1
|
Calcaterra V, Cena H, Loperfido F, Rossi V, Grazi R, Quatrale A, De Giuseppe R, Manuelli M, Zuccotti G. Evaluating Phthalates and Bisphenol in Foods: Risks for Precocious Puberty and Early-Onset Obesity. Nutrients 2024; 16:2732. [PMID: 39203868 PMCID: PMC11357315 DOI: 10.3390/nu16162732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Recent scientific results indicate that diet is the primary source of exposure to endocrine-disrupting chemicals (EDCs) due to their use in food processing, pesticides, fertilizers, and migration from packaging to food, particularly in plastic or canned foods. Although EDCs are not listed on nutrition labels, their migration from packaging to food could inadvertently lead to food contamination, affecting individuals by inhalation, ingestion, and direct contact. The aim of our narrative review is to investigate the role of phthalates and bisphenol A (BPA) in foods, assessing their risks for precocious puberty (PP) and early-onset obesity, which are two clinical entities that are often associated and that share common pathogenetic mechanisms. The diverse outcomes observed across different studies highlight the complexity of phthalates and BPA effects on the human body, both in terms of early puberty, particularly in girls, and obesity with its metabolic disruptions. Moreover, obesity, which is independently linked to early puberty, might confound the relationship between exposure to these EDCs and pubertal timing. Given the potential public health implications, it is crucial to adopt a precautionary approach, minimizing exposure to these EDCs, especially in vulnerable populations such as children.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Roberta Grazi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Antonia Quatrale
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (H.C.); (F.L.); (R.D.G.)
| | - Matteo Manuelli
- Clinical Nutrition and Dietetics Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.R.); (R.G.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy;
| |
Collapse
|
2
|
Kim MR, Jung MK, Jee HM, Ha EK, Lee S, Han MY, Yoo EG. The association between phthalate exposure and pubertal development. Eur J Pediatr 2024; 183:1675-1682. [PMID: 38206396 DOI: 10.1007/s00431-023-05416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Antiandrogenic effect of phthalates have been reported; however, results regarding the effect of phthalate exposure in pubertal children have been inconsistent. We aimed to investigate the relationship between phthalate exposure and pubertal development, especially whether high molecular weight phthalates (HMWP) and low molecular weight phthalates (LMWP) are differently associated in boys and girls. Urinary phthalate metabolites (4 HMWPs and 3 LMWPs) in Korean children (236 boys and 202 girls, aged 10 to 12 years) were measured. The association between phthalate levels and pubertal development (pubertal stages self-reported by parents and sex steroid levels) was analyzed by generalized linear regression after adjusting for age, body mass index z score, and premature birth and/or low birth weight. Both the highest quartile of HMWP (Q4 vs Q1, adjusted odds ratio [OR], 0.238; 95% confidence interval [CI], 0.090-0.627; p = 0.004) and LMWP (Q4 vs Q1, adjusted OR, 0.373; 95% CI, 0.151-0.918; p = 0.032) were inversely associated with pubertal stages in boys, whereas the highest quartile of LMWP (Q4 vs Q1, adjusted OR, 2.431; 95% CI, 1.024-5.768; p = 0.044) was significantly related to advanced pubertal stages in girls. Testosterone levels in boys were significantly lower at the highest quartile of HMWP (adjusted β = - 0.251; 95% CI, - 0.476 to - 0.027; p = 0.028). However, in girls, we could not find any significant relationship between HMWP or LMWP and estradiol levels. CONCLUSIONS Our results suggest that phthalate exposure, especially exposure to the HMWP, may have inverse association with male pubertal development. Further investigation is required to verify the relationship of phthalate exposure and pubertal development in girls. WHAT IS KNOWN • Exposure to phthalates may have antiandrogenic effects. • Studies on the association between phthalates and pubertal development have yielded inconsistent results. WHAT IS NEW • Phthalate levels were inversely associated with self-reported pubertal stages in boys. • Exposure to phthalates might have a negative influence on male pubertal development.
Collapse
Affiliation(s)
- Mi Ra Kim
- Department of Pediatrics, CHA Ilsan Medical Center, CHA University School of Medicine, Goyang, Korea
| | - Mo Kyung Jung
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, Korea
| | - Sanghoo Lee
- Center for Companion Biomarker, Seoul Clinical Laboratories Healthcare, Yongin, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| | - Eun-Gyong Yoo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| |
Collapse
|
3
|
Curi TZ, Passoni MT, Lima Tolouei SE, de Araújo Ramos AT, França de Almeira SC, Scinskas ABAF, Romano RM, de Oliveira JM, Spercoski KM, Carvalho Dos Santos A, Dalsenter PR, Koch HM, Martino-Andrade AJ. Reproductive toxicity following in utero and lactational exposure to a human-relevant phthalate mixture in rats. Toxicol Sci 2023; 197:1-15. [PMID: 37788136 DOI: 10.1093/toxsci/kfad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
This rodent (Wistar rats) study examined reproductive effects of in utero/lactational exposure to a mixture of 6 antiandrogenic phthalates (PMix): diisobutyl phthalate, di-n-butyl phthalate, diisopentyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl phthalate, and diisononyl phthalate. The PMix was defined based on exposure data from pregnant women in Brazil. Experimental groups were established by extrapolating the estimated human dose to rats (0.1 mg/kg/day), followed by up to 3 additional doses corresponding to 5, 1000, and 5000 times the starting rat dose: 0 (control), 0.1, 0.5, 100, and 500 mg/kg/day. The fetal experiment assessed gestational exposure effects on fetal gonads, whereas the postnatal experiment evaluated reproductive parameters in males and females after in utero and lactational exposure. Prenatal exposure decreased fetal testicular testosterone production at 0.5 and 500 mg/kg/day. PMix 500 also reduced mRNA expression of steroidogenesis-related genes, upregulated transcript expression of the retinoic acid-degrading enzyme Cyp26b1, and increased multinucleated gonocytes incidence in fetal testes. Postnatal assessment revealed antiandrogenic effects at the highest dose, including reduced anogenital distance, nipple retention, and decreased weight of reproductive organs. Early puberty onset (preputial separation) was observed at the lowest dose in males. In contrast, females did not show significant changes in fetal and adult endpoints. Overall, the PMix recapitulated early and late male rat phthalate syndrome phenotypes at the highest dose, but also induced some subtle changes at lower doses, which warrant confirmation and mechanistic assessments. Our data support the use of epidemiologically defined mixtures for exposure risk assessments over traditional toxicological approaches.
Collapse
Affiliation(s)
- Tatiana Zauer Curi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Sara Emilia Lima Tolouei
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anderson Tadeu de Araújo Ramos
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Samara Christina França de Almeira
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anna Beatriz Abreu Ferraz Scinskas
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Renata Marino Romano
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | - Jeane Maria de Oliveira
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | | | - Ariany Carvalho Dos Santos
- Histopathology Laboratory, Department of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS 9804-970, Brazil
| | - Paulo Roberto Dalsenter
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Holger Martin Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bochum 44789, Germany
| | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| |
Collapse
|
4
|
Lan H, Hu Z, Gan H, Wu L, Xie S, Jiang Y, Ye D, Ye X. Association between exposure to persistent organic pollutants and pubertal timing in boys and girls: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115540. [PMID: 37801753 DOI: 10.1016/j.ecoenv.2023.115540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
In recent years, the phenomenon of abnormal pubertal timing in children has become increasingly common worldwide. Persistent organic pollutants (POPs) may be one of the risk factors contributing to this phenomenon, but the relationship between them is unclear based on current evidence. The purpose of this study was to determine the association of POPs exposure with pubertal timing in girls and boys by conducting a systematic review and meta-analysis. We searched PubMed and Embase databases for studies before June 1, 2023. Meta-analysis was performed by pooling relative risk (RR) or odds ratio (OR) or prevalence ratio (PR) or hazard ratio (HR) estimates with 95 % confidence intervals (CIs). Subgroup analysis, publication bias assessment and sensitivity analysis were also carried out. A total of 21 studies were included, involving 2479 boys and 8718 girls. The results of meta-analysis showed that exposure to POPs was significantly associated with delayed pubertal timing in girls (RR: 0.85; 95 % CI: 0.79-0.91; p < 0.001). There was no statistically significant association between exposure to POPs and pubertal timing in boys (RR: 1.18; 95 % CI: 0.99-1.40; p = 0.070). Subgroup analysis showed that there may be gender differences in the effects of exposure to POPs on pubertal timing. Our results suggested that exposure to POPs could delay pubertal timing in girls. However, based on current evidence, no significant association was found between POPs exposure and pubertal timing in boys.
Collapse
Affiliation(s)
- Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shushu Xie
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
5
|
Burns JS, Bather JR, Sergeyev O, Lee MM, Korrick SA, Sokolov S, Kovalev S, Koch HM, Lebedev AT, Mínguez-Alarcón L, Hauser R, Williams PL. Longitudinal association of prepubertal urinary phthalate metabolite concentrations with pubertal progression among a cohort of boys. ENVIRONMENTAL RESEARCH 2023; 233:116330. [PMID: 37348639 PMCID: PMC10575624 DOI: 10.1016/j.envres.2023.116330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/19/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Epidemiological studies have reported associations of anti-androgenic phthalate metabolite concentrations with later onset of male puberty, but few have assessed associations with progression. OBJECTIVES We examined the association of prepubertal urinary phthalate metabolite concentrations with trajectories of pubertal progression among Russian boys. METHODS At enrollment (ages 8-9 years), medical history, dietary, and demographic information were collected. At entry and annually to age 19 years, physical examinations including testicular volume (TV) were performed and spot urines collected. Each boy's prepubertal urine samples were pooled, and 15 phthalate metabolites were quantified by isotope dilution LC-MS/MS at Moscow State University. Metabolites of anti-androgenic parent phthalates were included: butylbenzyl (BBzP), di-n-butyl (DnBP), diisobutyl (DiBP), di(2-ethylhexyl) (DEHP) and diisononyl (DiNP) phthalates. We calculated the molar sums of DEHP, DiNP, and all AAP metabolites. We used group-based trajectory models (GBTMs) to identify subgroups of boys who followed similar pubertal trajectories from ages 8-19 years based on annual TV. We used multinomial and ordinal regression models to evaluate whether prepubertal log-transformed phthalate metabolite concentrations were associated with slower or faster pubertal progression trajectories, adjusting for covariates. RESULTS 304 boys contributed a total of 752 prepubertal urine samples (median 2, range: 1-6) for creation of individual pools. The median length of follow-up was 10.0 years; 79% of boys were followed beyond age 15. We identified three pubertal progression groups: slower (34%), moderate (43%), and faster (23%) progression. A standard deviation increase in urinary log-monobenzyl phthalate (MBzP) concentrations was associated with higher adjusted odds of being in the slow versus faster pubertal progression trajectory (aOR 1.47, 95% CI 1.06-2.04). None of the other phthalate metabolites were associated with pubertal progression. CONCLUSIONS On average, boys with higher concentrations of prepubertal urinary MBzP had a slower tempo of pubertal progression, perhaps attributable to the disruption of androgen-dependent biological pathways.
Collapse
Affiliation(s)
- J S Burns
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, 14th Floor, Boston, MA, 02115, USA.
| | - J R Bather
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 2, 4th Floor, Boston, MA, 02115, USA
| | - O Sergeyev
- Group of Epigenetic Epidemiology, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, 119992, Moscow, Russia
| | - M M Lee
- Nemours Children's Health/Sidney Kimmel Medical School, Jefferson University, 1600 Rockland Road, Wilmington, DE, USA
| | - S A Korrick
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, 14th Floor, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| | - S Sokolov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russia
| | - S Kovalev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russia
| | - H M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - A T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russia
| | - L Mínguez-Alarcón
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, 14th Floor, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| | - R Hauser
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, 14th Floor, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health Kresge Building, 9th Floor, Boston, MA, 02115, USA
| | - P L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 2, 4th Floor, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health Kresge Building, 9th Floor, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Li Y, Xiao N, Liu M, Liu Y, He A, Wang L, Luo H, Yao Y, Sun H. Dysregulation of steroid metabolome in follicular fluid links phthalate exposure to diminished ovarian reserve of childbearing-age women. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121730. [PMID: 37116568 DOI: 10.1016/j.envpol.2023.121730] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
The widespread use of phthalates (PAEs) has drawn increasing attention due to their endocrine disruption and reproductive toxicity, while the steroid metabolome is essential for follicular development. However, the mechanism by which PAE exposure affects ovarian reserve through the steroid metabolome remains unclear. This study recruited 264 childbearing-age women in Tianjin (China) from April 2019 to August 2020 in a cross-sectional design. Target metabolome analysis of 16 steroids was performed in follicular fluid (FF) to compare diminished ovarian reserve (DOR) against normal ovarian reserve (NOR) women and differential steroids were identified using binary logistic analyses. Further analysis of eleven PAE metabolites (mPAEs) in FF was conducted, and the retrieved oocyte number (RON) representing ovarian reserve was counted. Multiple linear regression and quantile-based g-computation (qgcomp) models were used to associate individual mPAEs and mPAE mixture with the DOR-related differential steroids in FF. Mediation analysis was used to discuss the mediating effect of DOR-related steroids on the association between mPAEs and RON. Androstenedione (A4), corticosterone (CORT), cortisol (COR) and cortisone were significantly down-regulated in FF from women with DOR. Nine mPAEs with detection frequencies greater than 60% and median concentrations of 0.02-4.86 ng/mL were incorporated into statistical models. Negative associations with COR and CORT were found for mono-ethyl phthalate (mEP), mono-(2-ethyl-5-oxohexyl) phthalate (mEOHP), and mono-2-ethylhexyl phthalate (mEHP). A positive association with cortisone was found for mEOHP, mEHP, monobutyl phthalate (mBP), and mono (2-isobutyl) phthalate (miBP). The qgcomp and mediation analyses revealed that mEP and mEOHP not only significantly contributed to the decline of COR and CORT in the mixed exposure but also indirectly reduced RON through the mediating effects of COR and CORT. In conclusion, PAE exposure may decrease ovarian reserve by downregulating COR and CORT.
Collapse
Affiliation(s)
- Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital/ Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Min Liu
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Shijitan Hospital, No. 10, Tieyi Road, Yangfangdian Street, Haidian District, Beijing, China
| | - Yarui Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Ana He
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology/Nankai University Affiliated Maternity Hospital/ Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Rivera-Núñez Z, Kinkade CW, Zhang Y, Rockson A, Bandera EV, Llanos AAM, Barrett ES. Phenols, Parabens, Phthalates and Puberty: a Systematic Review of Synthetic Chemicals Commonly Found in Personal Care Products and Girls' Pubertal Development. Curr Environ Health Rep 2022; 9:517-534. [PMID: 35867279 PMCID: PMC9742306 DOI: 10.1007/s40572-022-00366-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Exposure to endocrine disrupting chemicals through personal care products (PCPs) is widespread and may disrupt hormone-sensitive endpoints, such as timing of puberty. Given the well-documented (and ongoing) decline in age at menarche in many populations, we conducted a systematic review of the epidemiological literature on exposure to chemicals commonly found in PCPs (including certain phthalates, phenols, and parabens) in relation to girls' pubertal development. RECENT FINDINGS The preponderance of research on this topic has examined phthalate exposures with the strongest evidence indicating that prenatal monoethyl phthalate (MEP) concentrations may be associated with slightly earlier timing of puberty, including age at menarche. Findings examining peri-pubertal phthalate exposures and pubertal outcomes were less consistent as were studies of prenatal and peri-pubertal phenol exposures. Very few studies had examined parabens in relation to girls' pubertal development. Common study limitations included potential exposure misclassification related to use of spot samples and/or mistimed biomarker assessment with respect to the outcomes. The role of body size as a mediator in these relationships remains unresolved. Overall, evidence of associations between chemical exposures in PCPs and girls' pubertal development was conflicting. When associations were observed, effect sizes were small. Nevertheless, given the many environmental, social, and behavioral factors in the modern environment that may act synergistically to accelerate timing of puberty, even marginal changes may be cause for concern, with implications for cancer risk, mental health, and cardiometabolic disease in later life.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA. .,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Yingting Zhang
- Robert Wood Johnson Library of the Health Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Amber Rockson
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| |
Collapse
|
8
|
Bigambo FM, Zhang M, Zhang J, Yang X, Yu Q, Wu D, Wang X, Xia Y. Exposure to a mixture of personal care product and plasticizing chemicals in relation to reproductive hormones and menarche timing among 12–19 years old girls in NHANES 2013–2016. Food Chem Toxicol 2022; 170:113463. [PMID: 36220617 DOI: 10.1016/j.fct.2022.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
9
|
Berman YE, Doherty DA, Mori TA, Beilin LJ, Ayonrinde OT, Adams LA, Huang RC, Olynyk JK, Keelan JA, Newnham JP, Hart RJ. Associations between Prenatal Exposure to Phthalates and Features of the Metabolic Syndrome in Males from Childhood into Adulthood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15244. [PMID: 36429961 PMCID: PMC9690816 DOI: 10.3390/ijerph192215244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Phthalate metabolites are detectable within the majority of the population. Evidence suggests that a prenatal exposure to phthalates may be associated with the subsequent risks of obesity and elevated blood pressure. We hypothesised that a prenatal exposure to phthalates would lead to an increase in adverse cardiometabolic parameters through childhood and adulthood. The maternal serum phthalate measurements from the stored samples taken from Gen1 mothers at 18 and 34 weeks gestation were examined in relation to the cardiometabolic measures in 387 male offspring from the Raine Study. Data from the Gen2 follow-ups between 3 and 27 years were used. The primary outcomes were analysed longitudinally using linear mixed models for the repeated measures. Non-alcoholic fatty liver disease (NAFLD) was assessed at 17 years using logistic regression. A consistent positive relationship was observed between a prenatal exposure to mono-carboxy-iso-octyl phthalate (MCiOP) through adolescence into adulthood with systolic blood pressure. There were no other consistent cardiovascular associations. Mid-levels of prenatal exposures to Mono-n-butyl phthalate (MnBP) were associated with a greater incidence of NAFLD. Detectable Mono-3-carboxypropyl phthalate (MCPP) was associated with a lower serum HDL-C through late childhood into adulthood, while a higher prenatal exposure to mono-iso-butyl phthalate (MiBP), was associated with a higher LDL-C at 22 years of age. A mid-level prenatal exposure to mono-2-ethylhexyl phthalate (MEHP) metabolites was associated with higher insulin in adulthood, while a higher prenatal exposure to the sum of the Di-(2-ethyl-hexyl) phthalate (DEHP) and Di-iso-nonyl phthalate (DiNP) metabolites was associated with higher fasting serum glucose in adulthood. In conclusion, our study demonstrated that higher prenatal phthalate exposures to some phthalate metabolites was associated with some adverse metabolic profiles through adolescence into adulthood, although the consistent themes were limited to a few metabolites and the outcomes of systolic blood pressure, fasting insulin and glucose.
Collapse
Affiliation(s)
- Ye’elah E. Berman
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Dorota A. Doherty
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Trevor A. Mori
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Lawrence J. Beilin
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Oyekoya T. Ayonrinde
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Leon A. Adams
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Rae-Chi Huang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
| | - John K. Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Jeffrey A. Keelan
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - John P. Newnham
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Roger J. Hart
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| |
Collapse
|
10
|
Freire C, Castiello F, Lopez-Espinosa MJ, Beneito A, Lertxundi A, Jimeno-Romero A, Vrijheid M, Casas M. Association of prenatal phthalate exposure with pubertal development in Spanish boys and girls. ENVIRONMENTAL RESEARCH 2022; 213:113606. [PMID: 35716812 DOI: 10.1016/j.envres.2022.113606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phthalates are widespread, anti-androgenic chemicals known to alter early development, with possible impact on puberty timing. AIM To investigate the association of prenatal phthalate exposure with pubertal development in boys and girls. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and non-phthalate plasticizer DINCH® were quantified in two urine samples collected during pregnancy from mothers participating in the INMA Spanish cohort study. Pubertal assessment of their children at age 7-10 years (409 boys, 379 girls) was conducted using the parent-reported Pubertal Development Scale. Modified Poisson and Weighted Quantile Sum (WQS) regression was employed to examine associations between prenatal phthalates and risk of puberty onset, adrenarche, and gonadarche. Effect modification by child weight status was explored by stratified analysis. RESULTS Prenatal exposure to DEHP was associated with higher risk of puberty onset (relative risk [RR] = 1.32, 95% CI = 1.09-1.59 per each log-unit increase in concentrations) and gonadarche (RR = 1.23, 95% CI = 1.00-1.50) in boys and higher risk of adrenarche (RR = 1.25, 95% CI = 1.03-1.51) in girls at age 7-10 years. In boys, prenatal exposure to DEP, DnBP, and DEHP was also associated with higher risk of adrenarche or gonadarche (RRs = 1.49-1.80) in those with normal weight, and BBzP and DINCH® exposure with lower risk of adrenarche (RR = 0.49, 95% CI = 0.27-0.89 and RR = 0.47, 95% CI = 0.24-0.90, respectively) in those with overweight/obesity. In girls, DiBP, DnBP, and DINCH® were associated with slightly higher risk of gonadarche (RRs = 1.14-1.19) in those with overweight/obesity. In the WQS model, the phthalate mixture was not associated with puberty in boys or girls. CONCLUSION Prenatal exposure to certain phthalates was associated with pubertal development at age 7-10 years, especially earlier puberty in boys with normal weight and girls with overweight/obesity. However, there was no evidence of effect of the phthalate mixture on advancing or delaying puberty in boys or girls.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Pediatrics Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain.
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain.
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Alba Jimeno-Romero
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| |
Collapse
|
11
|
Liu M, Chen H, Dai H, Wang Y, Li J, Tian F, Li Z, Ge RS. Effects of bis (2-butoxyethyl) phthalate on adrenocortical function in male rats in puberty partially via down-regulating NR5A1/NR4A1/NR4A2 pathways. ENVIRONMENTAL TOXICOLOGY 2022; 37:2419-2433. [PMID: 35762508 DOI: 10.1002/tox.23607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Phthalates may interfere with the biosynthesis of steroid hormones in the adrenal cortex. Bis (2-butoxyethyl) phthalate (BBOP) is a phthalate containing oxygen atoms in the alcohol moiety. In this study, 35-day-old male Sprague-Dawley rats were daily gavaged with BBOP (0, 10, 100, 250, and 500 mg/kg body weight) for 21 days. BBOP did not affect the weight of body and adrenal glands. BBOP significantly reduced serum corticosterone levels at 250 and 500 mg/kg, and lowered aldosterone level at 500 mg/kg without affecting adrenocorticotropic hormone. BBOP did not alter the thickness of the adrenal cortex. BBOP significantly down-regulated the expression of steroidogenesis-related genes (Scarb1, Star, Cyp11a1, Cyp21, Cyp11b1, Cyp11b2, Nr5a1, Nr4a1, and Nr4a2) and proteins, and antioxidant enzymes (Sod1, Sod2, Gpx1, and Cat) and their proteins, while up-regulating the expression of Mc2r and Agtr1a at various doses. BBOP reduced the phosphorylation of AKT1, AKT2, and ERK1/2, as well as the levels of SIRT1 and PGC1α without affecting the phosphorylation of AMPK. BBOP significantly induced the production of reactive oxygen species and apoptosis rate in H295R cells at 100 μM and higher after 24 h of treatment. In conclusion, male rats exposed to BBOP in puberty have significant reduction of steroid biosynthesis with a potential mechanism that is involved in the decrease in the phosphorylation of AKT1, AKT2, ERK1/2, as well as SIRT1 and PGC1α and increase in ROS.
Collapse
Affiliation(s)
- Miaoqing Liu
- Department of Pediatric Surgery and Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiqiong Chen
- Department of Pediatric Surgery and Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haipeng Dai
- Department of Pediatric Surgery and Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fuhong Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongrong Li
- Department of Pediatric Surgery and Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Burns JS, Sergeyev O, Lee MM, Williams PL, Mínguez-Alarcón L, Plaku-Alakbarova B, Sokolov S, Kovalev S, Koch HM, Lebedev AT, Hauser R, Korrick SA. Associations of prepubertal urinary phthalate metabolite concentrations with pubertal onset among a longitudinal cohort of boys. ENVIRONMENTAL RESEARCH 2022; 212:113218. [PMID: 35390299 PMCID: PMC9310051 DOI: 10.1016/j.envres.2022.113218] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although phthalate exposures have been associated with adverse effects on male reproductive health, few studies have explored longitudinal associations with male pubertal development. OBJECTIVES We examined the association of prepubertal urinary concentrations of phthalate metabolites with age at pubertal onset in a prospective cohort of Russian boys. METHODS At enrollment at ages 8-9 years, medical history, dietary, and demographic information was collected. At entry and annually, physical examinations and pubertal staging [Genitalia (G), Pubarche (P), and testicular volume (TV, in ml)] were conducted and spot urines were collected. Prepubertal urine samples (defined as either TV = 1, 2 and G = 1, 2 or TV = 3 and G = 1) were pooled for each boy and phthalate metabolite concentrations were quantified using isotope dilution LC-MS/MS at Moscow State University. We measured 15 metabolites including those from anti-androgenic parent phthalates (AAPs) such as di (2-ethylhexyl) (DEHP) and di-isononyl (DiNP) phthalates as well as monobenzyl (MBzP), mono-n-butyl (MnBP), and mono-isobutyl (MiBP) metabolites. We calculated the molar sums of DEHP (∑DEHP), DiNP (∑DiNP), and AAP (∑AAP) metabolites. Separate interval-censored models were used to assess associations of quartiles of prepubertal phthalate metabolites with each pubertal onset indicator, G2+, P2+ and TV > 3 mL, adjusted for covariates and urine specific gravity. RESULTS 304 boys had 752 prepubertal urine samples (median 2, range: 1-6) for pooling. In adjusted models, higher urinary AAPs were consistently associated with later pubertal onset (P2) with mean shifts ranging from 8.4 to 14.2 months for the highest versus lowest quartiles. Significantly later onset for G2 and TV > 3 mL was observed for higher versus lower quartiles of MiBP, MBzP, ∑DEHP and ∑DiNP. CONCLUSIONS On average, boys with higher concentrations of prepubertal urinary AAPs had later pubertal onset by six months to over a year. The impact of AAPs on timing of male puberty may be attributable to disruption of androgen-dependent biological pathways.
Collapse
Affiliation(s)
- Jane S Burns
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA.
| | - Oleg Sergeyev
- Group of Epigenetic Epidemiology, Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, 119992, Moscow, Russia; Chapaevsk Medical Association, Meditsinskaya Str., 3a, Chapaevsk, Samara Region, 446100, Russia
| | - Mary M Lee
- Nemours Children's Health, 1600 Rockland Road, Wilmington, 19803, USA; Department of Pediatrics, Sidney Kimmel Medical School, Jefferson University, Philadelphia, PA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 2, Room 443, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Kresge Building, 9th Floor, Boston, MA, 02115, USA
| | - Lidia Mínguez-Alarcón
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| | - Bora Plaku-Alakbarova
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Epidemiology Division, Optuminsight Life Sciences, Boston, MA, USA
| | - Sergey Sokolov
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russian Federation
| | - Sergey Kovalev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russian Federation
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Albert T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Moscow, 119991, Leninskie Gory 1/3, Russian Federation
| | - Russ Hauser
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave., Kresge Building, 9th Floor, Boston, MA, 02115, USA
| | - Susan A Korrick
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 401 Park Drive, 3rd Floor West, Boston, MA, 02215, USA
| |
Collapse
|
13
|
Tian M, Wu S, Wang YX, Liu L, Zhang J, Shen H, Lu Y, Bao H, Huang Q. Associations of environmental phthalate exposure with male steroid hormone synthesis and metabolism: An integrated epidemiology and toxicology study. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129213. [PMID: 35739735 DOI: 10.1016/j.jhazmat.2022.129213] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Humans are simultaneously and constantly exposed to various lipophilic chain phthalate acid esters. The association of urinary phthalate metabolites with altered male steroid hormone synthesis and metabolism was examined using epidemiology and toxicology studies. We measured 8 phthalate metabolites [monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-n-octylphthalate (MOP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP)] and two sex hormones [testosterone (T) and estradiol (E2)] in single serum and repeated spot urine samples among 451 reproductive-age males. Moreover, in vitro experiments with Leydig cell MLTC-1 steroidogenesis and liver cell HepG2 efflux in response to mixed and individual phthalates were designed to simulate real-world scenarios of human exposure. As a joint mixture, the phthalate metabolite was inversely associated with serum T and E2 concentrations but positively associated with urinary T and E2 concentrations. Combined with in vitro experiments, DEHP metabolites were identified as the predominant contributor to the decline in hormone synthesis, and ATP-binding cassette (ABC) gene activation might be involved in hormone excretion. Exposure to environmentally relevant phthalates was associated with both altered steroid synthesis and excretion, which provides additional insights into the endocrine-disrupting potential of phthalates.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Shuangshan Wu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yanyang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huaqiong Bao
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 400020, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
14
|
Hu P, Pan C, Su W, Vinturache A, Hu Y, Dong X, Ding G. Associations between exposure to a mixture of phenols, parabens, and phthalates and sex steroid hormones in children 6-19 years from NHANES, 2013-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153548. [PMID: 35114227 DOI: 10.1016/j.scitotenv.2022.153548] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/25/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Humans are typically exposed to mixtures of environmental endocrine-disrupting chemicals simultaneously, but most studies have considered only a single chemical or a class of similar chemicals. OBJECTIVES We examined the association of exposure to mixtures of 7 chemicals, including 2 phenols [bisphenol A (BPA) and bisphenol S (BPS)], 2 parabens [methylparaben (MeP) and propyl paraben (PrP)], and 3 phthalate metabolites [Mono-benzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), mono (carboxyoctyl) phthalate (MCOP)] with sex steroid hormones. METHODS A total of 1179 children aged 6-19 years who had complete data on both 7 chemicals and sex steroid hormones of estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG) were analyzed from the U.S. National Health and Nutrition Examination Survey 2013-2016. Free androgen index (FAI) calculated by TT/SHBG, and the ratio of TT to E2 (TT/E2) were also estimated. Puberty was defined if TT ≥ 50 ng/dL in boys, E2 ≥ 20 pg/mL in girls; otherwise prepuberty was defined. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were performed to estimate the associations of individual chemical or chemical mixtures with sex hormones. RESULTS The linear regression showed that 2 phenols, 2 parabens, and 3 phthalate metabolites were generally negatively associated with E2, TT, FAI, and TT/E2, while positively with SHBG. Moreover, these associations were more pronounced among pubertal than prepubertal children. The aforementioned associations were confirmed when further applying WQS and BKMR, and the 3 phthalates metabolites were identified to be the most heavily weighing chemicals. CONCLUSIONS Exposure to phenols, parabens, and phthalates, either individuals or as a mixture, was negatively associated with E2, TT, FAI and TT/E2, while positively with SHBG. Those associations were stronger among pubertal children.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyu Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiwei Su
- Department of Respiratory Medicine, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Queen Elizabeth II Hospital, Alberta, Canada
| | - Yi Hu
- Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Miranda JP, Lardone MC, Rodríguez F, Cutler GB, Santos JL, Corvalán C, Pereira A, Mericq V. Genome-Wide Association Study and Polygenic Risk Scores of Serum DHEAS Levels in a Chilean Children Cohort. J Clin Endocrinol Metab 2022; 107:e1727-e1738. [PMID: 34748635 DOI: 10.1210/clinem/dgab814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Adrenarche reflects the developmental growth of the adrenal zona reticularis, which produces increasing adrenal androgen secretion (eg, dehydroepiandrosterone [DHEA]/dehydroepiandrosterone sulfate [DHEAS]) from approximately age 5 to 15 years. OBJECTIVE We hypothesized that the study of the genetic determinants associated with variations in serum DHEAS during adrenarche might detect genetic variants influencing the rate or timing of this process. METHODS Genome-wide genotyping was performed in participants of the Chilean pediatric Growth and Obesity Chilean Cohort Study (GOCS) cohort (n = 788). We evaluated the genetic determinants of DHEAS levels at the genome-wide level and in targeted genes associated with steroidogenesis. To corroborate our findings, we evaluated a polygenic risk score (PRS) for age at pubarche, based on the discovered variants, in children from the same cohort. RESULTS We identified one significant variant at the genome-wide level in the full cohort, close to the GALR1 gene (P = 3.81 × 10-8). In addition, variants suggestive of association (P < 1 × 10-5) were observed in PRLR, PITX1, PTPRD, NR1H4, and BCL11B. Stratifying by sex, we found variants suggestive of association in SERBP1 and CAMTA1/VAMP3 for boys and near ZNF98, TRPC6, and SULT2A1 for girls. We also found significant reductions in age at pubarche in those children with higher PRS for greater DHEAS based on these newly identified variants. CONCLUSION Our results disclose one variant associated with DHEAS concentrations at the level of genome-wide association study significance, and several variants with a suggestive association that may be involved in the genetic regulation of adrenarche.
Collapse
Affiliation(s)
- José Patricio Miranda
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
| | - María Cecilia Lardone
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Rodríguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | | | - José Luis Santos
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Corvalán
- Institute of Nutrition and Food Technology (INTA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ana Pereira
- Institute of Nutrition and Food Technology (INTA), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Kuiper JR, Braun JM, Calafat AM, Lanphear BP, Cecil KM, Chen A, Xu Y, Yolton K, Kalkwarf HJ, Buckley JP. Associations of pregnancy phthalate concentrations and their mixture with early adolescent bone mineral content and density: The Health Outcomes and Measures of the Environment (HOME) study. Bone 2022; 154:116251. [PMID: 34740813 PMCID: PMC8671261 DOI: 10.1016/j.bone.2021.116251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The developing fetus may be particularly susceptibility to environmental osteotoxicants, but studies of pregnancy phthalate exposures and childhood bone health are scarce. OBJECTIVES To examine relations of pregnancy phthalate exposure biomarkers with early adolescent bone mineral density (BMD) and bone mineral content (BMC) in a prospective birth cohort. METHODS We used data from 223 pregnant mothers and their children enrolled in a Cincinnati, OH area cohort from 2003 to 2006. We quantified monoethyl phthalate (MEP), monoisobutyl phthalate, monobutyl phthalate, monobenzyl phthalate, mono-(3-carboxypropyl) phthalate (MCPP), and four metabolites of di-2-ethylhexyl phthalate in maternal urine collected at 16 and 26 weeks gestation, and calculated the average of creatinine-standardized concentrations. Using dual x-ray absorptiometry measures at age 12 years, we calculated BMD and BMC Z-scores for six skeletal sites. In overall and sex-stratified models, we estimated covariate-adjusted associations per 2-fold increase in phthalate biomarker concentrations using linear regression, and estimated joint effects of the phthalate biomarkers mixture using Bayesian kernel machine regression (BKMR) and quantile g-computation. RESULTS In single phthalate models, several biomarkers were positively associated with BMC and BMD. For example, each doubling of MEP and MCPP, 1/3rd distal radius BMD Z-score increased by 0.09 (95% CI: 0.01, 0.17) and 0.16 (95% CI: 0.01, 0.31), respectively. For phthalate mixtures, associations were generally U-shaped among males and positive-linear among females, using both statistical methods. Mixture associations were strongest with forearm sites: in BKMR models, increasing all biomarkers from the 50th to 90th percentile was associated with a 0.64 (95% CI: 0.01, 1.28) greater 1/3rd distal radius BMD Z-score in males, and a 0.49 (95% CI: -0.13, 1.10) greater ultradistal radius BMD Z-score in females. DISCUSSION In this study, phthalate exposures during gestation were associated with increased BMD Z-scores in early adolescence, though further research is needed to determine implications for long-term skeletal health.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Heidi J Kalkwarf
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
17
|
Uldbjerg CS, Koch T, Lim YH, Gregersen LS, Olesen CS, Andersson AM, Frederiksen H, Coull BA, Hauser R, Juul A, Bräuner EV. OUP accepted manuscript. Hum Reprod Update 2022; 28:687-716. [PMID: 35466359 PMCID: PMC9434240 DOI: 10.1093/humupd/dmac013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/25/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Globally, the ages at pubertal onset for girls and boys have been decreasing during recent decades, partly attributed to excess body fat accumulation. However, a growing body of literature has recognized that endocrine disrupting chemicals (EDCs) may play an important role in this global trend, but the association has not yet been fully established. OBJECTIVE AND RATIONALE EDCs can interfere with normal hormone function and metabolism and play a role in pubertal onset. We aimed to systematically identify and evaluate the current evidence on the timing of pubertal onset in girls and boys following prenatal or postnatal exposures to xenobiotic EDCs. SEARCH METHODS Following PRISMA guidelines, we performed a systematic literature search of original peer-reviewed publications in the PubMed database through a block search approach using a combination of index MeSH and free text search terms. Publications were considered if they covered biomarkers of prenatal or postnatal exposures to xenobiotic EDCs (European Commission's list of category 1 EDCs) measured in maternal or child biospecimen and pubertal onset defined by the progression of the following milestones (and assessed in terms of the following measures): menarche (age), thelarche (Tanner staging) and pubarche (Tanner staging), in girls, and genital stage (Tanner staging), testicular volume (ml) and pubarche (Tanner staging), in boys. OUTCOMES The literature search resulted in 703 references, of which we identified 52 publications fulfilling the eligibility criteria for the qualitative trend synthesis and 23 publications for the meta-analysis. The qualitative trend synthesis provided data on 103 combinations of associations between prenatal or postnatal exposure to EDC compounds groups and puberty outcomes and the meta-analysis enabled 18 summary risk estimates of meta-associations. WIDER IMPLICATIONS Statistically significant associations in the qualitative trend synthesis suggested that postnatal exposure to phthalates may be associated with earlier thelarche and later pubarche. However, we did not find consistent evidence in the meta-analysis for associations between timing of pubertal onset in girls and boys and exposures to any of the studied xenobiotic EDCs. We were not able to identify specific pre- or postnatal windows of exposure as particularly critical and susceptible for effects of EDCs. Current evidence is subject to several methodological challenges and inconsistencies and evidence on specific exposure-outcome associations remains too scarce to firmly confirm EDC exposure as a risk factor for changes in age of pubertal onset in the general child population. To create a more uniform foundation for future comparison of evidence and to strengthen pooled studies, we recommend the use of more standardized approaches in the choice of statistical analyses, with exposure transformations, and in the definitions and assessments of puberty outcomes. The impact of mixtures of EDC exposures on the association also remains unestablished and would be valuable to elucidate for prenatal and postnatal windows of exposure. Future large, longitudinal epidemiological studies are needed to clarify the overall association.
Collapse
Affiliation(s)
| | | | - Y -H Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - L S Gregersen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - C S Olesen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - A -M Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - H Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - B A Coull
- Department of Biostatistics, T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| | - R Hauser
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA
| | - A Juul
- Correspondence address. Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. Tel: +45-3545-5085; E-mail: (A.J.); Tel: +45-4242-8550; E-mail: (E.V.B.)
| | - E V Bräuner
- Correspondence address. Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. Tel: +45-3545-5085; E-mail: (A.J.); Tel: +45-4242-8550; E-mail: (E.V.B.)
| |
Collapse
|
18
|
Lee I, Pälmke C, Ringbeck B, Ihn Y, Gotthardt A, Lee G, Alakeel R, Alrashed M, Tosepu R, Jayadipraja EA, Tantrakarnapa K, Kliengchuay W, Kho Y, Koch HM, Choi K. Urinary Concentrations of Major Phthalate and Alternative Plasticizer Metabolites in Children of Thailand, Indonesia, and Saudi Arabia, and Associated Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16526-16537. [PMID: 34846872 DOI: 10.1021/acs.est.1c04716] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phthalates are widely used in consumer products and are well-known for adverse endocrine outcomes. Di-(2-ethylhexyl) phthalate (DEHP), one of the most extensively used phthalates, has been rapidly substituted with alternative plasticizers in many consumer products. The aim of this study was to assess urinary phthalate and alternative plasticizer exposure and associated risks in children of three Asian countries with different geographical, climate, and cultural characteristics. Children were recruited from elementary schools of Saudi Arabia (n = 109), Thailand (n = 104), and Indonesia (n = 89) in 2017-2018, and their urine samples were collected. Metabolites of major phthalates and alternative plasticizers were measured in the urine samples by HPLC-MS/MS. Urinary metabolite levels differed substantially between the three countries. Metabolite levels of diisononyl phthalate (DiNP), diisodecyl phthalate (DiDP), di(2-ethylhexyl) terephthalate (DEHTP), and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) were the highest in Saudi children: Median urinary concentrations of oxo-MiNP, OH-MiDP, 5cx-MEPTP, and OH-MINCH were 8.3, 8.4, 128.0, and 2.9 ng/mL, respectively. Urinary DEHP metabolite concentrations were the highest in the Indonesian children. The hazard index (HI) derived for the plasticizers with antiandrogenicity based reference doses (RfDAA) was >1 in 86%, 80%, and 49% of the Saudi, Indonesian, and Thai children, respectively. DEHP was identified as a common major risk driver for the children of all three countries, followed by DnBP and DiBP depending on the country. Among alternative plasticizers, urinary DEHTP metabolites were detected at levels comparable to those of DEHP metabolites or higher among the Saudi children, and about 4% of the Saudi children exceeded the health based human biomonitoring (HBM)-I value. Priority plasticizers that were identified among the children of three countries warrant refined exposure assessment for source identification and relevant exposure reduction measures.
Collapse
Affiliation(s)
- Inae Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Benedikt Ringbeck
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Yunchul Ihn
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Alexandra Gotthardt
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Gowoon Lee
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Raid Alakeel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - May Alrashed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Medical and Molecular Genetics Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramadhan Tosepu
- Department of Environmental Health, Faculty of Public Health, University of Halu Oleo, Kendari 93232, Indonesia
| | | | - Kraichat Tantrakarnapa
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi 10400, Thailand
| | - Wissanupong Kliengchuay
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi 10400, Thailand
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam 13135, Republic of Korea
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum 44789, Germany
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
19
|
Ma T, Zhou Y, Xia Y, Jin H, Wang B, Wu J, Ding J, Wang J, Yang F, Han X, Li D. Environmentally relevant perinatal exposure to DBP disturbs testicular development and puberty onset in male mice. Toxicology 2021; 459:152860. [PMID: 34280466 DOI: 10.1016/j.tox.2021.152860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Di-n-butyl phthalate (DBP) is considered as a potential modifier of puberty. However, different results indicate that DBP plays an accelerated, delayed, or neutral role in the initiation of puberty. Furthermore, whether the effect of DBP on puberty will disrupt the function of reproductive system in the adults is still ambiguous. Therefore, we aimed to investigate the effect of maternal exposure to DBP on the onset of puberty in male offspring mice and the subsequent changes in the development of reproductive system. Here, pregnant mice were treated with 0 (control), 50, 250, or 500 mg/kg/day DBP in 1 mL/kg corn oil administered daily by oral gavage from gestation day (GD) 12.5 to parturition. Compared with the control group, the 50 mg/kg/day DBP group accelerated puberty onset and testicular development were quite remarkable in male offspring mice during early puberty. Furthermore, in 22-day male offspring mice, 50 mg/kg/day DBP induced increased levels of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone in serum, and promoted the expression of steroidogenesis-related genes in the testes. Testicular Leydig cells (LCs) were isolated from the testes of 3-week-old mice and treated with 0 (control), 0.1, 1 mM monobutyl phthalate (MBP, the active metabolite of DBP) for 24 h. Consistent with the in vivo results, the expression of steroidogenesis-related genes and testosterone production were increased in LCs following exposure to 0.1 mM MBP. In adulthood, testes of the male offspring mice exposed to all doses of DBP exhibited adverse morphology compared with the control group. These results demonstrated that maternal exposure to 50 mg/kg/day DBP induced earlier puberty and precocious development of the testis, and eventually damaged the reproductive system in the later life.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China; Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Junli Wang
- Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Fenglian Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
20
|
Associations between Prenatal Exposure to Phthalates and Timing of Menarche and Growth and Adiposity into Adulthood: A Twenty-Years Birth Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094725. [PMID: 33946657 PMCID: PMC8125681 DOI: 10.3390/ijerph18094725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
Phthalates are ubiquitous environmental chemicals with endocrine disrupting properties and potentially obesogenic effects. We hypothesised that antenatal phthalate exposure may influence growth and adiposity patterns in girls through childhood into adolescence. Among 1342 Raine Study singleton females, 462 had maternal serum and at least one outcome available up to 20 years of age. Individuals’ maternal serum collected at 18 and 34 weeks gestation was pooled and analyzed for concentrations of 32 metabolites of 15 phthalate diesters. Cox regression and linear models were used to determine associations between maternal phthalate levels and age at menarche, change in height and weight z-scores between birth and two years, height from birth to 20 years, BMI from two to 20 years, deviation from mid-parental height at age 20 and DEXA scan measures at age 20. Weak negative associations were detected with some phthalate metabolites and change in height and weight z-score during infancy. Weak positive associations between some of the high molecular weight phthalate metabolites and height z-score were detected during childhood. While still within the normal range, age at menarche was slightly delayed in girls with higher prenatal exposure to the higher molecular weight phthalate metabolites. We derived some associations between prenatal phthalate exposure with early growth patterns and age at menarche.
Collapse
|
21
|
Berman YE, Doherty DA, Main KM, Frederiksen H, Keelan JA, Newnham JP, Hart RJ. The influence of prenatal exposure to phthalates on subsequent male growth and body composition in adolescence. ENVIRONMENTAL RESEARCH 2021; 195:110313. [PMID: 33069699 DOI: 10.1016/j.envres.2020.110313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 05/13/2023]
Abstract
Phthalates are ubiquitous environmental chemicals with predominantly anti-androgenic, and potentially obesogenic effects. We hypothesised that antenatal phthalate exposure may influence subsequent boy's growth and body composition through childhood and adolescence. Among 1399 singleton males from the Raine Study, 410 had maternal serum and at least one height, BMI or DEXA outcome available after birth and up to 20 years of age. Maternal serum collected at 18 and 34 weeks' gestation was pooled, and analyzed for concentrations of 32 metabolites of 15 phthalate diesters. Their serum concentrations were categorized into undetectable/detectable levels or tertiles. Linear mixed models were used to determine associations between maternal serum phthalate levels and longitudinal height and body mass index (BMI) z-scores in boys from birth to 20 years of age (n = 250 and n = 295 respectively). Linear regression was used to determine associations between maternal phthalate levels and deviation from mid-parental height (n = 177) and DEXA scan outcomes (n = 191) at the 20 year follow-up. Weak positive associations of participants height z-score increase were detected with exposure to some phthalate metabolites in particular to the lower molecular weight phthalate metabolites. Less consistent findings, by mixed model analyses, were detected for BMI and body composition, by dual energy X-ray absorptiometry (DEXA), with some positive associations of phthalate metabolites with BMI and some negative associations with DEXA fat tissue measures, although no consistent findings were evident. In conclusion, we derived some associations of childhood growth with prenatal phthalate exposure, particularly with respect to the lower molecular weight phthalate metabolites.
Collapse
Affiliation(s)
- Ye'elah E Berman
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia
| | - Dorota A Doherty
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia; Division of Obstetrics and Gynaecology, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, WA, Australia, 6008
| | - Katharina M Main
- Department of Growth and Reproduction and International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction and International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Jeffrey A Keelan
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia; Division of Obstetrics and Gynaecology, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, WA, Australia, 6008
| | - John P Newnham
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia; Division of Obstetrics and Gynaecology, University of Western Australia, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, WA, Australia, 6008
| | - Roger J Hart
- Women and Infants Research Foundation, Carson House, King Edward Memorial Hospital, 374 Bagot Road, Subiaco, Perth, Australia.
| |
Collapse
|
22
|
Albrethsen J, Ljubicic ML, Juul A. Longitudinal Increases in Serum Insulin-like Factor 3 and Testosterone Determined by LC-MS/MS in Pubertal Danish Boys. J Clin Endocrinol Metab 2020; 105:5882032. [PMID: 32761207 DOI: 10.1210/clinem/dgaa496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Serum concentrations of the peptide hormone insulin-like factor 3 (INSL3) is a candidate marker for improved distinction between constitutional delay of growth and puberty (CDGP) and permanent hypogonadotropic hypogonadism (HH) in boys. AIM To assess the possible diagnostic role of LC-MS/MS-based INSL3 measurements as a marker of imminent puberty by comparison with testosterone (T) and luteinizing hormone (LH) levels in serum longitudinally collected from 18 healthy boys throughout puberty. RESULTS The first increase in serum LH was detected on average 4 months earlier, as compared with the first observed increases in INSL3 and T. When comparing the 2 testicular hormones only, we found that in 22% (4 of 18) of the boys the first increase in serum INSL3 was observed prior to the first observed increase in T, whereas in 44% (8 of 18) the first increase in T was observed before the first observed increase in INSL3. In the remaining 6 boys, the 2 testicular hormones showed the first increase at the same examination. CONCLUSION In some boys with delayed puberty, the first indication of testicular maturation may be detectable by observing serum INSL3. Further studies of LC-MS/MS determination of serum INSL3 in patients with CDGP and HH are warranted.
Collapse
Affiliation(s)
- Jakob Albrethsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marie Lindhardt Ljubicic
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and Mechanisms of Phthalates' Action on Reproductive Processes and Reproductive Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6811. [PMID: 32961939 PMCID: PMC7559247 DOI: 10.3390/ijerph17186811] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (I.P.); (B.K.); (M.Š.); (A.S.)
| | | | | | | | | |
Collapse
|
24
|
Sexual EDC-ucation: What we Have Learned About Endocrine-Disrupting Chemicals and Reproduction. CURRENT SEXUAL HEALTH REPORTS 2020. [DOI: 10.1007/s11930-020-00269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Almstrup K, Frederiksen H, Andersson AM, Juul A. Levels of endocrine-disrupting chemicals are associated with changes in the peri-pubertal epigenome. Endocr Connect 2020; 9:845-857. [PMID: 32755991 PMCID: PMC7487188 DOI: 10.1530/ec-20-0286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022]
Abstract
Puberty marks a transition period, which leads to the attainment of adult sexual maturity. Timing of puberty is a strongly heritable trait. However, large genetic association studies can only explain a fraction of the observed variability and striking secular trends suggest that lifestyle and/or environmental factors are important. Using liquid-chromatography tandem-mass-spectrometry, we measured endocrine-disrupting chemicals (EDCs; triclosan, bisphenol A, benzophenone-3, 2,4-dichlorophenol, 11 metabolites from 5 phthalates) in longitudinal urine samples obtained biannually from peri-pubertal children included in the COPENHAGEN puberty cohort. EDC levels were associated with blood DNA methylation profiles from 31 boys and 20 girls measured both pre- and post-pubertally. We found little evidence of single methylation sites that on their own showed association with urinary excretion levels of EDCs obtained either the same-day or measured as the yearly mean of dichotomized EDC levels. In contrast, methylation of several promoter regions was found to be associated with two or more EDCs, overlap with known gene-chemical interactions, and form a core network with genes known to be important for puberty. Furthermore, children with the highest yearly mean of dichotomized urinary phthalate metabolite levels were associated with higher promoter methylation of the thyroid hormone receptor interactor 6 gene (TRIP6), which again was mirrored by lower circulating TRIP6 protein levels. In general, the mean TRIP6 promoter methylation was mirrored by circulating TRIP6 protein levels. Our results provide a potential molecular mode of action of how exposure to environmental chemicals may modify pubertal development.
Collapse
Affiliation(s)
- Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to K Almstrup:
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Ma T, Zhou Y, Xia Y, Meng X, Jin H, Wang B, Chen Y, Qiu J, Wu J, Ding J, Han X, Li D. Maternal Exposure to Di- n-butyl Phthalate Promotes the Formation of Testicular Tight Junctions through Downregulation of NF-κB/COX-2/PGE 2/MMP-2 in Mouse Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8245-8258. [PMID: 32525310 DOI: 10.1021/acs.est.0c01701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previous studies demonstrated that maternal exposure to di-n-butyl phthalate (DBP) resulted in developmental disorder of the male reproductive organ; however, the underlying mechanism has not been thoroughly elucidated to date. The present study was aimed to investigate the effects of maternal exposure to DBP on the formation of the Sertoli cell (SC)-based tight junctions (TJs) in the testes of male offspring mice and the underlying molecular mechanism. By observing the pathological structure and ultrastructure, permeability analysis of the testis of 22 day male offspring in vivo, and transepithelial electrical resistance measurement of inter-SCs in vitro, we found that the formation of TJs between SCs in offspring mice was accelerated, which was paralleled by the accumulation of TJ protein occludin at 50 mg/kg/day DBP exposure in utero and 0.1 mM monobutyl phthalate (MBP, the active metabolite of DBP) in vitro. Our in vitro results demonstrated that 0.1 mM MBP downregulated the expression of matrix metalloproteinase-2 (MMP-2) by inhibiting the activation of nuclear factor-κB (NF-κB)/cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) cascades via attenuated binding of NF-κB to both the MMP-2 promoter and COX-2 promoter. Taken together, the data confirmed that maternal exposure to a relatively low dose of DBP promoted the formation of testicular TJs through downregulation of NF-κB/COX-2/PGE2/MMP-2, which might promote the development of the testis during puberty. Our findings may provide new perspectives for prenatal DBP exposure, which is a potential environmental contributor, leading to earlier puberty in male offspring mice.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yusheng Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiayin Qiu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
27
|
Golestanzadeh M, Riahi R, Kelishadi R. Association of phthalate exposure with precocious and delayed pubertal timing in girls and boys: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:873-894. [PMID: 32091510 DOI: 10.1039/c9em00512a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exposure to phthalate derivatives has adverse effects on the health and development of humans, especially for children. A growing body of evidence supports the idea that exposure to phthalates can change an individual's physiological set point and the time of puberty in both genders. In this systematic review and meta-analysis, recent studies were evaluated to obtain systematic and regulation results in relation to puberty status and phthalate exposure in girls and boys. We searched English-language papers using Scopus, ISI, and PubMed databases as search engines, with no restriction of time, until the end of July 2019. A comprehensive literature search for an association between phthalate exposure and signs of puberty as well as levels of different types of hormones was carefully performed. Of the 67 studies retained for full-text screening, 39 studies were eligible for data management and extraction. For conducting a meta-analysis, four studies had appropriate effect size and metrics for pooling in the meta-analysis. Our findings revealed that low and high exposure to phthalates could alter pubertal development in both genders; the effects were either early or delayed puberty such as changes in the pubarche, thelarche, and menarche time, as well as in testicular volume. We statistically analyzed the association of pubic-hair development, breast development, and menarche time with exposure to phthalates in girls. For example, the pooled odds ratios of mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) in relation to breast development were (OR: 1.48, 95% CI: 1.11-1.85) and (OR: 1.52, 95% CI: 1.15-1.58) (P-value < 0.001), respectively. In addition, we analyzed the correlation between pubic-hair development and testicular volume with exposure to phthalates in boys. To the best of our knowledge, this is the first systematic review and meta-analysis of its kind for girls and boys. In conclusion, we found that a positive association exists between phthalate exposure and pubertal timing in the pediatric age group. Therefore, prevention of exposure to phthalates and reduction of their use should be underscored in the strategies for primordial prevention of pubertal timing and related consequences.
Collapse
Affiliation(s)
- Mohsen Golestanzadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | |
Collapse
|
28
|
Suh J, Choi HS, Kwon A, Chae HW, Kim HS. Effect of agricultural pesticide on precocious puberty in urban children: an exploratory study. Clin Exp Pediatr 2020; 63:146-150. [PMID: 32024321 PMCID: PMC7170788 DOI: 10.3345/cep.2019.00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/01/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The incidence of precocious puberty has increased throughout the 20th century. The association between precocious puberty and endocrine disrupting chemicals including agricultural pesticides has been a subject of global study, but human data are lacking. PURPOSE We investigated the relationship between agricultural pesticides and the development of precocious puberty. METHODS We enrolled 60 female subjects at Severance Children's Hospital from December 2015 to January 2017. Of them, 30 were diagnosed with precocious puberty, while the other 30 prepubertal girls were enrolled as normal controls. We investigated their clinical characteristics and analyzed the urinary levels of 320 different agricultural pesticides. RESULTS Agricultural pesticide was detected in one of 30 patients with precocious puberty (3.3%) versus 2 of 30 girls in the normal control group (3.3% vs. 6.7%, P=0.554). Dinotefuran, a neonicotinoid-class insecticide, was detected in the samples of all 3 positive subjects. CONCLUSION Our results showed no relationship between agricultural pesticides and the development of precocious puberty. Larger sample sizes and robustly controlled variables are necessary to further investigate this topic.
Collapse
Affiliation(s)
- Junghwan Suh
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Han Saem Choi
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ahreum Kwon
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Jøhnk C, Høst A, Husby S, Schoeters G, Timmermann CAG, Kyhl HB, Beck IH, Andersson AM, Frederiksen H, Jensen TK. Maternal phthalate exposure and asthma, rhinitis and eczema in 552 children aged 5 years; a prospective cohort study. Environ Health 2020; 19:32. [PMID: 32169083 PMCID: PMC7069194 DOI: 10.1186/s12940-020-00586-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/28/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Prenatal phthalate exposure has been suggested to alter immune responses and increase the risk of asthma, eczema and rhinitis. However, few studies have examined the effects in prospective cohorts and only one examined rhinitis. We therefore studied associations between maternal urinary concentrations of phthalate metabolites and asthma, eczema and rhinitis in offspring aged 5 years. METHODS From 552 pregnant women in the Odense Child Cohort, we quantified urinary concentrations of 12 phthalate metabolites in third trimester. We assessed asthma, rhinitis and eczema in their offspring at age 5 years with a questionnaire based on the International Study of Asthma and Allergies in Childhood (ISAAC), and conducted logistic regression adjusting for relevant confounders. RESULTS 7.4% of the children had asthma, 11.7% eczema and 9.2% rhinitis. Phthalate exposure was low compared to previous cohorts. No significant associations between prenatal phthalate exposure and asthma were found. Odds ratios (ORs) of child rhinitis with a doubling in ΣDiNPm and di-2-ethylhexyl phthalate metabolite (ΣDEHPm) concentrations were, respectively, 1.15 (95% confidence interval (CI) 0.97,1.36) and 1.21 (CI 0.93,1.58). The OR of eczema when doubling ΣDiNPm was 1.24 (CI 1.00,1.55), whereas the OR of using medicine against eczema when doubling a di-ethyl phthalate (DEP) metabolite was 0.81 (CI 0.68,0.96). CONCLUSION The lack of association between maternal phthalate exposure and asthma in the offspring may be due to low exposure and difficulties in determining asthma in 5-year-olds. The higher odds of rhinitis may raise public concern but further research in larger cohorts of older children is warranted.
Collapse
Affiliation(s)
- Camilla Jøhnk
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Arne Høst
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Steffen Husby
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
| | - Greet Schoeters
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Clara Amalie Gade Timmermann
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense, Denmark
| | - Iben Have Beck
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000 Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- Odense Patient data Explorative Network (OPEN), Odense, Denmark
| |
Collapse
|
30
|
Cathey A, Watkins DJ, Sánchez BN, Tamayo-Ortiz M, Solano-Gonzalez M, Torres-Olascoaga L, Téllez-Rojo MM, Peterson KE, Meeker JD. Onset and tempo of sexual maturation is differentially associated with gestational phthalate exposure between boys and girls in a Mexico City birth cohort. ENVIRONMENT INTERNATIONAL 2020; 136:105469. [PMID: 31931345 PMCID: PMC7024044 DOI: 10.1016/j.envint.2020.105469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 01/05/2020] [Indexed: 05/03/2023]
Abstract
Phthalates are endocrine disrupting compounds commonly found in consumer products, exposure to which may influence reproductive maturation. Effects from exposure in utero on the onset and progression of sexual development are understudied. We examined longitudinal associations between gestational phthalate exposure and sexual maturation at two points in adolescence (8-14, 9-18 years). Gestational exposure was quantified using the geometric mean of 3 trimester-specific urinary phthalate metabolite measurements. Sexual maturation was assessed using Tanner stages and menarche onset for girls and Tanner stages and testicular volume for boys. Generalized estimating equations for correlated ordinal multinomial responses were used to model relationships between phthalates and odds of transitioning to the next Tanner stage, while generalized additive (GA) mixed models were used to assess the odds of menarche. All models were adjusted for child age (centered around the mean), BMI z-score, change in BMI between visits, time (years) between visits (ΔT), and interactions between ΔT and mean-centered child age and the natural log of exposure metabolite concentration. Among girls, a doubling of gestational MBzP concentrations was associated with increased odds of being at a higher Tanner stage for breast development at 8-14 years (OR = 4.62; 95% CI: 1.38, 15.5), but with slower progression of breast development over the follow-up period (OR = 0.65 per year; 95% CI: 0.46, 0.92) after adjustment for child age and BMI z-score. Similar results were found for ∑DEHP levels and breast development. In boys, a doubling of gestational MBP concentrations was associated with lower odds of being at a higher Tanner stage for pubic hair growth at 8-14 years (OR = 0.37; 95% CI: 0.14, 0.95) but with faster progression (OR: 1.28; 95% CI: 0.97, 1.69). These results indicate that gestational phthalate exposures may impact the onset and progression of sexual development, and that these relationships differ between boys and girls.
Collapse
Affiliation(s)
- Amber Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico; Mexican Council of Science and Technology, Mexico City, Mexico
| | - Maritsa Solano-Gonzalez
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Libni Torres-Olascoaga
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Yao Y, Chen D, Wu Y, Zhou L, Cheng J, Li Y, Lu S, Yuan G, Liu G. Urinary phthalate metabolites in primary school starters in Pearl River Delta, China: Occurrences, risks and possible sources. ENVIRONMENTAL RESEARCH 2019; 179:108853. [PMID: 31678724 DOI: 10.1016/j.envres.2019.108853] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Assessment of children's exposure risks of phthalates before puberty is important, as phthalates are ubiquitous and are associated with reproductive development. However, relevant data in Pearl River Delta, China are scarce. Nineteen phthalate metabolites were analyzed in urine samples from 1490 primary school starters (6-8 years old) recruited in 2016-2017 using ultra-performance liquid chromatography and tandem mass spectrometry (UHPLC-MS/MS). Nine phthalate metabolites were detected more than 80% of the urine samples. Monobutyl phthalate (MnBP) was the highest metabolite (median, 212 μg/g creatinine), followed by two short chained phthalate metabolites, four secondary metabolites of di(2-ethylhexyl) phthalate (DEHP), and the primary metabolites of DEHP. The MnBP level was the third highest of those reported worldwide while other metabolites were in the lower range compared with previous studies. Significantly positive associations were found between urinary metabolite levels and family income as well as parent education levels (p < 0.05). Duration since the latest interior decoration was inversely associated with phthalate metabolites (p < 0.05). Significantly positive associations had also been found between the frequency of eating takeaway food and four DEHP metabolites (p < 0.01). The geometric mean of estimated daily intake (EDI) of di-n-butyl phthalate (DnBP), DEHP, di-iso-butyl phthalate (DiBP), dimethyl phthalate, diethyl phthalate and butylbenzyl phthalate (BBzP) were 6.24, 2.67, 1.06, 0.64, 0.44, and 0.01 μg/kg bw/day, respectively. Hazard quotient (HQ) was defined as the ratio of EDI and the tolerable daily intake (TDI). Approximately 38% children had HQ DnBP >1 indicating potential reproductive risks caused by DnBP. To evaluate cumulative exposure risks, hazard index (HI) was calculated as the sum of the HQs of DnBP, DiBP, DEHP, and BBzP. Nearly 48% children had HI > 1 suggesting extremely high cumulative risks in children in Pearl River Delta, China. To our best knowledge, this was the largest study on evaluating phthalate exposure among children in China.
Collapse
Affiliation(s)
- Yao Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China; Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyan Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yu Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Li Zhou
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yingying Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| |
Collapse
|
32
|
Radke EG, Glenn BS, Braun JM, Cooper GS. Phthalate exposure and female reproductive and developmental outcomes: a systematic review of the human epidemiological evidence. ENVIRONMENT INTERNATIONAL 2019; 130:104580. [PMID: 31351310 PMCID: PMC9400136 DOI: 10.1016/j.envint.2019.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/23/2018] [Accepted: 02/01/2019] [Indexed: 05/19/2023]
Abstract
OBJECTIVE We performed a systematic review of the epidemiology literature to identify the female reproductive and developmental effects associated with phthalate exposure. DATA SOURCES AND STUDY ELIGIBILITY CRITERIA Six phthalates were included in the review: di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), butyl benzyl phthalate (BBP), and diethyl phthalate (DEP). The initial literature search (of PubMed, Web of Science, and Toxline) included all studies of female reproductive and developmental effects in humans, and outcomes were selected for full systematic review based on data availability. STUDY EVALUATION AND SYNTHESIS METHODS For each outcome, studies were evaluated using criteria defined a priori for risk of bias and sensitivity by two reviewers using a domain-based approach. Evidence was synthesized by outcome and phthalate and strength of evidence was summarized using a structured framework. RESULTS The primary outcomes reviewed here are (number of included/excluded studies in parentheses): pubertal development (5/13), time to pregnancy (3/4), preterm birth (8/12), and spontaneous abortion (5/0). Among these outcomes, preterm birth had moderate evidence of a positive association with phthalate exposure (specifically DEHP, DBP, and DEP). Exposure levels for BBP, DIBP, and DINP were generally lower than for the phthalates with an observed effect, which may partially explain the difference due to lower sensitivity. Other phthalate/outcome combinations were considered to have slight or indeterminate evidence of an association. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Overall, these results support that some phthalates may be associated with higher odds of preterm birth in humans, though there is some remaining inconsistency. More evidence is needed on the mechanism and relevant exposure window for this association. The views expressed are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.
Collapse
Affiliation(s)
- Elizabeth G Radke
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, United States.
| | - Barbara S Glenn
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, United States
| | - Joseph M Braun
- Brown University, School of Public Health, United States
| | - Glinda S Cooper
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, United States; The Innocence Project, United States
| |
Collapse
|
33
|
Harley KG, Berger KP, Kogut K, Parra K, Lustig RH, Greenspan LC, Calafat AM, Ye X, Eskenazi B. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys. Hum Reprod 2019; 34:109-117. [PMID: 30517665 DOI: 10.1093/humrep/dey337] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/24/2018] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Are in-utero or peripubertal exposures to phthalates, parabens and other phenols found in personal care products associated with timing of pubertal onset in boys and girls? SUMMARY ANSWER We found some associations of altered pubertal timing in girls, but little evidence in boys. WHAT IS KNOWN ALREADY Certain chemicals in personal care and consumer products, including low molecular weight phthalates, parabens and phenols, or their precursors, are associated with altered pubertal timing in animal studies. STUDY DESIGN, SIZE, DURATION Data were from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) longitudinal cohort study which followed 338 children in the Salinas Valley, California, from before birth to adolescence. PARTICIPANTS/MATERIALS, SETTING, METHODS Pregnant women were enrolled in 1999-2000. Mothers were mostly Latina, living below the federal poverty threshold and without a high school diploma. We measured concentrations of three phthalate metabolites (monoethyl phthalate [MEP], mono-n-butyl phthalate and mono-isobutyl phthalate), methyl and propyl paraben and four other phenols (triclosan, benzophenone-3 and 2,4- and 2,5-dichlorophenol) in urine collected from mothers during pregnancy and from children at age 9. Pubertal timing was assessed among 179 girls and 159 boys every 9 months between ages 9 and 13 using clinical Tanner staging. Accelerated failure time models were used to obtain mean shifts of pubertal timing associated with concentrations of prenatal and peripubertal biomarkers. MAIN RESULTS AND THE ROLE OF CHANCE In girls, we observed earlier onset of pubic hair development with prenatal urinary MEP concentrations and earlier menarche with prenatal triclosan and 2,4-dichlorophenol concentrations. Regarding peripubertal biomarkers, we observed: earlier breast development, pubic hair development and menarche with methyl paraben; earlier menarche with propyl paraben; and later pubic hair development with 2,5-dichlorophenol. In boys, we observed no associations with prenatal urinary biomarker concentrations and only one association with peripubertal concentrations: earlier genital development with propyl paraben. LIMITATIONS, REASONS FOR CAUTION These chemicals are quickly metabolized and one to two urinary measurements per developmental point may not accurately reflect usual exposure. Associations of peripubertal measurements with parabens may reflect reverse causality: children going through puberty early may be more likely to use personal care products. The study population was limited to Latino children of low socioeconomic status living in a farmworker community and may not be widely generalizable. WIDER IMPLICATIONS OF THE FINDINGS This study contributes to a growing literature that suggests that exposure to certain endocrine disrupting chemicals may impact timing of puberty in children. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the National Institute of Environmental Health Sciences and the US Environmental Protection Agency. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Kim G Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA, USA
| | - Kimberly P Berger
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA, USA
| | - Katherine Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA, USA
| | - Kimberly Parra
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA, USA
| | - Robert H Lustig
- Department of Pediatrics, University of California, San Francisco, 550 16th Street, San Francisco, CA, USA
| | - Louise C Greenspan
- Department of Pediatrics, Kaiser Permanente, 2238 Geary Blvd., San Francisco, CA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, USA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, Atlanta, GA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, 1995 University Avenue, Berkeley, CA, USA
| |
Collapse
|
34
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Lee JE, Jung HW, Lee YJ, Lee YA. Early-life exposure to endocrine-disrupting chemicals and pubertal development in girls. Ann Pediatr Endocrinol Metab 2019; 24:78-91. [PMID: 31261471 PMCID: PMC6603611 DOI: 10.6065/apem.2019.24.2.78] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Over the last decades, the onset of puberty in girls has occurred earlier, but the tempo of pubertal progression has been relatively slower, resulting in a younger age at puberty onset without a change in age at menarche. Sufficient energy availability and adiposity contribute to early pubertal development, and environmental factors, such as endocrine-disrupting chemicals (EDCs), may affect not only the control of energy balance, but also puberty and reproduction. EDCs are hormonally active substances that can perturb puberty by acting both peripherally on target organs, such as adipose tissue or adrenal glands, and/or centrally on the hypothalamic-pituitary-gonadal (HPG) axis. Depending on whether the exposure takes place earlier during fetal and neonatal life or later during early childhood, EDCs can lead to different outcomes through different mechanisms. Evidence of associations between exposures to EDCs and altered pubertal timing makes it reasonable to support their relationship. However, human epidemiologic data are limited or inconsistent and cannot provide sufficient evidence for a causal relationship between EDC exposure and changes in pubertal timing. Further investigation is warranted to determine the overall or different effects of EDCs exposure during prenatal or childhood windows on pubertal milestones and to reveal the underlying mechanisms, including epigenetic marks, whereby early-life exposure to EDCs affect the HPG-peripheral tissue axis.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Department of Pediatrics, Inje University Busan Paik Hospital, Busan, Korea
| | - Hae Woon Jung
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea,Address for correspondence: Young Ah Lee, MD, PhD Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-2082 Fax: +82-2-2072-3917 E-mail:
| |
Collapse
|
36
|
Tian M, Liu L, Zhang J, Huang Q, Shen H. Positive association of low-level environmental phthalate exposure with sperm motility was mediated by DNA methylation: A pilot study. CHEMOSPHERE 2019; 220:459-467. [PMID: 30594797 DOI: 10.1016/j.chemosphere.2018.12.155] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/21/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Accumulating evidence indicates that phthalate exposures may affect human semen quality. Epigenetic modifications such as DNA methylation might be linked chemical exposure and spermatogenesis epigenetic reprogramming. In the present study, we investigated associations between phthalate exposures, DNA methylation and sperm quality in undergoing fertility assessment male population. Urine was used for phthalate exposures monitoring, six selected metabolites (i.e., monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl phthalate (MBP), monobenzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP) and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP)) were measured by using HPLC-MS/MS. Sperm quality parameters were determined by computer-assisted semen analysis (CASA). Sperm DNA methylation patterns (long interspersed nuclear element-1(LINE-1), H19 and LIT1) were analysed employing high-melting resolution (HRM) PCR. Urinary MMP, MEHP, MEOHP, sum of DEHP metabolites (∑DEHP) and sum of selected phthalates metabolites (∑PAEs) were significantly positively associated with sperm motility. Sperm LINE-1 DNA methylation were found to be negatively associated with ∑DEHP exposure and sperm quality (ejaculate volume, total sperm number and motility). Epigenetic modification LINE-1 DNA methylation demonstrated mediating effects in association between DEHP exposure and sperm motility, and 20.7% of the association was mediated by serum LIEN-1 DNA methylation. These results extend the previous studies in association between phthalate exposures and classical semen parameters, mainly of inverse association, and sperm DNA methylation may be linked phthalate exposures and male reproductive health outcome.
Collapse
Affiliation(s)
- Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangpo Liu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jie Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
37
|
Reeves KW, Díaz Santana M, Manson JE, Hankinson SE, Zoeller RT, Bigelow C, Sturgeon SR, Spiegelman D, Tinker L, Luo J, Chen B, Meliker J, Bonner MR, Cote ML, Cheng TYD, Calafat AM. Urinary Phthalate Biomarker Concentrations and Postmenopausal Breast Cancer Risk. J Natl Cancer Inst 2019; 111:1059-1067. [PMID: 30629220 PMCID: PMC6792088 DOI: 10.1093/jnci/djz002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/28/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Growing laboratory and animal model evidence supports the potentially carcinogenic effects of some phthalates, chemicals used as plasticizers in a wide variety of consumer products, including cosmetics, medications, and vinyl flooring. However, prospective data on whether phthalates are associated with human breast cancer risk are lacking. METHODS We conducted a nested case-control study within the Women's Health Initiative (WHI) prospective cohort (n = 419 invasive case subjects and 838 control subjects). Control subjects were matched 2:1 to case subjects on age, enrollment date, follow-up time, and WHI study group. We quantified 13 phthalate metabolites and creatinine in two or three urine samples per participant over one to three years. Multivariable conditional logistic regression analysis was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for breast cancer risk associated with each phthalate biomarker up to 19 years of follow-up. RESULTS Overall, we did not observe statistically significant positive associations between phthalate biomarkers and breast cancer risk in multivariable analyses (eg, 4th vs 1st quartile of diethylhexyl phthalate, OR = 1.03, 95% CI = 0.91 to 1.17). Results were generally similar in analyses restricted to disease subtypes, to nonusers of postmenopausal hormone therapy, stratified by body mass index, or to case subjects diagnosed within three, five, or ten years. CONCLUSIONS In the first prospective analysis of phthalates and postmenopausal breast cancer, phthalate biomarker concentrations did not result in an increased risk of developing invasive breast cancer.
Collapse
Affiliation(s)
- Katherine W Reeves
- Correspondence to: Katherine W. Reeves, PhD, MPH, Department of Biostatistics and Epidemiology, University of Massachusetts Amherst, 411 Arnold House, 715 North Pleasant Street, Amherst, MA 01003 (e-mail: )
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Segovia-Siapco G, Pribis P, Oda K, Sabaté J. Soy isoflavone consumption and age at pubarche in adolescent males. Eur J Nutr 2018; 57:2287-2294. [PMID: 28712053 DOI: 10.1007/s00394-017-1504-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Isoflavones have estrogenic properties that may adversely affect pubertal development of boys. We examined if soy isoflavone consumption is associated with age at pubarche (first onset of pubic hair) in a male population with a wide range of soy intake. METHODS Boys aged 12-18 years (n = 248) who attended schools around Adventist universities in Southern California and Michigan self-reported their age at pubarche. Intake of soy isoflavones was assessed using a validated Web-based food frequency questionnaire; consumption levels were designated as low, moderate, and high. Descriptives, time-to-event analysis, and Cox proportional hazards regression that controlled for confounders were performed. RESULTS Energy-adjusted mean intakes were 0.8-54.9 mg/d for total isoflavones, 0.4-22.1 mg/d for daidzein, and 0.4-28.0 mg/d for genistein. Moderate and high total soy isoflavone intake were significantly associated with earlier adjusted median age at pubarche: 12.58 years [RR (95% CI): 1.58 (1.06, 2.36)] for moderate and 12.50 years [RR (95% CI): 1.63 (1.03, 2.60)] for high vs. 13.00 years for low consumers. Similarly, daidzein and genistein consumption was also significantly associated with age at pubarche. No significant associations were found for facial hair for any of the isoflavones. CONCLUSIONS Age at pubarche in this male population widely exposed to soy is within the reported range for boys' pubarcheal age; moderate/high consumers tend to have it earlier compared to low consumers. Further studies are needed to ascertain that substantial exposure to soy isoflavones does not adversely affect pubertal development of boys.
Collapse
Affiliation(s)
- Gina Segovia-Siapco
- Center for Nutrition, Healthy Lifestyle, & Disease Prevention, School of Public Health, Loma Linda University, 24951 North Circle Drive, Loma Linda, CA 92350, USA.
| | - Peter Pribis
- Department of Individual, Family & Community Education, College of Education, University of New Mexico, Hokona Hall 157 MSC05 3040, Albuquerque, NM 87131-0001, USA
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle, & Disease Prevention, School of Public Health, Loma Linda University, 24951 North Circle Drive, Loma Linda, CA 92350, USA
| | - Joan Sabaté
- Center for Nutrition, Healthy Lifestyle, & Disease Prevention, School of Public Health, Loma Linda University, 24951 North Circle Drive, Loma Linda, CA 92350, USA
| |
Collapse
|
39
|
Binder AM, Corvalan C, Pereira A, Calafat AM, Ye X, Shepherd J, Michels KB. Prepubertal and Pubertal Endocrine-Disrupting Chemical Exposure and Breast Density among Chilean Adolescents. Cancer Epidemiol Biomarkers Prev 2018; 27:1491-1499. [PMID: 30158279 DOI: 10.1158/1055-9965.epi-17-0813] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/09/2017] [Accepted: 08/23/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND During puberty, mammary tissue undergoes rapid development, which provides a window of heightened susceptibility of breast composition to the influence of endogenous and exogenous hormones. Exposure to endocrine-disrupting chemicals (EDC) may affect breast development and composition and the risk of developing breast cancer in adulthood. METHODS We evaluated the associations between breast density and urinary concentrations of phenols and phthalates collected at Tanner 1 (B1) and Tanner 4 (B4) in 200 Chilean girls. Total breast volume (BV), fibroglandular volume (FGV), and percent dense breast (%FGV) were evaluated at B4 using dual X-ray absorptiometry. Generalized estimating equations were used to analyze the association between concentrations of EDC biomarkers across puberty and breast density. RESULTS The geometric mean %FGV was 7% higher among girls in the highest relative to the lowest tertile of monocarboxyisooctyl phthalate [1.07; 95% confidence interval (CI), 1.01-1.14]. Monoethyl phthalate concentrations at B4 were positively associated with FGV (highest vs. lowest tertile: 1.22; 95% CI, 1.06-1.40). Bisphenol A displayed a U-shaped association with FGV; girls in the middle tertile had at least 10% lower FGV than girls in the lowest or highest tertiles. Monocarboxyisononyl phthalate showed a nonlinear association with BV. No other statistically significant associations were observed. CONCLUSIONS Our results suggest that the developing breast tissue is susceptible to select EDCs during childhood and adolescence. IMPACT This study may spur further investigations into environmental influences on breast development during puberty and how shifts in pubertal breast density track through the life course to modify breast cancer risk.
Collapse
Affiliation(s)
- Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California
| | - Camila Corvalan
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John Shepherd
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, California.
| |
Collapse
|
40
|
Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci 2018; 19:E1647. [PMID: 29865233 PMCID: PMC6032228 DOI: 10.3390/ijms19061647] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Sergio Bernasconi
- Former Department of Medicine, University of Parma, Via A. Catalani 10, 43123 Parma, Italy.
| | - Ernesto Burgio
- ECERI European Cancer and Environment Research Institute, Square de Meeus, 38-40, 1000 Bruxelles, Belgium.
| | - Alessandra Cassio
- Pediatric Endocrinology Programme, Pediatrics Unit, Department of Woman, Child Health and Urologic Diseases, AOU S. Orsola-Malpighi, Via Massarenti, 11, 40138 Bologna, Italy.
| | - Cecilia Catellani
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Francesca Cirillo
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Annalisa Deodati
- Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Tor Vergata University, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrica Fabbrizi
- Department of Pediatrics and Neonatology, Augusto Murri Hospital, Via Augusto Murri, 17, 63900 Fermo, Itlay.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, via Ospedale, 54, 09124 Cagliari, Italy.
| | - Giancarlo Gargano
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Enzo Grossi
- Villa Santa Maria Institute, Neuropsychiatric Rehabilitation Center, Via IV Novembre 15, 22038 Tavernerio (Como), Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Pietro Lazzeroni
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Alberto Mantovani
- Department of Veterinary Public Health and Food Safety, Food and Veterinary Toxicology Unit ISS⁻National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Migliore
- Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56123 Pisa, Italy.
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy.
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126 Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole, 10, 10043 Orbassano (Turin), Italy.
| | - Anna Maria Papini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology-Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA)-University of Parma⁻11/a, 43124 Parma, Italy.
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Chiara Sartori
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Gabriele Tridenti
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sergio Amarri
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
41
|
Binder AM, Corvalan C, Calafat AM, Ye X, Mericq V, Pereira A, Michels KB. Childhood and adolescent phenol and phthalate exposure and the age of menarche in Latina girls. Environ Health 2018; 17:32. [PMID: 29615064 PMCID: PMC5883544 DOI: 10.1186/s12940-018-0376-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/20/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND The age of menarche has been associated with metabolic and cardiovascular disease, as well as cancer risk. The decline in menarcheal age over the past century may be partially attributable to increased exposure to endocrine disrupting chemicals (EDCs). METHODS We assessed the influence of 26 phenol and phthalate biomarkers on the timing of menarche in a longitudinal cohort of Chilean girls. These EDCs were quantified in urine collected prior to the onset of breast development (Tanner 1; B1), and during adolescence (Tanner 4; B4). Multivariable accelerated failure time (AFT) models were used to analyze associations between biomarker concentrations and the age of menarche adjusting for body mass index (BMI) Z-score and maternal education, accounting for within-subject correlation. RESULTS Several biomarkers were significantly associated with the age at menarche; however, these associations were dependent on the timing of biomarker assessment. A log(ng/ml) increase in B1 concentrations of di(2-ethylhexyl) phthalate biomarkers was associated with later menarche (hazard ratio (HR): 0.77; 95% CI: 0.60, 0.98), whereas higher B1 concentrations of 2,5-dichlorophenol and benzophenone-3 were associated with earlier menarche (HR: 1.13; 95% CI: 1.01, 1.27; HR: 1.17; 95% CI: 1.06, 1.29, respectively). Elevated B4 concentrations of monomethyl phthalate were similarly associated with earlier menarche (HR: 1.30; 95% CI: 1.10, 1.53). The impact of monoethyl phthalate and triclosan concentrations on pubertal timing were significantly modified by BMI Z-score. Higher monoethyl phthalate and triclosan concentrations were associated with earlier menarche among overweight or obese girls, but not among those that were normal weight. CONCLUSIONS This study identifies modulation of sexual maturation by specific EDC biomarkers in Latina girls.
Collapse
Affiliation(s)
- Alexandra M. Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA USA
| | - Camila Corvalan
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Verónica Mericq
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| | - Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Karin B. Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA USA
| |
Collapse
|
42
|
Sedtasiriphokin N, Supornsilchai V, Jantarat C, Nosoongnoen W. Phthalate exposure in Thai children and adolescents. ASIAN BIOMED 2018. [DOI: 10.1515/abm-2018-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Phthalates are found in products made of plastic. Because of concerns regarding the hazards of phthalate exposure, including endocrine disruption, many countries have regulations to restrict their use in products used by children. However, in Thailand, no such restrictions exist, and data relating to phthalate exposure are scarce.
Objectives
To determine the level of exposure of Thai children and adolescents to phthalates, and study its associations with sociodemographic data and the exposure to potential sources of phthalates.
Methods
Healthy children aged 2–18 y were enrolled into the present cross-sectional study between January 2016 and December 2016 inclusive. Their anthropometric indices and Tanner staging were determined. Urinary concentrations of the phthalate metabolites, monomethyl phthalate (MMP) and mono-n-butyl phthalate (MBP), were determined in spot samples by high-performance liquid chromatography to estimate the level of phthalate exposure. Associations between sociodemographic data, exposure to potential sources of phthalates, and phthalate metabolite concentrations were analyzed.
Results
We included 103 boys and 118 girls with a mean age of 9.4 ± 3.64 (range 2.8–17.1) y and detected MMP in 28.5% and MBP in 88.6%. The geometric means (interquartile range) of urinary MMP and MBP were 3400 (2489, 4642) and 214.4 (164, 279) μg/g creatinine (Cr), respectively. Significant associations were found between exposure to floor cleaning products and Cr-adjusted urinary MMP level (P < 0.05), and paint and Cr-adjusted urinary MMP and MBP levels (P < 0.05). Prepuberty was significantly associated with urinary Cr-adjusted MMP level.
Conclusion
Urinary phthalate metabolite levels were high in a proportion of Thai children and adolescents. Exposure to floor cleaning products and paint is associated with phthalate exposure, and advanced Tanner stage is negatively associated with urinary Cr-adjusted MBP.
Collapse
Affiliation(s)
- Nuttanun Sedtasiriphokin
- Department of Paediatrics , Faculty of Medicine , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Vichit Supornsilchai
- Division of Endocrinology , Department of Paediatrics, Faculty of Medicine , Chulalongkorn University , Bangkok 10330 , Thailand
| | - Chutima Jantarat
- School of Pharmacy , Walailak University , Nakhon Si Thammarat , 80161 , Thailand
| | - Wichit Nosoongnoen
- Department of Pharmacy , Faculty of Pharmacy , Mahidol University , Bangkok , 10400 , Thailand
| |
Collapse
|
43
|
Bourguignon JP, Juul A, Franssen D, Fudvoye J, Pinson A, Parent AS. Contribution of the Endocrine Perspective in the Evaluation of Endocrine Disrupting Chemical Effects: The Case Study of Pubertal Timing. Horm Res Paediatr 2018; 86:221-232. [PMID: 26799415 DOI: 10.1159/000442748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Debate makes science progress. In the field of endocrine disruption, endocrinology has brought up findings that substantiate a specific perspective on the definition of endocrine disrupting chemicals (EDCs), the role of the endocrine system and the endpoints of hormone and EDC actions among other issues. This paper aims at discussing the relevance of the endocrine perspective with regard to EDC effects on pubertal timing. Puberty involves particular sensitivity to environmental conditions. Reports about the advancing onset of puberty in several countries have led to the hypothesis that the increasing burden of EDCs could be an explanation. In fact, pubertal timing currently shows complex changes since advancement of some manifestations of puberty (e.g. breast development) and no change or delay of others (e.g. menarche, pubic hair development) can be observed. In a human setting with exposure to low doses of tenths or hundreds of chemicals since prenatal life, causation is most difficult to demonstrate and justifies a translational approach using animal models. Studies in rodents indicate an exquisite sensitivity of neuroendocrine endpoints to EDCs. Altogether, the data from both human and animal studies support the importance of concepts derived from endocrinology in the evaluation of EDC effects on puberty.
Collapse
Affiliation(s)
- Jean-Pierre Bourguignon
- Developmental Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Sart-Tilman, Liège, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Kasper-Sonnenberg M, Wittsiepe J, Wald K, Koch HM, Wilhelm M. Pre-pubertal exposure with phthalates and bisphenol A and pubertal development. PLoS One 2017; 12:e0187922. [PMID: 29155850 PMCID: PMC5695814 DOI: 10.1371/journal.pone.0187922] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Epidemiological studies indicate associations between childhood exposure with phthalates and bisphenol A (BPA) and the pubertal development. We examined associations between the pre-pubertal phthalate and BPA body burden and the longitudinally assessed sexual maturation of eight- to thirteen-year-old children. METHODS We started with eight- to ten-year-old children in the baseline study and quantified phthalate metabolites and BPA in 472 urine samples (250 boys; 222 girls; mean age: 8.8 years). Associations between the pubertal development, assessed in three annual follow-up studies by Puberty Development scale questionnaires (PD scales), and the chemical exposure from the baseline visit were longitudinally analyzed with generalized estimation equations. RESULTS The number of children with both chemical measures and PD scores (calculated from the PD scales) was 408. In the third follow-up, 49% of the girls and 18% of the boys had reached mid-puberty. For girls, we observed a delayed pubertal development with the di-hexyl-ethyl phthalate (DEHP) metabolites (β: -0.16 to -0.23; p ≤ 0.05 or p ≤ 0.1), mono-n-butyl phthalate (β: -0.15; 95% CI: -0.31; 0.01), mono-benzyl phthalate (β: -0.11; 95% CI: -0,24; -0,01), and mono-ethyl phthalate (MEP) (β: -0.15; 95% CI: -0.28; -0.01). In addition, significant non-linear associations of the DEHP metabolites and BPA with the PD scores were found, when their quadratic effects were included in the GEE models. In boys, no consistent relationships between the PD scores and the chemicals were detected except of an accelerated development with the ∑DEHP metabolites (β: 0.16; 95% CI: -0.02; -0.34). CONCLUSION We found indications that pre-pubertal exposures with phthalates and BPA were associated with pubertal timing in children, particularly in girls. For boys, associations were inconsistent, and not necessarily in line with the known anti-androgenicity of some phthalates during prenatal exposure.
Collapse
Affiliation(s)
- Monika Kasper-Sonnenberg
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | - Jürgen Wittsiepe
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Katharina Wald
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum, Bochum, Germany
| | - Michael Wilhelm
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
45
|
Watkins DJ, Sánchez BN, Téllez-Rojo MM, Lee JM, Mercado-García A, Blank-Goldenberg C, Peterson KE, Meeker JD. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. ENVIRONMENTAL RESEARCH 2017; 159:143-151. [PMID: 28800472 PMCID: PMC5623649 DOI: 10.1016/j.envres.2017.07.051] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/28/2017] [Accepted: 07/30/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Over the past several decades, the age of pubertal onset in girls has shifted downward worldwide. As early pubertal onset is associated with increased risky behavior and psychological issues during adolescence and cardiometabolic disease and cancer in adulthood, this is an important public health concern. Exposure to endocrine disrupting chemicals during critical windows of in utero development may play a role in this trend. Our objective was to investigate trimester-specific phthalate and BPA exposure in relation to pubertal development among girls in the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohort. METHODS We measured maternal urinary phthalate metabolites and BPA in samples collected during the first, second, and third trimesters of pregnancy. To assess reproductive development among their female children, we measured serum testosterone, estradiol, dehydroepiandrosterone sulfate (DHEA-S), inhibin B, and sex hormone-binding globulin (SHBG), and assessed sexual maturation, including Tanner staging for breast and pubic hair development and menarche status, at age 8-13 years (n = 120). We used linear and logistic regression to examine measures of trimester-specific in utero exposure as predictors of peripubertal hormone levels and pubertal onset, respectively. In secondary analyses, we evaluated estimated exposure at the midpoint of the first trimester and rates of change in exposure across pregnancy in relation to outcomes. RESULTS Several phthalate metabolites measured throughout in utero development were associated with higher serum testosterone concentrations, while a number of metabolites measured in the third trimester were associated with higher DHEA-S. For example, an interquartile range (IQR) increase in mean monoethyl phthalate (MEP) levels across pregnancy was associated with 44% higher peripubertal testosterone (95% CI: 13-83%), while an IQR increase in di-2-ethylhexyl phthalate metabolites (ΣDEHP) specifically in the third trimester was associated with 25% higher DHEA-S (95%CI: 4.7-47%). In IQR increase in mean mono-2-ethylhexyl phthalate (MEHP) levels across pregnancy was associated with lower odds of having a Tanner Stage >1 for breast development (OR = 0.32, 95%CI: 0.11-0.95), while MEHP in the third trimester was associated with higher odds of having a Tanner Stage >1 for pubic hair development (OR = 3.76, 95%CI: 1.1-12.8). Results from secondary analyses were consistent with findings from our main analysis. CONCLUSION These findings suggest that female reproductive development may be more vulnerable to the effects of phthalate or BPA exposure during specific critical periods of in utero development. This highlights the need for comprehensive characterizations of in utero exposure and consideration of windows of susceptibility in developmental epidemiological studies. Future research should consider repeated measures of in utero phthalate and BPA exposure within each trimester and across pregnancy.
Collapse
Affiliation(s)
- Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Joyce M Lee
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Pediatric Endocrinology, Child Health Evaluation and Research Unit (CHEAR), University of Michigan, Ann Arbor, MI, USA
| | - Adriana Mercado-García
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | | | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Overgaard LEK, Main KM, Frederiksen H, Stender S, Szecsi PB, Williams H, Thyssen JP. Children with atopic dermatitis and frequent emollient use have increased urinary levels of low-molecular-weight phthalate metabolites and parabens. Allergy 2017; 72:1768-1777. [PMID: 28281298 DOI: 10.1111/all.13157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Parabens may be added to cosmetic and personal care products for preservation purposes. Low-molecular weight (LMW) phthalate diesters function as plasticizers, fixatives or solvents in such products, but may also be found in small quantities as contaminants from plastic containers. OBJECTIVE To evaluate the association between emollient use, atopic dermatitis and FLG mutations, respectively, with urinary concentrations of phthalate metabolites and parabens in Danish children. METHODS Eight hundred and forty-five Danish children 4-9 years of age were studied. Urinary concentrations of phthalate metabolites and parabens were determined, and children were genotyped for common FLG loss-of-function mutations. Information about atopic dermatitis and use of emollients was obtained from questionnaires completed by parents. RESULTS The prevalence of atopic dermatitis was 16.1%. Phthalate metabolite and paraben levels were generally higher in children with frequent use of emollients compared to uncommon users, reaching statistical significance for some LMW phthalates and parabens. While there was no association with common FLG mutations, children with atopic dermatitis had significantly higher urinary levels of one LMW phthalate and two parabens, respectively, when compared to children without atopic dermatitis. CONCLUSION Emollient use and atopic dermatitis were associated with modestly increased internal LMW phthalate and paraben exposure in 4-9 year old children. It is unknown whether the difference is explained by increased use of the specific emollients that are used to treat pruritic and inflamed skin, and/or whether the impaired skin barrier allows chemicals to penetrate more easily. Moreover, the putative toxicological burden is unknown.
Collapse
Affiliation(s)
- L. E. K. Overgaard
- Dermatology and Allergy Copenhagen University Hospital Herlev and Gentofte Hellerup Denmark
| | - K. M. Main
- Growth and Reproduction Rigshospitalet University of Copenhagen Copenhagen Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC) Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - H. Frederiksen
- Growth and Reproduction Rigshospitalet University of Copenhagen Copenhagen Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC) Rigshospitalet University of Copenhagen Copenhagen Denmark
| | - S. Stender
- Department of Clinical Biochemistry Copenhagen University Hospital Herlev and Gentofte Hellerup Denmark
| | - P. B. Szecsi
- Department of Clinical Biochemistry Copenhagen University Hospital Herlev and Gentofte Hellerup Denmark
| | - H. C. Williams
- Centre of Evidence Based Dermatology University of Nottingham Nottingham UK
| | - J. P. Thyssen
- Dermatology and Allergy Copenhagen University Hospital Herlev and Gentofte Hellerup Denmark
- The National Allergy Research Centre Copenhagen University Hospital Herlev and Gentofte Hellerup Denmark
| |
Collapse
|
47
|
Deierlein AL, Wolff MS, Pajak A, Pinney SM, Windham GC, Galvez MP, Rybak M, Calafat AM, Kushi LH, Biro FM, Teitelbaum SL. Phenol Concentrations During Childhood and Subsequent Measures of Adiposity Among Young Girls. Am J Epidemiol 2017; 186:581-592. [PMID: 28525533 DOI: 10.1093/aje/kwx136] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
Phenolic compounds represent a class of environmental chemicals with potentially endocrine-disrupting capabilities. We investigated longitudinal associations between childhood exposure to phenols, from both manmade and natural sources, and subsequent measures of adiposity among girls enrolled in the Breast Cancer and the Environment Research Program between 2004 and 2007. Baseline (ages 6-8 years) urinary concentrations were obtained for creatinine and phenol metabolites: enterolactone, genistein, daidzein, benzophenone-3, bisphenol A, the sum of parabens (methyl, ethyl, and propyl parabens), 2,5-dichlorophenol, and triclosan. Body mass index (weight (kg)/height (m)2), waist circumference, and percent body fat were measured at annual or semiannual examinations through 2015 (n = 1,017). Linear mixed-effects regression was used to estimate how baseline concentrations of phenols (tertile groups) were related to changes in girls' adiposity measurements from ages 7 through 15 years. Enterolactone was inversely associated with body mass index, waist circumference, and percent body fat, while 2,5-dichlorophenol was positively associated with these measurements. A nonmonotonic association was observed for triclosan and girls' adiposity; however, it was due to effect modification by baseline overweight status. Triclosan was positively associated with adiposity only among overweight girls. These results suggest that exposure to specific phenols during childhood may influence adiposity through adolescence.
Collapse
|
48
|
Wen HJ, Sie L, Su PH, Chuang CJ, Chen HY, Sun CW, Huang LH, Hsiung CA, Julie Wang SL. Prenatal and childhood exposure to phthalate diesters and sex steroid hormones in 2-, 5-, 8-, and 11-year-old children: A pilot study of the Taiwan Maternal and Infant Cohort Study. J Epidemiol 2017; 27:516-523. [PMID: 28576446 PMCID: PMC5608604 DOI: 10.1016/j.je.2016.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Background Phthalate diesters are commonly used and have been well established as environmental endocrine disruptors. However, few studies have examined their effects on sex steroid hormones in children. We followed children over time to examine the association between pre- and post-natal phthalate exposure and sex steroid hormone levels at 2, 5, 8, and 11 years of age. Methods We recruited 430 pregnant women from central Taiwan from 2000 to 2001 and assessed their children at birth, 2, 5, 8, and 11 years of age. We studies children with at least one measurement for both phthalate and hormone levels during each any of the follow-up time point (n = 193). Estradiol, free testosterone, testosterone, and progesterone were measured from venous blood. Three monoesters of di-2-ethylhexyl phthalate (DEHP), mono-benzyl phthalate, mono-n-butyl phthalate, mono-ethyl phthalate, and mono-methyl phthalate were measured in maternal urine collected during the 3rd trimester and child urine collected at each follow-up point. The sum of mono-2-ethylhexyl phthalate (∑MEHP) was calculated by summing the concentrations of the three DEHP monoesters. Generalized estimating equation regression analysis with repeated measures was used to estimate associations between phthalate metabolites and hormone levels. Results After adjustment for potential confounders, maternal ∑MEHP level was associated with decreased levels of progesterone in girls (β = −0.309 p = 0.001). The child ∑MEHP concentration was associated with decreased levels of progesterone for girls (β = −0.194, p = 0.003) and with decreased levels of free testosterone for boys (β = −0.124, p = 0.004). Conclusions Early-life DEHP exposure may alter sex steroid hormones of children over time, which may pose potential reproductive health risks. Prenatal phthalate exposure was associated with decreased PG levels in girls. Postnatal DEHP exposure was related to decreased free TT in boys and PG in girls. Use of phthalate-containing products in developing children should be limited.
Collapse
Affiliation(s)
- Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Lillian Sie
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Jui Chuang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Manufacturing Technology Center, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan
| | - Hsiao-Yen Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Hua Huang
- Department of Nursing, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Li Julie Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Public Health, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
49
|
Wen HJ, Chen CC, Wu MT, Chen ML, Sun CW, Wu WC, Huang IW, Huang PC, Yu TY, Hsiung CA, Wang SL. Phthalate exposure and reproductive hormones and sex-hormone binding globulin before puberty - Phthalate contaminated-foodstuff episode in Taiwan. PLoS One 2017; 12:e0175536. [PMID: 28410414 PMCID: PMC5391940 DOI: 10.1371/journal.pone.0175536] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/28/2017] [Indexed: 12/01/2022] Open
Abstract
Background In May 2011, a major incident involving phthalates-contaminated foodstuffs occurred in Taiwan. Di-(2-ethylhexyl) phthalate (DEHP) was added to foodstuffs, mainly juice, jelly, tea, sports drink, and dietary supplements. Concerns arose that normal pubertal development, especially reproductive hormone regulation in children, could be disrupted by DEHP exposure. Objective To investigate the association between phthalate exposure and reproductive hormone levels among children following potential exposure to phthalate-tainted foodstuffs. Methods A total of 239 children aged <12 years old were recruited from 3 hospitals in north, central, and south Taiwan after the episode. Structured questionnaires were used to collect the frequency and quantity of exposures to 5 categories of phthalate-contaminated foodstuffs to assess phthalate exposure in children. Urine samples were collected for the measurement of phthalate metabolites. The estimated daily intake of DEHP exposure at the time of the contamination incident occurred was calculated using both questionnaire data and urinary DEHP metabolite concentrations. Multiple regression analyses were applied to assess associations between phthalate exposure and reproductive hormone levels in children. Results After excluding children with missing data regarding exposure levels and hormone concentrations and girls with menstruation, 222 children were included in the statistical analyses. After adjustment for age and birth weight, girls with above median levels of urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, and sum of mono-(2-ethylhexyl) phthalate concentrations had higher odds of above median follicle-stimulating hormone concentrations. Girls with above median estimated average daily DEHP exposures following the contamination episode also had higher odds of sex hormone-binding globulin above median levels. Conclusions Phthalate exposure was associated with alterations of reproductive hormone levels in girls.
Collapse
Affiliation(s)
- Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chu-Chih Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Tsang Wu
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Chiu Wu
- Taipei Hospital, Ministry of Health and Welfare, Taipei, Taiwan
| | - I-Wen Huang
- Department of gynecology and obstetrics, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Tzu-Yun Yu
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chao A. Hsiung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Division of Health Policy Translation, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- * E-mail: (CAH); (SLW)
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- * E-mail: (CAH); (SLW)
| | | |
Collapse
|
50
|
Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos. Sci Rep 2017; 7:43786. [PMID: 28266608 PMCID: PMC5339866 DOI: 10.1038/srep43786] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.
Collapse
|