, Jiang L, Wang J, Yan WF, Qian WL, Shen LT, Li Y. Impact of Functional Mitral Regurgitation on Left Ventricular Strain in Nonischemic Dilated Cardiomyopathy Patients with Type 2 Mellitus Diabetes: A Magnetic Resonance Feature Tracking Study. J Magn Reson Imaging 2024. [PMID: 38855837 DOI: 10.1002/jmri.29469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The impact of functional mitral regurgitation and type 2 mellitus diabetes (T2DM) on left ventricular (LV) strain in nonischemic dilated cardiomyopathy (NIDCM) patients remains unclear. PURPOSE To evaluate the impact of mitral regurgitation severity on LV strain, and explore additive effect of T2DM on LV function across varying mitral regurgitation severity levels in NIDCM patients. STUDY TYPE Retrospective. POPULATION 352 NIDCM (T2DM-) patients (49.1 ± 14.6 years, 67% male) (207, 85, and 60 no/mild, moderate, and severe mitral regurgitation) and 96 NIDCM (T2DM+) patients (55.2 ± 12.4 years, 77% male) (47, 30, and 19 no/mild, moderate, and severe mitral regurgitation). FIELD STRENGTH/SEQUENCE 3.0 T/balanced steady-state free precession sequence. ASSESSMENT LV geometric parameters and strain were measured and compared among groups. Determinants of LV strain were investigated. STATISTICAL TEST Student's t-test, Mann-Whitney U test, one-way ANOVA, Kruskal-Wallis test, univariable and multivariable linear regression. P < 0.05 was considered statistically significant. RESULTS LV GLPS and longitudinal PDSR decreased gradually with increasing mitral regurgitation severity in NIDCM patients with T2DM(GLPS: -5.7% ± 2.1% vs. -4.3% ± 1.6% vs. -2.6% ± 1.3%; longitudinal PDSR:0.5 ± 0.2 sec-1 vs. 0.4 ± 0.2 sec-1 vs. 0.3 ± 0.1 sec-1). NIDCM (T2DM+) demonstrated decreased GCPS and GLPS in the no/mild subgroup, reduced LV GCPS, GLPS, and longitudinal PDSR in the moderate subgroup, and reduced GRPS, GCPS, GLPS, and longitudinal PDSR in the severe subgroup compared with NIDCM (T2DM-) patients. Multivariable regression analysis identified that mitral regurgitation severity (β = -0.13, 0.15, and 0.25 for GRPS, GCPS, and GLPS) and the presence of T2DM (β = 0.14 and 0.13 for GCPS and GLPS) were independent determinants of LV strains in NIDCM patients. DATA CONCLUSION Increased mitral regurgitation severity is associated with reduced LV strains in NIDCM patients with T2DM. The presence of T2DM exacerbated the decline of LV function across various mitral regurgitation levels in NIDCM patients, resulting in reduced LV strains. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- Meng-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen-Lei Qian
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zygmunciak P, Stróżna K, Błażowska O, Mrozikiewicz-Rakowska B. Extracellular Vesicles in Diabetic Cardiomyopathy-State of the Art and Future Perspectives. Int J Mol Sci 2024; 25:6117. [PMID: 38892303 PMCID: PMC11172920 DOI: 10.3390/ijms25116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular complications are the most deadly and cost-driving effects of diabetes mellitus (DM). One of them, which is steadily attracting attention among scientists, is diabetes-induced heart failure, also known as diabetic cardiomyopathy (DCM). Despite significant progress in the research concerning the disease, a universally accepted definition is still lacking. The pathophysiology of the processes accelerating heart insufficiency in diabetic patients on molecular and cellular levels also remains elusive. However, the recent interest concerning extracellular vesicles (EVs) has brought promise to further clarifying the pathological events that lead to DCM. In this review, we sum up recent investigations on the involvement of EVs in DCM and show their therapeutic and indicatory potential.
Collapse
Affiliation(s)
| | - Katarzyna Stróżna
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Olga Błażowska
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.)
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Marymoncka St. 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
9
|
Yang T, Qi F, Guo F, Shao M, Song Y, Ren G, Linlin Z, Qin G, Zhao Y. An update on chronic complications of diabetes mellitus: from molecular mechanisms to therapeutic strategies with a focus on metabolic memory. Mol Med 2024; 30:71. [PMID: 38797859 PMCID: PMC11128119 DOI: 10.1186/s10020-024-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disease, often leads to numerous chronic complications, significantly contributing to global morbidity and mortality rates. High glucose levels trigger epigenetic modifications linked to pathophysiological processes like inflammation, immunity, oxidative stress, mitochondrial dysfunction, senescence and various kinds of cell death. Despite glycemic control, transient hyperglycemia can persistently harm organs, tissues, and cells, a latent effect termed "metabolic memory" that contributes to chronic diabetic complications. Understanding metabolic memory's mechanisms could offer a new approach to mitigating these complications. However, key molecules and networks underlying metabolic memory remain incompletely understood. This review traces the history of metabolic memory research, highlights its key features, discusses recent molecules involved in its mechanisms, and summarizes confirmed and potential therapeutic compounds. Additionally, we outline in vitro and in vivo models of metabolic memory. We hope this work will inform future research on metabolic memory's regulatory mechanisms and facilitate the development of effective therapeutic compounds to prevent diabetic complications.
Collapse
Affiliation(s)
- Tongyue Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Qi
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Gaofei Ren
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhao Linlin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Wang W, Wang Z, Meng Z, Jiang S, Liu Z, Zhu HY, Li XD, Zhang JT, Li W. Platycodin D Ameliorates Type 2 Diabetes-Induced Myocardial Injury by Activating the AMPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10339-10354. [PMID: 38682702 DOI: 10.1021/acs.jafc.3c07311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The current study aimed to assess the effectiveness of pharmacological intervention with Platycodin D (PD), a critically active compound isolated from the roots of Platycodon grandiflorum, in mitigating cardiotoxicity in a murine model of type 2 diabetes-induced cardiac injury and in H9c2 cells in vitro. Following oral administration for 4 weeks, PD (2.5 mg/kg) significantly suppressed the elevation of fasting blood glucose (FBG) levels, improved dyslipidemia, and effectively inhibited the rise of the cardiac injury markers creatine kinase isoenzyme MB (CK-MB) and cardiac troponin T (cTnT). PD treatment could ameliorate energy metabolism disorders induced by impaired glucose uptake by activating AMPK protein expression in the DCM mouse model, thereby promoting the GLUT4 transporter and further activating autophagy-related proteins. Furthermore, in vitro experiments demonstrated that PD exerted a concentration-dependent increase in cell viability while also inhibiting palmitic acid and glucose (HG-PA)-stimulated H9c2 cytotoxicity and activating AMPK protein expression. Notably, the AMPK activator AICAR (1 mM) was observed to upregulate the expression of AMPK in H9c2 cells after high-glucose and -fat exposure. Meanwhile, we used AMPK inhibitor Compound C (20 μM) to investigate the effect of PD activation of AMPK on cells. In addition, the molecular docking approach was employed to dock PD with AMPK, revealing a binding energy of -8.2 kcal/mol and indicating a tight interaction between the components and the target. PD could reduce the expression of autophagy-related protein p62, reduce the accumulation of autophagy products, promote the flow of autophagy, and improve myocardial cell injury. In conclusion, it has been demonstrated that PD effectively inhibits cardiac injury-induced type 2 diabetes in mice and enhances energy metabolism in HG-PA-stimulated H9c2 cells by activating the AMPK signaling pathway. These findings collectively unveil the potential cardioprotective effects of PD via modulation of the AMPK signaling pathway.
Collapse
Affiliation(s)
- Wenting Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhaojie Meng
- Guangzhou Medical University, Guangzhou 130021, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hong-Yan Zhu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Tian Zhang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
12
|
Lin J, Liu S, Liu T, Chuang S, Huang C, Chen Y, Lee C, Chien M, Hou CJ, Yeh H, Chiang C, Hung C. ELUCIDATE Trial: A Single-Center Randomized Controlled Study. J Am Heart Assoc 2024; 13:e033832. [PMID: 38639353 PMCID: PMC11179944 DOI: 10.1161/jaha.123.033832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, is an epochal oral antidiabetic drug that improves cardiorenal outcomes. However, the effect of early dapagliflozin intervention on left ventricular (LV) remodeling in patients with type 2 diabetes free from cardiovascular disease remains unclear. METHODS AND RESULTS The ELUCIDATE trial was a prospective, open-label, randomized, active-controlled study that enrolled 76 patients with asymptomatic type 2 diabetes with LV ejection fraction ≥50%, randomized to the dapagliflozin 10 mg/day add-on or standard-of-care group. Speckle-tracking echocardiography-based measurements of the cardiac global longitudinal strain were performed at baseline and 24 weeks after treatment initiation. Patients who received dapagliflozin had a greater reduction in LV dimension (1.68 mm [95% CI, 0.53-2.84]; P=0.005), LV end-systolic volume (5.51 mL [95% CI, 0.86-10.17]; P=0.021), and LV mass index (4.25 g/m2.7 [95% CI, 2.42-6.09]; P<0.0001) compared with standard of care in absolute mean differences. Dapagliflozin add-on therapy led to a significant LV global longitudinal strain increment (0.74% [95% CI, 1.00-0.49]; P<0.0001) and improved LV systolic and early diastolic strain rates (0.27/s [95% CI, 0.17-0.60]; and 0.11/s [95% CI, 0.06-0.16], respectively; both P<0.0001) but not in global circumferential strain. No significant changes were found in insulin resistance, NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, or other biomarkers at 6 months after the dapagliflozin administration. CONCLUSIONS Dapagliflozin add-on therapy could lead to more favorable cardiac remodeling accompanied by enhanced cardiac mechanical function among patients with asymptomatic type 2 diabetes. Our findings provide evidence of the efficacy of dapagliflozin use for the primary prevention of diabetic cardiomyopathy. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871621.
Collapse
Affiliation(s)
- Jiun‐Lu Lin
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Sung‐Chen Liu
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Tze‐Fan Liu
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Shih‐Ming Chuang
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Chun‐Ta Huang
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Ying‐Ju Chen
- Department of TelehealthMacKay Memorial HospitalTaipeiTaiwan
| | - Chun‐Chuan Lee
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Ming‐Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Charles Jia‐Yin Hou
- Division of Cardiology, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
| | - Hung‐I. Yeh
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
- Division of Cardiology, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
| | - Chern‐En Chiang
- Division of Cardiology, General Clinical Research CenterTaipei Veterans General Hospital, National Yang‐Ming UniversityTaipeiTaiwan
| | - Chung‐Lieh Hung
- Department of TelehealthMacKay Memorial HospitalTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Institute of Biomedical Science, MacKay Medical CollegeNew Taipei CityTaiwan
| |
Collapse
|
13
|
Liang D, Shi G, Xu M, Yin J, Liu Y, Yang J, Xu L. The correlation between serum asprosin and left ventricular diastolic dysfunction in elderly patients with type 2 diabetes mellitus in the community. J Diabetes Investig 2024; 15:608-613. [PMID: 38363189 PMCID: PMC11060158 DOI: 10.1111/jdi.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
AIMS/INTRODUCTION Serum asprosin is expected to become a screening indicator in early-stage diabetic heart disease. The relationship between serum asprosin and left ventricular diastolic dysfunction (LVDD) was studied in elderly patients with type 2 diabetes mellitus in the community. MATERIALS AND METHODS A total of 252 elderly patients with type 2 diabetes mellitus were recruited from Zhuoma Community Care Station and Chengbei West Street Community Care Service Center in Changzhi City of Shanxi Province from November 2019 to July 2021. Patients were divided into the LVDD group (n = 195) and the non-LVDD group (n = 57). The t-test, Mann-Whitney U test, and χ2 test were used to compare indicators between the LVDD group and the non-LVDD group. Pearson or Spearman correlation analysis was adopted to evaluate the correlation between serum asprosin and other clinical data. Multivariate logistic regression analysis was applied to analyze the influencing factors on LVDD. RESULTS Compared with patients without LVDD, patients with LVDD had a higher level of low-density lipoprotein cholesterol (LDL-C), fasting blood glucose (FPG), and asprosin, but a lower level of early diastolic movement speed (A) to diastolic movement velocity (E) (E/A). Asprosin was positively associated with waist circumference (WC), body mass index (BMI), creatinine, triglycerides (P < 0.05), and negatively associated with E/A and high density lipoprotein cholesterol HDL-C (P < 0.05). The risk of LVDD increased with elevated asprosin levels after adjustment for age, systolic blood pressure (SBP), BMI, FPG, and LDL-C. Compared with patients in the lowest tertile of serum asprosin (<275.25 pg/mL), a serum level of asprosin between 275.25-355.08 pg/mL [OR (95% CI) is 2.368 (1.169-4.796), P < 0.05] and asprosin >355.08 pg/mL [OR (95% CI) is 2.549 (1.275-5.095), P < 0.05] patients have a higher risk of left ventricular diastolic dysfunction. CONCLUSIONS Serum asprosin was positively associated with left ventricular diastolic dysfunction, and the risk of LVDD increased significantly with increased serum levels of asprosin.
Collapse
Affiliation(s)
- Dong Liang
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Guoliang Shi
- Department of EndocrinologyChangzhi Second People's HospitalChangzhiChina
| | - Mingang Xu
- Department of EndocrinologyChangzhi Second People's HospitalChangzhiChina
| | - Jianhong Yin
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Yunfeng Liu
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Jing Yang
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| | - Linxin Xu
- First Clinical Medical CollegeShanxi Medical UniversityTaiyuanChina
- Department of EndocrinologyFirst Hospital of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
14
|
Radzioch E, Dąbek B, Balcerczyk-Lis M, Frąk W, Fularski P, Młynarska E, Rysz J, Franczyk B. Diabetic Cardiomyopathy-From Basics through Diagnosis to Treatment. Biomedicines 2024; 12:765. [PMID: 38672121 PMCID: PMC11048005 DOI: 10.3390/biomedicines12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is the development of myocardial dysfunction in patients with diabetes despite the absence of comorbidities such as hypertension, atherosclerosis or valvular defect. The cardiovascular complications of poorly controlled diabetes are very well illustrated by the U.K. Prospective Diabetes Study (UKPDS), which showed a clear association between increasing levels of glycated hemoglobin and the development of heart failure (HF). The incidence of HF in patients with diabetes is projected to increase significantly, which is why its proper diagnosis and treatment is so important. Providing appropriate therapy focusing on antidiabetic and hypolipemic treatment with the consideration of pharmacotherapy for heart failure reduces the risk of CMD and reduces the incidence of cardiovascular complications. Health-promoting changes made by patients such as a low-carbohydrate diet, regular exercise and weight reduction also appear to be important in achieving appropriate outcomes. New hope for the development of therapies for DCM is offered by novel methods using stem cells and miRNA, which, however, require more thorough research to confirm their efficacy.
Collapse
Affiliation(s)
- Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
15
|
Lassen MCH, Biering-Sørensen T, Jørgensen PG, Bahrami HSZ, Andersen HU, Rossing P, Jensen MT. Ratio of transmitral early filling velocity to diastolic strain rate and prognosis in type-1 diabetes. Int J Cardiol 2024; 397:131653. [PMID: 38101702 DOI: 10.1016/j.ijcard.2023.131653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Impaired diastolic function is a hallmark of diabetic cardiomyopathy and a common feature in type 1 diabetes mellitus (T1DM). The ratio of transmitral early filling velocity to early diastolic strain rate (E/e'sr) has in recent studies proved to have strong prognostic value. This study aimed to investigate the prognostic value of E/e'sr compared to E/e' in T1DM without known heart disease. METHODS In this prospective cohort of T1DM patients, echocardiography was performed including two-dimensional speckle tracking. Follow-up was performed using nationwide registries. Outcomes were all-cause mortality and major cardiovascular events (MACE). RESULTS In total 1079 patients (age: 49.6 ± 14.5 years, 52.5% male, duration of diabetes 25.8 ± 14.6 years) were included in the study. During follow-up (median 6.3 years, IQR:5.7-6.9) 13.2% experienced MACE and 5.8% died. Following multivariable adjustment, both E/e'sr and E/e' was significantly associated with both MACE (E/e'sr: HR 1.16 CI95%:[1.05-1.29], p = 0.005, per 10 cm increase) vs. (E/e': HR 1.09 CI95%:[1.03-1.15], p = 0.001, per 1 unit increase) and all-cause mortality (E/e'sr: HR 1.20 [1.03-1.40], p = 0.016) vs. (E/e': HR: 1.11 [1.02-1.20], p = 0.016). Sex modified the association between E/e'sr and MACE (p for interaction = 0.008) such that E/e'sr after multivariable adjustment only remained significantly associated with MACE in females (HR: 1.41 [1.19-1.67], p < 0.001) but not in males (HR: 1.06 [0.93-1.20], p = 0.42). In females, E/e'sr provided incremental information beyond the Steno T1 Risk Engine (Harrell's C-statistic: 0.78 (0.72-0.83) vs. 0.81 (0.75-0.86), p = 0.007). CONCLUSION In patients with T1DM, both E/e'sr and E/e' provides independent prognostic information regarding prognosis. E/e'sr seems to have stronger prognostic value in females with T1DM.
Collapse
Affiliation(s)
- Mats Christian Højbjerg Lassen
- Department of Cardiology, Herlev & Gentofte Hospital, University of Copenhagen, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark.
| | - Tor Biering-Sørensen
- Department of Cardiology, Herlev & Gentofte Hospital, University of Copenhagen, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 København, Denmark; Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark
| | - Peter Godsk Jørgensen
- Department of Cardiology, Herlev & Gentofte Hospital, University of Copenhagen, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark
| | - Hashmat S Z Bahrami
- Department of Cardiology, Amager & Hvidovre Hospital, University of Copenhagen, Kettegård Allé 30, 2650 Hvidovre, Denmark
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Magnus T Jensen
- Steno Diabetes Center Copenhagen, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Januzzi JL, Del Prato S, Rosenstock J, Butler J, Ezekowitz J, Ibrahim NE, Lam CSP, Marwick T, Wilson Tang WH, Liu Y, Mohebi R, Urbinati A, Zannad F, Perfetti R. Characterizing diabetic cardiomyopathy: baseline results from the ARISE-HF trial. Cardiovasc Diabetol 2024; 23:49. [PMID: 38302936 PMCID: PMC10835978 DOI: 10.1186/s12933-024-02135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DbCM) is a form of Stage B heart failure (HF) at high risk for progression to overt disease. Using baseline characteristics of study participants from the Aldose Reductase Inhibition for Stabilization of Exercise Capacity in Heart Failure (ARISE-HF) Trial we sought to characterize clinical characteristics of individuals with findings consistent with DbCM. METHODS Among study participants meeting inclusion criteria, clinical characteristics, laboratory testing, imaging, Kansas City Cardiomyopathy Questionnaire (KCCQ), Physical Activity Scale of the Elderly (PASE) and cardiopulmonary exercise testing (CPET) results were tabulated. Cluster phenogroups were identified. RESULTS Among 691 study participants (mean age 67.4 years; 50% were female), mean duration of type 2 diabetes mellitus (T2DM) was 14.5 years. The median (Q1, Q3) N-terminal pro-B type natriuretic peptide and high sensitivity cardiac troponin T were 71 (35, 135) ng/L and 9 [6, 12] ng/L. The most common echocardiographic abnormalities were reduced global longitudinal strain in 25.3% and impaired diastolic relaxation in 17.7%. Despite rather well-preserved KCCQ scores the average PASE score was markedly impaired at 155 accompanied by an average maximal oxygen consumption of 15.7 mL/Kg/minute on CPET. In K-means clustering, 4 phenogroups were identified including a higher-risk group with more advanced age, greater elevation of cardiac biomarkers, and more prevalent evidence for diastolic dysfunction and left ventricular hypertrophy. CONCLUSIONS Baseline data from the ARISE-HF Trial provide clinical characterization of individuals with T2DM and features of stage B HF, and may help clarify the diagnosis of DbCM. TRIAL REGISTRATION ARISE-HF, NCT04083339.
Collapse
Affiliation(s)
- James L Januzzi
- Heart Failure Trials, Baim Institute for Clinical Research, Boston, MA, USA.
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA.
| | - Stefano Del Prato
- Interdisciplinary Research Center 'Health Science', Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Julio Rosenstock
- Velocity Clinical Research at Medical City and University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, , Dallas, TX, USA
- University of Mississippi, Jackson, MS, USA
| | - Justin Ezekowitz
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Nasrien E Ibrahim
- Cardiology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolyn S P Lam
- National Heart Centre Singapore and Duke-National University of Singapore, Singapore, Singapore
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Menzies Institute for Medical Research, Hobart, Australia
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuxi Liu
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA
| | - Reza Mohebi
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 02114, Boston, MA, USA
| | | | - Faiez Zannad
- Université de Lorraine, CIC Inserm and CHRU Nancy, Lorraine, France
| | | |
Collapse
|
17
|
Suryavanshi SV, Kulkarni YA. Abrogation of cardiomyopathy in diabetic rats by escin - possible role of NF-κβ and MCP-1. Arch Physiol Biochem 2024; 130:49-55. [PMID: 34383591 DOI: 10.1080/13813455.2021.1963782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Diabetic cardiomyopathy is one of the most common complications of diabetes. Escin may significantly inhibit myocardial damage through its NF-κβ inhibitory, antidiabetic, neuroprotective, and potent anti-inflammatory activity. Hence, the study was carried out to evaluate the effect of escin in diabetic cardiomyopathy. METHODS Diabetes induction was done in rats with streptozotocin. After six weeks of induction, diabetic animals were administered with escin (5, 10, and 20 mg/kg) for the next four weeks. RESULTS Escin prevented the progression of abnormalities in the biochemical, hemodynamic parameters and electrocardiogram. Escin also prevented the progression of abnormality in the oxidative stress parameters. The expression of NF-κβ and MCP-1 was significantly reduced with escin treatment. Furthermore, escin also prevented damage to myocardial cells and reduced collagen deposition in the cardiomyocytes. CONCLUSION Escin prevented the progression of cardiomyopathy in diabetic rats. Hence escin can be an alternative option for the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Sachin V Suryavanshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
18
|
Zulet P, Islas F, Ferrández-Escarabajal M, Bustos A, Cabeza B, Gil-Abizanda S, Vidal M, Martín-Lores I, Hernández-Mateo P, de Agustín JA, Olmos C. Diabetes mellitus is associated to high-risk late gadolinium enhancement and worse outcomes in patients with nonischemic dilated cardiomyopathy. Cardiovasc Diabetol 2024; 23:35. [PMID: 38245750 PMCID: PMC10800059 DOI: 10.1186/s12933-024-02127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with a worse prognosis in patients with heart failure. Our aim was to analyze the clinical and imaging features of patients with DM and their association with outcomes in comparison to nondiabetic patients in a cohort of patients with nonischemic dilated cardiomyopathy (DCM). METHODS This is a prospective cohort study of patients with DCM evaluated in a tertiary care center from 2018 to 2021. Transthoracic echocardiography and cardiac magnetic resonance findings were assessed. A high-risk late gadolinium enhancement (LGE) pattern was defined as epicardial, transmural, or septal plus free-wall. The primary outcome was a composite of heart failure hospitalizations and all-cause mortality. Multivariable analyses were performed to evaluate the impact of DM on outcomes. RESULTS We studied 192 patients, of which 51 (26.6%) had DM. The median left ventricular ejection fraction was 30%, and 106 (55.2%) had LGE. No significant differences were found in systolic function parameters between patients with and without DM. E/e values were higher (15 vs. 11.9, p = 0.025), and both LGE (68.6% vs. 50.4%; p = 0.025) and a high-risk LGE pattern (31.4% vs. 18.5%; p = 0.047) were more frequently found in patients with DM. The primary outcome occurred more frequently in diabetic patients (41.2% vs. 23.6%, p = 0.017). DM was an independent predictor of outcomes (OR 2.01; p = 0.049) and of LGE presence (OR 2.15; p = 0.048) in the multivariable analysis. Patients with both DM and LGE had the highest risk of events (HR 3.1; p = 0.003). CONCLUSION DM is related to a higher presence of LGE in DCM patients and is an independent predictor of outcomes. Patients with DM and LGE had a threefold risk of events. A multimodality imaging approach allows better risk stratification of these patients and may influence therapeutic options.
Collapse
Affiliation(s)
- Pablo Zulet
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - Fabián Islas
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - Marcos Ferrández-Escarabajal
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - Ana Bustos
- Servicio de Diagnóstico por la Imagen, Hospital Clínico San Carlos, Madrid, Spain
| | - Beatriz Cabeza
- Servicio de Diagnóstico por la Imagen, Hospital Clínico San Carlos, Madrid, Spain
| | - Sandra Gil-Abizanda
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - María Vidal
- Servicio de Diagnóstico por la Imagen, Hospital Clínico San Carlos, Madrid, Spain
| | - Irene Martín-Lores
- Servicio de Diagnóstico por la Imagen, Hospital Clínico San Carlos, Madrid, Spain
| | | | - J Alberto de Agustín
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - Carmen Olmos
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain.
- Universidad Europea de Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Bashir Z, Chen EW, Tori K, Ghosalkar D, Aurigemma GP, Dickey JB, Haines P. Insight into different phenotypic presentations of heart failure with preserved ejection fraction. Prog Cardiovasc Dis 2023; 79:80-88. [PMID: 37442358 DOI: 10.1016/j.pcad.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for half of all HF diagnoses, and its prevalence is increasing at an alarming rate. Lately, it has been recognized as a clinical syndrome due to diverse underlying etiology and pathophysiological mechanisms. The classic echocardiographic features of HFpEF have been well described as preserved ejection fraction (≥50%), left ventricular hypertrophy, and left atrial enlargement. However, echocardiography can play a key role in identifying the principal underlying mechanism responsible for HFpEF in the individual patient. The recognition of different phenotypic presentations of HFpEF (infiltrative, metabolic, genetic, and inflammatory) can assist the clinician in tailoring the appropriate management, and offer prognostic information. The goal of this review is to highlight several key phenotypes of HFpEF and illustrate the classic clinical scenario and echocardiographic features of each phenotype with real patient cases.
Collapse
Affiliation(s)
- Zubair Bashir
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Edward W Chen
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Dhairyasheel Ghosalkar
- Division of Cardiovascular Medicine, Department of Medicine, Stony Brook University Hospital, NY, USA
| | - Gerard P Aurigemma
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - John B Dickey
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Philip Haines
- Department of Cardiology, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
20
|
Pandey A, Khan MS, Patel KV, Bhatt DL, Verma S. Predicting and preventing heart failure in type 2 diabetes. Lancet Diabetes Endocrinol 2023:S2213-8587(23)00128-6. [PMID: 37385290 DOI: 10.1016/s2213-8587(23)00128-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 07/01/2023]
Abstract
The burden of heart failure among people with type 2 diabetes is increasing globally. People with comorbid type 2 diabetes and heart failure often have worse outcomes than those with only one of these conditions-eg, higher hospitalisation and mortality rates. Therefore, it is essential to implement optimal heart failure prevention strategies for people with type 2 diabetes. A detailed understanding of the pathophysiology underlying the occurrence of heart failure in type 2 diabetes can aid clinicians in identifying relevant risk factors and lead to early interventions that can help prevent heart failure. In this Review, we discuss the pathophysiology and risk factors of heart failure in type 2 diabetes. We also review the risk assessment tools for predicting heart failure incidence in people with type 2 diabetes as well as the data from clinical trials that have assessed the efficacy of lifestyle and pharmacological interventions. Finally, we discuss the potential challenges in implementing new management approaches and offer pragmatic recommendations to help overcome these challenges.
Collapse
Affiliation(s)
- Ambarish Pandey
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Kershaw V Patel
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai Health System, New York, NY, USA
| | - Subodh Verma
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Zhang X, Liu F, Li W, Zhang J, Zhang T, Yu X, Luo J, Zhao Q, Zhang J, Fang B, Yang Y, Li X. Metabolic Score for Insulin Resistance (METS-IR) Predicts Adverse Cardiovascular Events in Patients with Type 2 Diabetes and Ischemic Cardiomyopathy. Diabetes Metab Syndr Obes 2023; 16:1283-1295. [PMID: 37179787 PMCID: PMC10167964 DOI: 10.2147/dmso.s404878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/17/2023] [Indexed: 05/15/2023] Open
Abstract
Purpose This study aimed to evaluate the association between metabolic score for insulin resistance (METS-IR) and adverse cardiovascular events in patients with ischemic cardiomyopathy (ICM) and type 2 diabetes mellitus (T2DM). Methods METS-IR was calculated using the following formula: ln[(2 × fasting plasma glucose (mg/dL) + fasting triglyceride (mg/dL)] × body mass index (kg/m2)/(ln[high-density lipoprotein cholesterol (mg/dL)]). Major adverse cardiovascular events (MACEs) were defined as the composite outcome of nonfatal myocardial infarction, cardiac death, and rehospitalization for heart failure. Cox proportional hazards regression analysis was used to evaluate the association between METS-IR and adverse outcomes. The predictive value of METS-IR was evaluated by the area under the curve (AUC), continuous net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results The incidence of MACEs increased with METS-IR tertiles at a 3‑year follow‑up. Kaplan‒Meier curves showed a significant difference in event-free survival probability between METS-IR tertiles (P<0.05). Multivariate Cox hazard regression analysis adjusting for multiple confounding factors showed that when comparing the highest and lowest METS-IR tertiles, the hazard ratio was 1.886 (95% CI:1.613-2.204; P<0.001). Adding METS-IR to the established risk model had an incremental effect on the predicted value of MACEs (AUC=0.637, 95% CI:0.605-0.670, P<0.001; NRI=0.191, P<0.001; IDI=0.028, P<0.001). Conclusion METS-IR, a simple score of insulin resistance, predicts the occurrence of MACEs in patients with ICM and T2DM, independent of known cardiovascular risk factors. These results suggest that METS-IR may be a useful marker for risk stratification and prognosis in patients with ICM and T2DM.
Collapse
Affiliation(s)
- Xuehe Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Fen Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Wenling Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jixin Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Tong Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Xiaolin Yu
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| | - Junyi Luo
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Qian Zhao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Jinyu Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Binbin Fang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Yining Yang
- Department of Cardiology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, People’s Republic of China
| | - Xiaomei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People’s Republic of China
| |
Collapse
|
22
|
Liu Z. Cardiac Microvascular Dysfunction and Cardiomyopathy in Diabetes: Is Ferroptosis a Therapeutic Target? Diabetes 2023; 72:313-315. [PMID: 36806606 PMCID: PMC10090265 DOI: 10.2337/dbi22-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2023] [Indexed: 02/23/2023]
Affiliation(s)
- Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
23
|
Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice. Biomedicines 2023; 11:biomedicines11030662. [PMID: 36979641 PMCID: PMC10045486 DOI: 10.3390/biomedicines11030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Diabetic cardiomyopathy is characterized by abnormal myocardial structure or performance in the absence of coronary artery disease or significant valvular heart disease in patients with diabetes mellitus. The spectrum of diabetic cardiomyopathy ranges from subtle myocardial changes to myocardial fibrosis and diastolic function and finally to symptomatic heart failure. Except for sodium–glucose transport protein 2 inhibitors and possibly bariatric and metabolic surgery, there is currently no specific treatment for this distinct disease entity in patients with diabetes. The molecular mechanism of diabetic cardiomyopathy includes impaired nutrient-sensing signaling, dysregulated autophagy, impaired mitochondrial energetics, altered fuel utilization, oxidative stress and lipid peroxidation, advanced glycation end-products, inflammation, impaired calcium homeostasis, abnormal endothelial function and nitric oxide production, aberrant epidermal growth factor receptor signaling, the activation of the renin–angiotensin–aldosterone system and sympathetic hyperactivity, and extracellular matrix accumulation and fibrosis. Here, we summarize several important emerging treatments for diabetic cardiomyopathy targeting specific molecular mechanisms, with evidence from preclinical studies and clinical trials.
Collapse
|
24
|
Basile P, Guaricci AI, Piazzolla G, Volpe S, Vozza A, Benedetto M, Carella MC, Santoro D, Monitillo F, Baggiano A, Mushtaq S, Fusini L, Fazzari F, Forleo C, Ribecco N, Pontone G, Sabbà C, Ciccone MM. Improvement of Left Ventricular Global Longitudinal Strain after 6-Month Therapy with GLP-1RAs Semaglutide and Dulaglutide in Type 2 Diabetes Mellitus: A Pilot Study. J Clin Med 2023; 12:jcm12041586. [PMID: 36836121 PMCID: PMC9962489 DOI: 10.3390/jcm12041586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
(1) Background: Glucagone-Like Peptide-1 Receptor Agonists (GLP-1 RAs) (GLP-1 RAs) are incretine-based medications recommended in the treatment of type 2 Diabetes Mellitus (DM2) with atherosclerotic cardiovascular disease (ASCVD) or high or very high cardiovascular (CV) risk. However, knowledge of the direct mechanism of GLP-1 RAs on cardiac function is modest and not yet fully elucidated. Left ventricular (LV) Global Longitudinal Strain (GLS) with Speckle Tracking Echocardiography (STE) represents an innovative technique for the evaluation of myocardial contractility. (2) Methods: an observational, perspective, monocentric study was conducted in a cohort of 22 consecutive patients with DM2 and ASCVD or high/very high CV risk, enrolled between December 2019 and March 2020 and treated with GLP-1 RAs dulaglutide or semaglutide. The echocardiographic parameters of diastolic and systolic function were recorded at baseline and after six months of treatment. (3) Results: the mean age of the sample was 65 ± 10 years with a prevalence of the male sex (64%). A significant improvement in the LV GLS (mean difference: -1.4 ± 1.1%; p value < 0.001) was observed after six months of treatment with GLP-1 RAs dulaglutide or semaglutide. No relevant changes were seen in the other echocardiographic parameters. (4) Conclusions: six months of treatment with GLP-1 RAs dulaglutide or semaglutide leads to an improvement in the LV GLS in subjects with DM2 with and high/very high risk for ASCVD or with ASCVD. Further studies on larger populations and with a longer follow-up are warranted to confirm these preliminary results.
Collapse
Affiliation(s)
- Paolo Basile
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy
- Correspondence:
| | - Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Sara Volpe
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Alfredo Vozza
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Marina Benedetto
- Department of Economics and Finance, University of Bari—Aldo Moro, 70121 Bari, Italy
| | - Maria Cristina Carella
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy
| | - Daniela Santoro
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy
| | - Francesco Monitillo
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Fabio Fazzari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Cinzia Forleo
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy
| | - Nunziata Ribecco
- Department of Economics and Finance, University of Bari—Aldo Moro, 70121 Bari, Italy
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Marco Matteo Ciccone
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy
| |
Collapse
|
25
|
Role of Echocardiography in Diabetic Cardiomyopathy: From Mechanisms to Clinical Practice. J Cardiovasc Dev Dis 2023; 10:jcdd10020046. [PMID: 36826542 PMCID: PMC9959745 DOI: 10.3390/jcdd10020046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
It has been well established that diabetes mellitus (DM) is considered as a core risk factor for the development of cardiovascular diseases. However, what is less appreciated is the fact that DM may affect cardiac function irrespective of cardiac pathologies to which it contributes, such as coronary artery disease and hypertension. Although echocardiography provides accurate and reproducible diagnostic and prognostic data in patients with DM, its use in these patients is still underappreciated, resulting in progression of DM-related heart failure in many patients. Hence, in the present review, we aimed to discuss the role of echocardiography in the contemporary management of diabetic cardiomyopathy (DCM), as well as the role of emerging echocardiographic techniques, which may contribute to earlier diagnosis and more appropriate management of this complication of DM. In order to improve outcomes, focus must be placed on early diagnosis of this condition using a combination of echocardiography and emerging biomarkers, but perhaps the more important thing is to change perspective when it comes to the clinical importance of DCM.
Collapse
|
26
|
Seol J, Jung S, Koh H, Jung J, Kang Y. Echocardiographic Assessment of Patients with Glycogen Storage Disease in a Single Center. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2191. [PMID: 36767559 PMCID: PMC9916218 DOI: 10.3390/ijerph20032191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Glycogen storage disease (GSD) is a hereditary metabolic disorder caused by enzyme deficiency resulting in glycogen accumulation in the liver, muscle, heart, or kidney. GSD types II, III, IV, and IX are associated with cardiac involvement. However, cardiac manifestation in other GSD types is unclear. This study aimed to describe whether energy deprivation and the toxic effects of accumulated glycogen affect the heart of patients with GSD. We evaluated the left ventricle (LV) wall mass, LV systolic and diastolic function and myocardial strain with conventional echocardiography and two-dimensional speckle-tracking echocardiography (2D STE) in 62 patients with GSD type I, III, VI and IX who visited the Wonju Severance Hospital in 2021. Among the GSD patients, the echocardiographic parameters of 55 pediatrics were converted into z-scores and analyzed. Of the patients, 43 (62.3%), 7 (11.3%) and 12 (19.4%) patients were diagnosed with GSD type I, type III, and type IX, respectively. The median age was 9 years (range, 1-36 years), with 55 children under 18 years old and seven adults over 18 years. For the 55 pediatric patients, the echocardiographic parameters were converted into a z-score and analyzed. Multiple linear regression analysis showed that the BMI z-score (p = 0.022) and CK (p = 0.020) predicted increased LV mass z-score, regardless of GSD type. There was no difference in the diastolic and systolic functions according to myocardial thickness; however, 2D STE showed a negative correlation with the LV mass (r = -0.28, p = 0.041). Given that patients with GSD tend to be overweight, serial evaluation with echocardiography might be required for all types of GSD.
Collapse
Affiliation(s)
- Jaehee Seol
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Seyong Jung
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hong Koh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Severance Children’s Hospital, Severance Pediatric Liver Disease Research Group, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jowon Jung
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yunkoo Kang
- Department of Pediatrics, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
27
|
Cheng Y, Wang Y, Yin R, Xu Y, Zhang L, Zhang Y, Yang L, Zhao D. Central role of cardiac fibroblasts in myocardial fibrosis of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2023; 14:1162754. [PMID: 37065745 PMCID: PMC10102655 DOI: 10.3389/fendo.2023.1162754] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a main cardiovascular complication of diabetes, can eventually develop into heart failure and affect the prognosis of patients. Myocardial fibrosis is the main factor causing ventricular wall stiffness and heart failure in DCM. Early control of myocardial fibrosis in DCM is of great significance to prevent or postpone the progression of DCM to heart failure. A growing body of evidence suggests that cardiomyocytes, immunocytes, and endothelial cells involve fibrogenic actions, however, cardiac fibroblasts, the main participants in collagen production, are situated in the most central position in cardiac fibrosis. In this review, we systematically elaborate the source and physiological role of myocardial fibroblasts in the context of DCM, and we also discuss the potential action and mechanism of cardiac fibroblasts in promoting fibrosis, so as to provide guidance for formulating strategies for prevention and treatment of cardiac fibrosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
28
|
Shi W, Qin M, Wu S, Xu K, Zheng Q, Liu X. Value of estimated glucose disposal rate to detect prevalent left ventricular hypertrophy: implications from a general population. Postgrad Med 2023; 135:58-66. [PMID: 36174224 DOI: 10.1080/00325481.2022.2131153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Insulin resistance plays a pivotal role in developing left ventricular hypertrophy (LVH). Researchers have identified the estimated glucose disposal rate (eGDR) as a simple and cost-effective surrogate of insulin resistance. Our work aims to investigate the association between eGDR and the prevalent LVH and explore the incremental value of eGDR to detect prevalent LVH. METHODS The present work enrolled 3839 subjects from a cross-sectional survey conducted between October 2019 to April 2020 in the rural areas of southeastern China. eGDR was calculated based on waist-to-hip circumference ratio, hypertension, and glycated hemoglobin. RESULTS The prevalence of LVH was 17.30%. After adjusting demographic, anthropometric, laboratory, and medical history co-variates, each standard deviation increase of eGDR decreased a 29.6% risk of prevalent LVH. When dividing eGDR into quartiles, the top quartile had a 38.4% risk compared to the bottom quartile. Moreover, smooth curve fitting revealed that the association between eGDR and prevalent LVH was linear in the whole range of eGDR. Additionally, subgroup analysis demonstrated that our main finding was robust to age, sex, BMI, hypertension, and diabetes subgroups. Finally, ROC analysis exhibited a significant improvement by adding eGDR into LVH risk factors (0.780 vs. 0.803, P < 0.001), and category-free net reclassification index (0.702, P < 0.001) and integrated discrimination index (0.027, P < 0.001) also confirmed the improvement from eGDR to detect prevalent LVH. CONCLUSION Our analysis revealed a linear, robust association between eGDR and prevalent LVH and demonstrated the incremental value of eGDR to optimize the detection of prevalent LVH.
Collapse
Affiliation(s)
- Wenrui Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qidong Zheng
- Department of Internal Medicine, Yuhuan Second People's Hospital, Yuhuan, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Wang E, Wang H, Chakrabarti S. Endothelial-to-mesenchymal transition: An underappreciated mediator of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1050540. [PMID: 36777351 PMCID: PMC9911675 DOI: 10.3389/fendo.2023.1050540] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Diabetes and its complications represent a great burden on the global healthcare system. Diabetic complications are fundamentally diseases of the vasculature, with endothelial cells being the centerpiece of early hyperglycemia-induced changes. Endothelial-to-mesenchymal transition is a tightly regulated process that results in endothelial cells losing endothelial characteristics and developing mesenchymal traits. Although endothelial-to-mesenchymal transition has been found to occur within most of the major complications of diabetes, it has not been a major focus of study or a common target in the treatment or prevention of diabetic complications. In this review we summarize the importance of endothelial-to-mesenchymal transition in each major diabetic complication, examine specific mechanisms at play, and highlight potential mechanisms to prevent endothelial-to-mesenchymal transition in each of the major chronic complications of diabetes.
Collapse
|
30
|
Paramasivam G, Rao IR, Samanth J, Nayak K, Nayak R, Martis SA, Jerome R, Nagaraju SP, Prabhu RA, Devasia T. A comparative analysis of conventional and speckle-tracking strain echocardiographic findings in diabetic and non-diabetic kidney disease patients with normal ejection fraction. Int J Cardiovasc Imaging 2023; 39:3-11. [PMID: 36598685 PMCID: PMC9813174 DOI: 10.1007/s10554-022-02687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/01/2022] [Indexed: 01/09/2023]
Abstract
This study aimed to compare the differences in echocardiographic and strain parameters in patients with diabetic kidney disease (DKD) and non-diabetic kidney disease (NDKD) in a cohort with pre-dialysis chronic kidney disease (CKD) and normal ejection fraction (EF). In this single-center prospective study, patients with CKD stages 3-5 and EF > 55% were included. We compared cardiac structure and function using conventional and speckle-tracking strain echocardiography among DKD and NDKD groups. Cardiovascular outcomes were assessed at the end of the study. Of the included 117 patients, 56 (47.9%) had DKD, and 61 (52.1%) had NDKD. Patients with DKD had higher ratios of early mitral inflow velocity and mitral annular early diastolic velocity (E/e') (11.9 ± 4.4 vs. 9.8 ± 3.5; p = 0.004), lower septal e' velocity (7.1 ± 2.5 vs. 8.2 ± 2.8; p = 0.031), lower lateral e' velocity (9.2 ± 2.9 vs. 10.4 ± 3.8; p = 0.045) and longer deceleration times (209.2 ± 41.5 vs. 189.1 ± 48.0; p = 0.017), compared to those with NDKD. Left ventricular mass index (LVMI), global longitudinal strain (GLS), early diastolic strain rate (SRE), and E/SRE were similar. At a median follow-up of 239 days, 3-P MACE (11.5% vs. 4.9%; p = 0.047) and 4-P MACE (28.6% vs. 11.5%; p = 0.020) were observed to be higher in the DKD group. Diastolic dysfunction was more common in patients with DKD, compared to those with NDKD, although both groups had similar LVMI and GLS. Those with DKD also had poorer cardiovascular outcomes. This highlights the importance of the assessment of diastolic function in CKD, particularly in those with diabetic CKD.
Collapse
Affiliation(s)
- Ganesh Paramasivam
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Krishnananda Nayak
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Rakshitha Nayak
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Simran Agnes Martis
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Rinkle Jerome
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Ravindra Attur Prabhu
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| |
Collapse
|
31
|
Therapeutic Potential of VEGF-B in Coronary Heart Disease and Heart Failure: Dream or Vision? Cells 2022; 11:cells11244134. [PMID: 36552897 PMCID: PMC9776740 DOI: 10.3390/cells11244134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary heart disease (CHD) is the leading cause of death around the world. Based on the roles of vascular endothelial growth factor (VEGF) family members to regulate blood and lymphatic vessels and metabolic functions, several therapeutic approaches have been attempted during the last decade. However proangiogenic therapies based on classical VEGF-A have been disappointing. Therefore, it has become important to focus on other VEGFs such as VEGF-B, which is a novel member of the VEGF family. Recent studies have shown the very promising potential of the VEGF-B to treat CHD and heart failure. The aim of this review article is to present the role of VEGF-B in endothelial biology and as a potential therapeutic agent for CHD and heart failure. In addition, key differences between the VEGF-A and VEGF-B effects on endothelial functions are demonstrated.
Collapse
|
32
|
Jadhav VB, Vaghela JS. Sphaeranthus indicus Linn ameliorates streptozotocin-induced experimental diabetic neuropathy by targeting oxidative stress-mediated alterations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Diabetes-induced neuropathic pain is manifested as a lowering of nerve transmission rate, increased discomfort, sensual loss, and axonal degradation, and is the most prevalent secondary consequence of diabetes. Diabetes is a devitalizing disease affecting people from diverse groups in both developing and industrialized countries. The inflammation pathway and oxidative stress both contribute considerably to diabetic peripheral neuropathy via the activation of inflammatory cytokines. Hyperglycemia-mediated neural oxidative stress and damage activates a number of metabolic pathways, causing diabetic neuropathy. The current study investigated the neuroprotective potential of methanolic extract of Sphaeranthus indicus Linn (MESI) in ameliorating diabetic neuropathic pain induced by administration of streptozotocin in rats.
Results
Four weeks after intraperitoneal treatment of streptozotocin (STZ), there was a significant decrease in mechano-tactile allodynia and mechanical and thermal hyperalgesia. Furthermore, STZ-induced oxidative stress increases the extent of neural lipid peroxidation (LPO), as evidenced by increased MDA levels, decreases the activities of endogenous antioxidants such as superoxide dismutase (SOD) and glutathione (GSH), and alters sciatic neural histoarchitecture. Chronic administration of methanolic extract of Sphaeranthus indicus Linn (MESI) for 4 weeks significantly and dose-dependently attenuated the decrease in levels of nociceptive thresholds, endogenous antioxidants (SOD and GSH), and increase in LPO. Furthermore, MESI significantly restored sciatic neural histoarchitecture.
Conclusion
The amelioration of streptozotocin-induced diabetic neuropathy by methanolic extract of Sphaeranthus indicus Linn (MESI) could be attributed to its antinociceptive, antioxidant, and neuroprotective properties.
Collapse
|
33
|
Chang X, Li Y, Cai C, Wu F, He J, Zhang Y, Zhong J, Tan Y, Liu R, Zhu H, Zhou H. Mitochondrial quality control mechanisms as molecular targets in diabetic heart. Metabolism 2022; 137:155313. [PMID: 36126721 DOI: 10.1016/j.metabol.2022.155313] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/15/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been regarded as a hallmark of diabetic cardiomyopathy. In addition to their canonical metabolic actions, mitochondria influence various other aspects of cardiomyocyte function, including oxidative stress, iron regulation, metabolic reprogramming, intracellular signaling transduction and cell death. These effects depend on the mitochondrial quality control (MQC) system, which includes mitochondrial dynamics, mitophagy and mitochondrial biogenesis. Mitochondria are not static entities, but dynamic units that undergo fission and fusion cycles to maintain their structural integrity. Increased mitochondrial fission elevates the number of mitochondria within cardiomyocytes, a necessary step for cardiomyocyte metabolism. Enhanced mitochondrial fusion promotes communication and cooperation between pairs of mitochondria, thus facilitating mitochondrial genomic repair and maintenance. On the contrary, erroneous fission or reduced fusion promotes the formation of mitochondrial fragments that contain damaged mitochondrial DNA and exhibit impaired oxidative phosphorylation. Under normal/physiological conditions, injured mitochondria can undergo mitophagy, a degradative process that delivers poorly structured mitochondria to lysosomes. However, defective mitophagy promotes the accumulation of nonfunctional mitochondria, which may induce cardiomyocyte death. A decline in the mitochondrial population due to mitophagy can stimulate mitochondrial biogenesis), which generates new mitochondrial offspring to maintain an adequate mitochondrial number. Energy crises or ATP deficiency also increase mitochondrial biogenesis, because mitochondrial DNA encodes 13 subunits of the electron transport chain (ETC) complexes. Disrupted mitochondrial biogenesis diminishes the mitochondrial mass, accelerates mitochondrial senescence and promotes mitochondrial dysfunction. In this review, we describe the involvement of MQC in the pathogenesis of diabetic cardiomyopathy. Besides, the potential targeted therapies that could be applied to improve MQC during diabetic cardiomyopathy are also discussed and accelerate the development of cardioprotective drugs for diabetic patients.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiankai Zhong
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruxiu Liu
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hang Zhu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China.
| | - Hao Zhou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing 100048, China.
| |
Collapse
|
34
|
Yamashina A, Nishikori M, Fujimito H, Oba K. Identification of predictive factors interacting with heart rate reduction for potential beneficial clinical outcomes in chronic heart failure: A systematic literature review and meta-analysis. IJC HEART & VASCULATURE 2022; 43:101141. [PMID: 36338318 PMCID: PMC9634015 DOI: 10.1016/j.ijcha.2022.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Background There is an absence of clinical evidence on what factors modify the effect of heart rate (HR)-reducing treatment on mortality and morbidity in symptomatic heart failure patients with reduced ejection fraction (HFrEF). We performed a Bayesian meta-analysis and meta-regression to identify predictive factors that interact with HR-reducing therapy. Methods A systematic review was performed to identify randomized placebo-controlled trials that enrolled symptomatic HFrEF patients. The primary objective was to evaluate how different predictive factors modify the efficacy of HR-reducing therapy on clinical outcomes. Secondary objectives included the evaluation of subgroups stratified by a HR reduction threshold of 10 bpm. Results Data from 20 studies were synthesized and HR-reducing therapy was responsible for 16.7 %, 16.4 %, and 21.1 % risk reductions in all-cause mortality, cardiovascular (CV)-related mortality, and rehospitalization due to worsening HF (WHF), respectively. Empirical Bayes meta-regression showed that type 2 diabetes mellitus (T2DM) significantly modified the efficacy of HR-reducing therapy on all-cause mortality (slope = 0.012 in log risk ratio (RR) per 1 %-unit [95 % credible interval (CrI) 0.004, 0.021]) and CV-related mortality (0.01 in log RR per 1 %-unit [95 % CrI 0.0003, 0.0200]). There were insufficient studies to perform a meta-regression when stratifying by a HR reduction threshold of 10 bpm; however, when including all studies, we observed a significant effect modification for rehospitalization due to WHF (p = 0.004). Conclusions This meta-analysis focused on the central tenet of HR-reducing therapy and revealed that T2DM is a predictor of HR-reducing treatment effect on all-cause mortality and CV-related mortality in HFrEF patients.
Collapse
Key Words
- AF, atrial fibrillation
- Bayesian analysis
- CV, cardiovascular
- Chronic heart failure
- CrI, credible interval
- HF, heart failure
- HFrEF, HF with reduced ejection fraction
- HR, heart rate
- Heart failure with reduced ejection fraction
- Heart rate
- LVEF, left ventricular ejection fraction
- MI, myocardial infarction
- Meta-analysis
- NYHA, New York Heart Association
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- Predictive factors
- RR, risk ratio
- T2DM, type 2 diabetes mellitus
- WHF, worsening heart failure
Collapse
Affiliation(s)
- Akira Yamashina
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
- Department of Health Sciences, Kiryu University, Gunma, Japan
| | | | - Hiroaki Fujimito
- Medical Affairs Division, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Koji Oba
- Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, Japan
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
35
|
Mkolo NM, Olaokun OO, King PH, Janse van Rensburg I, Eloff JN, Naidoo V. Verification of the folkloric and anecdotal antidiabetic effects of Hypoxis hemerocallidea (Fisch., C.A. Mey. & Avé-Lall) and isolated, β-sitosterol using early-stage type II spontaneous diabetic mutant BKS-Leprdb mice. BMC Complement Med Ther 2022; 22:163. [PMID: 35725532 PMCID: PMC9208228 DOI: 10.1186/s12906-022-03640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Previous studies in our laboratory in ex vivo assays have demonstrated H. hemerocallidea extract as potential antidiabetic agent through increased insulin release from pancreatic beta cells. Thus, for this study the early stage type II spontaneous diabetic mutant mice model was used to evaluate and determine the degree of the antidiabetic efficacy of H. hemerocallidea. Methods Eight-weeks-old type II spontaneous pre-diabetic mutant BKS-Leprdb mice were fed with feed supplemented with either H. hemerocallidea extract, isolated compound (β-sitosterol) or chlorpropamide (positive control) for 4 weeks. The haematological parameters, clinical chemistry, glucose tolerance, feed intake, faecal output and body weights were measured. Results The blood glucose concentrations of all the animals treated with plant extract, β-sitosterol compound and non-treated pre-diabetic animals did not return to baseline levels. Only the β-sitosterol treatment and positive control groups resulted in a respective small decrease of 5.8 and 5.2% in the mouse weights over the study period, with no significant changes (p > 0.05) in food intake. However, there was a general trend for decrease in faecal output for all the groups. Albumin, triglycerides, and total cholesterol levels in β-sitosterol and chlorpropamide-treated animals were lower, relative to untreated-animals. Animals fed with plant extract showed large amounts of internal fat. There were no significant changes (p > 0.05) in total serum protein, globulin, alanine aminotransferase, alkaline phosphatase, urea nitrogen and creatinine attributed to administration of treatments. In all groups, some animals showed lesions associated with cardiac puncture. Few animals except animals treated with plant extract, showed presence of a left-ventricular hypertrophic cardiomyopathy. The liver and kidneys for all groups appeared macroscopically normal and the thymuses were small (±2 mg). There were pathological signs in some of the animals particularly in myocardial fibres, renal tubular, glomerular, hepatocyte granularity and pancreas islets. However, there was no significance trend between the groups. Conclusion Based on the results, none of the treatments could be considered highly effective for the management of type II pre-diabetes as sole therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03640-y.
Collapse
|
36
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
37
|
Li H, Yang Q, Huang Z, Liang C, Zhang DH, Shi HT, Du JQ, Du BB, Zhang YZ. Dual-specificity phosphatase 12 attenuates oxidative stress injury and apoptosis in diabetic cardiomyopathy via the ASK1-JNK/p38 signaling pathway. Free Radic Biol Med 2022; 192:13-24. [PMID: 36108935 DOI: 10.1016/j.freeradbiomed.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
Diabetic cardiomyopathy (DCM) is ventricular dysfunction that occurs in patients with diabetes mellitus (DM), independent of recognized risk factors, such as coronary artery disease, hypertension, and valvular heart disease. Dual-specificity phosphatase 12 (DUSP12) is a dual-specificity phosphatase expressed in all tissues. Genome-wide linkage studies have found an association between DUSP12 and type 2 diabetes (T2D). However, the role of DUSP12 in DCM remains largely unknown. Ubiquitously expressed DUSP12 is involved in nonalcoholic fatty liver disease, bacterial infection, and myocardial hypertrophy and plays a critical role in tumorigenesis. Herein, we observed an increased expression of DUSP12 in a hyperglycemia cell model and a high-fat diet (HFD) mouse model. Heart-specific DUSP12-deficient mice showed severe cardiac dysfunction and remodeling induced by an HFD. DUSP12 deficiency exacerbated oxidative stress injury and apoptosis, whereas DUSP12 overexpression had the opposite effect. At the molecular level, DUSP12 physically bound to apoptotic signal-regulated kinase 1 (ASK1), promoted its dephosphorylation, and inhibited its action on c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Rescue experiments have shown that oxidative stress injury and apoptosis, exacerbated by DUSP12 deficiency, are alleviated by ASK1 inhibition. Therefore, we consider DUSP12 an important signaling pathway in DCM.
Collapse
Affiliation(s)
- Huan Li
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Qin Yang
- Department of Cardiology, Huanggang Central Hospital, Huanggang, 438021, China
| | - Zhen Huang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Cui Liang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Dian-Hong Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui-Ting Shi
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Jia-Qi Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Bin-Bin Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yan-Zhou Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
38
|
Liu Y, Lu H, Zhang Y, Cai M, Guo J, Ruan X. Nomogram based on multimodal echocardiography for assessing the evolution of diabetic cardiomyopathy in diabetic patients with normal cardiac function. Front Cardiovasc Med 2022; 9:1002509. [PMID: 36204578 PMCID: PMC9530038 DOI: 10.3389/fcvm.2022.1002509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background Diabetic cardiomyopathy (DCM) remains asymptomatic for many years until progression to asymptomatic left ventricular diastolic dysfunction (ALVDD), a subclinical cardiac abnormality present in early-stage DCM. Because LV function in patients with type 2 diabetes mellitus (T2DM) may be subtly altered long before the onset of ALVDD, quantitative assessment of the risk of progression to early-stage DCM in T2DM patients with normal hearts is critical for delaying or even reversing DCM. Objective This study aimed to establish a nomogram with the aid of DCM characteristics revealed by multimodal echocardiography to assess the likelihood of the progression to early-stage DCM in T2DM patients with normal cardiac function. Methods Of the 423 T2DM patients enrolled, 302 were included in the training cohort and 121 in the validation cohort. The clinical characteristics, biochemical data, and multimodal echocardiographic parameters were collected. In the training cohort, the screened correlates of ALVDD were utilized to develop a nomogram for estimating the risk coefficient for early-stage DCM. This model was validated both in the training and validation cohorts. Results ALVDD was independently correlated with the number of comorbidities [with one comorbidity: odds ratio (OR) = 3.009; with two comorbidities: OR = 4.026], HbA1c (OR = 1.773), myocardial blood flow (OR = 0.841), and global longitudinal strain (OR = 0.856) (all P < 0.05). They constituted a nomogram to visualize the likelihood of DCM development in T2DM patients with normal cardiac function. The model was validated to present strong discrimination and calibration, and obtained clinical net benefits both in the training and validation cohorts. Conclusion We constructed and validated a nomogram to estimate the likelihood of developing early-stage DCM in T2DM patients with normal cardiac function. The alteration of the nomogram-predicted risk coefficient is expected to be proposed as a therapeutic target to slow or stop DCM progression.
Collapse
Affiliation(s)
- Yi Liu
- Department of Ultrasonography, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zhang
- Department of Ultrasonography, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengjie Cai
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Guo
- Department of Ultrasonography, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jia Guo
| | - Xiaofen Ruan
- Department of Cardiovascular Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Xiaofen Ruan
| |
Collapse
|
39
|
Rupee S, Rupee K, Singh RB, Hanoman C, Ismail AMA, Smail M, Singh J. Diabetes-induced chronic heart failure is due to defects in calcium transporting and regulatory contractile proteins: cellular and molecular evidence. Heart Fail Rev 2022; 28:627-644. [PMID: 36107271 DOI: 10.1007/s10741-022-10271-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Heart failure (HF) is a major deteriorating disease of the myocardium due to weak myocardial muscles. As such, the heart is unable to pump blood efficiently around the body to meet its constant demand. HF is a major global health problem with more than 7 million deaths annually worldwide, with some patients dying suddenly due to sudden cardiac death (SCD). There are several risk factors which are associated with HF and SCD which can negatively affect the heart synergistically. One major risk factor is diabetes mellitus (DM) which can cause an elevation in blood glucose level or hyperglycaemia (HG) which, in turn, has an insulting effect on the myocardium. This review attempted to explain the subcellular, cellular and molecular mechanisms and to a lesser extent, the genetic factors associated with the development of diabetes- induced cardiomyopathy due to the HG which can subsequently lead to chronic heart failure (CHF) and SCD. The study first explained the structure and function of the myocardium and then focussed mainly on the excitation-contraction coupling (ECC) processes highlighting the defects of calcium transporting (SERCA, NCX, RyR and connexin) and contractile regulatory (myosin, actin, titin and troponin) proteins. The study also highlighted new therapies and those under development, as well as preventative strategies to either treat or prevent diabetic cardiomyopathy (DCM). It is postulated that prevention is better than cure.
Collapse
|
40
|
LncRNA H19 inhibits ER stress induced apoptosis and improves diabetic cardiomyopathy by regulating PI3K/AKT/mTOR axis. Aging (Albany NY) 2022; 14:6809-6828. [PMID: 36044268 PMCID: PMC9467416 DOI: 10.18632/aging.204256] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
Objective: Extensive studies have shown that ERS may be implicated in the pathogenesis of DCM. We explored the therapeutic effects of lncRNAH19 on DCM and its effect on ERS-associated cardiomyocyte apoptosis. Methods: C57/BL-6j mice were randomly divided into 3 groups: non-DM group (controls), DM group (DCM), and lncRNAH19 overexpression group (DCM+H19 group). The effect of H19 on cardiac function was detected. The effect of H19 on cardiomyocyte apoptosis and cardiac fibrosis in DM was examined. Differentially expressed genes (DEGs) and activated pathways were examined by bioinformatics analysis. STRING database was applied to construct a PPI network using Cytoscape software. The expression of p-PERK, p-IRE1, ATF6, CHOP, cleaved caspase-3, -9, -12 and BAX proteins in cardiac tissue was used to determine the ERS-associated apoptotic indicators. We established the HG-stimulated inflammatory cell model. The expression of p-PERK and CHOP in HL-1 cells following HG was determined by immunofluorescence labeling. The effects of H19 on ERS and PI3K/AKT/mTOR pathway were also detected. Results: H19 improved left ventricular dysfunction in DM. H19 could reduce cardiomyocytes apoptosis and improve fibrosis in vivo. H19 could reduce the expression of p-PERK, p-IRE1α, ATF6, CHOP, cleaved caspase-3, cleaved caspase-9, cleaved caspase-12, and BAX proteins in cardiac tissues. Furthermore, H19 repressed oxidative stress, ERS and apoptosis in vitro. Moreover, the effect of H19 on ERS-associated apoptosis might be rescued by LY294002 (the specific inhibitor for PI3K and AKT). Conclusion: H19 attenuates DCM in DM and ROS, ERS-induced cardiomyocyte apoptosis, which is associated with the activation of PI3K/AKT/mTOR signaling pathway.
Collapse
|
41
|
Tao S, Yang D, Zhang L, Yu L, Wang Z, Li L, Zhang J, Yao R, Huang L, Shao M. Knowledge domain and emerging trends in diabetic cardiomyopathy: A scientometric review based on CiteSpace analysis. Front Cardiovasc Med 2022; 9:891428. [PMID: 36093165 PMCID: PMC9452758 DOI: 10.3389/fcvm.2022.891428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To review the literature related to diabetic cardiomyopathy (DCM), and investigate research hotspots and development trends of this field in the relevant studies based on CiteSpace software of text mining and visualization in scientific literature. Methods The relevant literature from the last 20 years was retrieved from the Web of Science (WoS) Core Collection database. After manual selection, each document record includes title, authors, year, organization, abstract, keywords, citation, descriptors, and identifiers. We imported the downloaded data into CiteSpace V (version 5.8.R2) to draw the knowledge map and conduct cooperative network analysis, cluster analysis, burst keyword analysis, and co-citation analysis. Results After manual screening, there were 3,547 relevant pieces of literature published in the last 18 years (from 2004 to 2021), including 2,935 articles and reviews, which contained 15,533 references, and the number was increasing year by year. The publications of DCM were dedicated by 778 authors of 512 institutions in 116 countries. The People's Republic of China dominated this field (1,117), followed by the USA (768) and Canada (176). In general, most articles were published with a focus on “oxidative stress,” “heart failure,” “diabetic cardiomyopathy,” “dysfunction,” “cardiomyopathy,” “expression,” “heart,” “mechanism,” and “insulin resistance.” Then, 10 main clusters were generated with a modularity Q of 0.6442 and a weighted mean silhouette of 0.8325 by the log-likelihood ratio (LLR) algorithm, including #0 heart failure, #1 perfused heart, #2 metabolic disease, #3 protective effect, #4 diabetic patient, #5 cardiac fibrosis, #6 vascular complication, #7 mitochondrial dynamics, #8 sarcoplasmic reticulum, and #9 zinc supplementation. The top five references with the strongest citation bursts include “Boudina and Abel”, “Jia et al.”, “Fang et al.”, “Poornima et al.”, and “Aneja et al.”. Conclusion The global field of DCM has expanded in the last 20 years. The People's Republic of China contributes the most. However, there is little cooperation among authors and institutions. Overall, this bibliometric study identified the hotspots in DCM research, including “stress state,” “energy metabolism,” “autophagy,” “apoptosis,” “inflammation,” “fibrosis,” “PPAR,” etc. Thus, further research focuses on these topics that may be more helpful to identify, prevent DCM and improve prophylaxis strategies to bring benefit to patients in the near future.
Collapse
Affiliation(s)
- Shiyi Tao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deshuang Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lanxin Zhang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lintong Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jin Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiqi Yao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Li Huang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Mingjing Shao
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Mingjing Shao
| |
Collapse
|
42
|
Syed AA, Reza MI, Shafiq M, Kumariya S, Katekar R, Hanif K, Gayen JR. Cissus quadrangularis extract mitigates diabetic cardiomyopathy by inhibiting RAAS activation, inflammation, and oxidative stress. Biomarkers 2022; 27:743-752. [PMID: 35896310 DOI: 10.1080/1354750x.2022.2107703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
IntroductionDiabetic cardiomyopathy (DCM) is an age-related disease, and its progression is accompanied by hyperglycemia, cardiac dysfunction, and myocardial structural and functional abnormalities. Cissus quadrangularis, a traditional medicinal plant, contains polyphenols, flavonoids, phytosterols, carbohydrates, and ascorbic acid. It is used to treat osteoporosis, asthma, haemorrhoids, and menstrual disorders. In the current research, we have investigated the effect of ethanolic extract of C. quadrangularis (EECQ) against a high-fat diet (HFD)/streptozotocin-induced DCM by estimating cardiac biomarkers, inflammatory markers and ROS production.Material and methodsRats were fed with an HFD for 12 weeks, followed by single-shot low-dose streptozotocin (35mg/kg; i.p.). The treatment was performed by EECQ (200 mg/kg/day, orally) for six weeks. ResultsThe extract EECQ improves glucose, insulin tolerance tests, and hypercholesteremia. DCM is characterized by cardiac dysfunction, cardiac biomarkers CKMB, and LDH, which were attenuated by the EECQ treatment. The hypertrophic biomarker ANP, BNP expression and cardiomyocyte surface area were decreased by EECQ. Moreover, EECQ also alleviated the biomarkers Angiotensin II and renin level. EECQ also reduced oxidative stress, ROS production and cardiac inflammation.ConclusionThus, these findings suggested that EECQ could be used as a possible therapeutic regiment to treat DCM.
Collapse
Affiliation(s)
- Anees Ahmed Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Mohammad Irshad Reza
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Mohammed Shafiq
- Pharmacology Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Kashif Hanif
- Pharmacology Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India.,Pharmacology Division, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| |
Collapse
|
43
|
Krishnan A, Sharma H, Yuan D, Trollope AF, Chilton L. The Role of Epicardial Adipose Tissue in the Development of Atrial Fibrillation, Coronary Artery Disease and Chronic Heart Failure in the Context of Obesity and Type 2 Diabetes Mellitus: A Narrative Review. J Cardiovasc Dev Dis 2022; 9:jcdd9070217. [PMID: 35877579 PMCID: PMC9318726 DOI: 10.3390/jcdd9070217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant burden globally and are especially prevalent in obese and/or diabetic populations. Epicardial adipose tissue (EAT) surrounding the heart has been implicated in the development of CVDs as EAT can shift from a protective to a maladaptive phenotype in diseased states. In diabetic and obese patients, an elevated EAT mass both secretes pro-fibrotic/pro-inflammatory adipokines and forms intramyocardial fibrofatty infiltrates. This narrative review considers the proposed pathophysiological roles of EAT in CVDs. Diabetes is associated with a disordered energy utilization in the heart, which promotes intramyocardial fat and structural remodeling. Fibrofatty infiltrates are associated with abnormal cardiomyocyte calcium handling and repolarization, increasing the probability of afterdepolarizations. The inflammatory phenotype also promotes lateralization of connexin (Cx) proteins, undermining unidirectional conduction. These changes are associated with conduction heterogeneity, together creating a substrate for atrial fibrillation (AF). EAT is also strongly implicated in coronary artery disease (CAD); inflammatory adipokines from peri-vascular fat can modulate intra-luminal homeostasis through an “outside-to-inside” mechanism. EAT is also a significant source of sympathetic neurotransmitters, which promote progressive diastolic dysfunction with eventual cardiac failure. Further investigations on the behavior of EAT in diabetic/obese patients with CVD could help elucidate the pathogenesis and uncover potential therapeutic targets.
Collapse
Affiliation(s)
- Anirudh Krishnan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Harman Sharma
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Daniel Yuan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Alexandra F. Trollope
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Lisa Chilton
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence:
| |
Collapse
|
44
|
Shen MT, Li Y, Guo YK, Jiang L, Gao Y, Shi R, Yang ZG. Impact of type 2 diabetes mellitus on left ventricular deformation in non-ischemic dilated cardiomyopathy patients assessed by cardiac magnetic resonance imaging. Cardiovasc Diabetol 2022; 21:94. [PMID: 35659302 PMCID: PMC9167526 DOI: 10.1186/s12933-022-01533-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) increases the risk of worse long-term outcomes in patients with non-ischemic dilated cardiomyopathy (NIDCM). However, the additive effects of T2DM on left ventricular (LV) function in NIDCM remain unclear. Accordingly, we aimed to investigate the impact of comorbid T2DM on LV deformation in NIDCM individuals. Materials and methods Three hundred forty-two NIDCM patients without T2DM [NIDCM (T2DM−)], 93 with T2DM [NIDCM (T2DM+)] and 80 age- and sex-matched normal controls who underwent cardiac magnetic resonance scanning were included. LV geometry, function, and LV global strains, including peak strain (PS), peak systolic strain rate (PSSR) and peak diastolic strain rate (PDSR) in the radial, circumferential and longitudinal directions, were measured. NIDCM (T2DM+) patients were divided into two subgroups based on the HbA1c level (< 7.0% and ≥ 7.0%). The determinants of reduced LV myocardial strain for all NIDCM individuals and NIDCM (T2DM+) patients were assessed using multivariable linear regression analyses. Results Compared with normal controls, both NIDCM (T2DM −) and NIDCM (T2DM+) patients exhibited increased LV end-diastolic and end-systolic volume index and decreased LV ejection fraction. LV global strains progressively declined from the normal controls to the NIDCM (T2DM−) group to the NIDCM (T2DM+) group (all p < 0.017), except for radial PDSR and PSSR. Subgroup analysis showed that LV global radial PS and longitudinal PS, PSSR-L and PDSR-L were worse in NIDCM patients with poor glycemic control than in those with good glycemic control (p < 0.017). T2DM was an independent determinant of reduced LV global circumferential PS and longitudinal PS in patients with NIDCM (both p < 0.05). An increased HbA1c level was independently associated with a decreased global radial PS (β = − 0.285, p < 0.01) and longitudinal PS (β = 0.320, p < 0.01) in NIDCM (T2DM+) patients. Conclusions T2DM has an additive deleterious effect on LV systolic and diastolic function in NIDCM patients. Among NIDCM patients with T2DM, HbA1c was found to be associated with reduced LV myocardial strain.
Collapse
|
45
|
Triglyceride-glucose index associates with incident heart failure: a cohort study. DIABETES & METABOLISM 2022; 48:101365. [PMID: 35660526 DOI: 10.1016/j.diabet.2022.101365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
Abstract
AIMS Triglyceride-glucose (TyG) index has been proposed as a simple surrogate marker of insulin resistance. However, few studies have investigated the association of TyG index with heart failure (HF). We aimed to explore the relationship between TyG index and incident HF. METHODS A total of 138,620 participants from the Kailuan study were included for analysis. TyG index was calculated as ln [fasting triglyceride (mg/dL) × fasting glucose (mg/dL) / 2]. Cox proportional hazard models were used to investigate the association between TyG index and the risk of HF. Restricted cubic spline analysis was applied to evaluate the dose-response relationship between TyG index and the risk of HF. RESULTS There were 1602 incident HF cases among the 138,620 participants during a median follow-up of 8.78 years. Compared with those in the lowest quartile group of TyG index, participants with the highest quartile of TyG index had a 24% higher risk of HF (HR=1.24, 95%CI=1.07-1.44) after adjusting for other risk factors. Restricted cubic spline analysis showed a significant J-shaped dose-response relationship between TyG index and risk of HF (P for non-linearity < 0.001). The significant association was still observed among the men and participants with or without abdominal obesity in subgroup analyses. CONCLUSION The TyG index was positively associated with the risk of HF, which indicates that the TyG index might be useful to identify people at high-risk for developing HF.
Collapse
|
46
|
Ness HO, Ljones K, Gjelsvik RH, Tjønna AE, Malmo V, Nilsen HO, Hollekim-Strand SM, Dalen H, Høydal MA. Acute effects of high intensity training on cardiac function: a pilot study comparing subjects with type 2 diabetes to healthy controls. Sci Rep 2022; 12:8239. [PMID: 35581305 PMCID: PMC9114004 DOI: 10.1038/s41598-022-12375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023] Open
Abstract
This study evaluated acute cardiac stress after a high-intensity interval training session in patients with type 2 diabetes (T2D) versus healthy controls. High intensity aerobic exercise was performed by 4 × 4-min intervals (90-95% of maximal heart rate), followed by a ramp protocol to peak oxygen uptake. Echocardiography was performed before and 30 min after exercise. Holter electrocardiography monitored heart rhythms 24 h before, during, and 24 h after the exercise. Left atrial end-systolic volume, peak early diastolic mitral annular velocity, and the ratio of peak early to late diastolic mitral inflow velocity were reduced by approximately 18%, 15%, and 31%, respectively, after exercise across groups. Left ventricular end-diastolic wall thickness was the only echo parameter that significantly differed between groups in response to exercise. The T2D group had a rate of supraventricular extrasystoles per hour that was 265% greater than that of the controls before exercise, which remained higher after exercise. A single exhaustive exercise session impaired left ventricular diastolic function in both groups. The findings also indicated impaired right ventricular function in patients with T2D after exercise.ClinicalTrials.gov Identifier: NCT02998008.
Collapse
Affiliation(s)
- Henning O. Ness
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, Akutten og Hjerte-lunge-senteret, 3.etg, 7030 Trondheim, Norway
| | - Kristine Ljones
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, Akutten og Hjerte-lunge-senteret, 3.etg, 7030 Trondheim, Norway
| | - Randi H. Gjelsvik
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, Akutten og Hjerte-lunge-senteret, 3.etg, 7030 Trondheim, Norway
| | - Arnt Erik Tjønna
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, Akutten og Hjerte-lunge-senteret, 3.etg, 7030 Trondheim, Norway
| | - Vegard Malmo
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, Akutten og Hjerte-lunge-senteret, 3.etg, 7030 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Clinic of Cardiology, St. Olavs University Hospital, Trondheim, Norway
| | - Hans Olav Nilsen
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, Akutten og Hjerte-lunge-senteret, 3.etg, 7030 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Clinic of Cardiology, St. Olavs University Hospital, Trondheim, Norway
| | - Siri Marte Hollekim-Strand
- grid.5947.f0000 0001 1516 2393Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard Dalen
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, Akutten og Hjerte-lunge-senteret, 3.etg, 7030 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Clinic of Cardiology, St. Olavs University Hospital, Trondheim, Norway ,grid.414625.00000 0004 0627 3093Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Morten Andre Høydal
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, Akutten og Hjerte-lunge-senteret, 3.etg, 7030 Trondheim, Norway
| |
Collapse
|
47
|
El-Azab MF, Wakiel AE, Nafea YK, Youssef ME. Role of cannabinoids and the endocannabinoid system in modulation of diabetic cardiomyopathy. World J Diabetes 2022; 13:387-407. [PMID: 35664549 PMCID: PMC9134026 DOI: 10.4239/wjd.v13.i5.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic complications, chiefly seen in long-term situations, are persistently deleterious to a large extent, requiring multi-factorial risk reduction strategies beyond glycemic control. Diabetic cardiomyopathy is one of the most common deleterious diabetic complications, being the leading cause of mortality among diabetic patients. The mechanisms of diabetic cardiomyopathy are multi-factorial, involving increased oxidative stress, accumulation of advanced glycation end products (AGEs), activation of various pro-inflammatory and cell death signaling pathways, and changes in the composition of extracellular matrix with enhanced cardiac fibrosis. The novel lipid signaling system, the endocannabinoid system, has been implicated in the pathogenesis of diabetes and its complications through its two main receptors: Cannabinoid receptor type 1 and cannabinoid receptor type 2, alongside other components. However, the role of the endocannabinoid system in diabetic cardiomyopathy has not been fully investigated. This review aims to elucidate the possible mechanisms through which cannabinoids and the endocannabinoid system could interact with the pathogenesis and the development of diabetic cardiomyopathy. These mechanisms include oxidative/ nitrative stress, inflammation, accumulation of AGEs, cardiac remodeling, and autophagy. A better understanding of the role of cannabinoids and the endocannabinoid system in diabetic cardiomyopathy may provide novel strategies to manipulate such a serious diabetic complication.
Collapse
Affiliation(s)
- Mona F El-Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed E Wakiel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yossef K Nafea
- Program of Biochemistry, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| | - Mahmoud E Youssef
- Department of Pharmacology and Biochemistry, Delta University for Science and Technology, Mansoura 35511, New Cairo, Egypt
| |
Collapse
|
48
|
Ani C, Shavlik D, Knutsen S, Abudayyeh I, Banta J, O'Brien E, Mentz RJ, Bertoni AG, Fraser G. Glycemic status, non-traditional risk and left ventricular structure and function in the Jackson Heart Study. BMC Cardiovasc Disord 2022; 22:186. [PMID: 35448969 PMCID: PMC9022283 DOI: 10.1186/s12872-022-02605-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Left ventricular structure and function abnormalities may be an early marker of cardiomyopathy among African Americans with diabetes (DM) even in the absence of coronary artery disease (CAD), arrhythmia, valvular heart disease and end-stage renal disease (ESRD). This study examined the association of prediabetes (PDM), DM and HbA1c with left ventricular structure and function among Jackson Heart Study (JHS) participants without traditional risk factors. METHODS Retrospective cross-sectional analyses of the association of PDM, DM and HbA1c with, left ventricular ejection fraction (LV EF), fractional shortening (LV FS), stroke volume index (SVI), cardiac index (CI), left ventricular end diastolic volume index (LVEDVI), left ventricular end systolic volume index (LVESVI), relative wall thickness (RWT), myocardial contraction fraction (MCF) and left ventricular mass index (LVMI). The study was conducted in 2234 adult JHS participants without preexisting CAD, arrhythmia, valvular heart disease or ESRD. Statistical analyses included descriptive, univariate and covariate adjusted linear regression analyses. Sensitivity analyses to explore the impact of hypertension on study outcomes were also carried out. RESULTS DM compared with no DM was associated with lower, SVI (- 0.96 ml/m2, p = 0.029), LVEDVI (- 1.44 ml/m2 p = 0.015), and MCF (- 1.90% p = 0.007) but higher CI (0.14 L/min/m2, p < 0.001), RWT (0.01 cm, p = 0.002) and LVMI (2.29 g/m2, p = 0.009). After further control for DM duration, only CI remaining significantly higher for DM compared with no DM participants (0.12 L/min/m2, p = 0.009). PDM compared with no PDM was associated with lower, SVI (- 0.87 ml/m2, P = 0.024), LVEDVI (- 1.15 ml/m2 p = 0.003) and LVESVI (- 0.62 ml/m2 p = 0.025). HbA1c ≥ 8.0% compared with HbA1c < 5.7% was associated with lower SVI (- 2.09 ml/m2, p = 0.004), LVEDVI (- 2.11 ml/m2 p = 0.032) and MCF (- 2.94% p = 0.011) but higher CI (0.11 L/min/m2, p = 0.043) and RWT (0.01 cm, p = 0.035). CONCLUSIONS Glycemic status is associated with important left ventricular structure and function changes among African Americans without prior CAD, arrhythmia, valvular heart disease and ESRD. Longitudinal studies may further elucidate these relationships.
Collapse
Affiliation(s)
- Chizobam Ani
- Loma Linda University (LLU), Loma Linda, USA.
- Department of Internal Medicine, Charles R Drew University of Medicine and Science (CDU), Los Angeles, USA.
- University of California Los Angeles (UCLA), Los Angeles, USA.
| | | | | | | | | | | | | | - Alain G Bertoni
- Wake Forest School of Medicine (Department of Epidemiology and Prevention), Winston-Salem, USA
| | - Gary Fraser
- Loma Linda University (LLU), Loma Linda, USA
| |
Collapse
|
49
|
Kleissl-Muir S, Rasmussen B, Owen A, Zinn C, Driscoll A. Low Carbohydrate Diets for Diabetic Cardiomyopathy: A Hypothesis. Front Nutr 2022; 9:865489. [PMID: 35529461 PMCID: PMC9069235 DOI: 10.3389/fnut.2022.865489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Elevated blood glucose levels, insulin resistance (IR), hyperinsulinemia and dyslipidemia the key aspects of type 2 diabetes mellitus (T2DM), contribute to the development of a certain form of cardiomyopathy. This cardiomyopathy, also known as diabetic cardiomyopathy (DMCM), typically occurs in the absence of overt coronary artery disease (CAD), hypertension or valvular disease. DMCM encompasses a variety of pathophysiological processes impacting the myocardium, hence increasing the risk for heart failure (HF) and significantly worsening outcomes in this population. Low fat (LF), calorie-restricted diets have been suggested as the preferred eating pattern for patients with HF. However, LF diets are naturally higher in carbohydrates (CHO). We argue that in an insulin resistant state, such as in DMCM, LF diets may worsen glycaemic control and promote further insulin resistance (IR), contributing to a physiological and functional decline in DMCM. We postulate that CHO restriction targeting hyperinsulinemia may be able to improve tissue and systemic IR. In recent years low carbohydrate diets (LC) including ketogenic diets (KD), have emerged as a safe and effective tool for the management of various clinical conditions such as T2DM and other metabolic disorders. CHO restriction achieves sustained glycaemic control, lower insulin levels and successfully reverses IR. In addition to this, its pleiotropic effects may present a metabolic stress defense and facilitate improvement to cardiac function in patients with HF. We therefore hypothesize that patients who adopt a LC diet may require less medications and experience improvements in HF-related symptom burden.
Collapse
Affiliation(s)
| | - Bodil Rasmussen
- School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
- Centre for Quality and Patient Safety, School of Nursing and Midwifery, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
- The Centre for Quality and Patient Safety, Institute of Health Transformation -Western Health Partnership, Western Health, St Albans, VIC, Australia
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark and Steno Diabetes Centre, Odense, Denmark
| | - Alice Owen
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Caryn Zinn
- Human Potential Centre, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Andrea Driscoll
- School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
- Centre for Quality and Patient Safety, School of Nursing and Midwifery, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
50
|
Longo M, Scappaticcio L, Cirillo P, Maio A, Carotenuto R, Maiorino MI, Bellastella G, Esposito K. Glycemic Control and the Heart: The Tale of Diabetic Cardiomyopathy Continues. Biomolecules 2022; 12:biom12020272. [PMID: 35204778 PMCID: PMC8961546 DOI: 10.3390/biom12020272] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in people with diabetes. Diabetic cardiomyopathy (DC) is an important complication of diabetes and represents a distinct subtype of heart failure that occurs in absence of cardiovascular diseases. Chronic hyperglycemia and hyperinsulinemia along with insulin resistance and inflammatory milieu are the main mechanisms involved in the pathophysiology of DC. Changes in lifestyle favoring healthy dietary patterns and physical activity, combined with more innovative anti-diabetes therapies, are the current treatment strategies to safeguard the cardiovascular system. This review aims at providing an updated comprehensive overview of clinical, pathogenetic, and molecular aspects of DC, with a focus on the effects of anti-hyperglycemic drugs on the prevention of pump dysfunction and consequently on cardiovascular health in type 2 diabetes.
Collapse
Affiliation(s)
- Miriam Longo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Paolo Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Antonietta Maio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Raffaela Carotenuto
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-156-65031
| |
Collapse
|