1
|
Yuan F, Spence JD, Tarride JE. Cost-Utility Analysis of Low-Dose Pioglitazone in a Population With Prediabetes and a History of Stroke or Transient Ischemic Attack. J Am Heart Assoc 2024:e034531. [PMID: 39450743 DOI: 10.1161/jaha.123.034531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Pioglitazone significantly reduces the risk of stroke in people with diabetes, and in those with prediabetes, it markedly reduces the risk of stroke/myocardial infarction and new-onset diabetes. Low-dose pioglitazone provides most of the clinical benefits of high-dose pioglitazone, with fewer adverse effects. We report an economic evaluation of the cost-effectiveness of low-dose pioglitazone versus placebo from a Canadian public payer perspective in 2023 Canadian dollars. METHODS AND RESULTS A Markov model was developed at a lifetime horizon with an annual cycle length and 5 health states (event-free, myocardial infarction, stroke, new-onset diabetes, and death). Transition probabilities were extracted from the IRIS (Insulin Resistance Intervention in Stroke) trial. Health state costs and utilities were based on public sources. Annual discount rates of 1.5% were applied in the reference-case analysis. Probabilistic analyses were conducted to deal with parameter uncertainty through 5000 simulations. The costs were estimated as $24 887 (interquartile range [IQR], $14 632-$41507) for low-dose pioglitazone and $57 301 (IQR, $48 730-$67368) for placebo, resulting in a cost saving of -$30 287 (IQR, -$43 374 to -$14 587) in favor of low-dose pioglitazone. Quality-adjusted life years were estimated as 25.99 (IQR, 24.56-26.81) for the low-dose pioglitazone and 19.44 (IQR, 18.68-20.13) for placebo, resulting in a difference of 6.37 (IQR, 5.07-7.36) in favor of low-dose pioglitazone. Consistent findings were observed from scenario analyses and 1-way probability sensitivity analyses. CONCLUSIONS Holding across a wide range of values in modeling parameters, low-dose pioglitazone is found as the dominant strategy versus a placebo.
Collapse
Affiliation(s)
- Fei Yuan
- Population Health Research Institute, DBCVSRI Hamilton ON Canada
- Department of Health Research Methods, Evidence and Impact McMaster University Hamilton ON Canada
| | - J David Spence
- Neurology & Clinical Pharmacology Western University London ON Canada
- Director, Stroke Prevention & Atherosclerosis Research Centre Robarts Research Institute London ON Canada
| | - Jean-Eric Tarride
- Department of Health Research Methods, Evidence and Impact, McMaster Chair in Health Technology Management McMaster University Hamilton ON Canada
- Center for Health Economics and Policy Analysis (CHEPA) McMaster University Hamilton ON Canada
- Programs for Assessment of Technology in Health (PATH) The Research Institute of St. Joe's Hamilton, St. Joseph's Healthcare Hamilton Hamilton ON Canada
| |
Collapse
|
2
|
Mao R, Peng L, Zhang Y, Li L, Ren Y. The impact of bone mineral density on the risk of falling: evidence from genetic correlation and Mendelian randomization analysis. Endocrine 2024; 86:380-390. [PMID: 38851644 DOI: 10.1007/s12020-024-03904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Falls are the most common consequence of low bone mineral density (BMD). However, due to limitations inherent in observational studies, the causal relationship between the two remains unestablished. METHODS This study utilized Mendelian Randomization (MR) analysis to explore the causal relationship between BMD and the risk of falling, incorporating linkage disequilibrium score (LDSC) regression for genetic correlation assessment. The primary method was inverse-variance weighted (IVW), supplemented with sensitivity analyses and the causal analysis using summary effect estimates (CAUSE) to address heterogeneity and pleiotropy biases. RESULTS LDSC analysis indicated significant genetic correlations between BMD at various sites and falling risk (rg range: -0.82 to 0.76, all P < 0.05). IVW analysis, with False Discovery Rate (FDR) correction, showed a protective causal effect of total body BMD (OR = 0.85, 95% CI 0.82-0.88, P = 7.63 × 10-17, PFDR = 1.91 × 10-16), femoral neck BMD (OR = 0.81, 95% CI 0.75-0.88, P = 3.33 × 10-7, PFDR = 5.55 × 10-7), lumbar spine BMD (OR = 0.85, 95% CI 0.79-0.91, P = 9.56 × 10-7, PFDR = 1.20 × 10-6), and heel BMD (OR = 0.82, 95% CI 0.79-0.81, P = 1.69 × 10-39, PFDR = 8.45 × 10-39) on falling risk. No causal relationship was found for forearm BMD (OR = 1.02, 95% CI 0.94-1.11, P = 0.64, PFDR = 0.64). Replication datasets and CAUSE analysis provided causal evidence consistent with the main findings. CONCLUSION The study established a causal relationship between BMD at four different sites and the risk of falling, highlighting potential areas for targeted prevention strategies.
Collapse
Affiliation(s)
- Rumeng Mao
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Luyao Peng
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China
| | - Youqian Zhang
- Health Science Center, Yangtze University, Jingzhou, Hubei Province, China
| | - Lin Li
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China.
| | - Yanrui Ren
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei Province, China.
| |
Collapse
|
3
|
Leungsuwan DS, Chandran M. Bone Fragility in Diabetes and its Management: A Narrative Review. Drugs 2024; 84:1111-1134. [PMID: 39103693 DOI: 10.1007/s40265-024-02078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Bone fragility is a serious yet under-recognised complication of diabetes mellitus (DM) that is associated with significant morbidity and mortality. Multiple complex pathophysiological mechanisms mediating bone fragility amongst DM patients have been proposed and identified. Fracture risk in both type 1 diabetes (T1D) and type 2 diabetes (T2D) continues to be understated and underestimated by conventional risk assessment tools, posing an additional challenge to the identification of at-risk patients who may benefit from earlier intervention or preventive strategies. Over the years, an increasing body of evidence has demonstrated the efficacy of osteo-pharmacological agents in managing skeletal fragility in DM. This review seeks to elaborate on the risk of bone fragility in DM, the underlying pathogenesis and skeletal alterations, the approach to fracture risk assessment in DM, management strategies and therapeutic options.
Collapse
Affiliation(s)
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, 20 College Road, ACADEMIA, Singapore, 169856, Singapore.
- DUKE NUS Medical School, Singapore, Singapore.
| |
Collapse
|
4
|
Wu J, Li J, Yan Z, Yu X, Huang H. Higher prevalence of thyroid-specific autoantibodies (TPOAb and TgAb) is related to a higher prevalence of fractures in females: results from NHANES 2007-2010. Osteoporos Int 2024; 35:1213-1221. [PMID: 38607417 DOI: 10.1007/s00198-024-07083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
A retrospective analysis was conducted using data from the NHANES. Bone mineral density (BMD) was compared in different thyroid-specific autoantibodies groups. Strengths of associations were calculated by using binary logistic regression models. Higher titers of thyroid-specific autoantibodies (TgAb and/or TPOAb) may lead to decreased BMD. Higher prevalence of TgAb and TPOAb significantly associated with fractures in females but not in males. PURPOSE Hashimoto's thyroiditis is characterized by elevated thyroid-specific autoantibodies. It is currently believed that osteoporosis is not only a disease with abnormal mineral metabolism but also with immune abnormalities. This study investigated the relationship between thyroid-specific autoantibodies and osteoporosis, including the bone mineral density (BMD) values and fractures. METHODS A retrospective analysis was conducted using data from the National Health and Nutrition Examination Survey (2007-2010). BMD was compared in different thyroid-specific autoantibodies groups. The associations between thyroid-specific autoantibodies and fractures were explored. Strengths of associations were calculated by binary logistic regression models. Candidate variables for binary logistic regression model were selected after screened in univariate analysis (variables with P < 0.05). RESULTS A total of 3865 study participants were included in this analysis; 224 participants were TgAb positive and 356 were TPOAb positive. A total of 392 participants reported hip, spine or wrist fractures. Participants with higher prevalence of TgAb or TPOAb had lower BMD. In females, significant cigarettes use, higher prevalence of TgAb and TPOAb, and the BMD of the total femur and femoral neck were significantly associated with fractures. Higher prevalence of TPOAb was particularly associated with a higher possibility of hip or spine fractures. In males, significant cigarettes use, 25OHD3, the BMD values of the total femur, femoral neck and total spine were significantly associated with fractures. CONCLUSION Higher prevalence of thyroid-specific autoantibodies may lead to decreased BMD. In females, higher prevalence of TgAb and TPOAb significantly associated with fractures and TPOAb especially relating to the fractures of hip and spine. Males patients with vitamin D deficiency or insufficiency associated a higher possibility of fractures.
Collapse
Affiliation(s)
- Jialu Wu
- Laboratory of Endocrinology and Metabolism/ Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu, 610041, China
| | - Jian Li
- Laboratory of Endocrinology and Metabolism/ Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu, 610041, China
- Department of Endocrinology, Shandong Second Provincial General Hospital, Jinan, 250022, People's Republic of China
| | - Zhe Yan
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu, 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/ Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu, 610041, China.
| | - Hui Huang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Xiang, Chengdu, 610041, China.
| |
Collapse
|
5
|
Azhari H, Hewitt J, Smith A, O’Neill M, Quinn T, Dawson J. Pioglitazone and barriers to effective post-stroke comorbidity management in stroke survivors with diabetes. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2024; 29:44-50. [PMID: 38195138 PMCID: PMC10827012 DOI: 10.17712/nsj.2024.1.20230043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVES To explore the barriers preventing pioglitazone use in stroke survivors and primary and secondary stroke care services. METHODS A qualitative grounded theory approached design was used to assess post-stroke diabetes treatments and to assess clinical applicability of pioglitazone as a preventive treatment to minimize its side effects (SEs) associated. Three focus groups were established with 48 participants from Scotland and Wales health board centers during January 2019 to July 2022. RESULTS A qualitative grounded theory approached design was used to assess post-stroke diabetes treatments and to assess clinical applicability of pioglitazone as a preventive treatment to minimize its SEs associated. Three focus groups were established with 48 participants from Scotland and Wales health board centers during January 2019 to July 2022. CONCLUSION These strategies might allow greater treatment adherence by stroke survivors and increased confidence of the health care professionals in their practice. The findings suggest that further research will be needed to facilitate wider usage of pioglitazone in treating people with stroke and health education is necessitate when using diabetes drugs post-stroke.
Collapse
Affiliation(s)
- Hala Azhari
- From the College of Medicine and Pharmacy (Azhari), Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia, from the School of Cardiovascular and Metabolic Health (Azhari, Quinn, Dawson), University of Glasgow, Glasgow, from the School of Geriatric Medicine Centre (Hewitt, O’Neill), Cardiff University, and from the Clinical Research and Innovation Centre (Smith), Aneurin Bevan University Health Board, Newport, United Kingdom
| | - Jonathan Hewitt
- From the College of Medicine and Pharmacy (Azhari), Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia, from the School of Cardiovascular and Metabolic Health (Azhari, Quinn, Dawson), University of Glasgow, Glasgow, from the School of Geriatric Medicine Centre (Hewitt, O’Neill), Cardiff University, and from the Clinical Research and Innovation Centre (Smith), Aneurin Bevan University Health Board, Newport, United Kingdom
| | - Alexander Smith
- From the College of Medicine and Pharmacy (Azhari), Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia, from the School of Cardiovascular and Metabolic Health (Azhari, Quinn, Dawson), University of Glasgow, Glasgow, from the School of Geriatric Medicine Centre (Hewitt, O’Neill), Cardiff University, and from the Clinical Research and Innovation Centre (Smith), Aneurin Bevan University Health Board, Newport, United Kingdom
| | - Martin O’Neill
- From the College of Medicine and Pharmacy (Azhari), Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia, from the School of Cardiovascular and Metabolic Health (Azhari, Quinn, Dawson), University of Glasgow, Glasgow, from the School of Geriatric Medicine Centre (Hewitt, O’Neill), Cardiff University, and from the Clinical Research and Innovation Centre (Smith), Aneurin Bevan University Health Board, Newport, United Kingdom
| | - Terence Quinn
- From the College of Medicine and Pharmacy (Azhari), Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia, from the School of Cardiovascular and Metabolic Health (Azhari, Quinn, Dawson), University of Glasgow, Glasgow, from the School of Geriatric Medicine Centre (Hewitt, O’Neill), Cardiff University, and from the Clinical Research and Innovation Centre (Smith), Aneurin Bevan University Health Board, Newport, United Kingdom
| | - Jesse Dawson
- From the College of Medicine and Pharmacy (Azhari), Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia, from the School of Cardiovascular and Metabolic Health (Azhari, Quinn, Dawson), University of Glasgow, Glasgow, from the School of Geriatric Medicine Centre (Hewitt, O’Neill), Cardiff University, and from the Clinical Research and Innovation Centre (Smith), Aneurin Bevan University Health Board, Newport, United Kingdom
| |
Collapse
|
6
|
Zhou Y, Ni Y, Wang Z, Prud'homme GJ, Wang Q. Causal effects of non-alcoholic fatty liver disease on osteoporosis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1283739. [PMID: 38149094 PMCID: PMC10749958 DOI: 10.3389/fendo.2023.1283739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Background Osteoporosis (OP) is a systemic skeletal disease characterized by compromised bone strength leading to an increased risk of fracture. There is an ongoing debate on whether non-alcoholic fatty liver disease (NAFLD) is an active contributor or an innocent bystander in the pathogenesis of OP. The aim of this study was to assess the causal association between NAFLD and OP. Methods We performed two-sample Mendelian randomization (MR) analyses to investigate the causal association between genetically predicted NAFLD [i.e., imaging-based liver fat content (LFC), chronically elevated serum alanine aminotransferase (cALT) and biopsy-confirmed NAFLD] and risk of OP. The inverse variant weighted method was performed as main analysis to obtain the causal estimates. Results Imaging-based LFC and biopsy-confirmed NAFLD demonstrated a suggestive causal association with OP ([odds ratio (OR): 1.003, 95% CI: 1.001-1.004, P < 0.001; OR: 1.001, 95% CI: 1.000-1.002, P = 0.031]). The association between cALT and OP showed a similar direction, but was not statistically significant (OR: 1.001, 95% CI: 1.000-1.002, P = 0.079). Repeated analyses after exclusion of genes associated with confounding factors showed consistent results. Sensitivity analysis indicated low heterogeneity, high reliability and low pleiotropy of the causal estimates. Conclusion The two-sample MR analyses suggest a causal association between genetically predicted NAFLD and OP.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Yunzhi Ni
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhihong Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Gerald J Prud'homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Machado MV. MASLD treatment-a shift in the paradigm is imminent. Front Med (Lausanne) 2023; 10:1316284. [PMID: 38146424 PMCID: PMC10749497 DOI: 10.3389/fmed.2023.1316284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
MASLD prevalence is growing towards the leading cause of end-stage liver disease. Up to today, the most effective treatment is weight loss. Weight loss interventions are moving from lifestyle changes to bariatric surgery or endoscopy, and, more recently, to a new wave of anti-obesity drugs that can compete with bariatric surgery. Liver-targeted therapy is a necessity for those patients who already present liver fibrosis. The field is moving fast, and in the near future, we will testify to a disruptive change in MASLD treatment, similar to the paradigm-shift that occurred for hepatitis C almost one decade ago with direct antiviral agents.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
| |
Collapse
|
8
|
Witham MD, Granic A, Pearson E, Robinson SM, Sayer AA. Repurposing Drugs for Diabetes Mellitus as Potential Pharmacological Treatments for Sarcopenia - A Narrative Review. Drugs Aging 2023:10.1007/s40266-023-01042-4. [PMID: 37486575 PMCID: PMC10371965 DOI: 10.1007/s40266-023-01042-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/25/2023]
Abstract
Sarcopenia, the age-related loss of muscle strength and mass or quality, is a common condition with major adverse consequences. Although the pathophysiology is incompletely understood, there are common mechanisms between sarcopenia and the phenomenon of accelerated ageing seen in diabetes mellitus. Drugs currently used to treat type 2 diabetes mellitus may have mechanisms of action that are relevant to the prevention and treatment of sarcopenia, for those with type 2 diabetes and those without diabetes. This review summarises shared pathophysiology between sarcopenia and diabetes mellitus, including the effects of advanced glycation end products, mitochondrial dysfunction, chronic inflammation and changes to the insulin signalling pathway. Cellular and animal models have generated intriguing, albeit mixed, evidence that supports possible beneficial effects on skeletal muscle function for some classes of drugs used to treat diabetes, including metformin and SGLT2 inhibitors. Most human observational and intervention evidence for the effects of these drugs has been derived from populations with type 2 diabetes mellitus, and there is a need for intervention studies for older people with, and at risk of, sarcopenia to further investigate the balance of benefit and risk in these target populations. Not all diabetes treatments will be safe to use in those without diabetes because of variable side effects across classes. However, some agents [including glucagon-like peptide (GLP)-1 receptor agonists and SGLT2 inhibitors] have already demonstrated benefits in populations without diabetes, and it is these agents, along with metformin, that hold out the most promise for further investigation in sarcopenia.
Collapse
Affiliation(s)
- Miles D Witham
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK.
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK.
| | - Antoneta Granic
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Ewan Pearson
- Division of Population Health and Genomics, Dundee Medical School, University of Dundee, Dundee, UK
| | - Sian M Robinson
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Avan A Sayer
- AGE Research Group, Newcastle University Institute for Translational and Clinical Research, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne NHS Foundation Trust and Cumbria, Northumberland and Tyne and Wear NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
9
|
Lv M, Liang Q, He X, Du X, Liu Y, Liu Y, Fang C. Hypoglycemic effects of dendrobium officinale leaves. Front Pharmacol 2023; 14:1163028. [PMID: 37361228 PMCID: PMC10288155 DOI: 10.3389/fphar.2023.1163028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Numerous studies have demonstrated that the stems of D. officinale have the effect of lowering blood glucose, but the leaves of D. officinale have seldom been investigated. In this study, we mainly studied the hypoglycemic effect and mechanism of D. officinale leaves. Methods: Initially in vivo, male C57BL/6 mice were administered either standard feed (10 kcal% fat) or high-fat feed (60 kcal% fat) along with either normal drinking water or drinking water containing 5 g/L water extract of D. officinale leaves (EDL) for 16 weeks, and changes in body weight, food intake, blood glucose, etc., were monitored weekly. Next in vitro, C2C12 myofiber precursor cells which were induced to differentiate into myofibroblasts and cultured with EDL to detect the expression of insulin signaling pathway related proteins. HEPA cells were also cultured with EDL to detect the expression of hepatic gluconeogenesis or hepatic glycogen synthesis related proteins. Eventually after separating the components from EDL by ethanol and 3 kDa ultrafiltration centrifuge tube, we conducted animal experiments using the ethanol-soluble fraction of EDL (ESFE), ethanol-insoluble fraction of EDL (EIFE), ESFE with a molecular weight of >3 kDa (>3 kDa ESFE), and ESFE with a molecular weight of <3 kDa (<3 kDa ESFE) for intensive study. Results: The results in vivo revealed that the mice fed the high-fat diet exhibited significantly decreased blood glucose levels and significantly increased glucose tolerance after the EDL treatment, whereas the mice fed the low-fat diet did not. The results in vitro showed that EDL activated the expression of protein kinase B (AKT), the phosphorylation of AKT, and the expression of downstream GSK3β in the insulin signaling pathway. EDL treatment of HEPA cells confirmed that EDL did not affect hepatic gluconeogenesis or hepatic glycogen synthesis. In the experiment of studying the composition of EDL, we found that the >3 kDa ESFE displayed the effect of lowering blood glucose. In summary, the effect of EDL in lowering blood glucose may bethanole achieved by activating the insulin signaling pathway to increase insulin sensitivity, and the main functional substance was contained within the >3 kDa ESFE. Discussion: The findings of this study represent a reference point for further exploration of the hypoglycemic effects of D. officinale leaves and may assist in both the identification of new molecular mechanisms to improve insulin sensitivity and the isolation of monomeric substances that lower blood glucose. Furthermore, the obtained results may provide a theoretical basis for the development of hypoglycemic drugs with D. officinale leaves as the main component.
Collapse
Affiliation(s)
- Ming Lv
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Land and Resources Vocational College, Kunming, China
| | - Qingqing Liang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Vocational College of Mechanical and Electrical Technology, Kunming, China
| | - Xiaofang He
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Xiaocui Du
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
| | - Yuhan Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yan Liu
- International College, Yunnan Agricultural University, Kunming, China
| | - Chongye Fang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
Muschitz C, Kautzky-Willer A, Winhofer Y, Rauner M, Haschka J, Cejka D, Wakolbinger-Habel R, Pietschmann P. [Diagnosis and management of patients with diabetes and co-existing osteoporosis (Update 2023) : Common guideline of the Austrian Society for Bone and Mineral Research and the Austrian Diabetes Society]. Wien Klin Wochenschr 2023; 135:207-224. [PMID: 37101043 PMCID: PMC10133052 DOI: 10.1007/s00508-022-02118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 04/28/2023]
Abstract
Fragility fractures are increasingly recognized as a complication of both type 1 and type 2 diabetes, with fracture risk that increases with disease duration and poor glycemic control. The identification and management of fracture risk in these patients remains challenging. This manuscript explores the clinical characteristics of bone fragility in adults with diabetes and highlights recent studies that have evaluated areal bone mineral density (BMD), bone microstructure and material properties, biochemical markers, and fracture prediction algorithms (FRAX) in these patients. It further reviews the impact of diabetes drugs on bone tissue as well as the efficacy of osteoporosis treatments in this population. An algorithm for the identification and management of diabetic patients at increased fracture risk is proposed.
Collapse
Affiliation(s)
- Christian Muschitz
- II. Medizinische Abteilung, Barmherzige Schwestern Krankenhaus Wien, Wien, Österreich.
- Externe Lehre, Medizinische Universität Wien, Spitalgasse 23, 1090, Wien, Österreich.
| | - Alexandra Kautzky-Willer
- Gender Medicine Unit, Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Yvonne Winhofer
- Gender Medicine Unit, Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin III, Medizinische Universität Wien, Wien, Österreich
| | - Martina Rauner
- Bone Lab Dresden, Medizinische Klinik und Poliklinik III, Medizinische Fakultät, Technische Universität Dresden, Dresden, Deutschland
| | - Judith Haschka
- Externe Lehre, Medizinische Universität Wien, Spitalgasse 23, 1090, Wien, Österreich
- I. Medizinische Abteilung, Hanusch Krankenhaus, Wien, Österreich
| | - Daniel Cejka
- III. Medizinische Abteilung mit Nieren- und Hochdruckerkrankungen, Transplantationsmedizin und Rheumatologie, Ordensklinikum Linz Elisabethinen, Linz, Österreich
| | - Robert Wakolbinger-Habel
- Externe Lehre, Medizinische Universität Wien, Spitalgasse 23, 1090, Wien, Österreich
- Institut für physikalische Medizin und Rehabilitation, Klinik Donaustadt, Wien, Österreich
| | - Peter Pietschmann
- Institut für Pathophysiologie & Allergieforschung, Zentrum für Pathophysiologie, Infektiologie und Immunologie, Medizinische Universität Wien, Wien, Österreich
| |
Collapse
|
11
|
Amorfrutin B Protects Mouse Brain Neurons from Hypoxia/Ischemia by Inhibiting Apoptosis and Autophagy Processes Through Gene Methylation- and miRNA-Dependent Regulation. Mol Neurobiol 2023; 60:576-595. [PMID: 36324052 PMCID: PMC9849175 DOI: 10.1007/s12035-022-03087-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Amorfrutin B is a selective modulator of the PPARγ receptor, which has recently been identified as an effective neuroprotective compound that protects brain neurons from hypoxic and ischemic damage. Our study demonstrated for the first time that a 6-h delayed post-treatment with amorfrutin B prevented hypoxia/ischemia-induced neuronal apoptosis in terms of the loss of mitochondrial membrane potential, heterochromatin foci formation, and expression of specific genes and proteins. The expression of all studied apoptosis-related factors was decreased in response to amorfrutin B, both during hypoxia and ischemia, except for the expression of anti-apoptotic BCL2, which was increased. After post-treatment with amorfrutin B, the methylation rate of the pro-apoptotic Bax gene was inversely correlated with the protein level, which explained the decrease in the BAX/BCL2 ratio as a result of Bax hypermethylation. The mechanisms of the protective action of amorfrutin B also involved the inhibition of autophagy, as evidenced by diminished autophagolysosome formation and the loss of neuroprotective properties of amorfrutin B after the silencing of Becn1 and/or Atg7. Although post-treatment with amorfrutin B reduced the expression levels of Becn1, Nup62, and Ambra1 during hypoxia, it stimulated Atg5 and the protein levels of MAP1LC3B and AMBRA1 during ischemia, supporting the ambiguous role of autophagy in the development of brain pathologies. Furthermore, amorfrutin B affected the expression levels of apoptosis-focused and autophagy-related miRNAs, and many of these miRNAs were oppositely regulated by amorfrutin B and hypoxia/ischemia. The results strongly support the position of amorfrutin B among the most promising anti-stroke and wide-window therapeutics.
Collapse
|
12
|
Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, Rosas SE, Del Prato S, Mathieu C, Mingrone G, Rossing P, Tankova T, Tsapas A, Buse JB. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022; 65:1925-1966. [PMID: 36151309 PMCID: PMC9510507 DOI: 10.1007/s00125-022-05787-2] [Citation(s) in RCA: 336] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
The American Diabetes Association and the European Association for the Study of Diabetes convened a panel to update the previous consensus statements on the management of hyperglycaemia in type 2 diabetes in adults, published since 2006 and last updated in 2019. The target audience is the full spectrum of the professional healthcare team providing diabetes care in the USA and Europe. A systematic examination of publications since 2018 informed new recommendations. These include additional focus on social determinants of health, the healthcare system and physical activity behaviours including sleep. There is a greater emphasis on weight management as part of the holistic approach to diabetes management. The results of cardiovascular and kidney outcomes trials involving sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists, including assessment of subgroups, inform broader recommendations for cardiorenal protection in people with diabetes at high risk of cardiorenal disease. After a summary listing of consensus recommendations, practical tips for implementation are provided.
Collapse
Affiliation(s)
- Melanie J Davies
- Leicester Diabetes Research Centre, University of Leicester, Leicester, UK.
- Leicester National Institute for Health Research (NIHR) Biomedical Research Centre, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | - Vanita R Aroda
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Billy S Collins
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | - Jennifer Green
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nisa M Maruthur
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sylvia E Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Division of Diabetes and Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tsvetalina Tankova
- Department of Endocrinology, Medical University - Sofia, Sofia, Bulgaria
| | - Apostolos Tsapas
- Diabetes Centre, Clinical Research and Evidence-based Medicine Unit, Aristotle University Thessaloniki, Thessaloniki, Greece
- Harris Manchester College, University of Oxford, Oxford, UK
| | - John B Buse
- University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Chan W, Tan S, Chan S, Lee Y, Tee H, Mahadeva S, Goh K, Ramli AS, Mustapha F, Kosai NR, Raja Ali RA. Malaysian Society of Gastroenterology and Hepatology consensus statement on metabolic dysfunction-associated fatty liver disease. J Gastroenterol Hepatol 2022; 37:795-811. [PMID: 35080048 PMCID: PMC9303255 DOI: 10.1111/jgh.15787] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
The Malaysian Society of Gastroenterology and Hepatology saw the need for a consensus statement on metabolic dysfunction-associated fatty liver disease (MAFLD). The consensus panel consisted of experts in the field of gastroenterology/hepatology, endocrinology, bariatric surgery, family medicine, and public health. A modified Delphi process was used to prepare the consensus statements. The panel recognized the high and increasing prevalence of the disease and the consequent anticipated increase in liver-related complications and mortality. Cardiovascular disease is the leading cause of mortality in MAFLD patients; therefore, cardiovascular disease risk assessment and management is important. A simple and clear liver assessment and referral pathway was agreed upon, so that patients with more severe MAFLD can be linked to gastroenterology/hepatology care, while patients with less severe MAFLD can remain in primary care or endocrinology, where they are best managed. Lifestyle intervention is the cornerstone in the management of MAFLD. The panel provided a consensus on the use of statin, angiotensin-converting enzyme inhibitor or angiotensin receptor blocker, sodium-glucose cotransporter-2 inhibitor, glucagon-like peptide-1 agonist, pioglitazone, vitamin E, and metformin, as well as recommendations on bariatric surgery, screening for gastroesophageal varices and hepatocellular carcinoma, and liver transplantation in MAFLD patients. Increasing the awareness and knowledge of the various stakeholders on MAFLD and incorporating MAFLD into existing noncommunicable disease-related programs and activities are important steps to tackle the disease. These consensus statements will serve as a guide on MAFLD for clinicians and other stakeholders.
Collapse
Affiliation(s)
- Wah‐Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Soek‐Siam Tan
- Department of HepatologySelayang HospitalBatu CavesSelangorMalaysia
| | | | - Yeong‐Yeh Lee
- School of Medical SciencesUniversiti Sains MalaysiaKota BharuKelantanMalaysia
| | - Hoi‐Poh Tee
- KPJ Pahang Specialist CentreKuantanPahangMalaysia
| | - Sanjiv Mahadeva
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Khean‐Lee Goh
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Anis Safura Ramli
- Department of Primary Care Medicine, Faculty of MedicineUniversiti Teknologi MARA, Selayang CampusBatu CavesSelangorMalaysia
- Institute of Pathology, Laboratory and Forensic Medicine, Centre of Excellence for Research on Atherosclerosis and CVD PreventionUniversiti Teknologi MARA, Sungai Buloh CampusSungai BulohSelangorMalaysia
| | - Feisul Mustapha
- Disease Control DivisionMinistry of Health, MalaysiaPutrajayaMalaysia
| | - Nik Ritza Kosai
- Upper Gastrointestinal, Metabolic and Bariatric Surgery Unit, Department of SurgeryUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Raja Affendi Raja Ali
- Gastroenterology Unit, Department of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| |
Collapse
|
14
|
Santos-Laso A, Gutiérrez-Larrañaga M, Alonso-Peña M, Medina JM, Iruzubieta P, Arias-Loste MT, López-Hoyos M, Crespo J. Pathophysiological Mechanisms in Non-Alcoholic Fatty Liver Disease: From Drivers to Targets. Biomedicines 2021; 10:biomedicines10010046. [PMID: 35052726 PMCID: PMC8773141 DOI: 10.3390/biomedicines10010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive and detrimental accumulation of liver fat as a result of high-caloric intake and/or cellular and molecular abnormalities. The prevalence of this pathological event is increasing worldwide, and is intimately associated with obesity and type 2 diabetes mellitus, among other comorbidities. To date, only therapeutic strategies based on lifestyle changes have exhibited a beneficial impact on patients with NAFLD, but unfortunately this approach is often difficult to implement, and shows poor long-term adherence. For this reason, great efforts are being made to elucidate and integrate the underlying pathological molecular mechanism, and to identify novel and promising druggable targets for therapy. In this regard, a large number of clinical trials testing different potential compounds have been performed, albeit with no conclusive results yet. Importantly, many other clinical trials are currently underway with results expected in the near future. Here, we summarize the key aspects of NAFLD pathogenesis and therapeutic targets in this frequent disorder, highlighting the most recent advances in the field and future research directions.
Collapse
Affiliation(s)
- Alvaro Santos-Laso
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- Correspondence: (A.S.-L.); (J.C.)
| | - María Gutiérrez-Larrañaga
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Marta Alonso-Peña
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Juan M. Medina
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - María Teresa Arias-Loste
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Marcos López-Hoyos
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
- Correspondence: (A.S.-L.); (J.C.)
| |
Collapse
|
15
|
Ha J, Lim Y, Kim MK, Kwon HS, Song KH, Ko SH, Kang MI, Moon SD, Baek KH. Comparison of the Effects of Various Antidiabetic Medication on Bone Mineral Density in Patients with Type 2 Diabetes Mellitus. Endocrinol Metab (Seoul) 2021; 36:895-903. [PMID: 34365776 PMCID: PMC8419604 DOI: 10.3803/enm.2021.1026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Prospective comparative studies on the effects of various antidiabetic agents on bone metabolism are limited. This study aimed to assess changes in bone mass and biochemical bone markers in postmenopausal patients with type 2 diabetes mellitus (T2DM). METHODS This prospective, multicenter, open-label, comparative trial included 264 patients with T2DM. Patients who had received a metformin, or sulfonylurea/metformin combination (Group 1); a thiazolidinedione combination (Group 2); a dipeptidyl peptidase-4 inhibitor (gemigliptin) combination (Group 3); or an sodium-glucose cotransporter 2 inhibitor (empagliflozin) combination (Group 4) were prospectively treated for 12 months; bone mineral density (BMD) and bone turnover marker (BTM) changes were evaluated. RESULTS The femoral neck BMD percentage changes were -0.79%±2.86% (Group 1), -2.50%±3.08% (Group 2), -1.05%±2.74% (Group 3), and -1.24%±2.91% (Group 4) (P<0.05). The total hip BMD percentage changes were -0.57%±1.79% (Group 1), -1.74%±1.48% (Group 2), -0.75%±1.87% (Group 3), and -1.27%±1.72% (Group 4) (P<0.05). Mean serum BTM (C-terminal type 1 collagen telopeptide and procollagen type 1 amino-terminal propeptide) levels measured during the study period did not change over time or differ between groups. CONCLUSION Significant bone loss in the femoral neck and total hip was associated with thiazolidinedione combination regimens. However, bone loss was not significantly associated with combination regimens including gemigliptin or empagliflozin. Caution should be exercised during treatment with antidiabetic medications that adversely affect the bone in patients with diabetes at a high risk of bone loss.
Collapse
Affiliation(s)
- Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Yejee Lim
- Division of General Internal Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Seoul,
Korea
| | - Mee Kyoung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Seoul,
Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Seoul,
Korea
| | - Ki-Ho Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Seoul,
Korea
| | - Seung Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Seoul,
Korea
| | - Moo Il Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Sung Dae Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon,
Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Seoul,
Korea
| |
Collapse
|
16
|
Cugno C, Kizhakayil D, Calzone R, Rahman SM, Halade GV, Rahman MM. Omega-3 fatty acid-rich fish oil supplementation prevents rosiglitazone-induced osteopenia in aging C57BL/6 mice and in vitro studies. Sci Rep 2021; 11:10364. [PMID: 33990655 PMCID: PMC8121944 DOI: 10.1038/s41598-021-89827-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Rosiglitazone is an effective insulin-sensitizer, however associated with bone loss mainly due to increased bone resorption and bone marrow adiposity. We investigated the effect of the co-administration of fish oil rich in omega-3 fatty acids (FAs) on rosiglitazone-induced bone loss in C57BL/6 mice and the mechanisms underlying potential preventive effect. Mice fed the iso-caloric diet supplemented with fish oil exhibited significantly higher levels of bone density in different regions compared to the other groups. In the same cohort of mice, reduced activity of COX-2, enhanced activity of alkaline phosphatase, lower levels of cathepsin k, PPAR-γ, and pro-inflammatory cytokines, and a higher level of anti-inflammatory cytokines were observed. Moreover, fish oil restored rosiglitazone-induced down-regulation of osteoblast differentiation and up-regulation of adipocyte differentiation in C3H10T1/2 cells and inhibited the up-regulation of osteoclast differentiation of RANKL-treated RAW264.7 cells. We finally tested our hypothesis on human Mesenchymal Stromal Cells differentiated to osteocytes and adipocytes confirming the beneficial effect of docosahexaenoic acid (DHA) omega-3 FA during treatment with rosiglitazone, through the down-regulation of adipogenic genes, such as adipsin and FABP4 along the PPARγ/FABP4 axis, and reducing the capability of osteocytes to switch toward adipogenesis. Fish oil may prevent rosiglitazone-induced bone loss by inhibiting inflammation, osteoclastogenesis, and adipogenesis and by enhancing osteogenesis in the bone microenvironment.
Collapse
Affiliation(s)
- Chiara Cugno
- Advanced Cell Therapy Core, Sidra Medicine, Doha, Qatar
| | | | - Rita Calzone
- Advanced Cell Therapy Core, Sidra Medicine, Doha, Qatar
| | - Shaikh Mizanoor Rahman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, The University of South Florida Health, Tampa, FL, USA
| | - Md M Rahman
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
17
|
Sasako T, Ueki K, Miyake K, Okazaki Y, Takeuchi Y, Ohashi Y, Noda M, Kadowaki T. Effect of a Multifactorial Intervention on Fracture in Patients With Type 2 Diabetes: Subanalysis of the J-DOIT3 Study. J Clin Endocrinol Metab 2021; 106:e2116-e2128. [PMID: 33491087 PMCID: PMC8063245 DOI: 10.1210/clinem/dgab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/19/2022]
Abstract
AIMS To evaluate the effects of an intensified multifactorial intervention and patient characteristics on the incidence of fractures comorbid with type 2 diabetes. METHODS Fracture events were identified and analyzed among adverse events reported in the J-DOIT3 study, a multicenter, open-label, randomized, parallel-group trial that was conducted in Japan, in which patients with type 2 diabetes were randomly assigned to receive conventional therapy for glucose, blood pressure, and lipids (targets: HbA1c < 6.9%, blood pressure <130/80 mm Hg, LDL-cholesterol <120mg/dL) or intensive therapy (HbA1c < 6.2%, blood pressure <120/75 mm Hg, LDL-cholesterol <80mg/dL) (ClinicalTrials.gov registration no. NCT00300976). RESULTS The cumulative incidence of fractures did not differ between those receiving conventional therapy and those receiving intensive therapy (hazard ratio (HR) 1.15; 95% CI, 0.91-1.47; P = 0.241). Among the potential risk factors, only history of smoking at baseline was significantly associated with the incidence of fractures in men (HR 1.96; 95% CI, 1.04-3.07; P = 0.038). In contrast, the incidence of fractures in women was associated with the FRAX score [%/10 years] at baseline (HR 1.04; 95% CI, 1.02-1.07; P < 0.001) and administration of pioglitazone at 1 year after randomization (HR 1.59; 95% CI, 1.06-2.38; P = 0.025). CONCLUSIONS Intensified multifactorial intervention may be implemented without increasing the fracture risk in patients with type 2 diabetes. The fracture risk is elevated in those with a history of smoking in men, whereas it is predicted by the FRAX score and is independently elevated with administration of pioglitazone in women.
Collapse
Affiliation(s)
- Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohjiro Ueki
- Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kana Miyake
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiro Takeuchi
- Toranomon Hospital Endocrine Center, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Yasuo Ohashi
- Department of Integrated Science and Engineering for Sustainable Society, Chuo University, Tokyo, Japan
| | - Mitsuhiko Noda
- Ichikawa Hospital, International University of Health and Welfare, Ichikawa, Japan
- Department of Endocrinology and Diabetes, Saitama Medical University, Saitama, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
- Correspondence: Takashi Kadowaki, M.D., Ph.D., Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To discuss the diagnosis, treatment, and complications of diabetes in people with HIV (PWH) and to review HIV-related factors that may contribute to the development of diabetes or alter decisions in the care and treatment of PWH with diabetes. RECENT FINDINGS For those patients with atherosclerotic cardiovascular disease, heart failure, and/or chronic kidney disease, GLP-1 receptor agonists and SGLT-2 inhibitors should be considered for use. Evidence for this recommendation is, however, based on studies that were not conducted in populations consisting solely of PWH. Diabetes is a significant comorbidity in PWH and adds to their already heightened risk of cardiovascular disease. HIV-specific factors, including interactions of antiretroviral therapy with medications that either treat diabetes and/or prevent cardiovascular disease, should be evaluated.
Collapse
Affiliation(s)
- Sudipa Sarkar
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Asthma and Allergy Center 3B.74D, Baltimore, MD, 21224, USA.
| | - Todd T Brown
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, MD, 21287, USA
| |
Collapse
|
19
|
Fruchart JC, Hermans MP, Fruchart-Najib J, Kodama T. Selective Peroxisome Proliferator-Activated Receptor Alpha Modulators (SPPARMα) in the Metabolic Syndrome: Is Pemafibrate Light at the End of the Tunnel? Curr Atheroscler Rep 2021; 23:3. [PMID: 33392801 PMCID: PMC7779417 DOI: 10.1007/s11883-020-00897-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
Purpose of Review Adoption of poor lifestyles (inactivity and energy-dense diets) has driven the worldwide increase in the metabolic syndrome, type 2 diabetes mellitus and non-alcoholic steatohepatitis (NASH). Of the defining features of the metabolic syndrome, an atherogenic dyslipidaemia characterised by elevated triglycerides (TG) and low plasma concentration of high-density lipoprotein cholesterol is a major driver of risk for atherosclerotic cardiovascular disease. Beyond lifestyle intervention and statins, targeting the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) is a therapeutic option. However, current PPARα agonists (fibrates) have limitations, including safety issues and the lack of definitive evidence for cardiovascular benefit. Modulating the ligand structure to enhance binding at the PPARα receptor, with the aim of maximising beneficial effects and minimising adverse effects, underlies the SPPARMα concept. Recent Findings This review discusses the history of SPPARM development, latterly focusing on evidence for the first licensed SPPARMα, pemafibrate. Evidence from animal models of hypertriglyceridaemia or NASH, as well as clinical trials in patients with atherogenic dyslipidaemia, are overviewed. Summary The available data set the scene for therapeutic application of SPPARMα in the metabolic syndrome, and possibly, NASH. The outstanding question, which has so far eluded fibrates in the setting of current evidence-based therapy including statins, is whether treatment with pemafibrate significantly reduces cardiovascular events in patients with atherogenic dyslipidaemia. The PROMINENT study in patients with type 2 diabetes mellitus and this dyslipidaemia is critical to evaluating this.
Collapse
Affiliation(s)
- Jean-Charles Fruchart
- Residual Risk Reduction Initiative (R3i) Foundation, Picassoplatz 8, 4010, Basel, Switzerland.
| | - Michel P Hermans
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc and Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Jamila Fruchart-Najib
- Residual Risk Reduction Initiative (R3i) Foundation, Picassoplatz 8, 4010, Basel, Switzerland
| | - Tatsuhiko Kodama
- Laboratory for System Biology and Medicine. Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Abstract
Although type 1 diabetes mellitus and, to a lesser extent, type 2 diabetes mellitus, are the prevailing forms of diabetes in youth, atypical forms of diabetes are not uncommon and may require etiology-specific therapies. By some estimates, up to 6.5% of children with diabetes have monogenic forms. Mitochondrial diabetes and cystic fibrosis related diabetes are less common but often noted in the underlying disease. Atypical diabetes should be considered in patients with a known disorder associated with diabetes, aged less than 25 years with nonautoimmune diabetes and without typical characteristics of type 2 diabetes mellitus, and/or with comorbidities associated with atypical diabetes.
Collapse
Affiliation(s)
- Jaclyn Tamaroff
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA.
| | - Marissa Kilberg
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA
| | - Sara E Pinney
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA
| | - Shana McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, 12th Floor, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Hansmann G, Calvier L, Risbano MG, Chan SY. Activation of the Metabolic Master Regulator PPARγ: A Potential PIOneering Therapy for Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2020; 62:143-156. [PMID: 31577451 PMCID: PMC6993553 DOI: 10.1165/rcmb.2019-0226ps] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
Translational research is essential to the development of reverse-remodeling strategies for the treatment of pulmonary vascular disease, pulmonary hypertension, and heart failure via mechanistic in vivo studies using animal models resembling human pulmonary arterial hypertension (PAH), cardiovascular remodeling, and progressive right heart failure. Since 2007, peroxisome proliferator-activated receptor γ (PPARγ) agonists have emerged as promising novel, antiproliferative, antiinflammatory, insulin-sensitizing, efficient medications for the treatment of PAH. However, early diabetes study results, their subsequent misinterpretations, errors in published review articles, and rumors regarding potential adverse effects in the literature have dampened enthusiasm for considering pharmacological PPARγ activation for the treatment of cardiovascular diseases, including PAH. Most recently, the thiazolidinedione class PPARγ agonist pioglitazone underwent a clinical revival, especially based on the IRIS (Insulin Resistance Intervention After Stroke) study, a randomized controlled trial in 3,876 patients without diabetes status post-transient ischemic attack/ischemic stroke who were clinically followed for 4.8 years. We discuss preclinical basic translational findings and randomized controlled trials related to the beneficial and adverse effects of PPARγ agonists of the thiazolidinedione class, with a particular focus on the last 5 years. The objective is a data-driven approach to set the preclinical and clinical study record straight. The convincing recent clinical trial data on the lack of significant toxicity in high-risk populations justify the timely conduct of clinical studies to achieve "repurposing" or "repositioning" of pioglitazone for the treatment of clinical PAH.
Collapse
Affiliation(s)
- Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany; and
| | - Laurent Calvier
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany; and
| | - Michael G. Risbano
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, and
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, and
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Kim JM, Kim SS, Kim JH, Kim MK, Kim TN, Lee SH, Lee CW, Park JY, Kim ES, Lee KJ, Choi YS, Kim DK, Kim IJ. Efficacy and Safety of Pioglitazone versus Glimepiride after Metformin and Alogliptin Combination Therapy: A Randomized, Open-Label, Multicenter, Parallel-Controlled Study. Diabetes Metab J 2020; 44:67-77. [PMID: 31339011 PMCID: PMC7043969 DOI: 10.4093/dmj.2018.0274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND There is limited information regarding the optimal third-line therapy for managing type 2 diabetes mellitus (T2DM) that is inadequately controlled using dual combination therapy. This study assessed the efficacy and safety of pioglitazone or glimepiride when added to metformin plus alogliptin treatment for T2DM. METHODS This multicenter, randomized, active-controlled trial (ClinicalTrials.gov: NCT02426294) recruited 135 Korean patients with T2DM that was inadequately controlled using metformin plus alogliptin. The patients were then randomized to also receive pioglitazone (15 mg/day) or glimepiride (2 mg/day) for a 26-week period, with dose titration was permitted based on the investigator's judgement. RESULTS Glycosylated hemoglobin levels exhibited similar significant decreases in both groups during the treatment period (pioglitazone: -0.81%, P<0.001; glimepiride: -1.05%, P<0.001). However, the pioglitazone-treated group exhibited significantly higher high density lipoprotein cholesterol levels (P<0.001) and significantly lower homeostatic model assessment of insulin resistance values (P<0.001). Relative to pioglitazone, adding glimepiride to metformin plus alogliptin markedly increased the risk of hypoglycemia (pioglitazone: 1/69 cases [1.45%], glimepiride: 14/66 cases [21.21%]; P<0.001). CONCLUSION Among patients with T2DM inadequately controlled using metformin plus alogliptin, the addition of pioglitazone provided comparable glycemic control and various benefits (improvements in lipid profiles, insulin resistance, and hypoglycemia risk) relative to the addition of glimepiride.
Collapse
Affiliation(s)
- Jeong Mi Kim
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Sang Soo Kim
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jong Ho Kim
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Mi Kyung Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Tae Nyun Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Soon Hee Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Chang Won Lee
- Department of Internal Medicine, Busan St. Mary's Hospital, Catholic University of Pusan, Busan, Korea
| | - Ja Young Park
- Department of Internal Medicine, Busan St. Mary's Hospital, Catholic University of Pusan, Busan, Korea
| | - Eun Sook Kim
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Kwang Jae Lee
- Department of Internal Medicine, Daedong Hospital, Busan, Korea
| | - Young Sik Choi
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Duk Kyu Kim
- Department of Internal Medicine, Dong-A Medical Center, Dong-A University College of Medicine, Busan, Korea
| | - In Joo Kim
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.
| |
Collapse
|
23
|
Vaughan EM, Rueda JJ, Samson SL, Hyman DJ. Reducing the Burden of Diabetes Treatment: A Review of Low-cost Oral Hypoglycemic Medications. Curr Diabetes Rev 2020; 16:851-858. [PMID: 32026779 PMCID: PMC7415714 DOI: 10.2174/1573399816666200206112318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The vast majority of individuals diagnosed with diabetes are low/middle income and may have access to only three of the 11 oral hypoglycemic medications (OHMs) due to cost: metformin intermediate release (IR) or extended release (ER), sulfonylureas (glimepiride, glipizide, glyburide), and pioglitazone. Sulfonylureas and pioglitazone have had significant controversy related to potential adverse events, but it remains unclear whether these negative outcomes are class, drug, or dose-related. OBJECTIVE We conducted a narrative review of low-cost OHMs. METHODS We evaluated the maximum recommended (MAX) compared to the most effective (EFF) daily dose, time-to-peak change in HbA1c levels, and adverse events of low-cost oral hypoglycemic medications. RESULTS We found that the MAX was often greater than the EFF: metformin IR/ER (MAX: 2,550/2,000 mg, EFF: 1,500-2,000/1,500-2,000 mg), glipizide IR/ER (MAX: 40/20 mg, EFF: 20/5 mg), glyburide (MAX: 20 mg, EFF: 2.5-5.0 mg), pioglitazone (MAX: 45 mg, EFF: 45 mg). Time-to-peak change in HbA1c levels occurred at weeks 12-20 (sulfonylureas), 25-39 (metformin), and 25 (pioglitazone). Glimepiride was not associated with weight gain, hypoglycemia, or negative cardiovascular events relative to other sulfonylureas. Cardiovascular event rates did not increase with lower glyburide doses (p<0.05). Glimepiride and pioglitazone have been successfully used in renal impairment. CONCLUSION Metformin, glimepiride, and pioglitazone are safe and efficacious OHMs. Prescribing at the EFF rather than the MAX may avoid negative dose-related outcomes. OHMs should be evaluated as individual drugs, not generalized as a class, due to different dosing and adverse-event profiles; Glimepiride is the preferred sulfonylurea since it is not associated with the adverse events as others in its class.
Collapse
Affiliation(s)
- Elizabeth M Vaughan
- Division of General Internal Medicine, Department of Medicine, Baylor College of Medicine, University in Houston, Texas, TX 77030, United States
| | - Jaime J Rueda
- Division of General Internal Medicine, Department of Medicine, Baylor College of Medicine, University in Houston, Texas, TX 77030, United States
| | - Susan L Samson
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, University in Houston, Texas, TX 77030, United States
| | - David J Hyman
- Division of General Internal Medicine, Department of Medicine, Baylor College of Medicine, University in Houston, Texas, TX 77030, United States
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Thiazolidinediones (TZDs) are the only pharmacologic agents that specifically treat insulin resistance. The beneficial effects of TZDs on the cardiovascular risk factors associated with insulin resistance have been well documented. TZD use has been limited because of concern about safety issues and side effects. RECENT FINDINGS Recent studies indicate that cardiovascular toxicity with rosiglitazone and increase in bladder cancer with pioglitazone are no longer significant issues. There are new data which show that pioglitazone treatment reduces myocardial infarctions and ischemic strokes. New data concerning TZD-mediated edema, congestive heart failure, and bone fractures improves the clinician's ability to select patients that will have minimal significant side effects. Thiazolidinediones are now generic and less costly than pharmaceutical company-promoted therapies. Better understanding of the side effects coupled with clear benefits on the components of the insulin resistance syndrome should promote TZD use in treating patients with type 2 diabetes.
Collapse
Affiliation(s)
- Harold E Lebovitz
- SUNY Downstate Medical Center, 450 Clarkson Avenue, Box 1205, Brooklyn, NY, 11203, USA.
| |
Collapse
|
25
|
Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep 2019; 1:312-328. [PMID: 32039382 PMCID: PMC7001557 DOI: 10.1016/j.jhepr.2019.07.002] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide prevalence of non-alcoholic fatty liver disease (NAFLD) is estimated to have reached 25% or more in adults. NAFLD is prevalent in obese individuals, but may also affect non-obese insulin-resistant individuals. NAFLD is associated with a 2- to 3-fold increased risk of developing type 2 diabetes (T2D), which may be higher in patients with more severe liver disease - fibrosis increases this risk. In NAFLD, not only the close association with obesity, but also the impairment of many metabolic pathways, including decreased hepatic insulin sensitivity and insulin secretion, increase the risk of developing T2D and related comorbidities. Conversely, patients with diabetes have a higher prevalence of steatohepatitis, liver fibrosis and end-stage liver disease. Genetics and mechanisms involving dysfunctional adipose tissue, lipotoxicity and glucotoxicity appear to play a role. In this review, we discuss the altered pathophysiological mechanisms that underlie the development of T2D in NAFLD and vice versa. Although there is no approved therapy for the treatment of NASH, we discuss pharmacological agents currently available to treat T2D that could potentially be useful for the management of NASH.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, The University of Florida, and Malcom Randall Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
26
|
[Diagnosis and management of patients with diabetes and co-existing osteoporosis (Update 2019) : Common guideline of the Autrian Society for Bone and Mineral Research and the Austrian Diabetes Society]. Wien Klin Wochenschr 2019; 131:174-185. [PMID: 30980167 DOI: 10.1007/s00508-019-1462-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fragility fractures are increasingly recognized as a complication of both type 1 and type 2 diabetes, with fracture risk that increases with disease duration and poor glycemic control. The identification and management of fracture risk in these patients remains challenging. This manuscript explores the clinical characteristics of bone fragility in adults with diabetes and highlights recent studies that have evaluated areal bone mineral density (BMD), bone microstructure and material properties, biochemical markers, and fracture prediction algorithms (FRAX) in these patients. It further reviews the impact of diabetes drugs on bone tissue as well as the efficacy of osteoporosis treatments in this population. An algorithm for the identification and management of diabetic patients at increased fracture risk is proposed.
Collapse
|
27
|
Affiliation(s)
- Mary C Nakamura
- Department of Medicine, Division of Rheumatology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
- Arthritis/Immunology Section, San Francisco Veterans Administration Health Care System, 4150 Clement Street, 111R, San Francisco, CA, 94121, USA.
| |
Collapse
|
28
|
Costantini S, Conte C. Bone health in diabetes and prediabetes. World J Diabetes 2019; 10:421-445. [PMID: 31523379 PMCID: PMC6715571 DOI: 10.4239/wjd.v10.i8.421] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/03/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023] Open
Abstract
Bone fragility has been recognized as a complication of diabetes, both type 1 diabetes (T1D) and type 2 diabetes (T2D), whereas the relationship between prediabetes and fracture risk is less clear. Fractures can deeply impact a diabetic patient's quality of life. However, the mechanisms underlying bone fragility in diabetes are complex and have not been fully elucidated. Patients with T1D generally exhibit low bone mineral density (BMD), although the relatively small reduction in BMD does not entirely explain the increase in fracture risk. On the contrary, patients with T2D or prediabetes have normal or even higher BMD as compared with healthy subjects. These observations suggest that factors other than bone mass may influence fracture risk. Some of these factors have been identified, including disease duration, poor glycemic control, presence of diabetes complications, and certain antidiabetic drugs. Nevertheless, currently available tools for the prediction of risk inadequately capture diabetic patients at increased risk of fracture. Aim of this review is to provide a comprehensive overview of bone health and the mechanisms responsible for increased susceptibility to fracture across the spectrum of glycemic status, spanning from insulin resistance to overt forms of diabetes. The management of bone fragility in diabetic patient is also discussed.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- Epatocentro Ticino, Lugano 6900, Switzerland
| | - Caterina Conte
- Department of Immunology, Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan 20123, Italy
- IRCCS Ospedale San Raffaele, Internal Medicine and Transplantation, Milan 20123, Italy
| |
Collapse
|
29
|
Hygum K, Starup-Linde J, Langdahl BL. Diabetes and bone. Osteoporos Sarcopenia 2019; 5:29-37. [PMID: 31346556 PMCID: PMC6630041 DOI: 10.1016/j.afos.2019.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Bone disease is a serious complication to diabetes. Patients with type 1 diabetes (T1D) and type 2 diabetes (T2D) suffer from an increased risk of fracture, most notably at the hip, compared with patients without diabetes. Confounders such as patient sex, age, body mass index, blood glucose status, fall risk, and diabetes medications may influence the fracture risk. Different underlying mechanisms contribute to bone disease in patients with diabetes. Bone quality is affected by low bone turnover in T1D and T2D, and furthermore, incorporation of advanced glycation end-products, changes in the incretin hormone response, and microvascular complications contribute to impaired bone quality and increased fracture risk. Diagnosis of bone disease in patients with diabetes is a challenge as current methods for fracture prediction such as bone mineral density T-score and fracture risk assessment tools underestimate fracture risk for patients with T1D and T2D. This review focuses on bone disease and fracture risk in patients with diabetes regarding epidemiology, underlying disease mechanisms, and diagnostic methods, and we also provide considerations regarding the management of diabetes patients with bone disease in terms of an intervention threshold and different treatments.
Collapse
Affiliation(s)
| | | | - Bente L. Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Longo M, Bellastella G, Maiorino MI, Meier JJ, Esposito K, Giugliano D. Diabetes and Aging: From Treatment Goals to Pharmacologic Therapy. Front Endocrinol (Lausanne) 2019; 10:45. [PMID: 30833929 PMCID: PMC6387929 DOI: 10.3389/fendo.2019.00045] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetes is becoming one of the most widespread health burning problems in the elderly. Worldwide prevalence of diabetes among subjects over 65 years was 123 million in 2017, a number that is expected to double in 2045. Old patients with diabetes have a higher risk of common geriatric syndromes, including frailty, cognitive impairment and dementia, urinary incontinence, traumatic falls and fractures, disability, side effects of polypharmacy, which have an important impact on quality of life and may interfere with anti-diabetic treatment. Because of all these factors, clinical management of type 2 diabetes in elderly patients currently represents a real challenge for the physician. Actually, the optimal glycemic target to achieve for elderly diabetic patients is still a matter of debate. The American Diabetes Association suggests a HbA1c goal <7.5% for older adults with intact cognitive and functional status, whereas, the American Association of Clinical Endocrinologists (AACE) recommends HbA1c levels of 6.5% or lower as long as it can be achieved safely, with a less stringent target (>6.5%) for patients with concurrent serious illness and at high risk of hypoglycemia. By contrast, the American College of Physicians (ACP) suggests more conservative goals (HbA1c levels between 7 and 8%) for most older patients, and a less intense pharmacotherapy, when HbA1C levels are ≤6.5%. Management of glycemic goals and antihyperglycemic treatment has to be individualized in accordance to medical history and comorbidities, giving preference to drugs that are associated with low risk of hypoglycemia. Antihyperglycemic agents considered safe and effective for type 2 diabetic older patients include: metformin (the first-line agent), pioglitazone, dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor agonists. Insulin secretagogue agents have to be used with caution because of their significant hypoglycemic risk; if used, short-acting sulfonylureas, as gliclazide, or glinides as repaglinide, should be preferred. When using complex insulin regimen in old people with diabetes, attention should be paid for the risk of hypoglycemia. In this paper we aim to review and discuss the best glycemic targets as well as the best treatment choices for older people with type 2 diabetes based on current international guidelines.
Collapse
Affiliation(s)
- Miriam Longo
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Bellastella
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Ida Maiorino
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Juris J. Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Katherine Esposito
- Diabetes Unit, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Dario Giugliano
- Unit of Endocrinology and Metabolic Diseases, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
31
|
Viscoli CM, Kent DM, Conwit R, Dearborn JL, Furie KL, Gorman M, Guarino PD, Inzucchi SE, Stuart A, Young LH, Kernan WN. Scoring System to Optimize Pioglitazone Therapy After Stroke Based on Fracture Risk. Stroke 2019; 50:95-100. [PMID: 30580725 PMCID: PMC6557695 DOI: 10.1161/strokeaha.118.022745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background and Purpose- The insulin sensitizer, pioglitazone, reduces cardiovascular risk in patients after an ischemic stroke or transient ischemic attack but increases bone fracture risk. We conducted a secondary analysis of the IRIS trial (Insulin Resistance Intervention After Stroke) to assess the effect of pretreatment risk for fracture on the net benefits of pioglitazone therapy. Methods- IRIS was a randomized placebo-controlled trial of pioglitazone that enrolled patients with insulin resistance but without diabetes mellitus within 180 days of an ischemic stroke or transient ischemic attack. Participants were recruited at 179 international centers from February 2005 to January 2013 and followed for a median of 4.8 years. Fracture risk models were developed from patient characteristics at entry. Within fracture risk strata, we quantified the effects of pioglitazone compared with placebo by estimating the relative risks and absolute 5-year risk differences for fracture and stroke or myocardial infarction. Results- The fracture risk model included points for age, race-ethnicity, sex, body mass index, disability, and medications. The relative increment in fracture risk with pioglitazone was similar in the lower (
Collapse
Affiliation(s)
| | | | - Robin Conwit
- National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | | | - Karen L. Furie
- Alpert Medical School of Brown University, Providence, RI
| | | | | | | | - Amber Stuart
- University of Connecticut School of Medicine, Farmington, CT
| | | | | | | |
Collapse
|
32
|
Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2018; 61:2461-2498. [PMID: 30288571 DOI: 10.1007/s00125-018-4729-5] [Citation(s) in RCA: 757] [Impact Index Per Article: 126.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The American Diabetes Association and the European Association for the Study of Diabetes convened a panel to update the prior position statements, published in 2012 and 2015, on the management of type 2 diabetes in adults. A systematic evaluation of the literature since 2014 informed new recommendations. These include additional focus on lifestyle management and diabetes self-management education and support. For those with obesity, efforts targeting weight loss, including lifestyle, medication and surgical interventions, are recommended. With regards to medication management, for patients with clinical cardiovascular disease, a sodium-glucose cotransporter-2 (SGLT2) inhibitor or a glucagon-like peptide-1 (GLP-1) receptor agonist with proven cardiovascular benefit is recommended. For patients with chronic kidney disease or clinical heart failure and atherosclerotic cardiovascular disease, an SGLT2 inhibitor with proven benefit is recommended. GLP-1 receptor agonists are generally recommended as the first injectable medication.
Collapse
Affiliation(s)
- Melanie J Davies
- Diabetes Research Centre, University of Leicester, Leicester, UK.
- Leicester Diabetes Centre, Leicester General Hospital, Leicester,, LE5 4PW, UK.
| | - David A D'Alessio
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Judith Fradkin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Walter N Kernan
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, Rome, Italy
- Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Apostolos Tsapas
- Second Medical Department, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Deborah J Wexler
- Department of Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, Rossing P, Tsapas A, Wexler DJ, Buse JB. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41:2669-2701. [PMID: 30291106 PMCID: PMC6245208 DOI: 10.2337/dci18-0033] [Citation(s) in RCA: 1716] [Impact Index Per Article: 286.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The American Diabetes Association and the European Association for the Study of Diabetes convened a panel to update the prior position statements, published in 2012 and 2015, on the management of type 2 diabetes in adults. A systematic evaluation of the literature since 2014 informed new recommendations. These include additional focus on lifestyle management and diabetes self-management education and support. For those with obesity, efforts targeting weight loss, including lifestyle, medication, and surgical interventions, are recommended. With regards to medication management, for patients with clinical cardiovascular disease, a sodium-glucose cotransporter 2 (SGLT2) inhibitor or a glucagon-like peptide 1 (GLP-1) receptor agonist with proven cardiovascular benefit is recommended. For patients with chronic kidney disease or clinical heart failure and atherosclerotic cardiovascular disease, an SGLT2 inhibitor with proven benefit is recommended. GLP-1 receptor agonists are generally recommended as the first injectable medication.
Collapse
Affiliation(s)
- Melanie J Davies
- Diabetes Research Centre, University of Leicester, Leicester, U.K.,Leicester Diabetes Centre, Leicester General Hospital, Leicester, U.K
| | - David A D'Alessio
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Judith Fradkin
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Walter N Kernan
- Department of Medicine, Yale School of Medicine, New Haven, CT
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, UZ Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Geltrude Mingrone
- Department of Internal Medicine, Catholic University, Rome, Italy.,Diabetes and Nutritional Sciences, King's College London, London, U.K
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.,University of Copenhagen, Copenhagen, Denmark
| | - Apostolos Tsapas
- Second Medical Department, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Deborah J Wexler
- Department of Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
34
|
Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR Agonists and Metabolic Syndrome: An Established Role? Int J Mol Sci 2018; 19:E1197. [PMID: 29662003 PMCID: PMC5979533 DOI: 10.3390/ijms19041197] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Therapeutic approaches to metabolic syndrome (MetS) are numerous and may target lipoproteins, blood pressure or anthropometric indices. Peroxisome proliferator-activated receptors (PPARs) are involved in the metabolic regulation of lipid and lipoprotein levels, i.e., triglycerides (TGs), blood glucose, and abdominal adiposity. PPARs may be classified into the α, β/δ and γ subtypes. The PPAR-α agonists, mainly fibrates (including newer molecules such as pemafibrate) and omega-3 fatty acids, are powerful TG-lowering agents. They mainly affect TG catabolism and, particularly with fibrates, raise the levels of high-density lipoprotein cholesterol (HDL-C). PPAR-γ agonists, mainly glitazones, show a smaller activity on TGs but are powerful glucose-lowering agents. Newer PPAR-α/δ agonists, e.g., elafibranor, have been designed to achieve single drugs with TG-lowering and HDL-C-raising effects, in addition to the insulin-sensitizing and antihyperglycemic effects of glitazones. They also hold promise for the treatment of non-alcoholic fatty liver disease (NAFLD) which is closely associated with the MetS. The PPAR system thus offers an important hope in the management of atherogenic dyslipidemias, although concerns regarding potential adverse events such as the rise of plasma creatinine, gallstone formation, drug-drug interactions (i.e., gemfibrozil) and myopathy should also be acknowledged.
Collapse
Affiliation(s)
- Margherita Botta
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Cesare R Sirtori
- Centro Dislipidemie, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy.
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
35
|
Del Prato S, Chilton R. Practical strategies for improving outcomes in T2DM: The potential role of pioglitazone and DPP4 inhibitors. Diabetes Obes Metab 2018; 20:786-799. [PMID: 29171700 PMCID: PMC5887932 DOI: 10.1111/dom.13169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/30/2017] [Accepted: 11/19/2017] [Indexed: 12/20/2022]
Abstract
T2DM is a complex disease underlined by multiple pathogenic defects responsible for the development and progression of hyperglycaemia. Each of these factors can now be tackled in a more targeted manner thanks to glucose-lowering drugs that have been made available in the past 2 to 3 decades. Recognition of the multiplicity of the mechanisms underlying hyperglycaemia calls for treatments that address more than 1 of these mechanisms, with more emphasis placed on the earlier use of combination therapies. Although chronic hyperglycaemia contributes to and amplifies cardiovascular risk, several trials have failed to show a marked effect from intensive glycaemic control. During the past 10 years, the effect of specific glucose-lowering agents on cardiovascular risk has been explored with dedicated trials. Overall, the cardiovascular safety of the new glucose-lowering agents has been proven with some of the trials summarized in this review, showing significant reduction of cardiovascular risk. Against this background, pioglitazone, in addition to exerting a sustained glucose-lowering effect, also has ancillary metabolic actions of potential interest in addressing the cardiovascular risk of T2DM, such as preservation of beta-cell mass and function. As such, it seems a logical agent to combine with other oral anti-hyperglycaemic agents, including dipeptidyl peptidase-4 inhibitors (DPP4i). DPP4i, which may also have a potential to preserve beta-cell function, is available as a fixed-dose combination with pioglitazone, and could, potentially, attenuate some of the side effects of pioglitazone, particularly if a lower dose of the thiazolidinedione is used. This review critically discusses the potential for early combination of pioglitazone and DPP4i.
Collapse
Affiliation(s)
- Stefano Del Prato
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Robert Chilton
- Division of CardiologyUniversity of Texas Health Science Center at San Antonio and South Texas Veterans Health Care SystemSan AntonioTexas
| |
Collapse
|
36
|
Samuel VT, Shulman GI. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab 2018; 27:22-41. [PMID: 28867301 PMCID: PMC5762395 DOI: 10.1016/j.cmet.2017.08.002] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
NAFLD is closely linked with hepatic insulin resistance. Accumulation of hepatic diacylglycerol activates PKC-ε, impairing insulin receptor activation and insulin-stimulated glycogen synthesis. Peripheral insulin resistance indirectly influences hepatic glucose and lipid metabolism by increasing flux of substrates that promote lipogenesis (glucose and fatty acids) and gluconeogenesis (glycerol and fatty acid-derived acetyl-CoA, an allosteric activator of pyruvate carboxylase). Weight loss with diet or bariatric surgery effectively treats NAFLD, but drugs specifically approved for NAFLD are not available. Some new pharmacological strategies act broadly to alter energy balance or influence pathways that contribute to NAFLD (e.g., agonists for PPAR γ, PPAR α/δ, FXR and analogs for FGF-21, and GLP-1). Others specifically inhibit key enzymes involved in lipid synthesis (e.g., mitochondrial pyruvate carrier, acetyl-CoA carboxylase, stearoyl-CoA desaturase, and monoacyl- and diacyl-glycerol transferases). Finally, a novel class of liver-targeted mitochondrial uncoupling agents increases hepatocellular energy expenditure, reversing the metabolic and hepatic complications of NAFLD.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Veterans Affairs Medical Center, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
37
|
Kernan WN, Viscoli CM, Dearborn JL, Kent DM, Conwit R, Fayad P, Furie KL, Gorman M, Guarino PD, Inzucchi SE, Stuart A, Young LH. Targeting Pioglitazone Hydrochloride Therapy After Stroke or Transient Ischemic Attack According to Pretreatment Risk for Stroke or Myocardial Infarction. JAMA Neurol 2017; 74:1319-1327. [PMID: 28975241 DOI: 10.1001/jamaneurol.2017.2136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Importance There is growing recognition that patients may respond differently to therapy and that the average treatment effect from a clinical trial may not apply equally to all candidates for a therapy. Objective To determine whether, among patients with an ischemic stroke or transient ischemic attack and insulin resistance, those at higher risk for future stroke or myocardial infarction (MI) derive more benefit from the insulin-sensitizing drug pioglitazone hydrochloride compared with patients at lower risk. Design, Setting, and Participants A secondary analysis was conducted of the Insulin Resistance Intervention After Stroke trial, a double-blind, placebo-controlled trial of pioglitazone for secondary prevention. Patients were enrolled from 179 research sites in 7 countries from February 7, 2005, to January 15, 2013, and were followed up for a mean of 4.1 years through the study's end on July 28, 2015. Eligible participants had a qualifying ischemic stroke or transient ischemic attack within 180 days of entry and insulin resistance without type 1 or type 2 diabetes. Interventions Pioglitazone or matching placebo. Main Outcomes and Measures A Cox proportional hazards regression model was created using baseline features to stratify patients above or below the median risk for stroke or MI within 5 years. Within each stratum, the efficacy of pioglitazone for preventing stroke or MI was calculated. Safety outcomes were death, heart failure, weight gain, and bone fracture. Results Among 3876 participants (1338 women and 2538 men; mean [SD] age, 63 [11] years), the 5-year risk for stroke or MI was 6.0% in the pioglitazone group among patients at lower baseline risk compared with 7.9% in the placebo group (absolute risk difference, -1.9% [95% CI, -4.4% to 0.6%]). Among patients at higher risk, the risk was 14.7% in the pioglitazone group vs 19.6% for placebo (absolute risk difference, -4.9% [95% CI, -8.6% to 1.2%]). Hazard ratios were similar for patients below or above the median risk (0.77 vs 0.75; P = .92). Pioglitazone increased weight less among patients at higher risk but increased the risk for fracture more. Conclusions and Relevance After an ischemic stroke or transient ischemic attack, patients at higher risk for stroke or MI derive a greater absolute benefit from pioglitazone compared with patients at lower risk. However, the risk for fracture is also higher. Trial Registration clinicaltrials.gov Identifier: NCT00091949.
Collapse
Affiliation(s)
- Walter N Kernan
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Catherine M Viscoli
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - David M Kent
- Predictive Analytics and Comparative Effectiveness Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
| | - Robin Conwit
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Pierre Fayad
- Department of Neurological Sciences, University of Nebraska Medical School, Omaha
| | - Karen L Furie
- Department of Neurology, Alpert Medical School of Brown University, Providence, Rhode Island
| | | | - Peter D Guarino
- Statistical Center for HIV/AIDS Research Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Silvio E Inzucchi
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Amber Stuart
- University of Connecticut School of Medicine, Farmington
| | - Lawrence H Young
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
38
|
Ortinau LC, Linden MA, Dirkes RK, Rector RS, Hinton PS. Exercise initiated after the onset of insulin resistance improves trabecular microarchitecture and cortical bone biomechanics of the tibia in hyperphagic Otsuka Long Evans Tokushima Fatty rats. Bone 2017; 103:188-199. [PMID: 28711659 DOI: 10.1016/j.bone.2017.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/13/2017] [Accepted: 07/06/2017] [Indexed: 12/25/2022]
Abstract
The present study extends our previous findings that exercise, which prevents the onset of insulin resistance and type 2 diabetes (T2D), also prevents the detrimental effects of T2D on whole-bone and tissue-level strength. Our objective was to determine whether exercise improves bone's structural and material properties if insulin resistance is already present in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF rat is hyperphagic due to a loss-of-function mutation in cholecystokinin-1 receptor (CCK-1 receptor), which leads to progressive obesity, insulin resistance and T2D after the majority of skeletal growth is complete. Because exercise reduces body mass, which is a significant determinant of bone strength, we used a body-mass-matched caloric-restricted control to isolate body-mass-independent effects of exercise on bone. Eight-wk old, male OLETF rats were fed ad libitum until onset of hyperglycemia (20weeks of age), at which time they were randomly assigned to three groups: ad libitum fed, sedentary (O-SED); ad libitum fed, treadmill running (O-EX); or, sedentary, mild caloric restriction to match body mass of O-EX (O-CR). Long-Evans Tokushima Otsuka rats served as the normophagic, normoglycemic controls (L-SED). At 32weeks of age, O-SED rats had T2D as evidenced by hyperglycemia and a significant reduction in fasting insulin compared to OLETFs at 20weeks of age. O-SED rats also had reduced total body bone mineral content (BMC), increased C-terminal telopeptide of type I collagen (CTx)/tartrate resistant acid phosphatase isoform 5b (TRAP5b), decreased N-terminal propeptide of type I procollagen (P1NP), reduced percent cancellous bone volume (BV/TV), trabecular number (Tb.N) and increased trabecular separation (Tb.Sp) and structural model index (SMI) of the proximal tibia compared to L-SED. T2D also adversely affected biomechanical properties of the tibial diaphysis, and serum sclerostin was increased and β-catenin, runt-related transcription factor 2 (Runx2) and insulin-like growth factor-I (IGF-I) protein expression in bone were reduced in O-SED vs. L-SED. O-EX or O-CR had greater total body bone mineral density (BMD) and BMC, and BV/TV, Tb.N, Tb.Sp, and SMI compared to O-SED. O-EX had lower CTx and CR greater P1NP relative to O-SED. O-EX, not O-CR, had greater cortical thickness and area, and improved whole-bone and tissue-level biomechanical properties associated with a 4-fold increase in cortical bone β-catenin protein expression vs. O-SED. In summary, EX or CR initiated after the onset of insulin resistance preserved cancellous bone volume and structure, and EX elicited additional benefits in cortical bone.
Collapse
Affiliation(s)
- Laura C Ortinau
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Melissa A Linden
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Research Service-Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Rebecca K Dirkes
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Department of Medicine, Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States; Research Service-Harry S. Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States.
| |
Collapse
|