1
|
Sujana C, Salomaa V, Kee F, Seissler J, Jousilahti P, Neville C, Then C, Koenig W, Kuulasmaa K, Reinikainen J, Blankenberg S, Zeller T, Herder C, Mansmann U, Peters A, Thorand B. Associations of the vasoactive peptides CT-proET-1 and MR-proADM with incident type 2 diabetes: results from the BiomarCaRE Consortium. Cardiovasc Diabetol 2022; 21:99. [PMID: 35681200 PMCID: PMC9185875 DOI: 10.1186/s12933-022-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Endothelin-1 (ET-1) and adrenomedullin (ADM) are commonly known as vasoactive peptides that regulate vascular homeostasis. Less recognised is the fact that both peptides could affect glucose metabolism. Here, we investigated whether ET-1 and ADM, measured as C-terminal-proET-1 (CT-proET-1) and mid-regional-proADM (MR-proADM), respectively, were associated with incident type 2 diabetes. METHODS Based on the population-based Biomarkers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) Consortium data, we performed a prospective cohort study to examine associations of CT-proET-1 and MR-proADM with incident type 2 diabetes in 12,006 participants. During a median follow-up time of 13.8 years, 862 participants developed type 2 diabetes. The associations were examined in Cox proportional hazard models. Additionally, we performed two-sample Mendelian randomisation analyses using published data. RESULTS CT-proET-1 and MR-proADM were positively associated with incident type 2 diabetes. The multivariable hazard ratios (HRs) [95% confidence intervals (CI)] were 1.10 [1.03; 1.18], P = 0.008 per 1-SD increase of CT-proET-1 and 1.11 [1.02; 1.21], P = 0.016 per 1-SD increase of log MR-proADM, respectively. We observed a stronger association of MR-proADM with incident type 2 diabetes in obese than in non-obese individuals (P-interaction with BMI < 0.001). The HRs [95%CIs] were 1.19 [1.05; 1.34], P = 0.005 and 1.02 [0.90; 1.15], P = 0.741 in obese and non-obese individuals, respectively. Our Mendelian randomisation analyses yielded a significant association of CT-proET-1, but not of MR-proADM with type 2 diabetes risk. CONCLUSIONS Higher concentrations of CT-proET-1 and MR-proADM are associated with incident type 2 diabetes, but our Mendelian randomisation analysis suggests a probable causal link for CT-proET-1 only. The association of MR-proADM seems to be modified by body composition.
Collapse
Affiliation(s)
- Chaterina Sujana
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Frank Kee
- Centre for Public Health, Queens University of Belfast, Belfast, Northern Ireland, UK
| | - Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik Und Poliklinik IV, Klinikum Der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Charlotte Neville
- Centre for Public Health, Queens University of Belfast, Belfast, Northern Ireland, UK
| | - Cornelia Then
- Diabetes Zentrum, Medizinische Klinik Und Poliklinik IV, Klinikum Der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Koenig
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK E.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Kari Kuulasmaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Reinikainen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Stefan Blankenberg
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK E.V.), Partner site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Tanja Zeller
- Department for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK E.V.), Partner site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
| | - Ulrich Mansmann
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Pettenkofer School of Public Health, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK E.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany.
| |
Collapse
|
2
|
Young BE, Padilla J, Finsen SH, Fadel PJ, Mortensen SP. Role of Endothelin-1 Receptors in Limiting Leg Blood Flow and Glucose Uptake During Hyperinsulinemia in Type 2 Diabetes. Endocrinology 2022; 163:6515918. [PMID: 35084435 PMCID: PMC8852254 DOI: 10.1210/endocr/bqac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 01/29/2023]
Abstract
Skeletal muscle insulin resistance is a hallmark of individuals with type 2 diabetes mellitus (T2D). In healthy individuals insulin stimulates vasodilation, which is markedly blunted in T2D; however, the mechanism(s) remain incompletely understood. Investigations in rodents indicate augmented endothelin-1 (ET-1) action as a major contributor. Human studies have been limited to young obese participants and focused exclusively on the ET-1 A (ETA) receptor. Herein, we have hypothesized that ETA receptor antagonism would improve insulin-stimulated vasodilation and glucose uptake in T2D, with further improvements observed during concurrent ETA + ET-1 B (ETB) antagonism. Arterial pressure (arterial line), leg blood flow (LBF; Doppler), and leg glucose uptake (LGU) were measured at rest, during hyperinsulinemia alone, and hyperinsulinemia with (1) femoral artery infusion of BQ-123, the selective ETA receptor antagonist (n = 10 control, n = 9 T2D) and then (2) addition of BQ-788 (selective ETB antagonist) for blockade of ETA and ETB receptors (n = 7 each). The LBF responses to hyperinsulinemia alone tended to be lower in T2D (controls: ∆161 ± 160 mL/minute; T2D: ∆58 ± 43 mL/minute, P = .08). BQ-123 during hyperinsulinemia augmented LBF to a greater extent in T2D (% change: controls: 14 ± 23%; T2D: 38 ± 21%, P = .029). LGU following BQ-123 increased similarly between groups (P = .85). Concurrent ETA + ETB antagonism did not further increase LBF or LGU in either group. Collectively, these findings suggest that during hyperinsulinemia ETA receptor activation restrains vasodilation more in T2D than controls while limiting glucose uptake similarly in both groups, with no further effect of ETB receptors (NCT04907838).
Collapse
Affiliation(s)
- Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: Benjamin E. Young, PhD, Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, 411 S. Nedderman Dr., Pickard Hall, room 504, Arlington, TX 76019, USA.
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Stine H Finsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Stefan P Mortensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Lien CC, Yin WH, Yang DM, Chen LK, Chen CW, Liu SY, Kwok CF, Ho LT, Juan CC. Endothelin-1 induces lipolysis through activation of the GC/cGMP/Ca 2+/ERK/CaMKIII pathway in 3T3-L1 adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159071. [PMID: 34748972 DOI: 10.1016/j.bbalip.2021.159071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictive peptide produced and secreted mainly by endothelial cells. Recent studies indicate that ET-1 can regulate lipid metabolism, which may increase the risk of insulin resistance. Our previous studies revealed that ET-1 induced lipolysis in adipocytes, but the underlying mechanisms were unclear. 3T3-L1 adipocytes were used to investigate the effect of ET-1 on lipolysis and the underlying mechanisms. Glycerol levels in the incubation medium and hormone-sensitive lipase (HSL) phosphorylation were used as indices for lipolysis. ET-1 significantly increased HSL phosphorylation and lipolysis, which were completely inhibited by ERK inhibitor (PD98059) and guanylyl cyclase (GC) inhibitor (LY83583). LY83583 reduced ET-1-induced ERK phosphorylation. A Ca2+-free medium and PLC inhibitor caused significant decreases in ET-1-induced lipolysis as well as ERK and HSL phosphorylation, and IP3 receptor activator (D-IP3) increased lipolysis. ET-1 increased cGMP production, which was not affected by depletion of extracellular Ca2+. On the other hand, LY83583 diminished the ET-1-induced Ca2+ influx. Transient receptor potential vanilloid-1 (TRPV-1) antagonist and shRNA partially inhibited ET-1-induced lipolysis. ET-1-induced lipolysis was completely suppressed by CaMKIII inhibitor (NH-125). These results indicate that ET-1 stimulates extracellular Ca2+ entry and activates the intracellular PLC/IP3/Ca2+ pathway through a cGMP-dependent pathway. The increased cytosolic Ca2+ that results from ET-1 treatment stimulates ERK and HSL phosphorylation, which subsequently induces lipolysis. ET-1 induces HSL phosphorylation and lipolysis via the GC/cGMP/Ca2+/ERK/CaMKIII signaling pathway in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Chih-Chan Lien
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Life Science, College of Science, Chinese Culture University, Taipei, Taiwan
| | - Wei-Hsian Yin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Cheng-Hsin General Hospital, Taipei, Taiwan; Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - De-Ming Yang
- Institute of Biophotonics, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Luen-Kui Chen
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chien-Wei Chen
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Shui-Yu Liu
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Fai Kwok
- Division of Metabolism, Cheng-Hsin General Hospital, Taipei, Taiwan; Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Low-Tone Ho
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Endocrinology and Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Chang Juan
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Banks NF, Rogers EM, Church DD, Ferrando AA, Jenkins NDM. The contributory role of vascular health in age-related anabolic resistance. J Cachexia Sarcopenia Muscle 2022; 13:114-127. [PMID: 34951146 PMCID: PMC8818606 DOI: 10.1002/jcsm.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, or the age-related loss of skeletal muscle mass and function, is an increasingly prevalent condition that contributes to reduced quality of life, morbidity, and mortality in older adults. Older adults display blunted anabolic responses to otherwise anabolic stimuli-a phenomenon that has been termed anabolic resistance (AR)-which is likely a casual factor in sarcopenia development. AR is multifaceted, but historically much of the mechanistic focus has been on signalling impairments, and less focus has been placed on the role of the vasculature in postprandial protein kinetics. The vascular endothelium plays an indispensable role in regulating vascular tone and blood flow, and age-related impairments in vascular health may impede nutrient-stimulated vasodilation and subsequently the ability to deliver nutrients (e.g. amino acids) to skeletal muscle. Although the majority of data has been obtained studying younger adults, the relatively limited data on the effect of blood flow on protein kinetics in older adults suggest that vasodilatory function, especially of the microvasculature, strongly influences the muscle protein synthetic response to amino acid feedings. In this narrative review, we examine evidence of AR in older adults following amino acid and mixed meal consumption, examine the evidence linking vascular dysfunction and insulin resistance to age-related AR, review the influence of nitric oxide and endothelin-1 on age-related vascular dysfunction as it relates to AR, briefly review the potential causal role of arterial stiffness in promoting skeletal muscle microvascular dysfunction and AR, and provide a brief overview and future considerations for research examining age-related AR.
Collapse
Affiliation(s)
- Nile F Banks
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - Emily M Rogers
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - David D Church
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Arny A Ferrando
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nathaniel D M Jenkins
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Association of Gut Hormones and Microbiota with Vascular Dysfunction in Obesity. Nutrients 2021; 13:nu13020613. [PMID: 33668627 PMCID: PMC7918888 DOI: 10.3390/nu13020613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
In the past few decades, obesity has reached pandemic proportions. Obesity is among the main risk factors for cardiovascular diseases, since chronic fat accumulation leads to dysfunction in vascular endothelium and to a precocious arterial stiffness. So far, not all the mechanisms linking adipose tissue and vascular reactivity have been explained. Recently, novel findings reported interesting pathological link between endothelial dysfunction with gut hormones and gut microbiota and energy homeostasis. These findings suggest an active role of gut secretome in regulating the mediators of vascular function, such as nitric oxide (NO) and endothelin-1 (ET-1) that need to be further investigated. Moreover, a central role of brain has been suggested as a main player in the regulation of the different factors and hormones beyond these complex mechanisms. The aim of the present review is to discuss the state of the art in this field, by focusing on the processes leading to endothelial dysfunction mediated by obesity and metabolic diseases, such as insulin resistance. The role of perivascular adipose tissue (PVAT), gut hormones, gut microbiota dysbiosis, and the CNS function in controlling satiety have been considered. Further understanding the crosstalk between these complex mechanisms will allow us to better design novel strategies for the prevention of obesity and its complications.
Collapse
|
6
|
Park LK, Parks EJ, Pettit-Mee RJ, Woodford ML, Ghiarone T, Smith JA, Sales ARK, Martinez-Lemus LA, Manrique-Acevedo C, Padilla J. Skeletal muscle microvascular insulin resistance in type 2 diabetes is not improved by eight weeks of regular walking. J Appl Physiol (1985) 2020; 129:283-296. [PMID: 32614687 DOI: 10.1152/japplphysiol.00174.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We aimed to examine whether individuals with type 2 diabetes (T2D) exhibit suppressed leg vascular conductance and skeletal muscle capillary perfusion in response to a hyperinsulinemic-euglycemic clamp and to test whether these two variables are positively correlated. Subsequently, we examined whether T2D-associated skeletal muscle microvascular insulin resistance, as well as overall vascular dysfunction, would be ameliorated by an 8-wk walking intervention (45 min at 60% of heart rate reserve, 5 sessions/week). We report that, relative to healthy subjects, overweight and obese individuals with T2D exhibit depressed insulin-stimulated increases in leg vascular conductance, skeletal muscle capillary perfusion, and Akt phosphorylation. Notably, we found that within individuals with T2D, those with lesser increases in leg vascular conductance in response to insulin exhibited the lowest increases in muscle capillary perfusion, suggesting that limited muscle capillary perfusion may be, in part, linked to the impaired ability of the upstream resistance vessels to dilate in response to insulin. Furthermore, we show that the 8-wk walking intervention, which did not evoke weight loss, was insufficient to ameliorate skeletal muscle microvascular insulin resistance in previously sedentary, overweight/obese subjects with T2D, despite high adherence and tolerance. However, the walking intervention did improve (P < 0.05) popliteal artery flow-mediated dilation (+4.52%) and reduced HbA1c (-0.75%). It is possible that physical activity interventions that are longer in duration, engage large muscle groups with recruitment of the maximum number of muscle fibers, and lead to a robust reduction in metabolic risk factors may be required to overhaul microvascular insulin resistance in T2D.NEW & NOTEWORTHY This report provides evidence that in sedentary subjects with type 2 diabetes diminished insulin-stimulated increases in leg vascular conductance and ensuing blunted capillary perfusion in skeletal muscle are not restorable by increased walking alone. More innovative physical activity interventions that ultimately result in a robust mitigation of metabolic risk factors may be vital for reestablishing skeletal muscle microvascular insulin sensitivity in type 2 diabetes.
Collapse
Affiliation(s)
- Lauren K Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan J Pettit-Mee
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Allan R K Sales
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique-Acevedo
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Research Services, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Enevoldsen FC, Sahana J, Wehland M, Grimm D, Infanger M, Krüger M. Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy. J Clin Med 2020; 9:jcm9030824. [PMID: 32197449 PMCID: PMC7141375 DOI: 10.3390/jcm9030824] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
The endothelin axis, recognized for its vasoconstrictive action, plays a central role in the pathology of pulmonary arterial hypertension (PAH). Treatment with approved endothelin receptor antagonists (ERAs), such as bosentan, ambrisentan, or macitentan, slow down PAH progression and relieves symptoms. Several findings have indicated that endothelin is further involved in the pathogenesis of certain other diseases, making ERAs potentially beneficial in the treatment of various conditions. In addition to PAH, this review summarizes the use and perspectives of ERAs in cancer, renal disease, fibrotic disorders, systemic scleroderma, vasospasm, and pain management. Bosentan has proven to be effective in systemic sclerosis PAH and in decreasing the development of vasospasm-related digital ulcers. The selective ERA clazosentan has been shown to be effective in preventing cerebral vasospasm and delaying ischemic neurological deficits and new infarcts. Furthermore, in the SONAR (Study Of Diabetic Nephropathy With Atrasentan) trial, the selective ERA atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease. These data suggest atrasentan as a new therapy in the treatment of diabetic nephropathy and possibly other renal diseases. Preclinical studies regarding heart failure, cancer, and fibrotic diseases have demonstrated promising effects, but clinical trials have not yet produced measurable results. Nevertheless, the potential benefits of ERAs may not be fully realized.
Collapse
Affiliation(s)
- Frederik C. Enevoldsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus C, Denmark; (F.C.E.); (J.S.); (D.G.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; (M.W.); (M.I.)
- Correspondence: ; Tel.: +49-391-6721267
| |
Collapse
|
8
|
Jurrissen TJ, Grunewald ZI, Woodford ML, Winn NC, Ball JR, Smith TN, Wheeler AA, Rawlings AL, Staveley-O'Carroll KF, Ji Y, Fay WP, Paradis P, Schiffrin EL, Vieira-Potter VJ, Fadel PJ, Martinez-Lemus LA, Padilla J. Overproduction of endothelin-1 impairs glucose tolerance but does not promote visceral adipose tissue inflammation or limit metabolic adaptations to exercise. Am J Physiol Endocrinol Metab 2019; 317:E548-E558. [PMID: 31310581 PMCID: PMC6766607 DOI: 10.1152/ajpendo.00178.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor and proinflammatory peptide that is upregulated in obesity. Herein, we tested the hypothesis that ET-1 signaling promotes visceral adipose tissue (AT) inflammation and disrupts glucose homeostasis. We also tested if reduced ET-1 is a required mechanism by which exercise ameliorates AT inflammation and improves glycemic control in obesity. We found that 1) diet-induced obesity, AT inflammation, and glycemic dysregulation were not accompanied by significantly increased levels of ET-1 in AT or circulation in wild-type mice and that endothelial overexpression of ET-1 and consequently increased ET-1 levels did not cause AT inflammation yet impaired glucose tolerance; 2) reduced AT inflammation and improved glucose tolerance with voluntary wheel running was not associated with decreased levels of ET-1 in AT or circulation in obese mice nor did endothelial overexpression of ET-1 impede such exercise-induced metabolic adaptations; 3) chronic pharmacological blockade of ET-1 receptors did not suppress AT inflammation in obese mice but improved glucose tolerance; and 4) in a cohort of human subjects with a wide range of body mass indexes, ET-1 levels in AT, or circulation were not correlated with markers of inflammation in AT. In aggregate, we conclude that ET-1 signaling is not implicated in the development of visceral AT inflammation but promotes glucose intolerance, thus representing an important therapeutic target for glycemic dysregulation in conditions characterized by hyperendothelinemia. Furthermore, we show that the salutary effects of exercise on AT and systemic metabolic function are not contingent on the suppression of ET-1 signaling.
Collapse
Affiliation(s)
- Thomas J Jurrissen
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Nathan C Winn
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - James R Ball
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Thomas N Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, Missouri
| | | | | | - Yan Ji
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - William P Fay
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
- Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
9
|
McPherson A, Larson SB. The X-ray crystal structure of human endothelin 1, a polypeptide hormone regulator of blood pressure. Acta Crystallogr F Struct Biol Commun 2019; 75:47-53. [PMID: 30605125 PMCID: PMC6317455 DOI: 10.1107/s2053230x18016011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/12/2018] [Indexed: 11/10/2022] Open
Abstract
Human endothelin is a 21-amino-acid polypeptide, constrained by two intra-chain disulfide bridges, that is made by endothelial cells. It is the most potent vasoconstrictor in the body and is crucially important in the regulation of blood pressure. It plays a major role in a host of medical conditions, including hypertension, diabetes, stroke and cancer. Endothelin was crystallized 28 years ago in the putative space group P6122, but the structure was never successfully solved by X-ray diffraction. Using X-ray diffraction data from 1992, the structure has now been solved. Assuming a unit cell belonging to space group P61 and a twin fraction of 0.28, a solution emerged with two, almost identical, closely associated molecules in the asymmetric unit. Although the data extended to beyond 1.8 Å resolution, a model containing 25 waters was refined to 1.85 Å resolution with an R of 0.216 and an Rfree of 0.284. The disulfide-constrained `core' of the molecule, amino-acid residues 1-15, has a main-chain conformation that is essentially the same as endothelin when bound to its receptor, but many side-chain rotamers are different. The carboxy-terminal `tail' comprising amino-acid residues 16-21 is extended as when receptor-bound, but it exhibits a different conformation with respect to the `core'. The dimer that comprises the asymmetric unit is maintained almost exclusively by hydrophobic interactions and may be stable in an aqueous medium.
Collapse
Affiliation(s)
- Alexander McPherson
- Molecular Biology and Biochemistry, University of California Irvine, McGaugh Hall, Irvine, CA 92697-3900, USA
| | - Steven B. Larson
- Molecular Biology and Biochemistry, University of California Irvine, McGaugh Hall, Irvine, CA 92697-3900, USA
| |
Collapse
|
10
|
Walsh LK, Ghiarone T, Olver TD, Medina-Hernandez A, Edwards JC, Thorne PK, Emter CA, Lindner JR, Manrique-Acevedo C, Martinez-Lemus LA, Padilla J. Increased endothelial shear stress improves insulin-stimulated vasodilatation in skeletal muscle. J Physiol 2018; 597:57-69. [PMID: 30328623 DOI: 10.1113/jp277050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS It has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. This report provides evidence supporting the hypothesis that increased shear stress exerts insulin-sensitizing effects in the vasculature and this evidence is based on experiments in vitro in endothelial cells, ex vivo in isolated arterioles and in vivo in humans. Given the recognition that vascular insulin signalling, and associated enhanced microvascular perfusion, contributes to glycaemic control and maintenance of vascular health, strategies that stimulate an increase in limb blood flow and shear stress have the potential to have profound metabolic and vascular benefits mediated by improvements in endothelial insulin sensitivity. ABSTRACT The vasodilator actions of insulin contribute to glucose uptake by skeletal muscle, and previous studies have demonstrated that acute and chronic physical activity improves insulin-stimulated vasodilatation and glucose uptake. Because this effect of exercise primarily manifests in vascular beds highly perfused during exercise, it has been postulated that increased blood flow-associated shear stress on endothelial cells is an underlying mechanism by which physical activity enhances insulin-stimulated vasodilatation. Accordingly, herein we tested the hypothesis that increased shear stress, in the absence of muscle contraction, can acutely render the vascular endothelium more insulin-responsive. To test this hypothesis, complementary experiments were conducted using (1) cultured endothelial cells, (2) isolated and pressurized skeletal muscle arterioles from swine, and (3) humans. In cultured endothelial cells, 1 h of increased shear stress from 3 to 20 dynes cm-2 caused a significant shift in insulin signalling characterized by greater activation of eNOS relative to MAPK. Similarly, isolated arterioles exposed to 1 h of intraluminal shear stress (20 dynes cm-2 ) subsequently exhibited greater insulin-induced vasodilatation compared to arterioles kept under no-flow conditions. Finally, we found in humans that increased leg blood flow induced by unilateral limb heating for 1 h subsequently augmented insulin-stimulated popliteal artery blood flow and muscle perfusion. In aggregate, these findings across models (cells, isolated arterioles and humans) support the hypothesis that elevated shear stress causes the vascular endothelium to become more insulin-responsive and thus are consistent with the notion that shear stress may be a principal mechanism by which physical activity enhances insulin-stimulated vasodilatation.
Collapse
Affiliation(s)
- Lauren K Walsh
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Thaysa Ghiarone
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - T Dylan Olver
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan, Canada
| | | | - Jenna C Edwards
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Pamela K Thorne
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Camila Manrique-Acevedo
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri, Columbia, MO, USA.,Diabetes and Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Research Services, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
11
|
Acclimation of C2C12 myoblasts to physiological glucose concentrations for in vitro diabetes research. Life Sci 2018; 211:238-244. [DOI: 10.1016/j.lfs.2018.09.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
|
12
|
Yu T, Dohl J, Elenberg F, Chen Y, Deuster P. Curcumin induces concentration‐dependent alterations in mitochondrial function through ROS in C2C12 mouse myoblasts. J Cell Physiol 2018; 234:6371-6381. [DOI: 10.1002/jcp.27370] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Tianzheng Yu
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Jacob Dohl
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Falicia Elenberg
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Yifan Chen
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| | - Patricia Deuster
- Department of Military and Emergency Medicine Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences Bethesda Maryland
| |
Collapse
|
13
|
Polak J, Punjabi NM, Shimoda LA. Blockade of Endothelin-1 Receptor Type B Ameliorates Glucose Intolerance and Insulin Resistance in a Mouse Model of Obstructive Sleep Apnea. Front Endocrinol (Lausanne) 2018; 9:280. [PMID: 29896159 PMCID: PMC5986958 DOI: 10.3389/fendo.2018.00280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 01/17/2023] Open
Abstract
Obstructive sleep apnea (OSA) is associated with insulin resistance (IR) and glucose intolerance. Elevated endothelin-1 (ET-1) levels have been observed in OSA patients and in mice exposed to intermittent hypoxia (IH). We examined whether pharmacological blockade of type A and type B ET-1 receptors (ETA and ETB) would ameliorate glucose intolerance and IR in mice exposed to IH. Subcutaneously implanted pumps delivered BQ-123 (ETA antagonist; 200 nmol/kg/day), BQ-788 (ETB antagonist; 200 nmol/kg/day) or vehicle (saline or propyleneglycol [PG]) for 14 days in C57BL6/J mice (10/group). During treatment, mice were exposed to IH (decreasing the FiO2 from 20.9% to 6%, 60/h) or intermittent air (IA). After IH or IA exposure, insulin (0.5 IU/kg) or glucose (1 mg/kg) was injected intraperitoneally and plasma glucose determined after injection and area under glucose curve (AUC) was calculated. Fourteen-day IH increased fasting glucose levels (122 ± 7 vs. 157 ± 8 mg/dL, PG: 118 ± 6 vs. 139 ± 8; both p < 0.05) and impaired glucose tolerance (AUCglucose: 19,249 ± 1105 vs. 29,124 ± 1444, PG AUCglucose: 18,066 ± 947 vs. 25,135 ± 797; both p < 0.05) in vehicle-treated animals. IH-induced impairments in glucose tolerance were partially ameliorated with BQ-788 treatment (AUCglucose: 21,969 ± 662; p < 0.05). Fourteen-day IH also induced IR (AUCglucose: 7185 ± 401 vs. 8699 ± 401; p < 0.05). Treatment with BQ-788 decreased IR under IA (AUCglucose: 5281 ± 401, p < 0.05) and reduced worsening of IR with IH (AUCglucose: 7302 ± 401, p < 0.05). There was no effect of BQ-123 on IH-induced impairments in glucose tolerance or IR. Our results suggest that ET-1 plays a role in IH-induced impairments in glucose homeostasis.
Collapse
Affiliation(s)
- Jan Polak
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department for the Study of Obesity and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Naresh M. Punjabi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
Sourdon J, Lager F, Viel T, Balvay D, Moorhouse R, Bennana E, Renault G, Tharaux PL, Dhaun N, Tavitian B. Cardiac Metabolic Deregulation Induced by the Tyrosine Kinase Receptor Inhibitor Sunitinib is rescued by Endothelin Receptor Antagonism. Theranostics 2017; 7:2757-2774. [PMID: 28824714 PMCID: PMC5562214 DOI: 10.7150/thno.19551] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
The growing field of cardio-oncology addresses the side effects of cancer treatment on the cardiovascular system. Here, we explored the cardiotoxicity of the antiangiogenic therapy, sunitinib, in the mouse heart from a diagnostic and therapeutic perspective. We showed that sunitinib induces an anaerobic switch of cellular metabolism within the myocardium which is associated with the development of myocardial fibrosis and reduced left ventricular ejection fraction as demonstrated by echocardiography. The capacity of positron emission tomography with [18F]fluorodeoxyglucose to detect the changes in cardiac metabolism caused by sunitinib was dependent on fasting status and duration of treatment. Pan proteomic analysis in the myocardium showed that sunitinib induced (i) an early metabolic switch with enhanced glycolysis and reduced oxidative phosphorylation, and (ii) a metabolic failure to use glucose as energy substrate, similar to the insulin resistance found in type 2 diabetes. Co-administration of the endothelin receptor antagonist, macitentan, to sunitinib-treated animals prevented both metabolic defects, restored glucose uptake and cardiac function, and prevented myocardial fibrosis. These results support the endothelin system in mediating the cardiotoxic effects of sunitinib and endothelin receptor antagonism as a potential therapeutic approach to prevent cardiotoxicity. Furthermore, metabolic and functional imaging can monitor the cardiotoxic effects and the benefits of endothelin antagonism in a theranostic approach.
Collapse
Affiliation(s)
- Joevin Sourdon
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Franck Lager
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
| | - Thomas Viel
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Daniel Balvay
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Rebecca Moorhouse
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Evangeline Bennana
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
- 3P5 proteomics facility, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Renault
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Neeraj Dhaun
- University/British Heart Foundation Centre of Research Excellence, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Bertrand Tavitian
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
- Service de Radiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
15
|
Reynolds LJ, Credeur DP, Manrique C, Padilla J, Fadel PJ, Thyfault JP. Obesity, type 2 diabetes, and impaired insulin-stimulated blood flow: role of skeletal muscle NO synthase and endothelin-1. J Appl Physiol (1985) 2016; 122:38-47. [PMID: 27789766 DOI: 10.1152/japplphysiol.00286.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
Increased endothelin-1 (ET-1) and reduced endothelial nitric oxide phosphorylation (peNOS) are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), but studies examining these links in humans are limited. We sought to assess basal and insulin-stimulated endothelial signaling proteins (ET-1 and peNOS) in skeletal muscle from T2D patients. Ten obese T2D [glucose disposal rate (GDR): 6.6 ± 1.6 mg·kg lean body mass (LBM)-1·min-1] and 11 lean insulin-sensitive subjects (Lean GDR: 12.9 ± 1.2 mg·kg LBM-1·min-1) underwent a hyperinsulinemic-euglycemic clamp with vastus lateralis biopsies taken before and 60 min into the clamp. Basal biopsies were also taken in 11 medication-naïve, obese, non-T2D subjects. ET-1, peNOS (Ser1177), and eNOS protein and mRNA were measured from skeletal muscle samples containing native microvessels. Femoral artery blood flow was assessed by duplex Doppler ultrasound. Insulin-stimulated blood flow was reduced in obese T2D (Lean: +50.7 ± 6.5% baseline, T2D: +20.8 ± 5.2% baseline, P < 0.05). peNOS/eNOS content was higher in Lean under basal conditions and, although not increased by insulin, remained higher in Lean during the insulin clamp than in obese T2D (P < 0.05). ET-1 mRNA and peptide were 2.25 ± 0.50- and 1.52 ± 0.11-fold higher in obese T2D compared with Lean at baseline, and ET-1 peptide remained 2.02 ± 1.9-fold elevated in obese T2D after insulin infusion (P < 0.05) but did not increase with insulin in either group (P > 0.05). Obese non-T2D subjects tended to also display elevated basal ET-1 (P = 0.06). In summary, higher basal skeletal muscle expression of ET-1 and reduced peNOS/eNOS may contribute to a reduced insulin-stimulated leg blood flow response in obese T2D patients. NEW & NOTEWORTHY Although impairments in endothelial signaling are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), human studies examining these links are limited. We provide the first measures of nitric oxide synthase and endothelin-1 expression from skeletal muscle tissue containing native microvessels in individuals with and without T2D before and during insulin stimulation. Higher basal skeletal muscle expression of endothelin-1 and reduced endothelial nitric oxide phosphorylation (peNOS)/eNOS may contribute to reduced insulin-stimulated blood flow in obese T2D patients.
Collapse
Affiliation(s)
- Leryn J Reynolds
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Daniel P Credeur
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique
- Department of Medicine-Division of Endocrinology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and.,Department of Child Health, University of Missouri, Columbia, Missouri
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - John P Thyfault
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri;
| |
Collapse
|
16
|
Mahmoud AM, Szczurek MR, Blackburn BK, Mey JT, Chen Z, Robinson AT, Bian JT, Unterman TG, Minshall RD, Brown MD, Kirwan JP, Phillips SA, Haus JM. Hyperinsulinemia augments endothelin-1 protein expression and impairs vasodilation of human skeletal muscle arterioles. Physiol Rep 2016; 4:e12895. [PMID: 27796268 PMCID: PMC5002909 DOI: 10.14814/phy2.12895] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Hyperinsulinemia is a hallmark of insulin resistance-associated metabolic disorders. Under physiological conditions, insulin maintains a balance between nitric oxide (NO) and, the potent vasoconstrictor, endothelin-1 (ET-1). We tested the hypothesis that acute hyperinsulinemia will preferentially augment ET-1 protein expression, disrupt the equilibrium between ET-1 expression and endothelial NO synthase (eNOS) activation, and subsequently impair flow-induced dilation (FID) in human skeletal muscle arterioles. Skeletal muscle biopsies were performed on 18 lean, healthy controls (LHCs) and 9 older, obese, type 2 diabetics (T2DM) before and during (120 min) a 40 mU/m2/min hyperinsulinemic-euglycemic (5 mmol/L) clamp. Skeletal muscle protein was analyzed for ET-1, eNOS, phosphorylated eNOS (p-eNOS), and ET-1 receptor type A (ETAR) and B (ETBR) expression. In a subset of T2DM (n = 6) and LHCs (n = 5), FID of isolated skeletal muscle arterioles was measured. Experimental hyperinsulinemia impaired FID (% of dilation at ∆60 pressure gradient) in LHCs (basal: 74.2 ± 2.0; insulin: 57.2 ± 3.3, P = 0.003) and T2DM (basal: 62.1 ± 3.6; insulin: 48.9 ± 3.6, P = 0.01). Hyperinsulinemia increased ET-1 protein expression in LHCs (0.63 ± 0.04) and T2DM (0.86 ± 0.06) compared to basal conditions (LHCs: 0.44 ± 0.05, P = 0.007; T2DM: 0.69 ± 0.06, P = 0.02). Insulin decreased p-eNOS (serine 1177) only in T2DM (basal: 0.28 ± 0.07; insulin: 0.17 ± 0.04, P = 0.03). In LHCs, hyperinsulinemia disturbed the balance between ETAR and ETBR receptors known to mediate vasoconstrictor and vasodilator actions of ET-1, respectively. Moreover, hyperinsulinemia markedly impaired plasma NO concentration in both LHCs and T2DM These data suggest that hyperinsulinemia disturbs the vasomotor balance in human skeletal muscle favoring vasoconstrictive pathways, eventually impairing arteriolar vasodilation.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Mary R Szczurek
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Brian K Blackburn
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob T Mey
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Zhenlong Chen
- Department of Pharmacology and Anesthesiology, University of Illinois at Chicago, Chicago, Illinois
| | - Austin T Robinson
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - Jing-Tan Bian
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Terry G Unterman
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology and Anesthesiology, University of Illinois at Chicago, Chicago, Illinois
| | - Michael D Brown
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute Cleveland Clinic, Cleveland, Ohio
| | - Shane A Phillips
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
- Integrative Physiology Laboratory, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
17
|
Inagaki A, Maruo K, Furuichi Y, Miyatake S, Tamura K, Fujii NL, Manabe Y. An improved glucose transport assay system for isolated mouse skeletal muscle tissues. Biosci Biotechnol Biochem 2016; 80:2224-2230. [PMID: 27429207 DOI: 10.1080/09168451.2016.1210503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is a growing demand for a system in the field of sarcopenia and diabetes research that could be used to evaluate the effects of functional food ingredients that enhance muscle mass/contractile force or muscle glucose uptake. In this study, we developed a new type of in vitro muscle incubation system that systemizes an apparatus for muscle incubation, using an electrode, a transducer, an incubator, and a pulse generator in a compact design. The new system enables us to analyze the muscle force stimulated by the electric pulses and glucose uptake during contraction and it may thus be a useful tool for analyzing the metabolic changes that occur during muscle contraction. The system may also contribute to the assessments of new food ingredients that act directly on skeletal muscle in the treatment of sarcopenia and diabetes.
Collapse
Affiliation(s)
- Akiko Inagaki
- a Department of Health Promotion Sciences, Graduate School of Human Health Sciences , Tokyo Metropolitan University , Hachioji , Japan
| | - Kanoko Maruo
- a Department of Health Promotion Sciences, Graduate School of Human Health Sciences , Tokyo Metropolitan University , Hachioji , Japan
| | - Yasuro Furuichi
- a Department of Health Promotion Sciences, Graduate School of Human Health Sciences , Tokyo Metropolitan University , Hachioji , Japan
| | - Shouta Miyatake
- a Department of Health Promotion Sciences, Graduate School of Human Health Sciences , Tokyo Metropolitan University , Hachioji , Japan
| | - Kotaro Tamura
- a Department of Health Promotion Sciences, Graduate School of Human Health Sciences , Tokyo Metropolitan University , Hachioji , Japan
| | - Nobuharu L Fujii
- a Department of Health Promotion Sciences, Graduate School of Human Health Sciences , Tokyo Metropolitan University , Hachioji , Japan
| | - Yasuko Manabe
- a Department of Health Promotion Sciences, Graduate School of Human Health Sciences , Tokyo Metropolitan University , Hachioji , Japan
| |
Collapse
|
18
|
Padilla J, Olver TD, Thyfault JP, Fadel PJ. Role of habitual physical activity in modulating vascular actions of insulin. Exp Physiol 2016; 100:759-71. [PMID: 26130183 DOI: 10.1113/ep085107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review highlights the importance of increased vascular insulin sensitivity for maintaining glycaemic control and cardiovascular health. What advances does it highlight? We discuss the role of habitual physical activity in modulating vascular actions of insulin. Type 2 diabetes and cardiovascular disease commonly coexist. Current evidence suggests that impaired insulin signalling in the vasculature may be a common link between metabolic and cardiovascular diseases, including glycaemic dysregulation and atherosclerosis. Herein, we highlight the importance of the actions of insulin on the vasculature for glycaemic control and arterial health. In addition, we summarize and discuss findings from our group and others demonstrating that increased physical activity may be an effective approach to enhancing vascular insulin sensitivity. Furthermore, in light of the existing literature, we formulate the hypothesis that increased shear stress may be a prime mechanism through which habitual physical activity improves insulin signalling in the vasculature. Ultimately, we propose that targeting vascular insulin resistance may represent a viable strategy for improving glycaemic control and reducing cardiovascular risk in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| | - T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - John P Thyfault
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
| | - Paul J Fadel
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
19
|
Mahmoud AM, Brown MD, Phillips SA, Haus JM. Skeletal Muscle Vascular Function: A Counterbalance of Insulin Action. Microcirculation 2016; 22:327-47. [PMID: 25904196 DOI: 10.1111/micc.12205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Insulin is a vasoactive hormone that regulates vascular homeostasis by maintaining balance of endothelial-derived NO and ET-1. Although there is general agreement that insulin resistance and the associated hyperinsulinemia disturb this balance, the vascular consequences for hyperinsulinemia in isolation from insulin resistance are still unclear. Presently, there is no simple answer for this question, especially in a background of mixed reports examining the effects of experimental hyperinsulinemia on endothelial-mediated vasodilation. Understanding the mechanisms by which hyperinsulinemia induces vascular dysfunction is essential in advancing treatment and prevention of insulin resistance-related vascular complications. Thus, we review literature addressing the effects of hyperinsulinemia on vascular function. Furthermore, we give special attention to the vasoregulatory effects of hyperinsulinemia on skeletal muscle, the largest insulin-dependent organ in the body. This review also characterizes the differential vascular effects of hyperinsulinemia on large conduit vessels versus small resistance microvessels and the effects of metabolic variables in an effort to unravel potential sources of discrepancies in the literature. At the cellular level, we provide an overview of insulin signaling events governing vascular tone. Finally, we hypothesize a role for hyperinsulinemia and insulin resistance in the development of CVD.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael D Brown
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Shane A Phillips
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Physical Therapy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, USA.,Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
DIAS INGRID, FARINATTI PAULO, DE SOUZA MARIADASGRAÇASCOELHO, MANHANINI DIOGOPIRES, BALTHAZAR ERICK, DANTAS DIEGOLEONARDOSIMPLICIO, DE ANDRADE PINTO EDUARDOHENRIQUE, BOUSKELA ELIETE, KRAEMER-AGUIAR LUIZGUILHERME. Effects of Resistance Training on Obese Adolescents. Med Sci Sports Exerc 2015; 47:2636-44. [DOI: 10.1249/mss.0000000000000705] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
de Boer MP, Meijer RI, Richter EA, van Nieuw Amerongen GP, Sipkema P, van Poelgeest EM, Aman J, Kokhuis TJA, Koolwijk P, van Hinsbergh VWM, Smulders YM, Serné EH, Eringa EC. Globular adiponectin controls insulin-mediated vasoreactivity in muscle through AMPKα2. Vascul Pharmacol 2015; 78:24-35. [PMID: 26363472 DOI: 10.1016/j.vph.2015.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 08/18/2015] [Accepted: 09/08/2015] [Indexed: 12/23/2022]
Abstract
Decreased tissue perfusion increases the risk of developing insulin resistance and cardiovascular disease in obesity, and decreased levels of globular adiponectin (gAdn) have been proposed to contribute to this risk. We hypothesized that gAdn controls insulin's vasoactive effects through AMP-activated protein kinase (AMPK), specifically its α2 subunit, and studied the mechanisms involved. In healthy volunteers, we found that decreased plasma gAdn levels in obese subjects associate with insulin resistance and reduced capillary perfusion during hyperinsulinemia. In cultured human microvascular endothelial cells (HMEC), gAdn increased AMPK activity. In isolated muscle resistance arteries gAdn uncovered insulin-induced vasodilation by selectively inhibiting insulin-induced activation of ERK1/2, and the AMPK inhibitor compound C as well as genetic deletion of AMPKα2 blunted insulin-induced vasodilation. In HMEC deletion of AMPKα2 abolished insulin-induced Ser(1177) phosphorylation of eNOS. In mice we confirmed that AMPKα2 deficiency decreases insulin sensitivity, and this was accompanied by decreased muscle microvascular blood volume during hyperinsulinemia in vivo. This impairment was accompanied by a decrease in arterial Ser(1177) phosphorylation of eNOS, which closely related to AMPK activity. In conclusion, globular adiponectin controls muscle perfusion during hyperinsulinemia through AMPKα2, which determines the balance between NO and ET-1 activity in muscle resistance arteries. Our findings provide a novel mechanism linking reduced gAdn-AMPK signaling to insulin resistance and impaired organ perfusion.
Collapse
Affiliation(s)
- Michiel P de Boer
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Rick I Meijer
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Geerten P van Nieuw Amerongen
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Sipkema
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Erik M van Poelgeest
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Jurjan Aman
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Tom J A Kokhuis
- Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pieter Koolwijk
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Victor W M van Hinsbergh
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Yvo M Smulders
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Erik H Serné
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Etto C Eringa
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands; Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Campia U, Tesauro M, Di Daniele N, Cardillo C. The vascular endothelin system in obesity and type 2 diabetes: Pathophysiology and therapeutic implications. Life Sci 2014; 118:149-55. [DOI: 10.1016/j.lfs.2014.02.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/05/2014] [Accepted: 02/20/2014] [Indexed: 12/29/2022]
|
23
|
Selective endothelin ETA and dual ETA/ETB receptor blockade improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease. Life Sci 2014; 118:435-9. [DOI: 10.1016/j.lfs.2014.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 11/17/2022]
|
24
|
Incerpi S, Hsieh MT, Lin HY, Cheng GY, De Vito P, Fiore AM, Ahmed RG, Salvia R, Candelotti E, Leone S, Luly P, Pedersen JZ, Davis FB, Davis PJ. Thyroid hormone inhibition in L6 myoblasts of IGF-I-mediated glucose uptake and proliferation: new roles for integrin αvβ3. Am J Physiol Cell Physiol 2014; 307:C150-61. [PMID: 24808494 DOI: 10.1152/ajpcell.00308.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thyroid hormones L-thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3) have been shown to initiate short- and long-term effects via a plasma membrane receptor site located on integrin αvβ3. Also insulin-like growth factor type I (IGF-I) activity is known to be subject to regulation by this integrin. To investigate the possible cross-talk between T4 and IGF-I in rat L6 myoblasts, we have examined integrin αvβ3-mediated modulatory actions of T4 on glucose uptake, measured through carrier-mediated 2-deoxy-[3H]-D-glucose uptake, and on cell proliferation stimulated by IGF-I, assessed by cell counting, [3H]-thymidine incorporation, and fluorescence-activated cell sorting analysis. IGF-I stimulated glucose transport and cell proliferation via the cell surface IGF-I receptor (IGFIR) and, downstream of the receptor, by the phosphatidylinositol 3-kinase signal transduction pathway. Addition of 0.1 nM free T4 caused little or no cell proliferation but prevented both glucose uptake and proliferative actions of IGF-I. These actions of T4 were mediated by an Arg-Gly-Asp (RGD)-sensitive pathway, suggesting the existence of crosstalk between IGFIR and the T4 receptor located near the RGD recognition site on the integrin. An RGD-sequence-containing integrin inhibitor, a monoclonal antibody to αvβ3, and the T4 metabolite tetraiodothyroacetic acid all blocked the inhibition by T4 of IGF-I-stimulated glucose uptake and cell proliferation. Western blotting confirmed roles for activated phosphatidylinositol 3-kinase and extracellular regulated kinase 1/2 (ERK1/2) in the effects of IGF-I and also showed a role for ERK1/2 in the actions of T4 that modified the effects of IGF-I. We conclude that thyroid hormone inhibits IGF-I-stimulated glucose uptake and cell proliferation in L6 myoblasts.
Collapse
Affiliation(s)
- Sandra Incerpi
- Department of Sciences, University Roma Tre, Rome, Italy;
| | - Meng-Ti Hsieh
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Guei-Yun Cheng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Paolo De Vito
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - R G Ahmed
- Department of Zoology, Beni-Suef University, Beni-Suef, Egypt
| | - Rosanna Salvia
- Department of Sciences, University Roma Tre, Rome, Italy
| | | | - Stefano Leone
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Paolo Luly
- Department of Biology, University Tor Vergata, Rome, Italy
| | | | - Faith B Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York; Department of Medicine, Albany Medical College, Albany, New York
| |
Collapse
|
25
|
Timmerman KL, Volpi E. Endothelial function and the regulation of muscle protein anabolism in older adults. Nutr Metab Cardiovasc Dis 2013; 23 Suppl 1:S44-S50. [PMID: 22902187 PMCID: PMC3597759 DOI: 10.1016/j.numecd.2012.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 12/19/2022]
Abstract
Sarcopenia, the loss of skeletal muscle mass and function with aging, is a major contributor to frailty and morbidity in older adults. Recent evidence has emerged suggesting that endothelial dysfunction and insulin resistance of muscle protein metabolism may significantly contribute to the development of sarcopenia. In this article we review: 1) recent studies and theories on the regulation of skeletal muscle protein balance in older adults; 2) the link between insulin resistance of muscle protein synthesis and endothelial dysfunction in aging; 3) mechanisms for impaired endothelial responsiveness in aging; and 4) potential treatments that may restore the endothelial responsiveness and muscle protein anabolic sensitivity in older adults.
Collapse
Affiliation(s)
- K L Timmerman
- Department of Nutrition and Metabolism, The University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, The University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX, USA
| | - E Volpi
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, The University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
26
|
Abstract
Vascular endothelium is an important insulin target and plays a pivotal role in the development of metabolic insulin resistance provoked by the Western lifestyle. It acts as a "first-responder" to environmental stimuli such as nutrients, cytokines, chemokines and physical activity and regulates insulin delivery to muscle and adipose tissue and thereby affecting insulin-mediated glucose disposal by these tissues. In addition, it also regulates the delivery of insulin and other appetite regulating signals from peripheral tissues to the central nervous system thus influencing the activity of nuclei that regulate hepatic glucose production, adipose tissue lipolysis and lipogenesis, as well as food consumption. Resistance to insulin's vascular actions therefore broadly impacts tissue function and contribute to metabolic dysregulation. Moreover, vascular insulin resistance negatively impacts vascular health by affecting blood pressure regulation, vessel wall inflammation and atherogenesis thereby contributing to the burden of vascular disease seen with diabetes and metabolic syndrome. In the current review, we examined the evidence that supports the general concept of vascular endothelium as a target of insulin action and discussed the biochemical and physiological consequences of vascular insulin resistance.
Collapse
Affiliation(s)
- Eugene J Barrett
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | |
Collapse
|
27
|
Pernow J, Shemyakin A, Böhm F. New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 2012; 91:507-16. [PMID: 22483688 DOI: 10.1016/j.lfs.2012.03.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022]
Abstract
Endothelin-1 (ET-1) is a vasoconstrictor, proinflammatory and proliferative endothelial cell-derived peptide that is of significant importance in the regulation of vascular function. It is involved in the development of endothelial dysfunction including important interactions with nitric oxide. The expression and functional effects of ET-1 and its receptors are markedly altered during development of cardiovascular disease. Increased production of ET-1 and its receptors mediate many pathophysiological events contributing to the development of atherosclerosis and vascular complications in diabetes mellitus. The present review focuses on the pathophysiological role of ET-1 and the potential importance of ET receptors as a therapeutic target for treatment of these conditions.
Collapse
Affiliation(s)
- John Pernow
- Karolinska Institutet, Cardiology Unit, Department of Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
28
|
Barton M, Baretella O, Meyer MR. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction. Br J Pharmacol 2012; 165:591-602. [PMID: 21557734 PMCID: PMC3315033 DOI: 10.1111/j.1476-5381.2011.01472.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/04/2011] [Accepted: 04/25/2011] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
29
|
Shemyakin A, Salehzadeh F, Esteves Duque-Guimaraes D, Böhm F, Rullman E, Gustafsson T, Pernow J, Krook A. Endothelin-1 reduces glucose uptake in human skeletal muscle in vivo and in vitro. Diabetes 2011; 60:2061-7. [PMID: 21677282 PMCID: PMC3142065 DOI: 10.2337/db10-1281] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Endothelin (ET)-1 is a vasoconstrictor and proinflammatory peptide that may interfere with glucose uptake. Our objective was to investigate whether exogenous ET-1 affects glucose uptake in the forearm of individuals with insulin resistance and in cultured human skeletal muscle cells. RESEARCH DESIGN AND METHODS Nine male subjects (aged 61 ± 3 years) with insulin resistance (M value <5.5 mg/kg/min or a homeostasis model assessment of insulin resistance index >2.5) participated in a protocol using saline infusion followed by ET-1 infusion (20 pmol/min) for 2 h into the brachial artery. Forearm blood flow (FBF), endothelium-dependent vasodilatation, and endothelium-independent vasodilatation were assessed. Molecular signaling and glucose uptake were determined in cultured skeletal muscle cells. RESULTS ET-1 decreased forearm glucose uptake (FGU) by 39% (P < 0.05) after the 2-h infusion. ET-1 reduced basal FBF by 36% after the 2-h infusion (P < 0.05) and impaired both endothelium-dependent vasodilatation (P < 0.01) and endothelium-independent vasodilatation (P < 0.05). ET(A) and ET(B) receptor expression was detected on cultured skeletal muscle cells. One-hour ET-1 incubation increased glucose uptake in cells from healthy control subjects but not from type 2 diabetic patients. Incubation with ET-1 for 24 h reduced glucose uptake in cells from healthy subjects. ET-1 decreased insulin-stimulated Akt phosphorylation and increased phosphorylation of insulin receptor substrate-1 serine 636. CONCLUSIONS ET-1 not only induces vascular dysfunction but also acutely impairs FGU in individuals with insulin resistance and in skeletal muscle cells from type 2 diabetic subjects. These findings suggest that ET-1 may contribute to the development of insulin resistance in skeletal muscle in humans.
Collapse
Affiliation(s)
- Alexey Shemyakin
- Department of Medicine, Division of Cardiology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Endothelin-1 in peripheral arterial disease: a potential role in muscle damage. Pharmacol Res 2011; 63:473-6. [PMID: 21382494 DOI: 10.1016/j.phrs.2011.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 02/26/2011] [Accepted: 02/27/2011] [Indexed: 12/17/2022]
Abstract
The evidence for the role of endothelin-1 (ET-1) in endothelial dysfunction and atherosclerosis has been growing since its discovery. However most studies have focussed on cardiac disease and its role in peripheral arterial disease (PAD) is less clear. In addition to its role in the development and progression of atherosclerotic lesions in lower limb arteries, there is evidence that ET-1 adversely affects microvessels within the muscle and the viability of the ischemic muscle itself. This review summarises some of these findings which underscore the potential use of ET antagonists as an adjunct in the treatment of PAD.
Collapse
|