1
|
Fuchs CJ, Betz MW, Petrick HL, Weber J, Senden JM, Hendriks FK, Bels JLM, van Loon LJC, Snijders T. Repeated passive heat treatment increases muscle tissue capillarization, but does not affect postprandial muscle protein synthesis rates in healthy older adults. J Physiol 2024. [PMID: 39373667 DOI: 10.1113/jp286986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Prolonged passive heat treatment (PHT) has been suggested to trigger skeletal muscle adaptations that may improve muscle maintenance in older individuals. To assess the effects of PHT on skeletal muscle tissue capillarization, perfusion capacity, protein synthesis rates, hypertrophy and leg strength, 14 older adults (9 males, 5 females; 73 ± 6 years) underwent 8 weeks of PHT (infrared sauna: 3× per week, 45 min at ∼60°C). Before and after PHT we collected muscle biopsies to assess skeletal muscle capillarization and fibre cross-sectional area (CSA). Basal and postprandial muscle tissue perfusion kinetics and protein synthesis rates were assessed using contrast-enhanced ultrasound and primed continuous l-[ring-13C6]phenylalanine infusions, respectively. One-repetition maximum (1RM) leg strength and vastus lateralis muscle CSA were assessed. Type I and type II muscle fibre capillarization strongly increased following PHT (capillary-to-fibre perimeter exchange index: +31 ± 18 and +33 ± 30%, respectively; P < 0.001). No changes were observed in basal (0.24 ± 0.27 vs. 0.18 ± 0.11 AU; P = 0.266) or postprandial (0.20 ± 0.12 vs. 0.18 ± 0.14 AU; P = 0.717) microvascular blood flow following PHT. Basal (0.048 ± 0.014 vs. 0.051 ± 0.019%/h; P = 0.630) and postprandial (0.041 ± 0.012 vs. 0.051 ± 0.024%/h; P = 0.199) muscle protein synthesis rates did not change in response to prolonged PHT. Furthermore, no changes in vastus lateralis muscle CSA (15.3 ± 4.6 vs. 15.2 ± 4.6 cm2; P = 0.768) or 1RM leg strength (46 ± 12 vs. 47 ± 12 kg; P = 0.087) were observed over time. In conclusion, prolonged PHT increases muscle tissue capillarization but this does not improve muscle microvascular blood flow or increase muscle protein synthesis rates in healthy, older adults. Prolonged PHT does not induce skeletal muscle hypertrophy or increase leg strength in healthy, older adults. KEY POINTS: Repeated exposure to heat has been suggested to trigger skeletal muscle adaptive responses. We investigated the effect of 8 weeks of whole-body passive heat treatment (PHT; infrared sauna: 3× per week for 45 min at ∼60°C) on skeletal muscle tissue capillarization, perfusion capacity, basal, and postprandial muscle protein synthesis rates, muscle (fibre) hypertrophy, and leg strength in healthy, older adults. Prolonged PHT increases muscle tissue capillarization, but this does not improve muscle microvascular blood flow or increase muscle protein synthesis rates. Despite increases in muscle tissue capillarization, prolonged PHT does not suffice to induce skeletal muscle hypertrophy or increase leg strength in healthy, older adults.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Milan W Betz
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Heather L Petrick
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jil Weber
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joan M Senden
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Floris K Hendriks
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Julia L M Bels
- Department of Intensive Care, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Tim Snijders
- Department of Human Biology, Research Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
2
|
Monteyne AJ, West S, Stephens FB, Wall BT. Reconsidering the pre-eminence of dietary leucine and plasma leucinemia for predicting the stimulation of postprandial muscle protein synthesis rates. Am J Clin Nutr 2024; 120:7-16. [PMID: 38705358 PMCID: PMC11251220 DOI: 10.1016/j.ajcnut.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The regulation of postprandial muscle protein synthesis (MPS) with or without physical activity has been an intensely studied area within nutrition and physiology. The leucine content of dietary protein and the subsequent plasma leucinemia it elicits postingestion is often considered the primary drivers of the postprandial MPS response. This concept, generally known as the leucine "trigger" hypothesis, has also been adopted within more applied aspects of nutrition. Our view is that recent evidence is driving a more nuanced picture of the regulation of postprandial MPS by revealing a compelling dissociation between ingested leucine or plasma leucinemia and the magnitude of the postprandial MPS response. Much of this lack of coherence has arisen as experimental progress has demanded relevant studies move beyond reliance on isolated amino acids and proteins to use increasingly complex protein-rich meals, whole foods, and mixed meals. Our overreliance on the centrality of leucine in this field has been reflected in 2 recent systematic reviews. In this perspective, we propose a re-evaluation of the pre-eminent role of these leucine variables in the stimulation of postprandial MPS. We view the development of a more complex intellectual framework now a priority if we are to see continued progress concerning the mechanistic regulation of postprandial muscle protein turnover, but also consequential from an applied perspective when evaluating the value of novel dietary protein sources.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sam West
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
3
|
Trommelen J, van Loon LJC. Quantification and interpretation of postprandial whole-body protein metabolism using stable isotope methodology: a narrative review. Front Nutr 2024; 11:1391750. [PMID: 38812936 PMCID: PMC11133538 DOI: 10.3389/fnut.2024.1391750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Stable isotopes are routinely applied to determine the impact of factors such as aging, disease, exercise, and feeding on whole-body protein metabolism. The most common approaches to quantify whole-body protein synthesis, breakdown, and oxidation rates and net protein balance are based on the quantification of plasma amino acid kinetics. In the postabsorptive state, plasma amino acid kinetics can easily be assessed using a constant infusion of one or more stable isotope labeled amino acid tracers. In the postprandial state, there is an exogenous, dietary protein-derived amino acid flux that needs to be accounted for. To accurately quantify both endogenous as well as exogenous (protein-derived) amino acid release in the circulation, the continuous tracer infusion method should be accompanied by the ingestion of intrinsically labeled protein. However, the production of labeled protein is too expensive and labor intensive for use in more routine research studies. Alternative approaches have either assumed that 100% of exogenous amino acids are released in the circulation or applied an estimated percentage based on protein digestibility. However, such estimations can introduce large artifacts in the assessment of whole-body protein metabolism. The preferred estimation approach is based on the extrapolation of intrinsically labeled protein-derived plasma bioavailability data obtained in a similar experimental design setting. Here, we provide reference data on exogenous plasma amino acid release that can be applied to allow a more accurate routine assessment of postprandial protein metabolism. More work in this area is needed to provide a more extensive reference data set.
Collapse
Affiliation(s)
| | - Luc J. C. van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
4
|
van der Heijden I, West S, Monteyne AJ, Finnigan TJA, Abdelrahman DR, Murton AJ, Stephens FB, Wall BT. Ingestion of a variety of non-animal-derived dietary protein sources results in diverse postprandial plasma amino acid responses which differ between young and older adults. Br J Nutr 2024; 131:1540-1553. [PMID: 38220222 PMCID: PMC11043913 DOI: 10.1017/s0007114524000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.
Collapse
Affiliation(s)
- Ino van der Heijden
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | - Sam West
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | - Alistair J. Monteyne
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | | | - Doaa R. Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew J. Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Francis B. Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| | - Benjamin T. Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, Heavitree Road, University of Exeter, ExeterEX1 2LU, UK
| |
Collapse
|
5
|
Hannaian SJ, Lov J, Hawley SE, Dargegen M, Malenda D, Gritsas A, Gouspillou G, Morais JA, Churchward-Venne TA. Acute ingestion of a ketone monoester, whey protein, or their co-ingestion in the overnight postabsorptive state elicit a similar stimulation of myofibrillar protein synthesis rates in young males: a double-blind randomized trial. Am J Clin Nutr 2024; 119:716-729. [PMID: 38215886 PMCID: PMC10972741 DOI: 10.1016/j.ajcnut.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Ketone bodies may have anabolic effects in skeletal muscle via their capacity to stimulate protein synthesis. Whether orally ingested exogenous ketones can stimulate postprandial myofibrillar protein synthesis (MyoPS) rates with and without dietary protein co-ingestion is unknown. OBJECTIVES This study aimed to evaluate the effects of ketone monoester intake and elevated blood β-hydroxybutyrate (β-OHB) concentration, with and without dietary protein co-ingestion, on postprandial MyoPS rates and mechanistic target of rapamycin complex 1 (mTORC1) pathway signaling. METHODS In a randomized, double-blind, parallel group design, 36 recreationally active healthy young males (age: 24.2 ± 4.1 y; body fat: 20.9% ± 5.8%; body mass index: 23.4 ± 2 kg/m2) received a primed continuous infusion of L-[ring-2H5]-phenylalanine and ingested one of the following: 1) the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET+PRO). Blood and muscle biopsy samples were collected during basal and postprandial (300 min) conditions to assess β-OHB, glucose, insulin, and amino acid concentrations, MyoPS rates, and mTORC1 pathway signaling. RESULTS Capillary blood β-OHB concentration increased similarly during postprandial conditions in KET and KET+PRO, with both being greater than PRO from 30 to 180 min (treatment × time interaction: P < 0.001). Postprandial plasma leucine and essential amino acid (EAA) incremental area under the curve (iAUC) over 300 min was greater (treatment: both P < 0.001) in KET+PRO compared with PRO and KET. KET, PRO, and KET+PRO stimulated postprandial MyoPS rates (0-300 min) higher than basal conditions [absolute change: 0.020%/h; (95% CI: 0.013, 0.027%/h), 0.014%/h (95% CI: 0.009, 0.019%/h), 0.019%/h (95% CI: 0.014, 0.024%/h), respectively (time: P < 0.001)], with no difference between treatments (treatment: P = 0.383) or treatment × time interaction (interaction: P = 0.245). mTORC1 pathway signaling responses did not differ between treatments (all P > 0.05). CONCLUSIONS Acute oral intake of a ketone monoester, 10 g whey protein, or their co-ingestion in the overnight postabsorptive state elicit a similar stimulation of postprandial MyoPS rates in healthy young males. This trial was registered at clinicaltrials.gov as NCT04565444 (https://clinicaltrials.gov/study/NCT04565444).
Collapse
Affiliation(s)
- Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Jamie Lov
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada
| | - Stephanie E Hawley
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada
| | - Manon Dargegen
- Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Divine Malenda
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada
| | - Ari Gritsas
- Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'activité Physique, Faculté des Sciences, UQAM, Montréal, Quebec, Canada
| | - José A Morais
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada; Division of Geriatric Medicine, McGill University, Montréal, Quebec, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Montréal, Quebec, Canada; Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada; Division of Geriatric Medicine, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
6
|
Pavis GF, Abdelrahman DR, Murton AJ, Wall BT, Stephens FB, Dirks ML. Nasogastric bolus administration of a protein-rich drink augments insulinaemia and aminoacidaemia but not whole-body protein turnover or muscle protein synthesis versus oral administration. Clin Sci (Lond) 2024; 138:43-60. [PMID: 38112515 DOI: 10.1042/cs20231126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Nasogastric feeding of protein-rich liquids is a nutritional support therapy that attenuates muscle mass loss. However, whether administration via a nasogastric tube per se augments whole-body or muscle protein anabolism compared with oral administration is unknown. Healthy participants were administered a protein-rich drink (225 ml containing 21 g protein) orally (ORAL; n=13; age 21 ± 1 year; BMI 22.2 ± 0.6 kg·m-2) or via a nasogastric tube (NG; n=13; age 21 ± 1 yr; BMI 23.9 ± 0.9 kg·m-2) in a parallel group design, balanced for sex. L-[ring-2H5]-phenylalanine and L-[3,3-2H2]-tyrosine were infused to measure postabsorptive and postprandial whole-body protein turnover. Skeletal muscle biopsies were collected at -120, 0, 120 and 300 min relative to drink administration to quantify temporal myofibrillar fractional synthetic rates (myoFSR). Drink administration increased serum insulin and plasma amino acid concentrations, and to a greater extent and duration in NG versus ORAL (all interactions P<0.05). Drink administration increased whole-body protein synthesis (P<0.01), suppressed protein breakdown (P<0.001), and created positive net protein balance (P<0.001), but to a similar degree in ORAL and NG (interactions P>0.05). Drink administration increased myoFSR from the postabsorptive state (P<0.01), regardless of route of administration in ORAL and in NG (interaction P>0.05). Nasogastric bolus administration of a protein-rich drink induces insulinaemia and aminoacidaemia to a greater extent than oral administration, but the postprandial increase in whole-body protein turnover and muscle protein synthesis was equivalent between administration routes. Nasogastric administration is a potent intervention to increase postprandial amino acid availability. Future work should assess its utility in overcoming impaired sensitivity to protein feeding, such as that seen in ageing, disuse, and critical care.
Collapse
Affiliation(s)
- George F Pavis
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, U.S.A
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, U.S.A
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, U.S.A
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, U.S.A
| | - Benjamin T Wall
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
| | - Francis B Stephens
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
| | - Marlou L Dirks
- Nutritional Physiology Group, Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon, U.K
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
van der Heijden I, West S, Monteyne AJ, Finnigan TJA, Abdelrahman DR, Murton AJ, Stephens FB, Wall BT. Algae Ingestion Increases Resting and Exercised Myofibrillar Protein Synthesis Rates to a Similar Extent as Mycoprotein in Young Adults. J Nutr 2023; 153:3406-3417. [PMID: 37716611 PMCID: PMC10739781 DOI: 10.1016/j.tjnut.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Spirulina [SPIR] (cyanobacterium) and chlorella [CHLO] (microalgae) are foods rich in protein and essential amino acids; however, their capacity to stimulate myofibrillar protein synthesis (MyoPS) in humans remains unknown. OBJECTIVES We assessed the impact of ingesting SPIR and CHLO compared with an established high-quality nonanimal-derived dietary protein source (fungal-derived mycoprotein [MYCO]) on plasma amino acid concentrations, as well as resting and postexercise MyoPS rates in young adults. METHODS Thirty-six healthy young adults (age: 22 ± 3 y; BMI: 23 ± 3 kg·m-2; male [m]/female [f], 18/18) participated in a randomized, double-blind, parallel-group trial. Participants received a primed, continuous infusion of L-[ring-2H5]-phenylalanine and completed a bout of unilateral-resistance leg exercise before ingesting a drink containing 25 g protein from MYCO (n = 12; m/f, 6/6), SPIR (n = 12; m/f, 6/6), or CHLO (n = 12; m/f, 6/6). Blood and bilateral muscle samples were collected at baseline and during a 4-h postprandial and postexercise period to assess the plasma amino acid concentrations and MyoPS rates in rested and exercised tissue. RESULTS Protein ingestion increased the plasma total and essential amino acid concentrations (time effects; all P < 0.001), but most rapidly and with higher peak responses following the ingestion of SPIR compared with MYCO and CHLO (P < 0.05), and MYCO compared with CHLO (P < 0.05). Protein ingestion increased MyoPS rates (time effect; P < 0.001) in both rested (MYCO, from 0.041 ± 0.032 to 0.060 ± 0.015%·h-1; SPIR, from 0.042 ± 0.030 to 0.066 ± 0.022%·h-1; and CHLO, from 0.037 ± 0.007 to 0.055 ± 0.019%·h-1, respectively) and exercised tissue (MYCO, from 0.046 ± 0.014 to 0.092 ± 0.024%·h-1; SPIR, from 0.038 ± 0.011 to 0.086 ± 0.028%·h-1; and CHLO, from 0.048 ± 0.019 to 0.090 ± 0.024%·h-1, respectively), with no differences between groups (interaction effect; P > 0.05), but with higher rates in exercised compared with rested muscle (time × exercise effect; P < 0.001). CONCLUSIONS The ingestion of a single bolus of algae-derived SPIR and CHLO increases resting and postexercise MyoPS rates to a comparable extent as MYCO, despite divergent postprandial plasma amino acid responses.
Collapse
Affiliation(s)
- Ino van der Heijden
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Sam West
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | | | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, United States
| | - Francis B Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
8
|
West S, Monteyne AJ, Whelehan G, van der Heijden I, Abdelrahman DR, Murton AJ, Finnigan TJA, Stephens FB, Wall BT. Ingestion of mycoprotein, pea protein, and their blend support comparable postexercise myofibrillar protein synthesis rates in resistance-trained individuals. Am J Physiol Endocrinol Metab 2023; 325:E267-E279. [PMID: 37529834 PMCID: PMC10655824 DOI: 10.1152/ajpendo.00166.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Pea protein is an attractive nonanimal-derived protein source to support dietary protein requirements. However, although high in leucine, a low methionine content has been suggested to limit its anabolic potential. Mycoprotein has a complete amino acid profile which, at least in part, may explain its ability to robustly stimulate myofibrillar protein synthesis (MyoPS) rates. We hypothesized that an inferior postexercise MyoPS response would be seen following ingestion of pea protein compared with mycoprotein, which would be (partially) rescued by blending the two sources. Thirty-three healthy, young [age: 21 ± 1 yr, body mass index (BMI): 24 ± 1 kg·m-2] and resistance-trained participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and completed a bout of whole body resistance exercise before ingesting 25 g of protein from mycoprotein (MYC, n = 11), pea protein (PEA, n = 11), or a blend (39% MYC, 61% PEA) of the two (BLEND, n = 11). Blood and muscle samples were taken pre-, 2 h, and 4 h postexercise/protein ingestion to assess postabsorptive and postprandial postexercise myofibrillar protein fractional synthetic rates (FSRs). Protein ingestion increased plasma essential amino acid and leucine concentrations (time effect; P < 0.0001), but more rapidly in BLEND and PEA compared with MYC (time × condition interaction; P < 0.0001). From similar postabsorptive values (MYC, 0.026 ± 0.008%·h-1; PEA, 0.028 ± 0.007%·h-1; BLEND, 0.026 ± 0.006%·h-1), resistance exercise and protein ingestion increased myofibrillar FSRs (time effect; P < 0.0001) over a 4-h postprandial period (MYC, 0.076 ± 0.004%·h-1; PEA, 0.087 ± 0.01%·h-1; BLEND, 0.085 ± 0.01%·h-1), with no differences between groups (all; P > 0.05). These data show that all three nonanimal-derived protein sources have utility in supporting postexercise muscle reconditioning.NEW & NOTEWORTHY This study provides evidence that pea protein (PEA), mycoprotein (MYC), and their blend (BLEND) can support postexercise myofibrillar protein synthesis rates following a bout of whole body resistance exercise. Furthermore, these data suggest that a methionine deficiency in pea may not limit its capacity to stimulate an acute increase in muscle protein synthesis (MPS).
Collapse
Affiliation(s)
- Sam West
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Gráinne Whelehan
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Ino van der Heijden
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas, United States
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas, United States
| | | | - Francis B Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Wilkinson K, Koscien CP, Monteyne AJ, Wall BT, Stephens FB. Association of postprandial postexercise muscle protein synthesis rates with dietary leucine: A systematic review. Physiol Rep 2023; 11:e15775. [PMID: 37537134 PMCID: PMC10400406 DOI: 10.14814/phy2.15775] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Dietary protein ingestion augments post (resistance) exercise muscle protein synthesis (MPS) rates. It is thought that the dose of leucine ingested within the protein (leucine threshold hypothesis) and the subsequent plasma leucine variables (leucine trigger hypothesis; peak magnitude, rate of rise, and total availability) determine the magnitude of the postprandial postexercise MPS response. METHODS A quantitative systematic review was performed extracting data from studies that recruited healthy adults, applied a bout of resistance exercise, ingested a bolus of protein within an hour of exercise, and measured plasma leucine concentrations and MPS rates (delta change from basal). RESULTS Ingested leucine dose was associated with the magnitude of the MPS response in older, but not younger, adults over acute (0-2 h, r2 = 0.64, p = 0.02) and the entire postprandial (>2 h, r2 = 0.18, p = 0.01) period. However, no single plasma leucine variable possessed substantial predictive capacity over the magnitude of MPS rates in younger or older adults. CONCLUSION Our data provide support that leucine dose provides predictive capacity over postprandial postexercise MPS responses in older adults. However, no threshold in older adults and no plasma leucine variable was correlated with the magnitude of the postexercise anabolic response.
Collapse
Affiliation(s)
- Kiera Wilkinson
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Christopher P. Koscien
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Alistair J. Monteyne
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Benjamin T. Wall
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Francis B. Stephens
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
10
|
Wegrzyn TF, Henare S, Ahlborn N, Ahmed Nasef N, Samuelsson LM, Loveday SM. The plasma amino acid response to blended protein beverages: a randomised crossover trial. Br J Nutr 2022; 128:1555-1564. [PMID: 35105389 DOI: 10.1017/s0007114521004591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Soya-dairy protein blends can extend post-exercise muscle synthesis in young people more than whey protein control. Older adults differ metabolically from young people, and their ability to absorb amino acids from dietary protein is important for muscle function. The objective was to determine how protein source affects postprandial plasma amino acid response and/or metabolomic profile in older adults via a single-blind randomised crossover trial (n 16, males 50-70 years), using three nutritionally equivalent meal replacement drinks containing 30 g protein, from a 1:1 (mass ratio) soya:dairy blend, a 1:2 soya:dairy blend or whey protein. The outcome measures were plasma amino acid concentrations at 0-300 min postprandially and urine metabolomic fingerprint. Soya:dairy drinks gave similar amino acid response in plasma over time and similar urinary metabolite fingerprints. However, there were significant differences in plasma amino acid concentrations and AUC values for the soya:dairy drinks v. the whey protein drink. AUC for Leu, Trp and Lys was lower and AUC for Phe and Pro was higher for the soya:dairy drinks. Differences partly reflected the amino acid profiles of the drinks, but overall plasma amino acid response patterns were qualitatively unchanged. Plasma amino acid differences between the whey protein drink and the soya:dairy blends were reflected in urine metabolite patterns. In conclusion, postprandial plasma amino acid responses were broadly similar, irrespective of protein source (and soya:dairy ratio). There were significant differences for some plasma amino acid concentrations, reflecting different amino acid profiles of the protein source and influencing urine metabolite fingerprints.
Collapse
Affiliation(s)
- Teresa F Wegrzyn
- Riddet Institute, Massey University, Palmerston North4442, New Zealand
| | - Sharon Henare
- School of Health Sciences, College of Health, Massey University, Palmerston North, New Zealand
| | - Natalie Ahlborn
- Smart Foods Innovation Centre of Excellence, AgResearch Limited, Tennent Drive, Palmerston North, New Zealand
| | - Noha Ahmed Nasef
- Riddet Institute, Massey University, Palmerston North4442, New Zealand
| | - Linda M Samuelsson
- Smart Foods Innovation Centre of Excellence, AgResearch Limited, Tennent Drive, Palmerston North, New Zealand
| | - Simon M Loveday
- Riddet Institute, Massey University, Palmerston North4442, New Zealand
- Smart Foods Innovation Centre of Excellence, AgResearch Limited, Tennent Drive, Palmerston North, New Zealand
| |
Collapse
|
11
|
Acute effects of prior dietary fat ingestion on postprandial metabolic responses to protein and carbohydrate co-ingestion in overweight and obese men: A randomised crossover trial. Clin Nutr 2022; 41:1623-1635. [PMID: 35764009 DOI: 10.1016/j.clnu.2022.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity and insulin resistance are associated with an impaired sensitivity to anabolic stimuli such as dietary protein (anabolic resistance). Omega-3 polyunsaturated fatty acids (n-3 PUFA) may be protective against the deleterious effects of saturated fatty acids (SFA) on insulin resistance. However, the contribution of excess fat consumption to anabolic and insulin resistance and the interaction between SFA and n-3 PUFA is not well studied. AIM The primary aim of this study was to investigate the effects of an oral fat pre-load, with or without the partial substitution of SFA with fish oil (FO)-derived n-3 PUFA, on indices of insulin and anabolic sensitivity in response to subsequent dietary protein and carbohydrate (dextrose) co-ingestion. METHODS Eight middle-aged males with overweight or obesity (52.8 ± 2.0 yr, BMI 31.8 ± 1.4 kg·m-2) ingested either an SFA, or isoenergetic SFA and FO emulsion (FO), or water/control (Con), 4 h prior to a bolus of milk protein and dextrose. RESULTS Lipid ingestion (in particular FO) impaired the early postprandial uptake of branched chain amino acids (BCAA) into the skeletal muscle in response to protein and dextrose, and attenuated the peak glycaemic response, but was not accompanied by differences in whole body (Matsuda Index: Con: 4.66 ± 0.89, SFA: 5.10 ± 0.94 and FO: 4.07 ± 0.59) or peripheral (forearm glucose netAUC: Con: 521.7 ± 101.7; SFA: 470.2 ± 125.5 and FO: 495.3 ± 101.6 μmol·min-1·100 g lean mass·min [t = 240-420 min]) insulin sensitivity between visits. Postprandial whole body fat oxidation was affected by visit (P = 0.024) with elevated rates in SFA and FO, relative to Con (1.85 ± 0.55; 2.19 ± 0.21 and 0.65 ± 0.35 kJ·h-1·kg-1 lean body mass, respectively), however muscle uptake of free fatty acids (FFA) was unaffected. CONCLUSION Oral lipid preloads, consisting of SFA and FO, impair the early postprandial BCAA uptake into skeletal muscle, which occurs independent of changes in insulin sensitivity. CLINICAL TRIAL REGISTRY NUMBER ClinicalTrials.gov Identifier NCT03146286.
Collapse
|
12
|
de Bie TH, Balvers MGJ, de Vos RCH, Witkamp RF, Jongsma MA. The influence of a tomato food matrix on the bioavailability and plasma kinetics of oral gamma-aminobutyric acid (GABA) and its precursor glutamate in healthy men. Food Funct 2022; 13:8399-8410. [PMID: 35852458 DOI: 10.1039/d2fo01358d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gamma-aminobutyric acid (GABA) and its precursor glutamate play signaling roles in a range of tissues. Both function as neurotransmitters in the central nervous system, but they also modulate pancreatic and immune functioning, for example. Besides endogenous production, both compounds are found in food products, reaching relatively high levels in tomatoes. Recent studies in rodents suggest beneficial effects of oral GABA on glucose homeostasis and blood pressure. However, the bioavailability from food remains unknown. We studied the bioavailability of GABA and glutamate from tomatoes relative to a solution in water. After a fasting blood sample was taken, eleven healthy men randomly received 1 liter of 4 different drinks in a cross-over design with a one-week interval. The drinks were a solution of 888 mg L-1 GABA, a solution of 3673 mg L-1 glutamate, pureed fresh tomatoes and plain water as the control. Following intake, 18 blood samples were taken at intervals for 24 hours. Plasma GABA and glutamate concentrations were determined by ultra-pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Fasting plasma GABA and glutamate concentrations were found to be 16.71 (SD 2.18) ng mL-1 and 4626 (SD 1666) ng mL-1, respectively. Fasting GABA levels were constant (5.8 CV%) between individuals, while fasting glutamate levels varied considerably (23.5 CV%). GABA from pureed tomatoes showed similar bioavailability to that of a solution in water. For glutamate, the absorption from pureed tomatoes occurred more slowly as seen from a longer tmax (0.98 ± 0.14 h vs. 0.41 ± 0.04 h, P = 0.003) and lower Cmax (7815 ± 627 ng mL-1vs. 16 420 ± 2778 ng mL-1, P = 0.006). These data suggest that GABA is bioavailable from tomatoes, and that food products containing GABA could potentially induce health effects similar to those claimed for GABA supplements. The results merit further studies on the bioavailability of GABA from other food products and the health effects of GABA-rich diets. The clinical trial registry number is NCT04086108 (https://clinicaltrials.gov/ct2/show/NCT04303468).
Collapse
Affiliation(s)
- Tessa H de Bie
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands. .,Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Ric C H de Vos
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Maarten A Jongsma
- Wageningen Plant Research, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
13
|
Horstman AMH, Huppertz T. Milk proteins: Processing, gastric coagulation, amino acid availability and muscle protein synthesis. Crit Rev Food Sci Nutr 2022; 63:10267-10282. [PMID: 35611879 DOI: 10.1080/10408398.2022.2078782] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well-known that the postprandial muscle protein synthetic response to protein ingestion is regulated on various levels, including dietary protein digestion and amino acid (AA) absorption, splanchnic AA retention, the availability of dietary protein-derived AA in the circulation, delivery of AA to the muscle, uptake of AA by the muscle, and intramuscular signaling. AA availability after consumption of dairy products is primarily determined by the rate of gastric emptying of milk proteins, which is mainly linked to coagulation of milk proteins in the stomach. Caseins form gastric coagula, which make their gastric emptying and subsequent postprandial aminoacidemia notably slower than that of whey proteins. Only recently, the role of processing, food structure, preservation and matrix on coagulation herein has been getting attention. In this review we describe various processes, that affect gastric coagulation of caseins and therewith control gastric emptying, such as the conversion to caseinate, heat treatment in the presence of whey proteins, conversion to stirred yoghurt and enzymatic hydrolysis. Modulating product characteristics by processing can be very useful to steer the gastric behavior of protein, and the subsequent digestion and AA absorption and muscle anabolic response to maintain or increase muscle mass.
Collapse
Affiliation(s)
| | - Thom Huppertz
- Research & Development, FrieslandCampina, Amersfoort, The Netherlands
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
14
|
Nishimura Y, Jensen M, Bülow J, Thomsen TT, Arimitsu T, van Hall G, Fujita S, Holm L. Co-ingestion of cluster dextrin carbohydrate does not increase exogenous protein-derived amino acid release or myofibrillar protein synthesis following a whole-body resistance exercise in moderately trained younger males: a double-blinded randomized controlled crossover trial. Eur J Nutr 2022; 61:2475-2491. [PMID: 35182194 PMCID: PMC9279228 DOI: 10.1007/s00394-021-02782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022]
Abstract
Purpose This study investigates if co-ingestion of cluster dextrin (CDX) augments the appearance of intrinsically labeled meat protein hydrolysate-derived amino acid (D5-phenylalanine), Akt/mTORC1 signaling, and myofibrillar protein fractional synthetic rate (FSR). Methods Ten moderately trained healthy males (age: 21.5 ± 2.1 years, body mass: 75.7 ± 7.6 kg, body mass index (BMI): 22.9 ± 2.1 kg/m2) were included for a double-blinded randomized controlled crossover trial. Either 75 g of CDX or glucose (GLC) was given in conjunction with meat protein hydrolysate (0.6 g protein * FFM−1) following a whole-body resistance exercise. A primed-continuous intravenous infusion of L-[15N]-phenylalanine with serial muscle biopsies and venous blood sampling was performed. Results A time × group interaction effect was found for serum D5-phenylalanine enrichment (P < 0.01). Serum EAA and BCAA concentrations showed a main effect for group (P < 0.05). Tmax serum BCAA was greater in CDX as compared to GLC (P < 0.05). However, iAUC of all serum parameters did not differ between CDX and GLC (P > 0.05). Tmax serum EAA showed a trend towards a statistical significance favoring CDX over GLC. The phosphorylation of p70S6KThr389, rpS6Ser240/244, ERK1/2Thr202/Tyr204 was greater in CDX compared to GLC (P < 0.05). However, postprandial myofibrillar FSR did not differ between CDX and GLC (P = 0.17). Conclusion In moderately trained younger males, co-ingestion of CDX with meat protein hydrolysate does not augment the postprandial amino acid availability or myofibrillar FSR as compared to co-ingestion of GLC during the recovery from a whole-body resistance exercise despite an increased intramuscular signaling. Trial registration ClinicalTrials.gov ID: NCT03303729 (registered on October 3, 2017).
Collapse
Affiliation(s)
- Yusuke Nishimura
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Department of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Mikkel Jensen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Jacob Bülow
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Thomas Tagmose Thomsen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
| | - Takuma Arimitsu
- Department of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Satoshi Fujita
- Department of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Lars Holm
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark. .,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Banks NF, Rogers EM, Church DD, Ferrando AA, Jenkins NDM. The contributory role of vascular health in age-related anabolic resistance. J Cachexia Sarcopenia Muscle 2022; 13:114-127. [PMID: 34951146 PMCID: PMC8818606 DOI: 10.1002/jcsm.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcopenia, or the age-related loss of skeletal muscle mass and function, is an increasingly prevalent condition that contributes to reduced quality of life, morbidity, and mortality in older adults. Older adults display blunted anabolic responses to otherwise anabolic stimuli-a phenomenon that has been termed anabolic resistance (AR)-which is likely a casual factor in sarcopenia development. AR is multifaceted, but historically much of the mechanistic focus has been on signalling impairments, and less focus has been placed on the role of the vasculature in postprandial protein kinetics. The vascular endothelium plays an indispensable role in regulating vascular tone and blood flow, and age-related impairments in vascular health may impede nutrient-stimulated vasodilation and subsequently the ability to deliver nutrients (e.g. amino acids) to skeletal muscle. Although the majority of data has been obtained studying younger adults, the relatively limited data on the effect of blood flow on protein kinetics in older adults suggest that vasodilatory function, especially of the microvasculature, strongly influences the muscle protein synthetic response to amino acid feedings. In this narrative review, we examine evidence of AR in older adults following amino acid and mixed meal consumption, examine the evidence linking vascular dysfunction and insulin resistance to age-related AR, review the influence of nitric oxide and endothelin-1 on age-related vascular dysfunction as it relates to AR, briefly review the potential causal role of arterial stiffness in promoting skeletal muscle microvascular dysfunction and AR, and provide a brief overview and future considerations for research examining age-related AR.
Collapse
Affiliation(s)
- Nile F Banks
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - Emily M Rogers
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA
| | - David D Church
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Arny A Ferrando
- Center for Translational Research in Aging and Longevity, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nathaniel D M Jenkins
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, University of Iowa, Iowa City, IA, USA.,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Hermans WJH, Fuchs CJ, Hendriks FK, Houben LHP, Senden JM, Verdijk LB, van Loon LJC. Cheese Ingestion Increases Muscle Protein Synthesis Rates Both at Rest and During Recovery from Exercise in Healthy, Young Males: A Randomized Parallel-group Trial. J Nutr 2022; 152:1022-1030. [PMID: 36967159 PMCID: PMC8971000 DOI: 10.1093/jn/nxac007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Protein ingestion increases muscle protein synthesis rates. The food matrix in which protein is provided can strongly modulate the postprandial muscle protein synthetic response. So far, the muscle protein synthetic response to the ingestion of whole foods remains largely unexplored. Objectives To compare the impact of ingesting 30 g protein provided as milk protein or cheese on postprandial plasma amino acid concentrations and muscle protein synthesis rates at rest and during recovery from exercise in vivo in young males. Methods In this randomized, parallel-group intervention trial, 20 healthy males aged 18–35 y ingested 30 g protein provided as cheese or milk protein concentrate following a single-legged resistance-type exercise session consisting of 12 sets of leg press and leg extension exercises. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data were analyzed using repeated measures Time × Group (× Leg) ANOVA. Results Plasma total amino acid concentrations increased after protein ingestion (Time: P < 0.001), with 38% higher peak concentrations following milk protein than cheese ingestion (Time × Group: P < 0.001). Muscle protein synthesis rates increased following both cheese and milk protein ingestion from 0.037 ± 0.014 to 0.055 ± 0.018%·h–1 and 0.034 ± 0.008 to 0.056 ± 0.010%·h–1 at rest and even more following exercise from 0.031 ± 0.010 to 0.067 ± 0.013%·h–1 and 0.030 ± 0.008 to 0.063 ± 0.010%·h–1, respectively (Time: all P < 0.05; Time × Leg: P = 0.002), with no differences between cheese and milk protein ingestion (Time × Group: both P > 0.05). Conclusion Cheese ingestion increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial muscle protein synthetic response to the ingestion of cheese or milk protein does not differ when 30 g protein is ingested at rest or during recovery from exercise in healthy, young males.
Collapse
Affiliation(s)
- Wesley J H Hermans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Floris K Hendriks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lisanne H P Houben
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
Pinckaers PJM, Trommelen J, Snijders T, van Loon LJC. The Anabolic Response to Plant-Based Protein Ingestion. Sports Med 2021; 51:59-74. [PMID: 34515966 PMCID: PMC8566416 DOI: 10.1007/s40279-021-01540-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
There is a global trend of an increased interest in plant-based diets. This includes an increase in the consumption of plant-based proteins at the expense of animal-based proteins. Plant-derived proteins are now also frequently applied in sports nutrition. So far, we have learned that the ingestion of plant-derived proteins, such as soy and wheat protein, result in lower post-prandial muscle protein synthesis responses when compared with the ingestion of an equivalent amount of animal-based protein. The lesser anabolic properties of plant-based versus animal-derived proteins may be attributed to differences in their protein digestion and amino acid absorption kinetics, as well as to differences in amino acid composition between these protein sources. Most plant-based proteins have a low essential amino acid content and are often deficient in one or more specific amino acids, such as lysine and methionine. However, there are large differences in amino acid composition between various plant-derived proteins or plant-based protein sources. So far, only a few studies have directly compared the muscle protein synthetic response following the ingestion of a plant-derived protein versus a high(er) quality animal-derived protein. The proposed lower anabolic properties of plant- versus animal-derived proteins may be compensated for by (i) consuming a greater amount of the plant-derived protein or plant-based protein source to compensate for the lesser quality; (ii) using specific blends of plant-based proteins to create a more balanced amino acid profile; (iii) fortifying the plant-based protein (source) with the specific free amino acid(s) that is (are) deficient. Clinical studies are warranted to assess the anabolic properties of the various plant-derived proteins and their protein sources in vivo in humans and to identify the factors that may or may not compromise the capacity to stimulate post-prandial muscle protein synthesis rates. Such work is needed to determine whether the transition towards a more plant-based diet is accompanied by a transition towards greater dietary protein intake requirements.
Collapse
Affiliation(s)
- Philippe J M Pinckaers
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jorn Trommelen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Tim Snijders
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
18
|
Hermans WJH, Senden JM, Churchward-Venne TA, Paulussen KJM, Fuchs CJ, Smeets JSJ, van Loon JJA, Verdijk LB, van Loon LJC. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: a double-blind randomized trial. Am J Clin Nutr 2021; 114:934-944. [PMID: 34020450 PMCID: PMC8408844 DOI: 10.1093/ajcn/nqab115] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Insects have recently been identified as a more sustainable protein-dense food source and may represent a viable alternative to conventional animal-derived proteins. OBJECTIVES We aimed to compare the impacts of ingesting lesser mealworm- and milk-derived protein on protein digestion and amino acid absorption kinetics, postprandial skeletal muscle protein synthesis rates, and the incorporation of dietary protein-derived amino acids into de novo muscle protein at rest and during recovery from exercise in vivo in humans. METHODS In this double-blind randomized controlled trial, 24 healthy, young men ingested 30 g specifically produced, intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled lesser mealworm- or milk-derived protein after a unilateral bout of resistance-type exercise. Primed continuous l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle tissue samples. RESULTS A total of 73% ± 7% and 77% ± 7% of the lesser mealworm and milk protein-derived phenylalanine was released into the circulation during the 5 h postprandial period, respectively, with no significant differences between groups (P < 0.05). Muscle protein synthesis rates increased after both lesser mealworm and milk protein concentrate ingestion from 0.025 ± 0.008%/h to 0.045 ± 0.017%/h and 0.028 ± 0.010%/h to 0.056 ± 0.012%/h at rest and from 0.025 ± 0.012%/h to 0.059 ± 0.015%/h and 0.026 ± 0.009%/h to 0.073 ± 0.020%/h after exercise, respectively (all P < 0.05), with no differences between groups (both P > 0.05). Incorporation of mealworm and milk protein-derived l-[1-13C]-phenylalanine into de novo muscle protein was greater after exercise than at rest (P < 0.05), with no differences between groups (P > 0.05). CONCLUSIONS Ingestion of a meal-like amount of lesser mealworm-derived protein is followed by rapid protein digestion and amino acid absorption and increases muscle protein synthesis rates both at rest and during recovery from exercise. The postprandial protein handling of lesser mealworm does not differ from ingesting an equivalent amount of milk protein concentrate in vivo in humans.This trial was registered at www.trialregister.nl as NL6897.
Collapse
Affiliation(s)
- Wesley J H Hermans
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tyler A Churchward-Venne
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kevin J M Paulussen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | |
Collapse
|
19
|
Morgan PT, Breen L. The role of protein hydrolysates for exercise-induced skeletal muscle recovery and adaptation: a current perspective. Nutr Metab (Lond) 2021; 18:44. [PMID: 33882976 PMCID: PMC8061049 DOI: 10.1186/s12986-021-00574-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
The protein supplement industry is expanding rapidly and estimated to have a multi-billion market worth. Recent research has centred on understanding how the manufacturing processes of protein supplements may impact muscle recovery and remodeling. The hydrolysed forms of protein undergo a further heating extraction process during production which may contribute to amino acids (AA) appearing in circulation at a slightly quicker rate, or greater amplitude, than the intact form. Whilst the relative significance of the rate of aminoacidemia to muscle protein synthesis is debated, it has been suggested that protein hydrolysates, potentially through the more rapid delivery and higher proportion of di-, tri- and smaller oligo-peptides into circulation, are superior to intact non-hydrolysed proteins and free AAs in promoting skeletal muscle protein remodeling and recovery. However, despite these claims, there is currently insufficient evidence to support superior muscle anabolic properties compared with intact non-hydrolysed proteins and/or free AA controls. Further research is warranted with appropriate protein controls, particularly in populations consuming insufficient amounts of protein, to support and/or refute an important muscle anabolic role of protein hydrolysates. The primary purpose of this review is to provide the reader with a current perspective on the potential anabolic effects of protein hydrolysates in individuals wishing to optimise recovery from, and maximise adaptation to, exercise training.
Collapse
Affiliation(s)
- Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
20
|
Gut amino acid absorption in humans: Concepts and relevance for postprandial metabolism. CLINICAL NUTRITION OPEN SCIENCE 2021. [DOI: 10.1016/j.nutos.2020.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
21
|
de Hart NM, Mahmassani ZS, Reidy PT, Kelley JJ, McKenzie AI, Petrocelli JJ, Bridge MJ, Baird LM, Bastian ED, Ward LS, Howard MT, Drummond MJ. Acute Effects of Cheddar Cheese Consumption on Circulating Amino Acids and Human Skeletal Muscle. Nutrients 2021; 13:614. [PMID: 33668674 PMCID: PMC7917914 DOI: 10.3390/nu13020614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cheddar cheese is a protein-dense whole food and high in leucine content. However, no information is known about the acute blood amino acid kinetics and protein anabolic effects in skeletal muscle in healthy adults. Therefore, we conducted a crossover study in which men and women (n = 24; ~27 years, ~23 kg/m2) consumed cheese (20 g protein) or an isonitrogenous amount of milk. Blood and skeletal muscle biopsies were taken before and during the post absorptive period following ingestion. We evaluated circulating essential and non-essential amino acids, insulin, and free fatty acids and examined skeletal muscle anabolism by mTORC1 cellular localization, intracellular signaling, and ribosomal profiling. We found that cheese ingestion had a slower yet more sustained branched-chain amino acid circulation appearance over the postprandial period peaking at ~120 min. Cheese also modestly stimulated mTORC1 signaling and increased membrane localization. Using ribosomal profiling we found that, though both milk and cheese stimulated a muscle anabolic program associated with mTORC1 signaling that was more evident with milk, mTORC1 signaling persisted with cheese while also inducing a lower insulinogenic response. We conclude that Cheddar cheese induced a sustained blood amino acid and moderate muscle mTORC1 response yet had a lower glycemic profile compared to milk.
Collapse
Affiliation(s)
- Naomi M.M.P. de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA;
| | - Ziad S. Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| | - Paul T. Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, 420 S Oak St., Oxford, OH 45056, USA;
| | - Joshua J. Kelley
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| | - Alec I. McKenzie
- Geoge E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, 500 Foothill Dr., Salt Lake City, UT 84148, USA;
| | - Jonathan J. Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| | - Michael J. Bridge
- Cell Imaging Facility, University of Utah, 30 N 2030 E, Salt Lake City, UT 84112, USA;
| | - Lisa M. Baird
- Department of Human Genetics, 15 N 2030 E, Salt Lake City, UT 84112, USA; (L.M.B.); (M.T.H.)
| | - Eric D. Bastian
- Dairy West Innovation Partnerships, 195 River Vista Place #306, Twin Falls, ID 83301, USA;
| | - Loren S. Ward
- Glanbia Nutritionals Research, 450 Falls Avenue #255, Twin Falls, ID 83301, USA;
| | - Michael T. Howard
- Department of Human Genetics, 15 N 2030 E, Salt Lake City, UT 84112, USA; (L.M.B.); (M.T.H.)
| | - Micah J. Drummond
- Department of Nutrition and Integrative Physiology, University of Utah, 250 S 1850 E, Salt Lake City, UT 84112, USA;
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, Salt Lake City, UT 84108, USA; (Z.S.M.); (J.J.K.); (J.J.P.)
| |
Collapse
|
22
|
Comprehensive assessment of post-prandial protein handling by the application of intrinsically labelled protein in vivo in human subjects. Proc Nutr Soc 2021; 80:221-229. [PMID: 33487181 DOI: 10.1017/s0029665120008034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.
Collapse
|
23
|
Russo I, Della Gatta PA, Garnham A, Porter J, Burke LM, Costa RJS. Does the Nutritional Composition of Dairy Milk Based Recovery Beverages Influence Post-exercise Gastrointestinal and Immune Status, and Subsequent Markers of Recovery Optimisation in Response to High Intensity Interval Exercise? Front Nutr 2021; 7:622270. [PMID: 33521041 PMCID: PMC7840831 DOI: 10.3389/fnut.2020.622270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to determine the effects of flavored dairy milk based recovery beverages of different nutrition compositions on markers of gastrointestinal and immune status, and subsequent recovery optimisation markers. After completing 2 h high intensity interval running, participants (n = 9) consumed a whole food dairy milk recovery beverage (CM, 1.2 g/kg body mass (BM) carbohydrate and 0.4 g/kg BM protein) or a dairy milk based supplement beverage (MBSB, 2.2 g/kg BM carbohydrate and 0.8 g/kg BM protein) in a randomized crossover design. Venous blood samples, body mass, body water, and breath samples were collected, and gastrointestinal symptoms (GIS) were measured, pre- and post-exercise, and during recovery. Muscle biopsies were performed at 0 and 2 h of recovery. The following morning, participants returned to the laboratory to assess performance outcomes. In the recovery period, carbohydrate malabsorption (breath H2 peak: 49 vs. 24 ppm) occurred on MBSB compared to CM, with a trend toward greater gut discomfort. No difference in gastrointestinal integrity (i.e., I-FABP and sCD14) or immune response (i.e., circulating leukocyte trafficking, bacterially-stimulated neutrophil degranulation, and systemic inflammatory profile) markers were observed between CM and MBSB. Neither trial achieved a positive rate of muscle glycogen resynthesis [-25.8 (35.5) mmol/kg dw/h]. Both trials increased phosphorylation of intramuscular signaling proteins. Greater fluid retention (total body water: 86.9 vs. 81.9%) occurred on MBSB compared to CM. Performance outcomes did not differ between trials. The greater nutrient composition of MBSB induced greater gastrointestinal functional disturbance, did not prevent the post-exercise reduction in neutrophil function, and did not support greater overall acute recovery.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| | - Paul A. Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Andrew Garnham
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| | - Judi Porter
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Louise M. Burke
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
24
|
Abstract
All tissues are in a constant state of turnover, with a tightly controlled regulation of protein synthesis and breakdown rates. Due to the relative ease of sampling skeletal muscle tissue, basal muscle protein synthesis rates and the protein synthetic responses to various anabolic stimuli have been well defined in human subjects. In contrast, only limited data are available on tissue protein synthesis rates in other organs. Several organs such as the brain, liver and pancreas, show substantially higher (basal) protein synthesis rates when compared to skeletal muscle tissue. Such data suggest that these tissues may also possess a high level of plasticity. It remains to be determined whether protein synthesis rates in these tissues can be modulated by external stimuli. Whole-body protein synthesis rates are highly responsive to protein intake. As the contribution of muscle protein synthesis rates to whole-body protein synthesis rates is relatively small considering the large amount of muscle mass, this suggests that other organ tissues may also be responsive to (protein) feeding. Whole-body protein synthesis rates in the fasted or fed state can be quantified by measuring plasma amino acid kinetics, although this requires the production of intrinsically labelled protein. Protein intake requirements to maximise whole-body protein synthesis may also be determined by the indicator amino acid oxidation technique, but the technique does not allow the assessment of actual protein synthesis and breakdown rates. Both approaches have several other methodological and inferential limitations that will be discussed in detail in this paper.
Collapse
|
25
|
Garibotto G, Saio M, Aimasso F, Russo E, Picciotto D, Viazzi F, Verzola D, Laudon A, Esposito P, Brunori G. How to Overcome Anabolic Resistance in Dialysis-Treated Patients? Front Nutr 2021; 8:701386. [PMID: 34458305 PMCID: PMC8387577 DOI: 10.3389/fnut.2021.701386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
A current hypothesis is that dialysis-treated patients are "anabolic resistant" i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected in dialysis-treated patients; better than to describe mechanisms leading to energy-protein wasting, the aim of this narrative review is to suggest possible strategies to overcome anabolic resistance in this patient's category. Food intake, in particular dietary protein, and physical activity, are the two major anabolic stimuli. Unfortunately, dialysis patients are often aged and have a sedentary behavior, all conditions which per se may induce a state of "anabolic resistance." In addition, patients on dialysis are exposed to amino acid or protein deprivation during the dialysis sessions. Unfortunately, the optimal amount and formula of protein/amino acid composition in supplements to maximixe MPS is still unknown in dialysis patients. In young healthy subjects, 20 g whey protein maximally stimulate MPS. However, recent observations suggest that dialysis patients need greater amounts of proteins than healthy subjects to maximally stimulate MPS. Since unneccesary amounts of amino acids could stimulate ureagenesis, toxins and acid production, it is urgent to obtain information on the optimal dose of proteins or amino acids/ketoacids to maximize MPS in this patients' population. In the meantime, the issue of maintaining muscle mass and function in dialysis-treated CKD patients needs not to be overlooked by the kidney community.
Collapse
Affiliation(s)
- Giacomo Garibotto
- Department of Internal Medicine, University of Genoa, Genova, Italy
- *Correspondence: Giacomo Garibotto
| | - Michela Saio
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Francesca Aimasso
- Clinical Nutrition Unit, Istituto di Ricerca a Carattere Scientifico Ospedale Policlinico San Martino, Genova, Italy
| | - Elisa Russo
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Picciotto
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genova, Italy
| | - Alessandro Laudon
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, Genova, Italy
- Clinica Nefrologica, Dialisi e Trapianto, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giuliano Brunori
- Division of Nephrology and Dialysis, Ospedale Santa Chiara, Trento, Italy
| |
Collapse
|
26
|
Loos CMM, McLeod KR, Stratton SC, van Doorn DA, Kalmar ID, Vanzant ES, Urschel KL. Pathways regulating equine skeletal muscle protein synthesis respond in a dose-dependent manner to graded levels of protein intake. J Anim Sci 2020; 98:5896557. [PMID: 32835365 DOI: 10.1093/jas/skaa268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023] Open
Abstract
Activation of the mechanistic target of rapamycin (mTOR)-controlled anabolic signaling pathways in skeletal muscle of rodents and humans is responsive to the level of dietary protein supply, with maximal activation and rates of protein synthesis achieved with 0.2 to 0.4 g protein/kg body weight (BW). In horses, few data are available on the required level of dietary protein to maximize protein synthesis for maintenance and growth of skeletal muscle. To evaluate the effect of dietary protein level on muscle mTOR pathway activation, five mares received different amounts of a protein supplement that provided 0, 0.06, 0.125, 0.25, or 0.5 g of crude protein (CP)/kg BW per meal in a 5 × 5 Latin square design. On each sample day, horses were fasted overnight and were fed only their protein meal the following morning. A preprandial (0 min) and postprandial (90 min) blood sample was collected and a gluteus medius muscle sample was obtained 90 min after feeding the protein meal. Blood samples were analyzed for glucose, insulin, and amino acid concentrations. Activation of mTOR pathway components (mTOR and ribosomal protein S6 [rpS6]) in the muscle samples was measured by Western immunoblot analysis. Postprandial plasma glucose (P = 0.007) and insulin (P = 0.09) showed a quadratic increase, while total essential amino acid (P < 0.0001) concentrations increased linearly with the graded intake of the protein supplement. Activation of mTOR (P = 0.02) and its downstream target, rpS6 (P = 0.0008), increased quadratically and linearly in relation to the level of protein intake, respectively. Comparisons of individual doses showed no differences (P > 0.05) between the 0.25 and 0.5 g of protein intake for either mTOR or rpS6 activation, indicating that protein synthesis may have reached near maximal capacity around 0.25 g CP/kg BW. This is the first study to show that the activation of muscle protein synthetic pathways in horses is dose-dependent on the level of protein intake. Consumption of a moderate dose of high-quality protein resulted in near maximal muscle mTOR pathway activation in mature, sedentary horses.
Collapse
Affiliation(s)
- Caroline M M Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY
| | - Kyle R McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY
| | - Sophie C Stratton
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY
| | | | - Isabelle D Kalmar
- Department of Nutrition, Genetics and Ethology, Ghent University, Gent, Belgium
| | - Eric S Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY
| | - Kristine L Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|
27
|
Betz MW, Aussieker T, Kruger CQ, Gorissen SHM, van Loon LJC, Snijders T. Muscle fiber capillarization is associated with various indices of skeletal muscle mass in healthy, older men. Exp Gerontol 2020; 143:111161. [PMID: 33227401 DOI: 10.1016/j.exger.2020.111161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Muscle fiber capillarization plays a fundamental role in the regulation of skeletal muscle mass maintenance. However, it remains unclear to what extent capillarization is related to various other skeletal muscle characteristics. In this study we determined whether muscle fiber capillarization is independently associated with measures of skeletal muscle mass, both on a whole-body and cellular level, and post-absorptive muscle protein synthesis rates in healthy older men. METHODS Forty-six healthy older (70 ± 4 y) men participated in a trial during which basal muscle protein synthesis rates were assessed using stable isotope tracer methodology. Blood and muscle biopsy samples were collected to assess post-absorptive muscle protein synthesis rates over a 3-hour period. Immunohistochemistry was performed to determine various indices of muscle fiber capillarization, size, type distribution, and myonuclear content/domain size. Dual energy x-ray absorptiometry scans were performed to determine whole-body and appendicular lean tissue mass. RESULTS Capillary-to-fiber ratio (C/Fi) and perimeter exchange (CFPE) index correlated with whole-body lean tissue mass (r = 0.43, P < 0.01 and r = 0.25, P < 0.10, respectively), appendicular lean tissue mass (r = 0.52, P < 0.001 and r = 0.37, P < 0.05, respectively) as well as appendicular lean tissue mass divided by body mass index (r = 0.65, P < 0.001 and r = 0.62, P < 0.001, respectively). Muscle fiber size correlated with C/Fi (r = 0.45, P < 0.01), but not with CFPE index. No associations were observed between different indices of muscle fiber capillarization and post-absorptive muscle protein synthesis rates in healthy, older men. CONCLUSION The present study provides further evidence that muscle fiber capillarization may be a critical factor in the regulation of skeletal muscle maintenance in healthy older men.
Collapse
Affiliation(s)
- M W Betz
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - T Aussieker
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - C Q Kruger
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - S H M Gorissen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - L J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - T Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
28
|
Monteyne AJ, Coelho MOC, Porter C, Abdelrahman DR, Jameson TSO, Finnigan TJA, Stephens FB, Dirks ML, Wall BT. Branched-Chain Amino Acid Fortification Does Not Restore Muscle Protein Synthesis Rates following Ingestion of Lower- Compared with Higher-Dose Mycoprotein. J Nutr 2020; 150:2931-2941. [PMID: 32886108 DOI: 10.1093/jn/nxaa251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We have shown that ingesting a large bolus (70 g) of the fungal-derived, whole food mycoprotein robustly stimulates muscle protein synthesis (MPS) rates. OBJECTIVE The aim of this study was to determine if a lower dose (35 g) of mycoprotein enriched with branched-chain amino acids (BCAAs) stimulates MPS to the same extent as 70 g of mycoprotein in resistance-trained young men. METHODS Nineteen men [aged 22 ± 1 y, BMI (kg/m2): 25 ± 1] took part in a randomized, double-blind, parallel-group study. Participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and ingested either 70 g mycoprotein (31.5 g protein; MYCO; n = 10) or 35 g BCAA-enriched mycoprotein (18.7 g protein: matched on BCAA content; ENR; n = 9) following a bout of unilateral resistance exercise. Blood and bilateral quadriceps muscle samples were obtained before exercise and protein ingestion and during a 4-h postprandial period to assess MPS in rested and exercised muscle. Two- and 3-factor ANOVAs were used to detect differences in plasma amino acid kinetics and mixed muscle fractional synthetic rates, respectively. RESULTS Postprandial plasma BCAA concentrations increased more rapidly and to a larger degree in ENR compared with MYCO. MPS increased with protein ingestion (P ≤ 0.05) but to a greater extent following MYCO (from 0.025% ± 0.006% to 0.057% ± 0.004% · h-1 in rested muscle, and from 0.024% ± 0.007% to 0.072% ± 0.005% · h-1 in exercised muscle; P < 0.0001) compared with ENR (from 0.031% ± 0.003% to 0.043% ± 0.005% · h-1 in rested muscle, and 0.027% ± 0.005% to 0.052% ± 0.005% · h-1 in exercised muscle; P < 0.01) ingestion. Postprandial MPS rates were greater in MYCO compared with ENR (P < 0.01). CONCLUSIONS The ingestion of lower-dose BCAA-enriched mycoprotein stimulates resting and postexercise MPS rates, but to a lesser extent compared with the ingestion of a BCAA-matched 70-g mycoprotein bolus in healthy young men. This trial was registered at clinicaltrials.gov as 660065600.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mariana O C Coelho
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas S O Jameson
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | | | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Marlou L Dirks
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
29
|
Nutrient-dense protein as a primary dietary strategy in healthy ageing: please sir, may we have more? Proc Nutr Soc 2020; 80:264-277. [PMID: 33050965 DOI: 10.1017/s0029665120007892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A progressive decrement in muscle mass and muscle function, sarcopoenia, accompanies ageing. The loss of skeletal muscle mass and function is the main feature of sarcopoenia. Preventing the loss of muscle mass is relevant since sarcopoenia can have a significant impact on mobility and the quality of life of older people. Dietary protein and physical activity have an essential role in slowing muscle mass loss and helping to maintain muscle function. However, the current recommendations for daily protein ingestion for older persons appear to be too low and are in need of adjustment. In this review, we discuss the skeletal muscle response to protein ingestion, and review the data examining current dietary protein recommendations in the older subjects. Furthermore, we review the concept of protein quality and the important role that nutrient-dense protein (NDP) sources play in meeting overall nutrient requirements and improving dietary quality. Overall, the current evidence endorses an increase in the daily ingestion of protein with emphasis on the ingestion of NDP choices by older adults.
Collapse
|
30
|
Coelho MOC, Monteyne AJ, Dunlop MV, Harris HC, Morrison DJ, Stephens FB, Wall BT. Mycoprotein as a possible alternative source of dietary protein to support muscle and metabolic health. Nutr Rev 2020; 78:486-497. [PMID: 31841152 DOI: 10.1093/nutrit/nuz077] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The world's population is expanding, leading to an increased global requirement for dietary protein to support health and adaptation in various populations. Though a strong evidence base supports the nutritional value of animal-derived dietary proteins, mounting challenges associated with sustainability of these proteins have led to calls for the investigation of alternative, non-animal-derived dietary protein sources. Mycoprotein is a sustainably produced, protein-rich, high-fiber, whole food source derived from the fermentation of fungus. Initial investigations in humans demonstrated that mycoprotein consumption can lower circulating cholesterol concentrations. Recent data also report improved acute postprandial glycemic control and a potent satiety effect following mycoprotein ingestion. It is possible that these beneficial effects are attributable to the amount and type of dietary fiber present in mycoprotein. Emerging data suggest that the amino acid composition and bioavailability of mycoprotein may also position it as a promising dietary protein source to support skeletal muscle protein metabolism. Mycoprotein may be a viable dietary protein source to promote training adaptations in athletes and the maintenance of muscle mass to support healthy aging. Herein, current evidence underlying the metabolic effects of mycoprotein is reviewed, and the key questions to be addressed are highlighted.
Collapse
Affiliation(s)
- Mariana O C Coelho
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mandy V Dunlop
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Hannah C Harris
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,School of Medicine, Dentistry and Nursing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Douglas J Morrison
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
31
|
Gorissen SHM, Trommelen J, Kouw IWK, Holwerda AM, Pennings B, Groen BBL, Wall BT, Churchward-Venne TA, Horstman AMH, Koopman R, Burd NA, Fuchs CJ, Dirks ML, Res PT, Senden JMG, Steijns JMJM, de Groot LCPGM, Verdijk LB, van Loon LJC. Protein Type, Protein Dose, and Age Modulate Dietary Protein Digestion and Phenylalanine Absorption Kinetics and Plasma Phenylalanine Availability in Humans. J Nutr 2020; 150:2041-2050. [PMID: 32069356 PMCID: PMC7398787 DOI: 10.1093/jn/nxaa024] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 01/28/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dietary protein ingestion stimulates muscle protein synthesis by providing amino acids to the muscle. The magnitude and duration of the postprandial increase in muscle protein synthesis rates are largely determined by dietary protein digestion and amino acid absorption kinetics. OBJECTIVE We assessed the impact of protein type, protein dose, and age on dietary protein digestion and amino acid absorption kinetics in vivo in humans. METHODS We included data from 18 randomized controlled trials with a total of 602 participants [age: 53 ± 23 y; BMI (kg/m2): 24.8 ± 3.3] who consumed various quantities of intrinsically l-[1-13C]-phenylalanine-labeled whey (n = 137), casein (n = 393), or milk (n = 72) protein and received intravenous infusions of l-[ring-2H5]-phenylalanine, which allowed us to assess protein digestion and phenylalanine absorption kinetics and the postprandial release of dietary protein-derived phenylalanine into the circulation. The effect of aging on these processes was assessed in a subset of 82 young (aged 22 ± 3 y) and 83 older (aged 71 ± 5 y) individuals. RESULTS A total of 50% ± 14% of dietary protein-derived phenylalanine appeared in the circulation over a 5-h postprandial period. Casein ingestion resulted in a smaller (45% ± 11%), whey protein ingestion in an intermediate (57% ± 10%), and milk protein ingestion in a greater (65% ± 13%) fraction of dietary protein-derived phenylalanine appearing in the circulation (P < 0.001). The postprandial availability of dietary protein-derived phenylalanine in the circulation increased with the ingestion of greater protein doses (P < 0.05). Protein digestion and phenylalanine absorption kinetics were attenuated in older when compared with young individuals, with 45% ± 10% vs. 51% ± 14% of dietary protein-derived phenylalanine appearing in the circulation, respectively (P = 0.001). CONCLUSIONS Protein type, protein dose, and age modulate dietary protein digestion and amino acid absorption kinetics and subsequent postprandial plasma amino acid availability in vivo in humans. These trials were registered at clinicaltrials.gov as NCT00557388, NCT00936039, NCT00991523, NCT01317511, NCT01473576, NCT01576848, NCT01578590, NCT01615276, NCT01680146, NCT01820975, NCT01986842, and NCT02596542, and at http://www.trialregister.nl as NTR3638, NTR3885, NTR4060, NTR4429, and NTR4492.
Collapse
Affiliation(s)
- Stefan H M Gorissen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Imre W K Kouw
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Bart Pennings
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Bart B L Groen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Benjamin T Wall
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Tyler A Churchward-Venne
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Astrid M H Horstman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - René Koopman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Nicholas A Burd
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Marlou L Dirks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Peter T Res
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Joan M G Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | | | | | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands,Address correspondence to LJCvL (e-mail: )
| |
Collapse
|
32
|
Monteyne AJ, Coelho MOC, Porter C, Abdelrahman DR, Jameson TSO, Jackman SR, Blackwell JR, Finnigan TJA, Stephens FB, Dirks ML, Wall BT. Mycoprotein ingestion stimulates protein synthesis rates to a greater extent than milk protein in rested and exercised skeletal muscle of healthy young men: a randomized controlled trial. Am J Clin Nutr 2020; 112:318-333. [PMID: 32438401 DOI: 10.1093/ajcn/nqaa092] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mycoprotein is a fungal-derived sustainable protein-rich food source, and its ingestion results in systemic amino acid and leucine concentrations similar to that following milk protein ingestion. OBJECTIVE We assessed the mixed skeletal muscle protein synthetic response to the ingestion of a single bolus of mycoprotein compared with a leucine-matched bolus of milk protein, in rested and exercised muscle of resistance-trained young men. METHODS Twenty resistance-trained healthy young males (age: 22 ± 1 y, body mass: 82 ± 2 kg, BMI: 25 ± 1 kg·m-2) took part in a randomized, double-blind, parallel-group study. Participants received primed, continuous infusions of L-[ring-2H5]phenylalanine and ingested either 31 g (26.2 g protein: 2.5 g leucine) milk protein (MILK) or 70 g (31.5 g protein: 2.5 g leucine) mycoprotein (MYCO) following a bout of unilateral resistance-type exercise (contralateral leg acting as resting control). Blood and m. vastus lateralis muscle samples were collected before exercise and protein ingestion, and following a 4-h postprandial period to assess mixed muscle fractional protein synthetic rates (FSRs) and myocellular signaling in response to the protein beverages in resting and exercised muscle. RESULTS Mixed muscle FSRs increased following MILK ingestion (from 0.036 ± 0.008 to 0.052 ± 0.006%·h-1 in rested, and 0.035 ± 0.008 to 0.056 ± 0.005%·h-1 in exercised muscle; P <0.01) but to a greater extent following MYCO ingestion (from 0.025 ± 0.006 to 0.057 ± 0.004%·h-1 in rested, and 0.024 ± 0.007 to 0.072 ± 0.005%·h-1 in exercised muscle; P <0.0001) (treatment × time interaction effect; P <0.05). Postprandial FSRs trended to be greater in MYCO compared with MILK (0.065 ± 0.004 compared with 0.054 ± 0.004%·h-1, respectively; P = 0.093) and the postprandial rise in FSRs was greater in MYCO compared with MILK (Delta 0.040 ± 0.006 compared with Delta 0.018 ± 0.005%·h-1, respectively; P <0.01). CONCLUSIONS The ingestion of a single bolus of mycoprotein stimulates resting and postexercise muscle protein synthesis rates, and to a greater extent than a leucine-matched bolus of milk protein, in resistance-trained young men. This trial was registered at clinicaltrials.gov as 660065600.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Mariana O C Coelho
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch & Shriners Hospital for Children, Galveston, TX, USA
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch & Shriners Hospital for Children, Galveston, TX, USA
| | - Thomas S O Jameson
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Sarah R Jackman
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Jamie R Blackwell
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | | | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Marlou L Dirks
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, Heavitree Road, University of Exeter, Exeter, UK
| |
Collapse
|
33
|
Churchward-Venne TA, Pinckaers PJM, Smeets JSJ, Betz MW, Senden JM, Goessens JPB, Gijsen AP, Rollo I, Verdijk LB, van Loon LJC. Dose-response effects of dietary protein on muscle protein synthesis during recovery from endurance exercise in young men: a double-blind randomized trial. Am J Clin Nutr 2020; 112:303-317. [PMID: 32359142 PMCID: PMC7398777 DOI: 10.1093/ajcn/nqaa073] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Protein ingestion increases skeletal muscle protein synthesis rates during recovery from endurance exercise. OBJECTIVES We aimed to determine the effect of graded doses of dietary protein co-ingested with carbohydrate on whole-body protein metabolism, and skeletal muscle myofibrillar (MyoPS) and mitochondrial (MitoPS) protein synthesis rates during recovery from endurance exercise. METHODS In a randomized, double-blind, parallel-group design, 48 healthy, young, endurance-trained men (mean ± SEM age: 27 ± 1 y) received a primed continuous infusion of l-[ring-2H5]-phenylalanine, l-[ring-3,5-2H2]-tyrosine, and l-[1-13C]-leucine and ingested 45 g carbohydrate with either 0 (0 g PRO), 15 (15 g PRO), 30 (30 g PRO), or 45 (45 g PRO) g intrinsically l-[1-13C]-phenylalanine and l-[1-13C]-leucine labeled milk protein after endurance exercise. Blood and muscle biopsy samples were collected over 360 min of postexercise recovery to assess whole-body protein metabolism and both MyoPS and MitoPS rates. RESULTS Protein intake resulted in ∼70%-74% of the ingested protein-derived phenylalanine appearing in the circulation. Whole-body net protein balance increased dose-dependently after ingestion of 0, 15, 30, or 45 g protein (mean ± SEM: -0.31± 0.16, 5.08 ± 0.21, 10.04 ± 0.30, and 13.49 ± 0.55 μmol phenylalanine · kg-1 · h-1, respectively; P < 0.001). 30 g PRO stimulated a ∼46% increase in MyoPS rates (%/h) compared with 0 g PRO and was sufficient to maximize MyoPS rates after endurance exercise. MitoPS rates were not increased after protein ingestion; however, incorporation of dietary protein-derived l-[1-13C]-phenylalanine into de novo mitochondrial protein increased dose-dependently after ingestion of 15, 30, and 45 g protein at 360 min postexercise (0.018 ± 0.002, 0.034 ± 0.002, and 0.046 ± 0.003 mole percentage excess, respectively; P < 0.001). CONCLUSIONS Protein ingested after endurance exercise is efficiently digested and absorbed into the circulation. Whole-body net protein balance and dietary protein-derived amino acid incorporation into mitochondrial protein respond to increasing protein intake in a dose-dependent manner. Ingestion of 30 g protein is sufficient to maximize MyoPS rates during recovery from a single bout of endurance exercise.This trial was registered at trialregister.nl as NTR5111.
Collapse
Affiliation(s)
- Tyler A Churchward-Venne
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Philippe J M Pinckaers
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Joey S J Smeets
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Milan W Betz
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Joan M Senden
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Joy P B Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie P Gijsen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ian Rollo
- Gatorade Sports Science Institute, Leicester, United Kingdom
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | | |
Collapse
|
34
|
Trommelen J, Weijzen MEG, van Kranenburg J, Ganzevles RA, Beelen M, Verdijk LB, van Loon LJC. Casein Protein Processing Strongly Modulates Post-Prandial Plasma Amino Acid Responses In Vivo in Humans. Nutrients 2020; 12:E2299. [PMID: 32751788 PMCID: PMC7468913 DOI: 10.3390/nu12082299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Micellar casein is characterized as a slowly digestible protein source, and its structure can be modulated by various food processing techniques to modify its functional properties. However, little is known about the impact of such modifications on casein protein digestion and amino acid absorption kinetics and the subsequent post-prandial plasma amino acid responses. In the present study, we determined post-prandial aminoacidemia following ingestion of isonitrogenous amounts of casein protein (40 g) provided as micellar casein (Mi-CAS), calcium caseinate (Ca-CAS), or cross-linked sodium caseinate (XL-CAS). Fifteen healthy, young men (age: 26 ± 4 years, BMI: 23 ± 1 kg·m-2) participated in this randomized cross-over study and ingested 40 g Mi-Cas, Ca-CAS, and XL-CAS protein, with a ~1 week washout between treatments. On each trial day, arterialized blood samples were collected at regular intervals during a 6 h post-prandial period to assess plasma amino acid concentrations using ultra-performance liquid chromatography. Plasma amino acid concentrations were higher following the ingestion of XL-CAS when compared to Mi-CAS and Ca-CAS from t = 15 to 90 min (all p < 0.05). Plasma amino acid concentrations were higher following ingestion of Mi-CAS compared to Ca-CAS from t = 30 to 45 min (both p < 0.05). Plasma total amino acids iAUC were higher following the ingestion of XL-CAS when compared to Ca-CAS (294 ± 63 vs. 260 ± 75 mmol·L-1, p = 0.006), with intermediate values following Mi-CAS ingestion (270 ± 63 mmol·L-1, p > 0.05). In conclusion, cross-linked sodium caseinate is more rapidly digested when compared to micellar casein and calcium caseinate. Protein processing can strongly modulate the post-prandial rise in plasma amino acid bioavailability in vivo in humans.
Collapse
Affiliation(s)
- Jorn Trommelen
- NUTRIM School of Nutrition and Translation Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (J.T.); (M.E.G.W.); (J.v.K.); (M.B.); (L.B.V.)
- Top Institute Food and Nutrition (TIFN), 6709 PA Wageningen, The Netherlands
| | - Michelle E. G. Weijzen
- NUTRIM School of Nutrition and Translation Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (J.T.); (M.E.G.W.); (J.v.K.); (M.B.); (L.B.V.)
| | - Janneau van Kranenburg
- NUTRIM School of Nutrition and Translation Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (J.T.); (M.E.G.W.); (J.v.K.); (M.B.); (L.B.V.)
| | | | - Milou Beelen
- NUTRIM School of Nutrition and Translation Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (J.T.); (M.E.G.W.); (J.v.K.); (M.B.); (L.B.V.)
| | - Lex B. Verdijk
- NUTRIM School of Nutrition and Translation Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (J.T.); (M.E.G.W.); (J.v.K.); (M.B.); (L.B.V.)
- Top Institute Food and Nutrition (TIFN), 6709 PA Wageningen, The Netherlands
| | - Luc J. C. van Loon
- NUTRIM School of Nutrition and Translation Research in Metabolism, Maastricht University Medical Centre, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (J.T.); (M.E.G.W.); (J.v.K.); (M.B.); (L.B.V.)
- Top Institute Food and Nutrition (TIFN), 6709 PA Wageningen, The Netherlands
| |
Collapse
|
35
|
Geiker NRW, Mølgaard C, Iuliano S, Rizzoli R, Manios Y, van Loon LJC, Lecerf JM, Moschonis G, Reginster JY, Givens I, Astrup A. Impact of whole dairy matrix on musculoskeletal health and aging-current knowledge and research gaps. Osteoporos Int 2020; 31:601-615. [PMID: 31728607 PMCID: PMC7075832 DOI: 10.1007/s00198-019-05229-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Dairy products are included in dietary guidelines worldwide, as milk, yoghurt, and cheese are good sources of calcium and protein, vital nutrients for bones and muscle mass maintenance. Bone growth and mineralization occur during infancy and childhood, peak bone mass being attained after early adulthood. A low peak bone mass has consequences later in life, including increased risk of osteoporosis and fractures. Currently, more than 200 million people worldwide suffer from osteoporosis, with approximately 9 million fractures yearly. This poses a tremendous economic burden on health care. Between 5% and 10% of the elderly suffer from sarcopenia, the loss of muscle mass and strength, further increasing the risk of fractures due to falls. Evidence from interventional and observational studies support that fermented dairy products in particular exert beneficial effects on bone growth and mineralization, attenuation of bone loss, and reduce fracture risk. The effect cannot be explained by single nutrients in dairy, which suggests that a combined or matrix effect may be responsible similar to the matrix effects of foods on cardiometabolic health. Recently, several plant-based beverages and products have become available and marketed as substitutes for dairy products, even though their nutrient content differs substantially from dairy. Some of these products have been fortified, in efforts to mimic the nutritional profile of milk, but it is unknown whether the additives have the same bioavailability and beneficial effect as dairy. We conclude that the dairy matrix exerts an effect on bone and muscle health that is more than the sum of its nutrients, and we suggest that whole foods, not only single nutrients, need to be assessed in future observational and intervention studies of health outcomes. Furthermore, the importance of the matrix effect on health outcomes argues in favor of making future dietary guidelines food based.
Collapse
Affiliation(s)
- N R W Geiker
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark.
| | - C Mølgaard
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| | - S Iuliano
- Department of Endocrinology, University of Melbourne, Austin Health, Melbourne, Australia
| | - R Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Y Manios
- Department of Nutrition & Dietetics, Harokopio University, Athens, Greece
| | - L J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - J-M Lecerf
- Department of Nutrition and Physical Activity, Institut Pasteur de Lille, Lille, France
| | - G Moschonis
- Department of Dietetics, Nutrition and Sport, La Trobe University, Melbourne, Australia
| | - J-Y Reginster
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, University of Liège, Liège, Belgium
| | - I Givens
- Institute for Food, Nutrition and Health, University of Reading, Reading, United Kingdom
| | - A Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958, Frederiksberg C, Denmark
| |
Collapse
|
36
|
Reitelseder S, Tranberg B, Agergaard J, Dideriksen K, Højfeldt G, Merry ME, Storm AC, Poulsen KR, Hansen ET, van Hall G, Lund P, Holm L. Phenylalanine stable isotope tracer labeling of cow milk and meat and human experimental applications to study dietary protein-derived amino acid availability. Clin Nutr 2020; 39:3652-3662. [PMID: 32334880 DOI: 10.1016/j.clnu.2020.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/25/2020] [Accepted: 03/20/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS Availability of dietary protein-derived amino acids (AA) is an important determinant for their utilization in metabolism and for protein synthesis. Intrinsic labeling of protein is the only method to directly trace availability and utilization. The purpose of the present study was to produce labeled milk and meat proteins and investigate how dietary protein-derived AA availability is affected by the protein-meal matrix. METHODS Four lactating cows were infused with L-[ring-d5]phenylalanine and one with L-[15N]phenylalanine for 72 h. Milk was collected, and three of the [d5]phenylalanine cows were subsequently slaughtered. Two human studies were performed to explore plasma AA availability properties utilizing the labeled proteins. One study compared the intake of whey protein either alone or together with carbohydrates-fat food-matrix. The other study compared the intake of meat hydrolysate with minced beef. Cow blood, milk, meat and human blood samples were collected and analyzed by mass spectrometry. RESULTS Whey and caseinate acquired label to 15-20 mol percent excess (MPE), and the meat proteins reached 0.41-0.73 MPE. The [d5]phenylalanine appeared fast in plasma and peaked 30 min after whey protein alone and meat hydrolysate intake, whereas whey protein with a food-matrix and the meat minced beef postponed the [d5]phenylalanine peak until 2 and 1 h, respectively. CONCLUSIONS Phenylalanine stable isotope-labeled milk and meat were produced and proved a valuable tool to investigate AA absorption characteristics. Dietary protein in food-matrices showed delayed postprandial plasma AA availability as compared to whey protein alone and meat hydrolysate.
Collapse
Affiliation(s)
- Søren Reitelseder
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Britt Tranberg
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Kasper Dideriksen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Grith Højfeldt
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Marie Emily Merry
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Adam C Storm
- Department of Animal Science, Aarhus University Foulum, Aarhus University, Aarhus, Denmark.
| | | | | | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet.
| | - Peter Lund
- Department of Animal Science, Aarhus University Foulum, Aarhus University, Aarhus, Denmark.
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
37
|
Fuchs CJ, Smeets JSJ, Senden JM, Zorenc AH, Goessens JPB, van Marken Lichtenbelt WD, Verdijk LB, van Loon LJC. Hot-water immersion does not increase postprandial muscle protein synthesis rates during recovery from resistance-type exercise in healthy, young males. J Appl Physiol (1985) 2020; 128:1012-1022. [PMID: 32191599 DOI: 10.1152/japplphysiol.00836.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The purpose of this study was to assess the impact of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates during recovery from a single bout of resistance-type exercise in healthy, young men. Twelve healthy, adult men (age: 23 ± 1 y) performed a single bout of resistance-type exercise followed by 20 min of water immersion of both legs. One leg was immersed in hot water [46°C: hot-water immersion (HWI)], while the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine labeled milk protein with 45 g of carbohydrates. In addition, primed continuous L-[ring-2H5]-phenylalanine and L-[1-13C]-leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5-h recovery period. Muscle temperature immediately after water immersion was higher in the HWI compared with the CON leg (37.5 ± 0.1 vs. 35.2 ± 0.2°C; P < 0.001). Incorporation of dietary protein-derived L-[1-13C]-phenylalanine into myofibrillar protein did not differ between the HWI and CON leg during the 5-h recovery period (0.025 ± 0.003 vs. 0.024 ± 0.002 MPE; P = 0.953). Postexercise myofibrillar protein synthesis rates did not differ between the HWI and CON leg based upon L-[1-13C]-leucine (0.050 ± 0.005 vs. 0.049 ± 0.002%/h; P = 0.815) and L-[ring-2H5]-phenylalanine (0.048 ± 0.002 vs. 0.047 ± 0.003%/h; P = 0.877), respectively. Hot-water immersion during recovery from resistance-type exercise does not increase the postprandial rise in myofibrillar protein synthesis rates. In addition, postexercise hot-water immersion does not increase the capacity of the muscle to incorporate dietary protein-derived amino acids in muscle tissue protein during subsequent recovery.NEW & NOTEWORTHY This is the first study to assess the effect of postexercise hot-water immersion on postprandial myofibrillar protein synthesis rates and the incorporation of dietary protein-derived amino acids into muscle protein. We observed that hot-water immersion during recovery from a single bout of resistance-type exercise does not further increase myofibrillar protein synthesis rates or augment the postprandial incorporation of dietary protein-derived amino acids in muscle throughout 5 h of postexercise recovery.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Antoine H Zorenc
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joy P B Goessens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wouter D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
38
|
Tsintzas K, Jones R, Pabla P, Mallinson J, Barrett DA, Kim DH, Cooper S, Davies A, Taylor T, Chee C, Gaffney C, van Loon LJC, Stephens FB. Effect of acute and short-term dietary fat ingestion on postprandial skeletal muscle protein synthesis rates in middle-aged, overweight, and obese men. Am J Physiol Endocrinol Metab 2020; 318:E417-E429. [PMID: 31910028 DOI: 10.1152/ajpendo.00344.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Muscle anabolic resistance to dietary protein is associated with obesity and insulin resistance. However, the contribution of excess consumption of fat to anabolic resistance is not well studied. The aim of these studies was to test the hypothesis that acute and short-term dietary fat overload will impair the skeletal muscle protein synthetic response to dietary protein ingestion. Eight overweight/obese men [46.4 ± 1.4 yr, body mass index (BMI) 32.3 ± 5.4 kg/m2] participated in the acute feeding study, which consisted of two randomized crossover trials. On each occasion, subjects ingested an oral meal (with and without fat emulsion), 4 h before the coingestion of milk protein, intrinsically labeled with [1-13C]phenylalanine, and dextrose. Nine overweight/obese men (44.0 ± 1.7 yr, BMI 30.1 ± 1.1 kg/m2) participated in the chronic study, which consisted of a baseline, 1-wk isocaloric diet, followed by a 2-wk high-fat diet (+25% energy excess). Acutely, incorporation of dietary amino acids into the skeletal muscle was twofold higher (P < 0.05) in the lipid trial compared with control. There was no effect of prior lipid ingestion on indices of insulin sensitivity (muscle glucose uptake, pyruvate dehydrogenase complex activity, and Akt phosphorylation) in response to the protein/dextrose drink. Fat overfeeding had no effect on muscle protein synthesis or glucose disposal in response to whey protein ingestion, despite increased muscle diacylglycerol C16:0 (P = 0.06) and ceramide C16:0 (P < 0.01) levels. Neither acute nor short-term dietary fat overload has a detrimental effect on the skeletal muscle protein synthetic response to dietary protein ingestion in overweight/obese men, suggesting that dietary-induced accumulation of intramuscular lipids per se is not associated with anabolic resistance.
Collapse
Affiliation(s)
- Kostas Tsintzas
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Robert Jones
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Pardeep Pabla
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Joanne Mallinson
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - David A Barrett
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Dong-Hyun Kim
- Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Scott Cooper
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Amanda Davies
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Tariq Taylor
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Carolyn Chee
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Christopher Gaffney
- MRC/Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, United Kingdom
| | - Luc J C van Loon
- Department of Human Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Francis B Stephens
- School of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
39
|
Mulet-Cabero AI, Mackie AR, Brodkorb A, Wilde PJ. Dairy structures and physiological responses: a matter of gastric digestion. Crit Rev Food Sci Nutr 2020; 60:3737-3752. [PMID: 32056441 DOI: 10.1080/10408398.2019.1707159] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Digestion and health properties of food do not solely rely on the sum of nutrients but are also influenced by food structure. Dairy products present an array of structures due to differences in the origin of milk components and the changes induced by processing. Some dairy structures have been observed to induce specific effects on digestion rates and physiological responses. However, the underlying mechanisms are not fully understood. Gastric digestion plays a key role in controlling digestion kinetics. The main objective of this review is to expose the relevance of gastric phase as the link between dairy structures and physiological responses. The focus is on human and animal studies, and physiological relevant in vitro digestion models. Data collected showed that the structure of dairy products have a profound impact on rate of nutrient bioavailability, absorption and physiological responses, suggesting gastric digestion as the main driver. Control of gastric digestion can be a tool for delivering specific rates of nutrient digestion. Therefore, the design of food structure targeting specific gastric behavior could be of great interest for particular population needs e.g. rapid nutrient digestion will benefit elderly, and slow nutrient digestion could help to enhance satiety.
Collapse
Affiliation(s)
| | - Alan R Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
40
|
Fuchs CJ, Kouw IWK, Churchward-Venne TA, Smeets JSJ, Senden JM, Lichtenbelt WDVM, Verdijk LB, van Loon LJC. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes. J Physiol 2019; 598:755-772. [PMID: 31788800 PMCID: PMC7028023 DOI: 10.1113/jp278996] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Key points Protein ingestion and cooling are strategies employed by athletes to improve postexercise recovery and, as such, to facilitate muscle conditioning. However, whether cooling affects postprandial protein handling and subsequent muscle protein synthesis rates during recovery from exercise has not been assessed. We investigated the effect of postexercise cooling on the incorporation of dietary protein‐derived amino acids into muscle protein and acute postprandial (hourly) as well as prolonged (daily) myofibrillar protein synthesis rates during recovery from resistance‐type exercise over 2 weeks. Cold‐water immersion during recovery from resistance‐type exercise lowers the capacity of the muscle to take up and/or direct dietary protein‐derived amino acids towards de novo myofibrillar protein accretion. In addition, cold‐water immersion during recovery from resistance‐type exercise lowers myofibrillar protein synthesis rates during prolonged resistance‐type exercise training. Individuals aiming to improve skeletal muscle conditioning should reconsider applying cooling as a part of their postexercise recovery strategy.
Abstract We measured the impact of postexercise cooling on acute postprandial (hourly) as well as prolonged (daily) myofibrillar protein synthesis rates during adaptation to resistance‐type exercise over 2 weeks. Twelve healthy males (aged 21 ± 2 years) performed a single resistance‐type exercise session followed by water immersion of both legs for 20 min. One leg was immersed in cold water (8°C: CWI), whereas the other leg was immersed in thermoneutral water (30°C: CON). After water immersion, a beverage was ingested containing 20 g of intrinsically (l‐[1‐13C]‐phenylalanine and l‐[1‐13C]‐leucine) labelled milk protein with 45 g of carbohydrates. In addition, primed continuous l‐[ring‐2H5]‐phenylalanine and l‐[1‐13C]‐leucine infusions were applied, with frequent collection of blood and muscle samples to assess myofibrillar protein synthesis rates in vivo over a 5 h recovery period. In addition, deuterated water (2H2O) was applied with the collection of saliva, blood and muscle biopsies over 2 weeks to assess the effects of postexercise cooling with protein intake on myofibrillar protein synthesis rates during more prolonged resistance‐type exercise training (thereby reflecting short‐term training adaptation). Incorporation of dietary protein‐derived l‐[1‐13C]‐phenylalanine into myofibrillar protein was significantly lower in CWI compared to CON (0.016 ± 0.006 vs. 0.021 ± 0.007 MPE; P = 0.016). Postexercise myofibrillar protein synthesis rates were lower in CWI compared to CON based upon l‐[1‐13C]‐leucine (0.058 ± 0.011 vs. 0.072 ± 0.017% h−1, respectively; P = 0.024) and l‐[ring‐2H5]‐phenylalanine (0.042 ± 0.009 vs. 0.053 ± 0.013% h−1, respectively; P = 0.025). Daily myofibrillar protein synthesis rates assessed over 2 weeks were significantly lower in CWI compared to CON (1.48 ± 0.17 vs. 1.67 ± 0.36% day−1, respectively; P = 0.042). Cold‐water immersion during recovery from resistance‐type exercise reduces myofibrillar protein synthesis rates and, as such, probably impairs muscle conditioning. Protein ingestion and cooling are strategies employed by athletes to improve postexercise recovery and, as such, to facilitate muscle conditioning. However, whether cooling affects postprandial protein handling and subsequent muscle protein synthesis rates during recovery from exercise has not been assessed. We investigated the effect of postexercise cooling on the incorporation of dietary protein‐derived amino acids into muscle protein and acute postprandial (hourly) as well as prolonged (daily) myofibrillar protein synthesis rates during recovery from resistance‐type exercise over 2 weeks. Cold‐water immersion during recovery from resistance‐type exercise lowers the capacity of the muscle to take up and/or direct dietary protein‐derived amino acids towards de novo myofibrillar protein accretion. In addition, cold‐water immersion during recovery from resistance‐type exercise lowers myofibrillar protein synthesis rates during prolonged resistance‐type exercise training. Individuals aiming to improve skeletal muscle conditioning should reconsider applying cooling as a part of their postexercise recovery strategy.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imre W K Kouw
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tyler A Churchward-Venne
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joan M Senden
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter D van Marken Lichtenbelt
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
41
|
Nyakayiru J, Fuchs CJ, Trommelen J, Smeets JSJ, Senden JM, Gijsen AP, Zorenc AH, VAN Loon LJC, Verdijk LB. Blood Flow Restriction Only Increases Myofibrillar Protein Synthesis with Exercise. Med Sci Sports Exerc 2019; 51:1137-1145. [PMID: 30694972 PMCID: PMC6553970 DOI: 10.1249/mss.0000000000001899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Supplemental digital content is available in the text. Purpose Combining blood flow restriction (BFR) with exercise can stimulate skeletal muscle hypertrophy. Recent observations in an animal model suggest that BFR performed without exercise can also induce anabolic effects. We assessed the effect of BFR performed both with and without low-load resistance-type exercise (LLRE) on in vivo myofibrillar protein synthesis rates in young men. Methods Twenty healthy young men (age = 24 ± 1 yr, body mass index = 22.9 ± 0.6 kg·m−2) were randomly assigned to remain in resting condition (REST ± BFR; n = 10) or to perform LLRE (LLRE ± BFR at 20% one-repetition maximum; n = 10), combined with two 5-min cycles of single leg BFR. Myofibrillar protein synthesis rates were assessed during a 5-h post-BFR period by combining a primed continuous L-[ring-13C6]phenylalanine infusion with the collection of blood samples, and muscle biopsies from the BFR leg and the contralateral control leg. The phosphorylation status of anabolic signaling (mammalian target of rapamycin pathway) and metabolic stress (acetyl-CoA carboxylase)–related proteins, as well as the mRNA expression of genes associated with skeletal muscle mass regulation, was assessed in the collected muscle samples. Results Under resting conditions, no differences in anabolic signaling or myofibrillar protein synthesis rates were observed between REST + BFR and REST (0.044% ± 0.004% vs 0.043% ± 0.004% per hour, respectively; P = 0.683). By contrast, LLRE + BFR increased myofibrillar protein synthesis rates by 10% ± 5% compared with LLRE (0.048% ± 0.005% vs 0.043% ± 0.004% per hour, respectively; P = 0.042). Furthermore, compared with LLRE, LLRE + BFR showed higher phosphorylation status of acetyl-CoA carboxylase and 4E-BP1 as well as the elevated mRNA expression of MuRF1 (all P < 0.05). Conclusion BFR does not increase myofibrillar protein synthesis rates in healthy young men under resting conditions. When combined with LLRE, BFR increases postexercise myofibrillar protein synthesis rates in vivo in humans.
Collapse
Affiliation(s)
- Jean Nyakayiru
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - Cas J Fuchs
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - Jorn Trommelen
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - Joey S J Smeets
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - Joan M Senden
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - Annemie P Gijsen
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - Antoine H Zorenc
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| | - Luc J C VAN Loon
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS.,Institute of Sports and Exercise Studies, HAN University of Applied Sciences, Nijmegen, THE NETHERLANDS
| | - Lex B Verdijk
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, THE NETHERLANDS
| |
Collapse
|
42
|
Abstract
Industrial heat treatment of milk results in protein glycation. A high protein glycation level has been suggested to compromise the post-prandial rise in plasma amino acid availability following protein ingestion. In the present study, we assessed the impact of glycation level of milk protein on post-prandial plasma amino acid responses in humans. Fifteen healthy, young men (age 26 (SEM 1) years, BMI 24 (SEM 1) kg/m2) participated in this randomised cross-over study and ingested milk protein powder with protein glycation levels of 3, 20 and 50 % blocked lysine. On each trial day, arterialised blood samples were collected at regular intervals during a 6-h post-prandial period to assess plasma amino acid concentrations using ultra-performance liquid chromatography. Plasma essential amino acid (EAA) concentrations increased following milk protein ingestion, with the 20 and 50 % glycated milk proteins showing lower overall EAA responses compared with the 3 % glycated milk protein (161 (SEM 7) and 142 (SEM 7) v. 178 (SEM 9) mmol/l × 6 h, respectively; P ≤ 0·011). The lower post-prandial plasma amino acid responses were fully attributed to an attenuated post-prandial rise in circulating plasma lysine concentrations. Plasma lysine responses (incremental AUC) following ingestion of the 20 and 50 % glycated milk proteins were 35 (SEM 4) and 92 (SEM 2) % lower compared with the 3 % glycated milk protein (21·3 (SEM 1·4) and 2·8 (SEM 0·7) v. 33·3 (SEM 1·7) mmol/l × 6 h, respectively; P < 0·001). Milk protein glycation lowers post-prandial plasma lysine availability in humans. The lower post-prandial availability of lysine following ingestion of proteins with a high glycation level may compromise the anabolic properties of a protein source.
Collapse
|
43
|
van Vliet S, Beals JW, Holwerda AM, Emmons RS, Goessens JP, Paluska SA, De Lisio M, van Loon LJC, Burd NA. Time-dependent regulation of postprandial muscle protein synthesis rates after milk protein ingestion in young men. J Appl Physiol (1985) 2019; 127:1792-1801. [PMID: 31725358 DOI: 10.1152/japplphysiol.00608.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The anabolic action of "fast" whey protein on the regulation of postprandial muscle protein synthesis has been established to be short-lived in healthy young adults. We assessed the time course of anabolic signaling activation and stimulation of myofibrillar protein synthesis rates (MPS) after ingestion of a food source that represents a more typical meal-induced pattern of aminoacidemia. Seven young men (age: 22 ± 1 y) underwent repeated blood and biopsy sampling during primed, continuous l-[ring-2H5]phenylalanine and l-[1-13C]leucine tracer infusions and ingested 38 g of l-[1-13C]phenylalanine- and l-[1-13C]leucine-labeled milk protein concentrate. A total of ∼27 ± 4 (∼10 g) and ∼31 ± 1% (∼12 g) of dietary protein-derived amino acids were released in circulation between 0 and 120 min and 120-300 min, respectively, of the postprandial period. l-[ring-2H5]phenylalanine-based MPS increased above basal (0.025 ± 0.008%/h) by ∼75% (0.043 ± 0.009%/h; P = 0.05) between 0 and 120 min and by ∼86% (0.046 ± 0.004%/h; P = 0.02) between 120 and 300 min, respectively. l-[1-13C]leucine-based MPS increased above basal (0.027 ± 0.002%/h) by ∼72% (0.051 ± 0.016%/h; P = 0.10) between 0 and 120 min and by ∼62% (0.047 ± 0.004%/h; P = 0.001) between 120 and 300 min, respectively. Myofibrillar protein-bound l-[1-13C]phenylalanine increased over time (P < 0.001) and equaled 0.004 ± 0.001, 0.008 ± 0.002, 0.017 ± 0.004, and 0.020 ± 0.003 mole percent excess at 60, 120, 180, and 300 min, respectively, of the postprandial period. Milk protein ingestion increased mTORC1 phosphorylation at 120, 180, and 300 min of the postprandial period (all P < 0.05). Our results show that ingestion of 38 g of milk protein results in sustained increases in MPS throughout a 5-h postprandial period in healthy young men.NEW & NOTEWORTHY The stimulation of muscle protein synthesis after whey protein ingestion is short-lived due to its transient systemic appearance of amino acids. Our study characterized the muscle anabolic response to a protein source that results in a more gradual release of amino acids into circulation. Our work demonstrates that a sustained increase in postprandial plasma amino acid availability after milk protein ingestion results in a prolonged stimulation of muscle protein synthesis rates in healthy young men.
Collapse
Affiliation(s)
- Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Joseph W Beals
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Russell S Emmons
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Joy P Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael De Lisio
- School of Human Kinetics and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
44
|
Trommelen J, Holwerda AM, Nyakayiru J, Gorissen SHM, Rooyackers O, Burd NA, Boirie Y, van Loon LJC. The intrinsically labeled protein approach is the preferred method to quantify the release of dietary protein-derived amino acids into the circulation. Am J Physiol Endocrinol Metab 2019; 317:E433-E434. [PMID: 31423800 DOI: 10.1152/ajpendo.00155.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jorn Trommelen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jean Nyakayiru
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stefan H M Gorissen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Olav Rooyackers
- Division of Anaesthesia and Intensive Care, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois
| | - Yves Boirie
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CHU Clermont-Ferrand, Service de Nutrition Clinique, CRNH Auvergne Clermont-Ferrand, France
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
45
|
Holwerda AM, Paulussen KJM, Overkamp M, Goessens JPB, Kramer IF, Wodzig WKWH, Verdijk LB, de Groot LCPGM, van Loon LJC. Leucine coingestion augments the muscle protein synthetic response to the ingestion of 15 g of protein following resistance exercise in older men. Am J Physiol Endocrinol Metab 2019; 317:E473-E482. [PMID: 31112406 DOI: 10.1152/ajpendo.00073.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Older adults have shown an attenuated postexercise increase in muscle protein synthesis rates following ingestion of smaller amounts of protein compared with younger adults. Consequently, it has been suggested that older adults require the ingestion of more protein to increase postexercise muscle protein synthesis rates compared with younger adults. We investigated whether coingestion of 1.5 g of free leucine with a single 15-g bolus of protein further augments the postprandial muscle protein synthetic response during recovery from resistance-type exercise in older men. Twenty-four healthy older men (67 ± 1 yr) were randomly assigned to ingest 15 g of milk protein concentrate (MPC80) with (15G+LEU; n = 12) or without (15G; n = 12) 1.5 g of free leucine after performing a single bout of resistance-type exercise. Postprandial protein digestion and amino acid absorption kinetics, whole body protein metabolism, and postprandial myofibrillar protein synthesis rates were assessed using primed, continuous infusions with l-[ring-2H5]phenylalanine, l-[ring-2H2]tyrosine, and l-[1-13C]leucine combined with ingestion of intrinsically l-[1-13C]phenylalanine-labeled milk protein. A total of 70 ± 1% (10.5 ±0.2 g) and 75 ± 2% (11.2 ± 0.3 g) of the protein-derived amino acids were released in the circulation during the 6-h postexercise recovery phase in 15G+LEU and 15G, respectively (P < 0.05). Postexercise myofibrillar protein synthesis rates were 16% (0.058 ± 0.003 vs. 0.049 ± 0.002%/h, P < 0.05; based on l-[ring-2H5]phenylalanine) and 19% (0.071 ± 0.003 vs. 0.060 ± 0.003%/h, P < 0.05; based on l-[1-13C]leucine) greater in 15G+LEU compared with 15G. Leucine coingestion further augments the postexercise muscle protein synthetic response to the ingestion of a single 15-g bolus of protein in older men.
Collapse
Affiliation(s)
- Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Kevin J M Paulussen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Maarten Overkamp
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joy P B Goessens
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Irene-Fleur Kramer
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Will K W H Wodzig
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Lisette C P G M de Groot
- Department of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| |
Collapse
|
46
|
Slater GJ, Dieter BP, Marsh DJ, Helms ER, Shaw G, Iraki J. Is an Energy Surplus Required to Maximize Skeletal Muscle Hypertrophy Associated With Resistance Training. Front Nutr 2019; 6:131. [PMID: 31482093 PMCID: PMC6710320 DOI: 10.3389/fnut.2019.00131] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/02/2019] [Indexed: 01/11/2023] Open
Abstract
Resistance training is commonly prescribed to enhance strength/power qualities and is achieved via improved neuromuscular recruitment, fiber type transition, and/ or skeletal muscle hypertrophy. The rate and amount of muscle hypertrophy associated with resistance training is influenced by a wide array of variables including the training program, plus training experience, gender, genetic predisposition, and nutritional status of the individual. Various dietary interventions have been proposed to influence muscle hypertrophy, including manipulation of protein intake, specific supplement prescription, and creation of an energy surplus. While recent research has provided significant insight into optimization of dietary protein intake and application of evidence based supplements, the specific energy surplus required to facilitate muscle hypertrophy is unknown. However, there is clear evidence of an anabolic stimulus possible from an energy surplus, even independent of resistance training. Common textbook recommendations are often based solely on the assumed energy stored within the tissue being assimilated. Unfortunately, such guidance likely fails to account for other energetically expensive processes associated with muscle hypertrophy, the acute metabolic adjustments that occur in response to an energy surplus, or individual nuances like training experience and energy status of the individual. Given the ambiguous nature of these calculations, it is not surprising to see broad ranging guidance on energy needs. These estimates have never been validated in a resistance training population to confirm the "sweet spot" for an energy surplus that facilitates optimal rates of muscle gain relative to fat mass. This review not only addresses the influence of an energy surplus on resistance training outcomes, but also explores other pertinent issues, including "how much should energy intake be increased," "where should this extra energy come from," and "when should this extra energy be consumed." Several gaps in the literature are identified, with the hope this will stimulate further research interest in this area. Having a broader appreciation of these issues will assist practitioners in the establishment of dietary strategies that facilitate resistance training adaptations while also addressing other important nutrition related issues such as optimization of fuelling and recovery goals. Practical issues like the management of satiety when attempting to increase energy intake are also addressed.
Collapse
Affiliation(s)
- Gary John Slater
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Australian Institute of Sport, Canberra, ACT, Australia
| | - Brad P. Dieter
- Department of Pharmaceutical Sciences, Washington State University, WA Spokane, WA, United States
| | | | - Eric Russell Helms
- Auckland University of Technology, Sports Performance Research Institute New Zealand, Auckland, New Zealand
| | | | | |
Collapse
|
47
|
Jonker R, Deutz NEP, Schols AMWJ, Veley EA, Harrykissoon R, Zachria AJ, Engelen MPKJ. Whole body protein anabolism in COPD patients and healthy older adults is not enhanced by adding either carbohydrates or leucine to a serving of protein. Clin Nutr 2019; 38:1684-1691. [PMID: 30150004 PMCID: PMC6377853 DOI: 10.1016/j.clnu.2018.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Carbohydrates (CHO) and leucine (LEU) both have insulinotropic properties, and could therefore enhance the protein anabolic capacity of dietary proteins, which are important nutrients in preventing muscle loss in patients with Chronic Obstructive Pulmonary Disease (COPD). LEU is also known to activate protein anabolic signaling pathways independent of insulin. Based on our previous findings in COPD, we hypothesized that whole body protein anabolism is enhanced to a comparable extent by the separate and combined co-ingestion of CHO and LEU with protein. METHODS To disentangle the protein anabolic effects of CHO and/or free LEU when co-ingested with a high-quality protein, we studied 10 patients with moderate to very severe COPD and dyspnea (GOLD: II-IV, mMRC dyspnea scale ≥ 2), at risk for muscle loss, and 10 healthy age- and gender-matched controls. On four occasions, in a single-blind randomized crossover design, each subject ingested a drink containing 0.6 g/kg fat-free mass (ffm) hydrolyzed casein protein with, a) no add-ons (protein), b) 0.3 g/kg ffm CHO (protein + CHO), c) 0.095 g/kg ffm leucine (protein + LEU), d) both add-ons (protein + CHO + LEU). Whole body protein breakdown (PB), protein synthesis (PS), and net protein balance (= PS - PB) were measured by IV primed and continuous infusion of L-[ring-2H5]-phenylalanine and L-[13C9,15N]-tyrosine. L-[15N]-phenylalanine was added to the protein drinks to measure splanchnic extraction. RESULTS In both groups, whole body PS, PB and net protein balance responses were comparable between the four protein drinks, despite higher postprandial plasma LEU concentrations for the LEU supplemented drinks (P < 0.05), and higher insulin concentrations for the CHO supplemented drinks as compared to the protein only drink (P < 0.05). CONCLUSIONS Adding CHO and/or LEU to a serving of high-quality protein does not further augment whole body protein anabolism in dyspneic COPD patients at risk for muscle loss or healthy older adults. TRIAL REGISTRY ClinicalTrials.gov; No. NCT01734473; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Renate Jonker
- Center for Translational Research in Aging & Longevity, Dept. of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Dept. of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Annemie M W J Schols
- NUTRIM School for Nutrition, Toxicology and Metabolism, Dept. of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Eugene A Veley
- Dept. of Medicine, Div. of Pulmonary & Critical Care Medicine, Baylor Scott & White Medical Center, College Station, TX, USA
| | - Rajesh Harrykissoon
- Center for Pulmonary and Sleep Disorders, College Station Medical Center, College Station, TX, USA
| | - Anthony J Zachria
- Center for Pulmonary and Sleep Disorders, College Station Medical Center, College Station, TX, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Dept. of Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
48
|
Burd NA, McKenna CF, Salvador AF, Paulussen KJ, Moore DR. Dietary Protein Quantity, Quality, and Exercise Are Key to Healthy Living: A Muscle-Centric Perspective Across the Lifespan. Front Nutr 2019; 6:83. [PMID: 31245378 PMCID: PMC6563776 DOI: 10.3389/fnut.2019.00083] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022] Open
Abstract
A healthy eating pattern, regardless of age, should consist of ingesting high quality protein preferably in adequate amounts across all meals throughout the day. Of particular relevance to overall health is the growth, development, and maintenance of skeletal muscle tissue. Skeletal muscle not only contributes to physical strength and performance, but also contributes to efficient macronutrient utilization and storage. Achieving an optimal amount of muscle mass begins early in life with transitions to "steady-state" maintenance as an adult, and then safeguarding against ultimate decline of muscle mass with age, all of which are influenced by physical activity and dietary (e.g., protein) factors. Current protein recommendations, as defined by recommended dietary allowances (RDA) for the US population or the population reference intakes (PRI) in Europe, are set to cover basic needs; however, it is thought that a higher protein intake might be necessary for optimizing muscle mass, especially for adults and individuals with an active lifestyle. It is necessary to balance the accurate assessment of protein quality (e.g., digestible indispensable amino acid score; DIAAS) with methods that provide a physiological correlate (e.g., established measures of protein synthesis, substrate oxidation, lean mass retention, or accrual, etc.) in order to accurately define protein requirements for these physiological outcomes. Moreover, current recommendations need to shift from single nutrient guidelines to whole food based guidelines in order to practically acknowledge food matrix interactions and other required nutrients for potentially optimizing the health effects of food. The aim of this paper is to discuss protein quality and amount that should be consumed with consideration to the presence of non-protein constituents within a food matrix and potential interactions with physical activity to maximize muscle mass throughout life.
Collapse
Affiliation(s)
- Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Colleen F. McKenna
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Amadeo F. Salvador
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
| | - Kevin J.M. Paulussen
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, United States
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Smiles WJ, Churchward-Venne TA, van Loon LJC, Hawley JA, Camera DM. A single bout of strenuous exercise overcomes lipid-induced anabolic resistance to protein ingestion in overweight, middle-aged men. FASEB J 2019; 33:7009-7017. [PMID: 30840513 DOI: 10.1096/fj.201801917r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High-circulating lipid availability attenuates protein feeding-induced muscle protein synthesis (MPS). Whether the combined effects of exercise and protein ingestion can rescue this inhibition is unknown. In a parallel-groups design, middle-aged sedentary males (n = 28) matched for fat-free mass and body mass index received a 5-h intravenous infusion of either saline/control (n = 9), 20% intralipid infusion (n = 9), or intralipid with concomitant exercise (n = 10). Two hours into each of these infusions, participants received a primed constant infusion of L-(ring-[13C]6)-phenylalanine. Muscle biopsies were taken immediately after control and lipid infusions, at which time, a 30-g protein beverage was ingested. Further biopsies were taken 2 and 4 h after protein ingestion. Intralipid increased plasma free fatty acid concentrations from ∼0.4-2 mM, resulting in an attenuated MPS response to protein ingestion, which was prevented by exercise. Intralipid resulted in a lower peak aminoacidemia following protein ingestion that was exacerbated by prior exercise, suggesting efficiency of the working skeletal muscle to utilize amino acid substrate to drive the postprandial anabolic response. We conclude that in the face of high-fat availability, exercise preserves the sensitivity of skeletal muscle to the anabolic properties of amino acids.-Smiles, W. J., Churchward-Venne, T. A., van Loon, L. J. C., Hawley, J. A., Camera, D. M. A single bout of strenuous exercise overcomes lipid-induced anabolic resistance to protein ingestion in overweight, middle-aged men.
Collapse
Affiliation(s)
- William J Smiles
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Victoria, Australia; and
| | - Tyler A Churchward-Venne
- School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc J C van Loon
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Victoria, Australia; and.,School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - John A Hawley
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Victoria, Australia; and
| | - Donny M Camera
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University, Melbourne, Victoria, Australia; and
| |
Collapse
|
50
|
Dirks ML, Smeets JSJ, Holwerda AM, Kouw IWK, Marzuca-Nassr GN, Gijsen AP, Holloway GP, Verdijk LB, van Loon LJC. Dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during short-term bed rest. Am J Physiol Endocrinol Metab 2019; 316:E536-E545. [PMID: 30645176 DOI: 10.1152/ajpendo.00378.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Short periods of bed rest lead to the loss of muscle mass and quality. It has been speculated that dietary feeding pattern may have an impact upon muscle protein synthesis rates and, therefore, modulate the loss of muscle mass and quality. We subjected 20 healthy men (age: 25 ± 1 yr, body mass index: 23.8 ± 0.8 kg/m2) to 1 wk of strict bed rest with intermittent (4 meals/day) or continuous (24 h/day) enteral tube feeding. Participants consumed deuterium oxide for 7 days before bed rest and throughout the 7-day bed rest period. Prior to and immediately after bed rest, lean body mass (dual energy X-ray absorptiometry), quadriceps cross-sectional area (CSA; CT), maximal oxygen uptake capacity (V̇o2peak), and whole body insulin sensitivity (hyperinsulinemic-euglycemic clamp) were assessed. Muscle biopsies were collected 7 days before, 1 day before, and immediately after bed rest to assess muscle tracer incorporation. Bed rest resulted in 0.3 ± 0.3 vs. 0.7 ± 0.4 kg lean tissue loss and a 1.1 ± 0.6 vs. 0.8 ± 0.5% decline in quadriceps CSA in the intermittent vs. continuous feeding group, respectively (both P < 0.05), with no differences between groups (both P > 0.05). Moreover, feeding pattern did not modulate the bed rest-induced decline in insulin sensitivity (-46 ± 3% vs. 39 ± 3%; P < 0.001) or V̇o2peak (-2.5 ± 2.2 vs. -8.6 ± 2.2%; P < 0.010) (both P > 0.05). Myofibrillar protein synthesis rates during bed rest did not differ between the intermittent and continuous feeding group (1.33 ± 0.07 vs. 1.50 ± 0.13%/day, respectively; P > 0.05). In conclusion, dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during 1 wk of bed rest in healthy men.
Collapse
Affiliation(s)
- Marlou L Dirks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Imre W K Kouw
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Gabriel N Marzuca-Nassr
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| |
Collapse
|